Statistics How To

Classical Probability: Definition and Examples

Statistics Definitions > Classical Probability

What is Classical Probability?

Classical probability is a simple form of probability that has equal odds of something happening. For example:

  • Rolling a fair die. It’s equally likely you would get a 1, 2, 3, 4, 5, or 6.
  • Selecting bingo balls. Each numbered ball has an equal chance of being chosen.
  • Guessing on a test. If you guessed on a multiple choice test with four possible answer A B C and D, each choice has the same odds of being picked (assuming you pick randomly and don’t follow a pattern).
  • .

Formula for Classical Probability.

The probability of a simple event happening is the number of times the event can happen, divided by the number of possible events.

The “mathy” way of writing the formula is P(A) = f / N.

P(A) means “probability of event A” (event A is whatever event you are looking for, like winning the lottery).
“f” is the frequency, or number of possible times the event could happen.
N is the number of times the event could happen.

Examples:
The odds of rolling a 2 on a fair die are one out of 6, or 1/6. That’s one possible outcome (there’s only one way to roll a 1!) divided by the number of possible outcomes (1,2,3,4,5,6).

The odds of winning Powerball are 1/292,000,000). The “1” is the number of times the event can happen (you winning), divided by the number of possible number combinations (about 292,000,000) tickets sold.

For a detailed example of using the formula, see: Probability of a Simple Event Happening.

When You can Use the Formula.

classical probability

You can only use classical probability for very basic events, like dice rolls.

You can only use the classical probability formula when all events are equally likely. Choosing a card from a standard deck gives you a 1/52 chance of getting a particular card, no matter what card you choose (king of hearts, queen of spades, three of diamonds etc.). On the other hand, figuring out will it rain tomorrow or not isn’t something you can figure out with this basic type of probability. There might be a 15% chance of rain (and therefore, an 85% chance of it not raining).

Dividing the number of events by the number of possible events is very simplistic, and it isn’t suited to finding probabilities for a lot of situations. For example, natural events like weights, heights, and test scores need normal distribution probability charts to calculate probabilities. In fact, most “real life” things aren’t simple events like coins, cards, or dice. You’ll need something more complicated than classical probability theory to solve them.

Other types of probability:

  • Subjective probability is based on your beliefs. For example, you might “feel” a lucky streak coming on.
  • Empirical probability is based on experiments. You physically perform experiments and calculate the odds from your results.
  • Axiomatic Probability: a type of probability that has a set of axioms (rules) attached to it. For example, you could have a rule that the probability must be greater than 0%, that one event must happen, and that one event cannot happen if another event happens.
------------------------------------------------------------------------------

If you prefer an online interactive environment to learn R and statistics, this free R Tutorial by Datacamp is a great way to get started. If you're are somewhat comfortable with R and are interested in going deeper into Statistics, try this Statistics with R track.

Comments are now closed for this post. Need help or want to post a correction? Please post a comment on our Facebook page and I'll do my best to help!
Classical Probability: Definition and Examples was last modified: October 12th, 2017 by Stephanie Glen