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INTRODUCTION.

L'ÉTUDE approfondie de la nature est la source la plus

féconde des découvertes mathématiques.

Non seulement cette étude, en offrant aux recherches un but

déterminé, a l'avantage d'exclure les questions vagues et les

calculs sans issue ; elle est encore un moyen assuré de former

l'Analyse elle -même, et d'en découvrir les éléments qu'il nous

importe le plus de connaître et que cette science doit toujours

conserver.

Ces éléments fondamentaux sont ceux qui se reproduisent

dans tous les effets naturels.” (Fourier . )

These words of Fourier are taken as the text of the present

treatise, which is addressed principally to the student of

Applied Mathematics, who will in general acquire his mathe

matical equipment as he wants it for the solution of some

definite actual problem ; and it is in the interest of such

students that the following Applications of Elliptic Functions

have been brought together , to enable them to see how the

purely analytical formulas may be considered to arise in the

discussion of definite physical questions.

The Theory of Elliptic Functions, as developed by Abel

and Jacobi, beginning about 1826, although now nearly

seventy years old, has scarcely yet made its way into the
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ordinary curriculum of mathematical study in this country ;

and is still considered too advanced to be introduced to the

student in elementary text-books.

In consequence of this omission,many of the most interest

ing problems in Dynamics are left unfinished , because the

complete solution requires the use of the Elliptic Functions ;

these could not be introduced without a long digression,

unless a considerable knowledge is presupposed of a course

of Pure Mathematics in this subject.

But by developing the Analysis as it is required for some

particular problem in hand, the student of Applied Mathe

matics will obtain a working knowledge of the subject of

Elliptic Functions, such as he would probably never acquire

from a study of a treatise like Jacobi's Fundamenta Nova ,

where the formulas are established and the subject is

developed in strictly logical order as a branch of Pure

Mathematical Analysis, without any digression on the

application of the formulas, or on the manner in which

they originate independently, as the expression of some

physical law.

In introducing these applications we are following, to some

extent, the plan of Durège's excellent treatise on Elliptic

Functions (Leipsic, Teubner) ; and also of Halphen's Traité

des fonctions elliptiques et de leurs applications (Paris,

1886-1891 ).

But while volume I.of Halphen's treatise is devoted entirely

to the establishment of the formulas and analytical properties

of the functions, and the applications are not discussed till

volume II. ; in the following pages it is proposed to develop

the formulas immediately from some definite physical or

geometrical problem ;and the reader who wishes to follow

up the purely analytical development of the subject is referred

to such treatises as Abel's Euvres, Jacobi's Fundamenta Nova ,



INTRODUCTION .
ix

already mentioned, or the Treatises on Elliptic Functions of

Cayley, Enneper, Königsberger, H. Weber, etc.

The following works also may be mentioned as having been

consulted in the preparation of this work :

Legendre : Theorie des fonctionselliptiques ; 1825 .

Thomæ : Abriss einer Theorie der complexen Functionen

und der Thetafunctionen einer Veränderlichen ; 1873.

Schwarz : Formeln und Lehrsätze zum Gebrauche der

elliptischen Functionen.

Klein (Morrice) : Lectures on the Icosahedron ; 1888 .

Klein und Fricke; Vorlesungen über die Theorie der ellip

tischen Modalfunctionen ; 1890.

Despeyrous et Darboux : Cours de mécanique; 1886.

R. A. Roberts : Integral Calculus ; 1887 .

Bjerknes : Niels Hendrik Abel ; tableau de sa vie et de son

action scientifique; 1885 .

We shall begin by the discussion of the Problem of the

Simple Circular Pendulum, as the problem best calculated to

define the Elliptic Functions, and to give the student an idea

of their nature and importance.

Previously to the introduction of the Elliptic Functions ,

the Circular Pendulum could only be treated by means of the

circular functions, by considering the oscillations as indefinitely

small, and by assimilating its motion to that of Huygens'

Cycloidal Pendulum, of 1673.

But now the employment of the Elliptic Functions renders

the ordinary discussion of the Cycloidal Pendulum antiquated

and of mere historical interest, and banishes from our treatises

such expressions as " an integral which cannot be found,” or

" reducible to a matter of quadrature” in describing an elliptic

integral,expressions which aroused the indignation of Clifford

(Mathematical Papers, p . 562) .
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According to the new regulations for the Mathematical

Tripos at Cambridge, to come into force in the examination

in May 1893 , the schedule II . of Part I. includes “ Elementary

Elliptic Functions, excluding the Theta Functions and the

theory of Transformation ” ; so it is to be hoped that this

reintroduction of Elliptic Functions into the ordinary mathe

matical curriculum will cause the subject to receive more

general attention and study. These Applications have

been put together with the idea of covering this ground by

exhibiting their practical importance in Applied Mathematics,

and of securing the interest of the student, so that he may if

he wishes follow with interest the analytical treatises already

mentioned.

We begin with Abel's idea of the inversion of Legendre's

elliptic integral of the first kind, and employ Jacobi's notation,

with Gudermann's abbreviation, for a considerable extent at

the outset.

The more modern notation of Weierstrass is introduced

subsequently, and used in conjunction with the preceding

notation, and not to its exclusion ; as it will be found that

sometimes one notation and sometimes the other is the more

suitable for the problem in hand.

At the same time explanation is given of the methods by

which a change from the one to the other notation can be

speedily carried out.

It has been considered sufficient in many places, for instance

in the reduction of the Integrals in Chapter II., to write

down the results without introducing the intermediate analysis ;

as the trained mathematical student to whom this book is

addressed will have no difficulty in supplying the connecting

steps, and this work will at the same time provide instructive

exercises in the subject ; and further, in the interest of such

students, many important problems have been introduced in
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the text, forming immediate applications of theorems already

developed previously .

I have to thank Mr. A. G. Hadcock for his assistance in

preparing the diagrams, and in drawing them carefully to

scale.

ERRATA .

Page 6. Line 9 from bottom , read Huygens.

XC

42. Line 6, read sin - 1read sin ve-7

48 . Line 5 from bottom , read - 4n + (962 + 4n “) .

64. Line 19, read Fonctions elliptiques.

99 . The diagram must be replaced by the one given below .

The Nodoid in fig. 12 , p . 99, was described by a point

which was not a focus of the rolling hyperbola.

107. Line 2 from bottom, delete minus sign before radical.

138. Equation (7 ) , read (42-43)/ D .

158. Line 12, read 36K(x, y ) .

205. Line 6 from bottom , read 8 (u – V) -- 80 ( 25 + 0 ).

213. Line 7 from bottom, read G + Lac' -- X ( yz' – y'z) = ()

with the corresponding subsequent corrections.

227. Line 7, read P1X + QNX.2 = 0 .

282. Line 5 from top, for rectangle read ribbon .

328 . Line 12 from bottom , read Proc. L. M. S., IX .

M '

b C AB

P "

M "
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Berlin Sitz. , Sitzungsberichte der Berliner Akademie .
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CHAPTER I.

THE ELLIPTIC FUNCTIONS.

1. The Pendulum ; introducing Elliptic Functions into

Dynamics.

When a pendulum OP swings through a finite angle about

a horizontal axis 0 , the determination of the motion introduces

the Elliptic Functions in such an elementary and straight

forward manner, that we may take the elliptic functions as

defined by pendulum motion, and begin the investigation of

their use and theory by their application to this problem.

Denote by W the weight in lb. of the pendulum, and let

OG=h ( feet), where G is the centre of gravity ; let Wk2 denote

the moment of inertia of the pendulum about the horizontal

axis through G, so that W (12 + k2) is the moment of inertia

about the parallel axis through 0 ( fig. 1).

Then if OG makes with the vertical OA an angle o radians

at the time t seconds, reckoned from an instant at which the

pendulum was vertical; and if we employ the absolute unit

of force, the poundal, and denote by g (32 celoes, roughly)

the acceleration of gravity, the equation of motion obtained

by taking moments about O is

d20

W (ha + K2) Wgh sin o,
dt2

since the impressed force of gravity is Wg poundals, acting

vertically through G ; so that

102 \4-0

ht
h ) dt2

or, on putting + 11= 0,

d ?0 = 0g sin ....... . ( 1 )
dt2

( ;

G.E.F. A
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(ha + %*) at12

S

or

If the gravitation unit of force, the force of a pound, is

employed ,then the equation of motion is written

Ꮃ d20

Wh sin ,

g

reducing to ( 1 ) as before.

2. Producing OG to P, so that OP = l, GP = k4/h, the point

P is called the centre of oscillation (or of percussion) ; and l is

called the length of the simple equivalent pendulum , because

the point P oscillates on the circle AP in exactly the same

manner as a small plummet suspended by a fine thread from

0 ( fig. 2) ; as is seen immediately by resolving tangentially

along the arc AP= 8 = 10 ; when the equation of motion of

das

the plummet is
dt2 -g sin 0 = -gsin T

( 220 /dt2 ) = -9 sin 0 ;.... ( 1)

and integrating, ild0/dt)2 = ( -gvers 0.....
. ( 2 )

These theorems are explained in treatises on Analytical

Mechanics, such as Routh's Rigid Dynamics, or Bartholomew

Price's Infinitesimal Calculus, vol. IV., and might have been

assumed here ; but now we proceed further, to the complete

integration of equation ( 2 ).

3. First suppose the pendulum to oscillate, the angle of

oscillation BOA +AOB' being denoted by 2a (fig. 2) ; the angle

of oscillation is purposely made large, as in early clocks , in the

Navez Ballistic Pendulum, in a swing, or as in ringing a

church bell, so as to emphasize the difference from small

oscillations, the only case usually considered in the text

books ; in fig. 2 the angle of oscillation is made 300° .

Then do /dt = 0 when A = a, so that in equation (2)

C = g vers a ;

and now denoting g/l by n ?, so that n is what Sir W. Thomson

calls the speed (angular) of the pendulum,

}(do/dt)2 = n4( vers a - vers )

2n (sin’ja - sin 10), ... .. (3)

since vers 0 = 2 sin210 ;

do/dt = 2n_(sinaja - sin -10),

die
and nt = ..( 4 )

(sina} a - sin -10)+ ? 0
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so that

and (4 ) is called by Legendre an elliptic integral of the first

kind ; it is not expressible by any of the algebraical, circular,

or hyperbolic functions of elementary mathematics .

4. To reduce this elliptic integral to the standard form con

sidered by Legendre , we put

sinto = sin a sin ,

equivalent geometrically to denoting the angle ADQ by 0

( fig. 2 ), where AQD is the circle on AD as diameter, touching

BB' in D, and cutting the horizontal line PN in Q.

For, in the circle AP,

AN= l vers 0 = 21 sinºje ;

and, in the circle AQ,

AN = AD vers 20 = AD sind

= l vers a sin'd = 21 sin a sin'o .

Now sin ja - sin -j0 = sinºja cos'o,

and 10 = sin - 1(sinja sin o) ,

sinļa cos pdo
d10 =

1 (1 --sin Ja sino)

do
and therefore nt

( 1 - sinaja sin o )

which is now an elliptic integral of the first kind, in the

standard form employed by Legendre.

( Fonctions Elliptiques, t. I. , chap VI.)

5. In Legendre's notation, sinja is replaced by k ; the quantity

1 ( 1 --k sinºp ) is denoted by Ap or A(0, k) ; and the integral

Sdp/Ap or S(1 - k sinºps)-5dø is denoted by Fø or F(b,k) ,

and called the elliptic integral of the first kind, o being called

the amplitude and x the modulus.

Thus, in the pendulum motion,

nt = Fø, or F(d, sinja) .

Legendre employs c instead of K, and puts k = sin 0 (a different

O to what we have just employed) and calls @ the modulur

angle ; and he has tabulated the numerical values of F (0 ,k ) for

every degree of pand 0. (Fonctions Elliptiques, t . II . Table IX.)

Legendre spent a long life in investigating the properties of

the function Fo, the elliptic integral of the first kind ; but the

subject was revolutionised by the single remark of Abel (in

F

0



THE ELLIPTIC FUNCTIONS. 5

1823), that Fo is of the nature of an inverse function ; and that

if we put u = F ¢, then we should study the properties of p,

the amplitude, as a function of u, and not of u as a function

of o, as carried out by Legendre in his Fonctions Elliptiques.

6. Jacobi proposed the notation p = am u, or am ( u ,k) when

the modulus k is required to be put in evidence ; and now ,

considered as functions of u, we have Jacobi's notation

cos p = cos amu, sin p = sin amu, Ap = Aamu,

the three elliptic functions of w ; and in Jacobi's Fundamenta

Nova (1829) the properties of these functions,

cos amu, sin amu, Aamu,

are developed, the elegance of Jacobi’s notation tending greatly

to the popularity of this treatise .

7. Definition of the Elliptic Functions.

Jacobi's notation is rather lengthy, so that nowadays, in

accordance with Gudermann's suggestion ( Theorie der Modular

Functionen , Crelle, t . 18), cos am u is abbreviated to cnu ,

sin am u to snu, and Aamu, to dnu ; and

snu, dnu

are the three elliptic functions (pronounced, according to Hal

phen, with separate letters ,as c, n , w ; s,n , u ; d, n , u ) ; and they

are defined by

cn u = cos o, sn u = sin ,dn u = Ap = / (1 - K- sinạp) ;

where p is a function of u, denoted by am u , and defined by

the relation

(1 — kº sin’o ) -#do,

Cn U,

U

ſ "(1

//(1 -x* sin®d)-!dę;
so that и,

0

dn u.

dru

d cos

J(1 --k sin o ) =

do _

du

_sin & aru

=

sn u dnu ;

d am w do
and

du

d en u

Thence

du du.

and similarly

d snu_d sin o

du du

d dnu

and

du du

do
cos o tre cn u dnu ;

DAP

0
du

k’sin o cos o do

Δή
du

-k sn ucnu
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8. Returning now with these definitions and this notation

to the motion of the pendulum , we have , on comparison,

urnt, while k = sinja, so that the modular angle is ja ;

and k = AD /AB = AB /AE, kë = AD AE ( fig. 2 ) ;

also p =am u, cos p = cn u, sin p = sn u, do/dt = n dn u ;

do /dt = 2nk cn u = 2nk cn nt,

sinio = K sn nt,

cos10 =

AP = AE sin 0 = AB sn nt, PE= AE cos0 =AE dn nt ;

AN=AD sn ?nt, ND = AD cn'nt, NE=AE dnant ;

NQ=/(AN . ND ) = AD snnt cnnt,NP = ABsn ntdnnt ;

giving these quantities as elliptic functions of u or nt.

Ksn u =

dn u = dn nt ;

9. We notice that k = 0 for infinitely small oscillations of

the pendulum, the only case usually treated in the text-books;

and now o = U = nt, so that

cn u = cos u, snu = sin u , while dnu= 1 ;

and the elliptic functions have degenerated into the ordinary

circular functions of Trigonometry.

But in finite oscillations of the pendulum, where k is not

zero, these new functions are required , which are called the

elliptic functions; and their geometrical definition is exhibited

in fig. 2, in a manner similar to that employed in Trigonometry

for the circular functions.

The name elliptic function is somewhat of a misnomer ;

but arose from the functions having been first approached by

mathematicians in their attempt at the rectification of the

ellipse (S 77).

For finite oscillations the circular functions are applicable

only to cycloidal oscillations,as discovered by Huygkens, 1673,

whence the motion on the arc of a cycloid is generally investi

gated at length in elementary treatises ; but this discussion

may be considered as of mere antiquarian interest, now that we

are proceeding to discuss the finite oscillations of the pendulum

by the aid of the elliptic functions.

We may however make here a slight digression on cycloidal

oscillations, treated in the manner we have employed for

circular oscillations.
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10. Cycloidal Oscillations.

In the cycloid, fig . 4, the angle ADQ or o = nt (not am nt,

as in the circular pendulum) for all finite oscillations ; for

as P oscillates on the arc BAB' of the inverted cycloid

described by the rolling of the circle AE,Q follows P at the

same level on the circle AD with constant velocity .

EE

D

B ІВ

F

PA
n

N
PР

A T

Fig. 4.

= It 29 Nn

For if PQN meets the circle on AE as diameter in R, then,

from a well-known property of the cycloid ,the tangent TP is

equal and parallel to AR, and half the arc AP ; and if n, p, q ,r

denote simultaneous consecutive positions of N , P , Q , R,

the velocity of Q Qq
= 1t

the velocity of P Рp Nn PP

= cosec qQP sin pPQ = cosecAFQ sin A ER

_JAD AR_JAD JAN. AE LAD

AE VAN.ND J (AE.ND)

Now the velocity of P = (29 . ND )

and therefore the velocity of Q = AD / (2g /AE )

= ADJ (g /l) = n . AD, a constant,

if AE= }l ; and therefore the angular velocity of Q about D

is n, and the angle ADQ= p =nt.

Therefore the oscillations are isochronous, since the period

27/n= 27/(Ug) is independent of the amplitude of oscillation.

NQ AE
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But in the circular pendulum the period increases with the

amplitude or angle of oscillation ; because in the circle AP

( fig. 2 ) the versed sine AN varies as the square of the chord

AP, while in the cycloid AP (fig . 4 ) the versed sine AN varies

as the square of the arc AP.

The time from P to A on the cycloid is equal to the c.m.

(circular measure) of the angle ADQ divided by n or ( 911);

and generally the time over any finite arc Pp of the cycloid

will be equal to the c.m. of the corresponding angle QDq divided

by n , supposing the body to start from the level of D.

This will be true even when the point D is above E , as at

D', so that the body enters the cycloid with given velocity ;

as for instance in the case of a railway train entering with

given velocity V a cycloidal tunnel BAB' under a river.

Making DD= V2/9, the impetus of the velocity V , then

the time occupied by the train in the tunnel from B to B' is

twice the c.m. of AD'C divided by n.

Also if the length of the tunnel is 2s, then s =( 21h ), if

AD, the depth or versed sine of the tunnel, is h ; so that the

time occupied is

2 DC AD 2s h

2

DD g VDD (2gh ) 112/g

tan - 1

Van
tan - 1

т .

11. The Period of the Pendulum , and of the Elliptic

Functions.

The period of the pendulum is the name now given to

the time of a double swing, according to the report of a Com

mittee at the Conference of Electricians in Paris, 1889 ;

thus, if the swing is small, the period is 27/(49) seconds.

But if the angle of vibration 2a is finite, the period is in

creased ; denoting the period by T, and therefore the quarter

period, or time of motion of P from A to B ( fig. 2) by 4T,

then as t increases from 0 to IT, O increases from 0 to and
φ

from () to it, so that nt or u increases from 0 to K , where ($ 4)

IT

KE (1 - ;

Ols

0

and K (or Fix in Legendre's notation, and called by him the

complete elliptic integral of the first kind) is now called the

real quarter period of the elliptic functions, to the modulus k.
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N =

20(sin o )2
2n

Kк

1 = 1

Now, expanding by the Binomial Theorem ,

=-1.3.5 ... (2n - 1 )

(1 – K?sinạp)-! = 1+ 2.4.6 ... 2n

and, by Wallis's Theorem,

11/2 1.3.5 ... ( 2n - 1)

(sin o )ando 2.4.6 ...
17 ;

2n

1.3.5 ... (2n - 1 )72
=

12.4.6 ... 2n

Thus the period of a pendulum of length l,oscillating through

an angle 2a, is

4K

T = 127 1+ (sin a) + ( sinja)
2.4

so that KA
N

]

n

+ (9.1.5)*(sin ļa)*+....}

+

2.4.6

As a first approximation therefore in the correction for am

plitude of swing, the period must be increased by the fraction

(sin ja )2 of itself, or by 100 ( 1 chord of a) per cent.

Thus a pendulum , which beats seconds when swinging

through an angle of 6° , will lose 11 to 12 seconds a day

if made to swing through 8° , and 26 seconds a day if made to

swing through 10° . (Simpson's Fluxions, S 464.)

The value of Kor F'k has been tabulated by Legendre

for every degree and tenth of a degree in the modular angle

( Fonctions Elliptiques, t. II . , Table I.) .

We denote the modular angle by ja , and put k = sinja ;

while cosła is denoted by k' and called the complementary

modulus, so that

K + = 1 ;

and then F'K' is denoted by K', and called the complementary

quarter period .

The following table (from Bertrand's Calcul Intégral, p . 714) ,

gives the logarithms of the quarter periods K and K ', correspond

ingtoevery half degree in ja,thequarter angle of swing ; and then

2KK' = sin a, k = sinja, k ' = cos}a ,

anda is the modular angle.

The modular angle in the Table is given from 0 to 45 ° ; to

determine K for a modular angle greater than 45° , we look

out the value of K ' corresponding to the complementarymodu

lar angle.



10 THE ELLIPTIC FUNCTIONS.

l
o
g
K

p
a

l
o
g

K'
(T-a)

T
A
B
L
E

I
.

l
o
g

K
.

l
o
g
K'

3(T
T
-
a

)
κ
α

높
다

l
o
g
K

l
o
g

K'
(T-a)

0:01
0

:1
9
6
1
1
9
9

I
n
f
i
n
i
t
e

.

0:5
1
2
8
1

0
.
7
8
7
3
0
3
1

1:0
1
5
3
0

7
3
5
1
9
2
3

1
.
5

1
9
4
3

•7
0
1
5
5
6
0

2
.
0

2
5
2
2

.
6
7
6
0
2
7
2

2
.
5

3
2
6
6

.
6
5
5
1
5
9
9

3:0
4
1
7
6

.
6
3
7
3
5
5
0

3
.
5

5
2
5
2

.
6
2
1
7
3
1
9

4
.
0

6
4
9
3

.
6
0
7
7
5
0
7

4
.
5

7
9
0
0

•5
9
5
0
5
4
9

5
.
0

9
4
7
4

•5
8
3
3
9
6
3

5
.
5

•1
9
7
1
2
1
3

•5
7
2
5
9
4
3

6
.
0

3
1
1
9

5
6
2
5
1
3
6

6
.
5

5
1
9
1

•5
5
3
0
4
9
8

7
.
0

7
4
3
0

•5
4
4
1
2
0
5

7
5

9
8
3
6

•5
3
5
6
5
9
5

8
.
0

•1
9
8
2
4
0
9

•5
2
7
6
1
2
9

8
.
5

5
1
4
9

•5
1
9
9
3
6
0

9
.
0

8
0
5
7

5
1
2
5
9
1
4

9
.
5

•1
9
9
1
1
3
4

5
0
5
5
4
7
4

1
0
.
0

4
3
7
8

•4
9
8
7
7
7
0

1
0

5
7
7
9
1

•4
9
2
2
5
6
9

1
1

:02
0
0
1
3
7
3

•4
8
5
9
6
6
7

1
1

:5
5
1
2
4

•4
7
9
8
8
8
8

1
2

:0
9
0
4
4

4
7
4
0
0
7
7

1
2
.
5

2
0
1
3
1
3
5

•1
6
8
3
0
9
5

1
3

:0
7
3
9
6

·4
6
2
7
8
1
9

1
3

:52
0
2
1
8
2
8

•4
5
7
4
1
4
2

1
4

:0
6
4
3
1

•4
5
2
1
9
6
4

1
4
.
5

2
0
3
1
2
0
6

•4
4
7
1
1
9
6

1
5
.
0

6
1
5
4

•4
4
2
1
7
6
0

9
0
.
0

8
9
.
5

8
9
.
0

8
8
.
5

8
8
.
0

8
7
5

8
7
0

8
6
.
5

8
6

:0 8
5
.
5

8
5

:0 8
4
.
5

8
4
.
0

8
3
.
5

8
3
.
0

8
2
.
5

8
2

0 8
1
5

8
1
0

8
0
.
5

8
0
.
0

7
9
.
5

7
9
.
0

7
8
.
5

7
8
.
0

7
7
.
5

7
7
0

7
6

:5 7
6

:0 7
5
.
5

7
5
.
0

1
5
.
5

1
0
.
2
0
4
1
2
7
4

0
.
4
3
7
3
5
8
1

1
6
.
0

6
5
6
7

4
3
2
6
5
9
5

1
6
.
5

2
0
5
2
0
3
4

4
2
8
0
7
4
0

1
7
0

7
6
7
5

•4
2
3
5
9
6
1

1
7
.
5

•2
0
6
3
4
9
2

•4
1
9
2
2
0
8

1
8
0

9
4
8
4

·4
1
4
9
4
3
2

1
8
.
5

2
0
7
5
6
5
2

•4
1
0
7
5
9
2

1
9
.
0

2
0
8
1
9
9
7

•4
0
6
6
6
4
7

1
9
.
5

8
5
1
9

•4
0
2
6
5
6
0

2
0
.
0

•2
0
9
5
2
2
0

•3
9
8
7
2
9
7

2
0
.
5

.
2
1
0
2
0
9
9

•3
9
4
8
8
2
5

2
1

:0
9
1
5
8

•3
9
1
1
1
1
5

2
1

:5.
2
1
1
6
3
9
8

3
8
7
4
1
3
9

2
2

:0*2
1
2
3
8
1
8

.
3
8
3
7
8
6
9

2
2
.
5

2
1
3
1
4
2
1

3
8
0
2
2
8
3

2
3
0

9
2
0
6

:3
7
6
7
3
5
7

2
3
.
5

.
2
1
4
7
1
7
5

3
7
3
3
0
6
9

2
4
.
0

2
1
5
5
3
2
9

.
3
6
9
9
4
0
0

2
4
.
5

.
2
1
6
3
6
6
8

•3
6
6
6
3
2
9

2
5
0

.
2
1
7
2
1
9
1

3
6
3
3
8
3
8

2
5
.
5

2
1
8
0
9
0
7

3
6
0
1
9
1
2

2
6

:0
9
8
0
8

•3
5
7
0
5
3
3

2
6
.
5

2
1
9
8
8
9
9

•3
5
3
9
6
8
6

2
7
.
0

.
2
2
0
8
1
8
1

•3
5
0
9
3
5
6

2
7

:5
•2
2
1
7
6
5
4

3
4
7
9
5
3
1

2
8
.
0

2
2
2
7
3
1
9

3
4
5
0
1
9
6

2
8
.
5

.
2
2
3
7
1
7
9

3
4
2
1
3
4
0

2
9
.
0

.
2
2
4
7
2
3
3

•3
3
9
2
9
5
0

2
9
.
5

.
2
2
5
7
4
8
4

3
3
6
5
0
1
6

3
0
.
0

.
2
2
6
7
9
3
3

3
3
3
7
5
2
6

3
0
.
5

*2
2
7
8
5
8
0

•3
3
1
0
4
7
1

7
4
.
5

7
4
.
0

7
3
.
5

7
3
.
0

7
2
.
5

7
2
.
0

7
1
.
5

7
1
0

7
0
.
5

7
0
.
0

6
9
.
5

6
9
.
0

6
8
.
5

6
8
.
0

6
7
5

6
7
0

6
6
.
5

6
6
.
0

6
5
.
5

6
5
.
0

6
4
.
5

6
4
.
0

6
3
.
5

6
3
.
0

6
2
.
5

6
2
.
0

6
1
.
5

6
1
0

6
0
.
5

6
0
.
0

5
9
.
5

3
1
.
0

0·2
2
8
9
4
2
7

1
0
.
3
2
8
3
8
4
0

3
1
.
5

.
2
3
0
0
4
7
6

.
3
2
5
7
6
2
4

3
2
0•2
3
1
1
7
2
8

3
2
3
1
8
1
5

3
2
.
5

•2
3
2
3
1
8
4

•3
2
0
6
4
0
3

3
3
.
0

2
3
3
4
8
4
7

•3
1
8
1
3
8
1

3
3

5.
2
3
4
6
7
1
6

3
1
5
6
7
4
1

3
4
.
0

.
2
3
5
8
7
9
5

3
1
3
2
4
7
4

3
4
.
5

.
2
3
7
1
0
8
4

3
1
0
8
5
7
5

3
5
.
0

2
3
8
3
5
8
6

•3
0
8
5
0
3
7

3
5
.
5

.
2
3
9
6
3
0
1

.
3
0
6
1
8
5
1

3
6
0

.
2
4
0
9
2
3
3

.
3
0
3
9
0
1
3

3
6
.
5

.
2
4
2
2
3
8
2

3
0
1
6
5
1
5

3
7
0

.
2
4
3
5
7
5
1

.
2
9
9
4
3
5
3

3
7

:5
.
2
4
4
9
3
4
1

.
2
9
7
2
5
2
0

3
8
.
0

.
2
4
6
3
1
5
4

.
2
9
5
1
0
1
2

3
8
.
5

.
2
4
7
7
1
9
3

2
9
2
9
8
2
2

3
9
0

.
2
4
9
1
4
6
0

.
2
9
0
8
9
4
5

3
9
.
5

•2
5
0
5
9
5
6

2
8
8
8
3
7
7

4
0
0

2
5
2
0
6
8
4

•2
8
6
8
1
1
4

4
0
.
5

•2
5
3
5
6
4
7

•2
8
4
8
1
5
0

4
1

:0*2
5
5
0
8
4
6

.
2
8
2
8
4
8
0

4
1
.
5

.
2
5
6
6
2
8
5

•2
8
0
9
1
0
2

4
2

:0.
2
5
8
1
9
6
5

•2
7
9
0
0
1
1

4
2
-
5

*2
5
9
7
8
8
9

.
2
7
7
1
2
0
2

4
3

:02
6
1
4
0
6
1

.
2
7
5
2
6
7
3

4
3
-
5

•2
6
3
0
4
8
2

.
2
7
3
4
4
1
8

4
4
.
0

2
6
4
7
1
5
5

.
2
7
1
6
4
3
6

4
4
.
5

.
2
6
6
4
0
8
5

.
2
6
9
8
7
2
2

4
5
0

•2
6
8
1
2
7
2

.
2
6
8
1
2
7
2

4
5
.
5

.
2
6
9
8
7
2
2

.
2
6
6
4
0
8
5

4
6
.
0

2
7
1
6
4
3
6

•2
6
4
7
1
5
5

5
9
.
0

5
8
.
5

5
8
.
0

5
7
.
5

5
7
.
0

5
6
.
5

5
6
0

5
5
.
5

5
5
.
0

5
4
.
5

5
4
.
0

5
3

:5 5
3
.
0

5
2
.
5

5
2

:0 5
1
.
5

5
1
.
0

5
0
-
5

5
0
.
0

4
9
.
5

4
9
.
0

4
8
.
5

4
8
.
0

4
7
.
5

4
7
.
0

4
6
5

4
6
.
0

4
5
.
5

4
5
.
0

4
4
.
5

4
4
0



THE ELLIPTIC FUNCTIONS .

T
A
B
L
E

I
I

.

U
U

φ
2

φ
φ

2
0

U
ф

1
5
.
5

1
6

:0 1
6
.
5

1
7
.
0

1
7
,
5

1
8
.
0

1
8
.
5

1
9
.
0

1
9
.
5

2
0
.
0

2
0
.
5

2
1
.
0

2
1
.
5

2
2

:0 2
2
.
5

2
3

: 0 2
3
.
5

2
4
.
0

2
4
.
5

2
5
.
0

2
5
.
5

2
6
.
0

2
6
.
5

2
7
.
0

2
7
.
5

2
8
.
0

2
8
.
5

2
9
.
0

2
9
.
5

3
0
.
0

0
.
2
7
2
1
8

•2
8
1
0
7

•2
8
9
9
7

•2
9
8
8
9

•3
0
7
8
1

3
1
6
7
5

•3
2
5
7
0

3
3
4
6
6

3
4
3
6
3

3
5
2
6
2

3
6
1
6
2

3
7
0
6
3

·3
7
9
6
6

•3
8
8
7
1

3
9
7
7
6

.
4
0
6
8
3

4
1
5
9
2

-
4
2
5
0
3

•4
3
4
1
5

-
4
4
3
2
8

•4
5
2
4
4

•4
6
1
6
1

4
7
0
7
9

•4
8
0
0
0

4
8
9
2
2

•4
9
8
4
6

*5
0
7
7
2

•5
1
7
0
0

5
2
6
3
0

•5
3
5
6
2

3
0
.
5

3
1

:0 3
1
.
5

3
2

0 3
2
.
5

3
3

:0 3
3
.
5

3
4

:0 3
4
.
5

3
5
.
0

3
5
.
5

3
6
0

3
6
.
5

3
7
.
0

3
7
.
5

3
8
.
0

3
8
.
5

3
9
.
0

3
9
.
5

4
0
.
0

4
0
.
5

4
1
0

4
1
.
5

4
2
.
0

4
2
.
5

4
3

:0 4
3
.
5

4
4
.
0

4
4
.
5

4
5

:0

0:5
4
4
9
6

•5
5
4
3
2

-
5
6
3
7
0

•5
7
3
1
0

•5
8
2
5
3

5
9
1
9
7

.
6
0
1
4
4

.
6
1
0
9
3

•6
2
0
4
4

.
6
2
9
9
8

•6
3
9
5
4

•6
4
9
1
2

-
6
5
8
7
3

.
6
6
8
3
6

-
6
7
8
0
1

6
8
7
6
9

-
6
9
7
4
0

•7
0
7
1
3

•7
1
6
8
9

•7
2
6
6
7

7
3
6
4
8

•7
4
6
3
2

-
7
5
6
1
8

•7
6
6
0
8

.
7
7
6
0
0

•7
8
5
9
4

•7
9
5
9
2

.
8
0
5
9
2

•8
1
5
9
6

.
8
2
6
0
2

4
5
.
5

4
6
.
0

4
6
.
5

4
7
0

4
7
.
5

4
8
.
0

4
8
.
5

4
9
.
0

4
9
.
5

5
0
0

5
0
-
5

5
1

:0 5
1
.
5

5
2
0 5
2

5 5
3
.
0

5
3
5

5
4
0

5
4

:5 5
5
.
0

5
5
.
5

5
6
.
0

5
6
.
5

5
7
.
0

5
7

:5 5
8
0

5
8
.
5

5
9
.
0

5
9
.
5

6
0
.
0

0
.
8
3
6
1
1

.
8
4
6
2
3

.
8
5
6
3
8

.
8
6
6
5
6

.
8
7
6
7
7

.
8
8
7
0
1

.
8
9
7
2
9

.
9
0
7
5
9

9
1
7
9
2

.
9
2
8
2
9

9
3
8
6
9

9
4
9
1
2

·9
5
9
5
8

9
7
0
0
7

9
8
0
6
0

.
9
9
1
1
5

1
.
0
0
1
7
5

0
1
2
3
7

0
2
3
0
2

0
3
3
7
1

·0
4
4
4
3

*0
5
5
1
9

·0
6
5
9
8

0
7
6
8
0

•0
8
7
6
5

.
0
9
8
5
4

•1
0
9
4
6

•1
2
0
4
2

.
1
3
1
4
1

•1
4
2
4
3

6
0
.
5

6
1
0

6
1
.
5

6
2

0 6
2
.
5

6
3
.
0

6
3
.
5

6
4
.
0

6
4
.
5

6
5
.
0

6
5
.
5

6
6
.
0

6
6
.
5

6
7
0

6
7
.
5

6
8
.
0

6
8
.
5

6
9
.
0

6
9
.
5

7
0
.
0

7
0
.
5

7
1
.
0

7
1

:5 7
2
.
0

7
2
.
5

7
3
.
0

7
3

:5 7
4
.
0

7
4
.
5

7
5
.
0

1
.
1
5
3
4
8

•1
6
4
5
7

•1
7
5
6
9

*1
8
6
8
2

•1
9
8
0
4

2
0
9
2
6

.
2
2
0
5
1

.
2
3
1
8
0

.
2
4
3
1
2

•2
5
4
4
7

•2
6
5
8
5

2
7
7
2
7

2
8
8
7
2

3
0
0
2
0

3
1
1
7
1

3
2
3
2
5

.
3
3
4
8
2

3
4
6
4
2

3
5
8
0
6

3
6
9
7
2

.
3
8
1
4
1

3
9
3
1
3

•4
0
4
8
8

.
4
1
6
6
6

•4
2
8
4
6

•1
1
0
3
0

-
4
5
2
1
5

4
6
4
0
4

•4
7
5
9
5

•4
8
7
8
8

7
5
.
5

7
6

:0 7
6
.
5

7
7
.
0

7
7
.
5

7
8
.
0

7
8
.
5

7
9
.
0

7
9
.
5

8
0
.
0

8
0
.
5

8
1
0

8
1
.
5

8
2
.
0

8
2
.
5

8
3

:0 8
3
.
5

8
4
.
0

8
4
.
5

8
5
.
0

8
5
.
5

8
6
.
0

8
6
.
5

8
7
.
0

8
7
.
5

8
8
.
0

8
8
.
5

8
9
0

8
9
.
5

9
0
.
0

1:4
9
9
8
4

-
5
1
1
8
3

•5
2
3
8
3 5
3
5
8
6

•5
4
7
9
2

*5
5
9
9
9

•5
7
2
0
8

•5
8
4
1
9

•5
9
6
3
3

.
6
0
8
4
8

-
6
2
0
6
4

.
6
3
2
8
3

•6
4
5
0
3

.
6
5
7
2
5

.
6
6
9
4
8

.
6
8
1
7
2

•6
9
3
9
8

•7
0
6
2
5

•7
1
8
5
3

7
3
0
8
2

•7
4
3
1
2

•7
5
5
4
2

•7
6
7
7
4

•7
8
0
0
6

•7
9
2
3
9

•8
0
4
7
2

.
8
1
7
0
5

.
8
2
9
3
9

.
8
4
1
7
3

1
.
8
5
4
0
7

U

0:00
.
0
0
0
0
0

0
.
5

0
0
8
7
3

1:00
1
7
4
5

1:50
2
6
1
8

2
.
0

0
3
4
9
1

2
.
5

0
4
6
3
4

3:0·0
5
2
3
7

35'0
6
1
1

).

4
0

0
6
9
8
4

4
.
5

0
7
8
5
8

5:00
8
7
3
2

5
.
5

0
9
6
0
7

6
0

•1
0
4
8
2

6
.
5

•1
1
3
5
7

70•1
2
2
3
3

7
.
5

•1
3
1
0
9

8:0•1
3
9
8
5

8
.
5

•1
4
8
6
3

9
.
0

•1
5
7
4
0

9
.
5

•1
6
6
1
9

1
0
.
0

•1
7
4
9
8

1
0
.
5

•1
8
3
7
7

1
1

:0•1
9
2
5
8

1
1
.
5

2
0
1
3
9

1
2

:0•2
1
0
2
1

1
2
.
5

•2
1
9
0
3

1
3
.
0

.
2
2
7
8
7

1
3
.
5

2
3
6
7
1

2
4
5
5
6

1
4
.
5

•2
5
4
4
3

1
5
.
0

.
2
6
3
3
0

1
4

:0



12 THE ELLIPTIC FUNCTIONS.

12. We notice that when the modular angle is 15° , then

log K '/ K = '2385606 = } log 3, so that K '} K = / 3 ;

this will be proved subsequently ; but it shows here that the

period of a pendulum oscillating through 300° is 13 times the

period when the pendulum oscillates through 60°.

Again we shall prove subsequently that,

if
K'/K =/7, then 2kk' = } ;

so that equal parallel horizontal chords , BB' the higher ,and

bb’ the lower, each of length one-eighth the diameter , cut off

arcs of the circle below them, which would be swung through

by the pendulum in times which are in the ratio of 17 to 1 .

Many other similar numerical examples can be constructed

when the Theory of the Complex Multiplication of Elliptic

Functions is studied.

13. When a = 17, the pendulum drops from a horizontal

position and swings through two right angles, as in the Navez

Electro-Ballistic Pendulum ; and now K = K ', and the modular

angle is 1.

Table II. from Legendre's Fonctions Elliptiques, t. II. , gives

to five decimals the value of u = Fø for every half degree in

the value of o, when the modular angle is 45° ; and thence by

means of the preceding formulas which determine the motion

of the pendulum by elliptic functions, the pendulum can be

graduated so as to measure small intervals of time At = Auln,
be

as required for electro -ballistic experiments .

Then from Table II., when K=K” , and k = k' = 1/2,

cn u = cos o , snu = sin ø , dn u = /(1-3 sin’o ).

14. Generally in the pendulum, K = InT, so that the period

T = 4K /n = 4K / (l/ g ).

When k = 0 , K = t , and the period is 27 / (U9), as proved

otherwise in the ordinary elementary treatises , for small

oscillations of the pendulum .

But in the finite oscillations of the pendulum, with

u = nt = 4Kt/ T ,

then (S8) do /dt = 2nc cn 4Kt/ T,

sinjo K sn 4KT/ T,

cos10 = dn 4Kt/ T, etc.

Putting t = 0, x = 0, we find

en ( = 1, sn ( = 0 , dn 0 = 1 ;
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and putting t = { T, u =K, = ,

when the pendulum has swung to OB,

cn K= cos = 0, sn K= 1 , dn k = k ', Vik ?

while putting t = : T, u = 2K,

when the pendulum is swinging backwards through the verti

cal OA , cn 2K = -1 , sn 2K = 0 , dn 2K= 1 ;

analogous to the values of cos 0 and sin 0, for 0 = 0, 1T, TT ;

so that 2K is the half period of the elliptic functions, corre

sponding to the half period 7 of the circular functions.

Since fa7ao = fo /Am fa$/Ap = 2K +v,if p = am u,
0 0 0

so that

therefore am(2K+u) = 7+ p = 7Iamu ;

and generally am (2mk'£ u ) =MT+ Q = matam u ;

cn (2mK + u ) = cos (matam u) = ( -1)" en u ,

sn (2mK + u ) = sin (ma tamu) = = ( - 1 )Msn u ,

while dn (2mK U ) = dnu ;

analogous to cos (m700) = ( -1)" éos ,

sin (ma ) = + ( - 1 )" sin ;

and representing the motion, m half periods, past or future.

15. The degenerate Circular and Hyperbolic Functions.

As a increases from 0 to 2, k increases from 0 to 1 , and K

from 7 to infinity ; the pendulum has now , with k = 1 , just

sufficient velocity to carry it to the highest position, and this

will take an infinite time.

For with a = , equation (3 ) , page 3 , becomes

}(do/dt)2 = n²( 1 + cos ( ) = 2'nº cos210 ;

nt = /sec. e die

= log tan] (++ 0) = log(sec10+ tan:10) ,

which is infinite when A = 7.

In small oscillations the period is 27 /n , and the motion of

M , the projection of P on the horizontal axis Ax, is then a

Simple Harmonic Motion (S.H.M. ) given by the differential
d2.c

equation
dt + nºx = 0,

the solution of which is

X =A cos nt, or B sin nt, or A cos nt+B sin nt, or a cos(ntte) ;

so that n is the constant angular velocity round D of the point

Q on the infinitesimal circle AQD, as in the cycloid.
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0

In Kepler's Problem in Astronomy, n represents what is

called the mean motion of a planet or satellite, and nt or ntte

the mean anomaly ; a satellite of Jupiter , when observed in

the plane of its orbit , supposed circular, will appear to move

with a S. H. M.

But with k = 1, putting 10 = o = angle AEP ( fig. 3)

nt = /sec odp = log(sec 0 + tan o),

so that sec $ + tan 0 = ent,

sec p - tan pre- nt,

sec p = } (ent te-nt) = cosh nt,

tan = } ( ent - e - nt ) = sinh nt,

sin p = tanh nt, cos p = sech nt,

tantp = tanhint, and so on.

Also do /dt = 2n cos10 = 2n sech nt ;

so that if the angular velocity of the pendulum in the lowest

position OA is 2n, the pendulum will just reach the highest

position OE ; but the time occupied in reaching it will be in

finite, since 0 = 7, p = 17 makes nt and therefore t infinite .

The velocity of Pin any position is

d0/dt) = 2nl cosio = n . EP,

and therefore varies as EP.

If EP in fig. 3 is produced to meet Ax in M ’, then

AM=AEtanle = 20 sinh mat, EM ' = EA sec99 = 20 cosh ot ;

so that, if AM' or EM ' is denoted by x,

02@

dt2

the general solution of which differential equation is

X =A cosh nt+B sinh nt.

16. When the pendulum just reaches the highest position

OE, k = 1 ; and u (or nt) and o, the c.m. of the angle A EP,

are connected by the relations

sec o dp = log (sec o+ tan o)

cosh - sec p = sinh -ltan = tanh - sin = 2 tanh -tang.

Conversely

φ := cos - Isech ursin - Itanh u = tan - Isinh u = 2 tan - Itanh {u ;

and then p is called by Professor Cayley the Gudermannian

of u, and denoted by gd w ; so that if orgd u , then

U = gd- ? p = log (sec 0 + tan p ) = cosh - sec , etc.

- n?x = 0 ,

- [
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Hoüel proposes for p the name of hyperbolic amplitude of

U ,with the notation p = amh u, instead of gd u ; so that
amh u

U = sec odo ;S

or ø = amh u= /sech udu =cos-'sech u = sin -Hanh u,ete ;
0

analogous in the general case of the elliptic functions, for any

modulus k, to (87)

F - lu = amu

= /
dn udu cos - Icn u = sin - Isn U, etc.

0

sech u ;

As degenerate forms, when k = 1 ,

cn u = sech u, snu= tanhu, dn u =

while, with k = 0,

cn u = COS U, snu = sin u, dn u = 1 .

Thus, when k = 1 , the elliptic functions degenerate into the

hyperbolic functions ; and ,when k = 0 , into the circular func

tions ; but with any other value of the modulus k, the elliptic

functions must be considered as new functions, of a higher

order of complexity than the circular or hyperbolic functions.

The following Table , from Legendre, F.E. , t. II. , Table IV. ,

gives the values of

u = log ( seco + tan p) = log tan (1 + 0 )

for every degree of o radians ; whence the numerical values of

the hyperbolic functions of u can be determined, by aid of a

table of circular functions , and by the relations

cosh u = o usec , sinh stanọ, tanh = sing,

For values of u greater than about 4 the Table fails; but

then it is sufficient, to two decimals , to take

sinh = eº ;

log1.cosh u = logiosinh u = Mu-log 2 ;

or, to a closer approximation ,

logiocosh u= Mu-log 2+Me- 2u

logiosinh u =Mu- log 2 - Me- 2u

logi,tanhu =

M denoting the modulus logo .

(Proposed Tables of Hyperbolic Functions, Report to the

British Association , 1888 , by Prof. Alfred Lodge.)

cosh u=

>

- 2 Me - 2u
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TABLE III .
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Considered as a function of the latitude o, u was called the

meridional part by Edward Wright, 1599, who first employed

it for the accurate construction of the parallels of latitude on

the Mercator Chart, by making the ratio of the distance from

the equator of the parallel of latitude to the distance between

the meridians whose difference of longitude is o equal to the

ratio of ulo (898 ).

17. Returning to the general elliptic functions, we notice

that cnºu + sn ? u = 1,

dn'u + k ?sn ? u = 1,

dn - k'cn ?u = K2;

or , in a tabular form ,

cn sn dn

cnw = en u

sn u

J ( 1 - snļu )

( 1 - cn -u )

(k?? + kºcn²u ) (1 - késn u )

snu

(dnļu – k2)/

J(1 –dnu)/K

dnudnu =

whence any one of the three elliptic functions cn, sn, dn, can

be expressed in terms of any other ; the three functions are

thus not absolutely necessary, but all three are retained and

utilized for simplicity of expression, as sometimes one and

sometimes another is most appropriate for the particular pro

blem in hand ; in the same way, of the circular functions

cos , sin , tan , cot e, sec , cec 0, vers 0,

one would be sufficient, but all are useful; and so also with

the hyperbolic functions cosh u, sinh u , tanh u, ....

For the reciprocals and quotients of the elliptic functions

cn , sn, dn, a convenient notation has been invented by Dr.

Glaisher, according to which 1/cn u is represented by ncu,

1 /sn u by ns u , 1/dnu by nd u , cn u/dnu by cd u, and so on.

In this manner snu/ cn u would be denoted by scu ; but it

is more commonly denoted by tanam u , abbreviated to tnu ;

while cn u/sn u or cs u would be denoted by cotam u, or ctn u.

According to Clifford (Dynamic, p. 89) we might abbreviate

the designation of the hyperbolic cosine, sine, and tangent to

hc, hs, and ht ; or we may write them ch , sh, th ; with cn, sn,

tn for the elliptic functions ; and merely c, s, t for the circular

functions.

G.E.F. B
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or

18. Pendulum performing complete revolutions.

Secondly, suppose the pendulum performs complete revolu

tions ( fig. 3 ).

We have seen previously (8 15) that if the pendulum has

an angular velocity 2n= 2 /(911) in the lowest position, it

will just reach the highest position ; and therefore if this

angular velocity is increased, the pendulum will perform com

plete revolutions.

The integration of equation (1 ) in the form

312 (do/dt)2 = C-gl vers e

104/g + AN = AD, a constant, denoted by 2R,

shows that the velocity of P is that which would be acquired

in falling freely from the level of a certain horizontal line

BDB', which now does not cut the circle, as in fig. 2 when the

pendulum oscillated, but lies entirely above the circle, as in

fig. 3 , at a height 2R above the lowest point A ; and the im

petus of the velocity of P is the depth of P below BB'.

Denoting the angle AEP by 0, so that p = 10, then

21 (dd/dt)2 = 9(2R - Ivers 20 ) = 29( R - 1 sin’d),

dф 2

1
1 kº

22 R

on putting K2 = 1/ R = AE AD; and n2 = g|1 , as before ;

mt/x = /(1 – sin’d )-1dø = F ($, «),

in Legendre's notation ; and inverting the function according

to Abel's suggestion, with Jacobi's notation,

10 = p = am(nt/k, k) ;

and now , with Gudermann's abbreviated notation,

cos 10 = cn nt/K,

sin 10 = sn nt/K,

de

= 2 " dn nt/kg
dt

AN = lvers 6 = 21 sin’g =AEsnant/k,

NE= AE cnant/k , ND = AD dnềnt/K ,

AP=AE sn nt/K, PE = AE cn nt/K,

NP = 21 sin jo cos jo = AE sn nt/k cn nt/K.

or

so that

nт

к
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164 ){1+ 0)
T

...]it

+

19. The time of moving from A to E is obtained by putting

$ = , and is therefore Kk/n ; and therefore the period ,or

time of a complete revolution, is 2Kk/ n (not 4Kk/n ).

With the series for K as given in § 11, and with kè = 1/ R ,

the period of the pendulum for a complete revolution is

22 27 1.3\ 2 72 1.3.512 73

+ + +

R 2.4 ) R2 2.4.6 ) R3

The analogous expression for the period when the pendulum

oscillates,rising on each side to a height 2R, less than 21, is,

as in $ 11 ,

2 R /11.3) 2 R2 11.3.512 R31.3.512
2T +

V 2.4 ) 72 2.4.6) 73

Putting k = 1 ,and R = l, makes K infinite, and brings us back

again to the separating case between oscillations and complete

revolutions of the pendulum ; and we thus regain for this

case the original expressions involving hyperbolic functions,

previously investigated in $ 15 .

But as k now diminishes again from 1 to 0, the pendulum

revolves faster and faster, until finally, when k = 0 , we must

suppose the pendulum to revolve with infinite angular velocity,

the fluctuations of which for different positions of P are in

sensible ; and the period is now zero.

20. We notice that, in the circle AQ ( fig. 2) the point Q

moves according to the law

=am nt,

so that Q moves round in a circle, centre C , in fig . 2 like the

point P making complete revolutions in fig. 3 .

But now, in the motion of Q, gravity must be supposed

diluted from g to k'g ; for if R or kpl denotes the radius of the

circle AQ, g' the diluted value of gravity, and n ' = 1/ ( / R ) the

speed of the pendulum CQ, then we must have

p =am nt = am n't /K,

'

g/R= kºg/l,

o'lg = k’R /l = k+

We may dilute gravity in the circle AQ by inclining the

plane of the circle to the vertical at an appropriate angle.

so that
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21. Another way of diluting gravity would be to replace the

circle AQ by a fine tube in the form of a uniform helix with

horizontal axis through its centre C perpendicular to the plane

of the circle AQ, and to suppose the particle Q to move in this

helix under gravity.

Then we shall find that if the length of one complete turn

of this helical tube is equal to the circumference of the circle

AP, the particle Q moving with velocity due to the level of E

will follow the motion of the particle P moving on the circle

AP with velocity due to the level of D, so that PQ will always

be horizontal, if once it is horizontal, and P, Q will always be

at the same level during the motion.

For in this case the mechanical similitude is secured by in

creasing the square of the velocity of Q in the ratio of 1 to

1 /K*, instead of diluting gravity to k * g.

We may secure the same effect by supposing Q to be a point

on a pendulum CQ , of length greater than CQ ; or else of length

CQ, but of which the axis C is cut into a smooth screw of

appropriate pitch ; or else engaging with teethed wheels, so as

to increase the angular inertia about C.

22. If we produce CQ to any fixed distance CQ = l, then Q

will also perform complete revolutions like a pendulum of

length l', with gravity changed in a certain fixed ratio depend

ing on l' ; and we can keep gravity unchanged by choosing 1

n'2 = g /l = k4n2 = k % g /l,

l = l/k = l cosecaja ;

and now Q revolves with velocity due to a level at a height

21/K4 = 2l cosec4ja above its lowest position ; so that the period of

revolution of a simple pendulum of length I cosecaja, when the

velocity is due to the level of a line at a height 21cosec } a above

its lowest point is equal to the time of oscillation of a simple

pendulum of length 1 through an angle 2a from rest to rest.

These problems on the pendulum have been developed here

at some length, in accordance with the idea of this Treatise ,

that it is simple pendulum motion which affords the best

concrete illustration of the Elliptic Functions.

Similar principles are involved in the following three

theorems, which the student can prove as an exercise in the

manner employed for the cycloid in $ 10.

so that

or
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1. If two vertical circles, of diameters AD and AE, touch at

their lowest points A , the time of oscillation from rest to rest

of a particle in the circle AE with velocity due to the level

of D will be to the time of revolution of a particle in the

circle AD with velocity due to the level of E in the ratio of

AE to AD ( fig. 2 ) .

2. Two particles move, under gravity , in vertical circles.

The one oscillates; the other performs complete revolutions.

Prove that if the height to which the velocity of the first is due

bears to the diameter of the first circle the same ratio as the

diameter of the second circle bears to the height to which the

velocity in it is due (the heights being measured from the low

est points of the circles) the ratio of the squares of the times

in corresponding small arcs -- and therefore the squares of the

whole times of oscillation and revolution-will be that com

pounded of either of the before-mentioned equal ratios and

the ratio of the diameters of the circles.

3. Two equal smooth circles are fixed so as to touch the same

horizontal plane, their planes being at different inclinations;

two small heavy beads are projected at the same instant along

these circles from their lowest points, the velocity of each bead

being that due to the height of the highest point of the other

circle above the horizontal plane, show that during the motion

the two beads will always be at equal heights above the hori

zontal plane.

23. We have compared the motion of the pendulum in fig. 1

with that of the simple equivalent pendulum composed of

the particle P moving on a smooth circle , or at the end of a

fine thread or wire OP ; oscillating from B to B' in fig. 2 ,and

performing complete revolutions in fig. 3, the velocity of P at

any point being that acquired in falling from the level of D.

Taking as coordinate axes the horizontal and vertical axes

Ax and Ay through A, and referring the motion of P to the

coordinates x and y, then since P describes the circle AP of

radius 1, x2 = 2ly – y ?

Denoting by v = ds/dt the velocity of P, then by the principle

{ valg = 2R - y,

2R denoting the height of D above A.

of energy
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so that

da 1 - y

But since

dy (2ly - y2)

da2 72

dy? 1 +dy2 = 2ly - y2 :

while
i (ds/dt)2 =9(2R -y) ;

172(dy/dt)2 = 9(2R- Y)(2ly - y2),

dt 7 1

dy 7 (29) / [(2R - y )(2ly- y2)}'

7 dy
t

(29)

called an elliptic integral in y, and of the first kind.

24. Firstly, if the pendulum oscillates , R is less than 1, and

y oscillates between 0 and 2R ; and the integral is reduced to

Legendre's canonical form by putting y = 2R sin -o ; when

nt = S(1–r * sin’op ) -1dø = F ( $, 6),
where Ka =R/1, n2 = g/ l ;

and therefore with Jacobi's and Gudermann's notation,

o= am(nt, K)

and y = 2R sn?nt = 21K? sn ?nt, a = 2lk sn nt dn nt ;

AN=AD snant, ND = AD cnant, NE = A E dnềnt,

as before, in $ 8.

or

and now

25. When k = 0 , the oscillations are indefinitely small;

y = 2R sin’nt,

where R is a very small quantity ;

idy
and nta

[ {y (2R - Y )} V2R

y

S717028 –3 )
-sin - 1

We
0

an ordinary circular integral.

It was Abel who pointed out (about 1823 ) that in looking

only at the Elliptic Integrals, mathematicians had been taking

the same difficult point of view as if they had begun to deduce

the theorems of elementary Trigonometry from an examination

of the properties of the inverse circular functions, as deduced

from the circular integrals.

( Niels-Henril Abel. Tableau de sa vie et de son action

scientifique. Par C. A. Bjerknes. 1885.)
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k = 1/R,

26. Secondly, if the pendulum performs complete revolu

tions, as in fig. 3, R is greater than I, and y oscillates in value

between 0 and 21 ; we now reduce the elliptic integral in § 23

to Legendre's standard form by putting y = 21 sind,

when nt/« = /(1 - x* sin’d)-idø = F (d,k)

where

the reciprocal of its former expression ; and now

p=am(nt/K , K) , y = 21 sn’nt/k, x = 21 sn nt/ k cn nt/k ;

or AN = AE snềnt/K ,NE = AE cnant/k, ND = AD dnềnt/K,

as proved before, in $ 18.

27. In the separating case between oscillations and complete

revolutions, R = 1, and now k = 1 ;

and g = 20 sinºp = 0 vers2b = l vers 0 ;

also (823) nt = /sec odp = log(sec 0 + tan o)

= cosh - Iseco = sinh - itan p = tanh - Isino = 2 tanh -Itanio ;

so that p = gd nt, or amh nt,

and
sec b = cosh mot, tan p = sinh mt, sin betanh mot,

g = 20 tanhºot, z = 20 sech mt tanh mat,

as before, in $ 15.

28. Landen's Point.

With centre E in fig. 2 and radius EB describe a circle

cutting the vertical AE in L ; then L is an important point in

the theory of pendulum motion and elliptic functions, called

Landen's point.

Since EB2 = ED.EA = EC2 - CA ?

therefore the circle, centre E and radius EB,will cut the circle

AQD, centre C, at right angles; and

LQP = LC2 + CQ2 + 2LC.CN = 2LC .EN=21( 1 - k )?EN ;

since LC2 + CQ2 = LC2 + EC2 – EL2 = 2LC .EC,

and EL = EB = 21K', EC = l( 1 + x ), LC= /(1 - x').

Now, by $ 20, the velocity of Q

(20'. EN ) = 1 / (29k4. EN ) = NK > / (21. EN )

= n . LQ(1 + k ').

Similarly in fig. 3, where P makes complete revolutions, the

velocity of P = n . LP(1 +k)/K, where the Landen point L is

obtained by drawing a circle with centre D, cutting the circle

AE orthogonally, and the vertical AD in L.
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We shall prove subsequently that any straight line through

L divides the circle APE in fig. 3 (or the circle AQD in fig. 2)

into two parts, each described in half the period.

29. Change from one modulus to its reciprocal.

It is important for the simplicity and for convenience of

tabulation of the elliptic functions that the modulus k should

not exceed unity ; but the preceding reductions of the motion

of the pendulum to elliptic functions, in the two cases in which

the pendulum oscillates and performs complete revolutions,

show us how to make the elliptic functions to a modulus K,

which is greater than unity, depend on the elliptic functions

to the reciprocal modulus 1/K, which is less than unity.

For, on comparing the two expressions for y, according as

the pendulum oscillates or performs complete revolutions,

y = 2R sn (nt, k ) , or 21 snº(knt, 1 /K ),

where KP = R l ;

k ?sn ?(nt, k ) = snº(knt, 1 /k) ;

or, putting
nt =U,

k sn ( , K) = sn (ku , 1 /K ),

dn (u , k) = cn (ku , 1/K),

cn (u , k) = dn (KU, 1/K).

Independently, if we suppose pram(u, k) , and if we put

k sin ø = sin y,

then K COS O do = cos Y dy ,

and cos O = 1/ (1- k - 2sin % ) = A (4,1/k ),

cos y = / (1 - k’sinºo ) = A ( 0 , k) ;

so that

so that

so that u = fa -x*sinºg)- dø =/ sec yn des;

- see adi = fa -k-lsin”4 ) #dyr,KU

Or = am (ku , 1 /K) ;

and since ksin p = sin , etc.,

therefore K sn (u ,k ) = sn (KU, 1/K) , etc.

When U= K, O = 37, and Y = sin - k ; so that, if k is less

sin - IK

than unity, KK ( 1 - k - 2sin y) -dys.

-852
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or

30. Rectilinear Oscillations expressed by Elliptic Functions.

In simple pendulum motion, referred to horizontal and ver

tical axes Ax, Ay, drawn through the lowest point A , we have

shown in SS 24, 26 , that

y = 2lk sn ?nt,x = 2lk sn nt dn nt ;

y = 2lsnºnt/k, x= 21 sn nt/k cn nt/k ;

according as the pendulum oscillates or performs complete

revolutions.

Treating the vertical motions separately, and differentiating

according to the rules established in $ 7 , we find, on taking

y = 2lkºsnant,

dyldt = 4lnk? sn nt on nt dn nt

dạy/dt = 4ln ? (cn'nt dn’nt - snềnt dnant - k’snant cnant)

4lnak
Y y

1
Y y

1.
Y

2lk ? 21 21k2 21 21 21k

Y y Зу?
.

i lk2 'LK21 422,2 ),

Taking y = 21 snềnt/k, we find in a similar manner

day 4ln2 у к ° у 3kaya

dt2 422

both immediately obtainable from the equation of $ 23 ,

172 (dy /dt)2 = 9 (2R - y ) ( 2ly - y2)

whence ) 4g( Rl - Ry - ly + ay?).

We shall find similar expressions for dạy /dt2 when y
varies

as cnant or dnềnt, all of the form

d’y/dt = A +By+ Cya.

Let us determine then, as exercises in the differentiation of

the elliptic functions, the acceleration d’x /dt>, and thence the

force at a distance x ,which will make a body oscillate in a

straight line according to one of the laws

x = a cn nt, sn nt, dn nt, tn nt, nc nt, ns nt, ....

Taking x = a cn nt,

dx /dt = na sn nt dn nt

dʻx /dt = - n’a(cn nt dnʼnt- K ? sn ?nt cn nt)

n22(x2- x2 + 2x32
a2

1-4 )

+

2

Kк

==nºw(«
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da \ 2

>

so that

a2

doc 22

so that

dt
+ n2x = 2nak ? ( 1

a?

reducing to zero when k = 0.

It is often simpler to find doc /dt, and then to express }(dx/dt)?

as a function of w ; and then a differentiation with respect to t

will give décc /dta immediately as a function of x .

Thus, if x = u sn nt,

dx/dt =na cn nt dn nt

ka

dt
/

a2

0200 2nK2203

= -n +(1 +x2)x +
dt

d22 2003

+ mºc : na

dt?

reducing to zero , when k = 0 .

Similarly, if a = a dn nt,

22:00 2n2003

= n2( 1 + k 2)% –
dt2 a2

Generally, when a varies also as tn nt, nc nt, ... , we shall

find a relation of the form

d’xc/dt = ux+ 2vącs,

which, when multiplied by da /dt and integrated, gives

}(doc/dt)2 = C + } uica + } vx4

dsc /dt = (2C + Mo ? + væ4),

t = / 20 + uz? + vx4) - kdx ,

an elliptic integral, of which the different expressions are given

in Chapter II .

or

31. A Special Minimum Surface.

Another interesting exercise in the differentiation of elliptic

functions is to verify that the surface discovered by Schwarz

(Gesammelte Mathematische Abhandlungen, vol. I. , p . 77),

cnx + cny + on + cnx cn y cn z= 0 ,

with the modulus k = } , is a minimum surface, having zero

curvature at every point, and therefore satisfying the condition

( 1 + q?)r— 2pq8 + (1 + p ? t = 0,

p, q, r, s, t having their usual meaning as partial differential

coefficients of with respect to x and y.
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Y= JQp* + q* + 1)

Schwarz shows that this condition is equivalent to

1 1 ( 1 + 94)r – 2pqs + ( 1 + p2)t ax 2Y

+ ) + = O,

1 + p + q2P1 P2
anc dy

P1, P2 denoting the principal radii of curvature of the surface

(C. Smith, Solid Geometry, $ 255) , where

р 9
X=

(92 + + 1 )' (

Let us write C7, 8 , d ,, for cn x, sn x, dn x ; and Cz,89, d., C3, 83,

d , for the same functions of Y

Then c7 +62 +63+ c, C,C3 = 0);

and differentiating with respect to x,

-87d1 -803p - s d162C3 - C4C283d3p = 0,

,d1( 1 + 02C3)
P =

8,d :(1 + Cc.)

Cy + C2
But

C3

and % .

or

1 + 0102

2 2

2

2 2

so that

(1 + 0,02)2- (C1 + c )?
8 : =

(1 + 6762) ( 1 + 0,02)

83 (1 + 0,02) = $1$2, etc.;

szdy d./8____83/d ;
=

848, dz 8.dg d3/ 8 8 /d,

d./82;
By symmetry, q =

d3/52

d ( d .
2

C3P .

dx \s1
2

22 doc \ S3
2

S.
1 $3

z dzda
2

Cz ( d2

so that we may write

-dy/s
X

/ {(d1/81)2+ (d , s,)2+ ( d , s,)2}'

—de/82
Y=

/{(d1/8)2+(d./s.)? + (d3/83)2}

-kºs,2C4 - c,d ,
Now

C d ( d ;

$ 1

2X dy(dz c d ₃ C ;

Əx = 1,216
+ +

82 83 8 8 81 % 89 83

where
D = (d1/84)2+ (d, s,)2+ (dz/s2)2 ;

ax c/da2 , cd ,2 + cydı

2+
дах 8,283

By symmetry

aY cąd czdg2 + c2d ,2

-)=D ;
ду

2X OY

+ = 0, provided that

so that

)} = D8,222x

,* ) DI
.or

Sz's,

+
2

1872
82

so that

dx ay



28
THE ELLIPTIO FUNCTIONS.

2

+ +
2 2 22. 2

1
81-82

o
r

or, since

or

Cz = Cz = 1.

c, d ,2 + c2da2 , cada + cd , cd,2 + code
+ = 0,

82-83

c (8,092 +8,20,2) + ... = 0);

82= 1 - c,2, d2 = 1(3 + ),

Ci { (1 - 0 )2(3 + 0,2) + (1-0,2)(3 + 0,2) }+ ... = 0,

(c4 +62 +63 + 6,62C3)( 3 - C2C3 - CzC1 - C7C2) = 0 ,

and this is true, in consequence of the original relation

C1 + C2 + c3 + C ,CaCz = 0 .

The other relation 3 - C2C3 - C,C1 - C,C2 = 0

represents isolated conjugate points , where

C1 =

Another minimum surface is

tn y tn +tn sm tn c + tn a tn g + 3 = 0,

with K = /2, k' = 1 .

32. Elliptic Function Solution of Euler's Equations of

Motion .

Before leaving the mechanical interpretation of elliptic

functions, we may just mention here an important application,

the application to the solution of Euler's equations of motion ,

for a body under no forces, moving about its centre of gravity,

or about any fixed point.

Euler's equations for p , q, r ,the component angular velocities

about the principal axes, are (Routh, Rigid Dynamics)

Adp/dt = ( B - C ) qr,

Bdq/dt = ( C - A )rp,

Cdr/dt = ( A – B )pq ;

where A , B, C denote the moments of inertia about the princi

pal axes ; and two first integrals of these equations are

ApP + Bq2 + C12 = T , a constant ;

Aạp ? + B % 22 + C222 = G , a constant,

obtained by multiplying Euler's equations respectively by (i. )

p, q, r , and adding, (ii . ) by Ap, Bq, Cr, and adding ; and then

integrating

Comparing these equations with the equations of 8 7 ,

-snu dnu, sn'u = cn u dnu, dn'u = -KPsn ucnu,

where accents denote differentiation with respect to u, we

notice that if A > B > C, and the polhode includes the axis C,

so that AT > BT > G > CT, we may put urnt, and

cn'u =
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p=P cn u, q = -Q sn u, r = R dn u ;

and then, on substituting in Euler's equations of motion,

B- C nP A -CnQ A -B K nR

A QR B RP c PQ

Putting t = 0 , and therefore p =P, q = 0, p = R ; then

AP2 + CR2 = T, A2P2 + C2R2 = G2,

G2 - OT AT - G2

P2 R2

A ( A -C)

A - G2 - CT

and then P2

B B -OB(B - C)

while
n2 = R2( A — C )(B - C ) _ (AT– G2)(B - C )

AB ABC

P2 A ALB-B -G2 - CT A - B
and K2

R ? O B -CAT - G2 B - C

so that

C (A —C)

If the polhode encloses the axis of greatest moment A , so

that AT > Gº > BT > CT, we must put

p =P dnu, q = -Q sn u, r = Rcnu ;

and then determine P, Q, R, n , k as before ; when

(G? – CT)( A - B) AT - G2 B - C

n2

ABC G2 - CT A - B *

.2

K

In the separating case, when G2 = BT, then k = 1 , and

p =P sech nt, q = -Q tanh nt, r =R sech nt ;

so that, when t = 0,

G2 B - C G2 A -B

BC A - 0

and initially or finally, when t = 700 ,

p = 0,9 = + G / B , r = 0) ;

and the body is spinning about its mean axis B.

p2 AB A -CI= 0 , 1-2

But when the body is spinning about the axis of greatest or

least moment, G2= AT= A <p ?, or G2 = CT= C2m2, and k = 0 ; and

the period of a small oscillation is 27 /n , where

(A – B )(A — C ) TE (A - B )( A -C).
n2

ABC BC

m2_ ) B C)(A – C)( B -CT- (A-C)(B - C),p2.
ABC AB

We shall return subsequently to these equations in Chap. III.

{p ?

or



CHAPTER II.

THE ELLIPTIC INTEGRALS (OF THE FIRST KIND).

33. In Chapter I. we have immediately made use of Abel's

valuable idea of the Inversion of the Elliptic Integral, which

is the foundation of the modern theory of the Elliptic Func

tions ; and we have considered the functions which are inverse

to the elliptic integral, and treated them as the direct funda

mental functions of our Theory.

Previously to Abel's discovery (1823) it was the elliptic

integral which was studied, as in the writings of Euler and

Legendre ; and, in fact, in a physical and dynamical problem

it is the elliptic integral which arises in the course of the

work ; for instance in the form of the Equation of Energy,

} (dx /dt) 2 = X , so that 12 t = fdx/ JX ;

and now, when X is a cubic or quartic function of x, so that

d2c/dta is a quadratic or cubic, as in § 30, the integral is called

an elliptic integral of the first kind ; and we have to follow

Abel and determine the elliptic function which expresses x as

a function of t.

To accomplish this, it will be useful to employ the notation

of the inverse functions, given by Clifford (Proc. London

Math . Society , vol. vii., p. 29 ; Mathematical Papers, p. 207)

analogous to those used in Trigonometry for the inverse

circular functions ; and to make a collection of all the important

cases that can occur.

34. The Circular and Hyperbolic Integrals.

Starting with the circular functions, sin x, cos x, tan x, cot ,

we have , in the ordinary notation,

30
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Psc dac

Soalan
sin - 1x = cos - J (1 – 22),

J (1-22)

1 dac

Siamo
= cos - lx = sin - /(1 - x2),

J (1 - x2)
X

doc

f
1

= tan -1x = cot
1

x1 +22

5. +
dac

2c2 +1

= cot - 1x = tan
- , 1

etc.

xC

X

We can employ a similar notation with the hyperbolic func

tions, cosh x , sinh , tanh x, coth , ... , and write

= cosh -la = sinh - 2 / (x2-1) = log {2+/ (x2 - 1)},
J (ac2 - 1)

* da

1

ac dac

Spations
-sinh - 1 = cosh -1 / ( 1 + x2) = log { / (1 + 2) + x },

J (1 + x2)

no je da
1 +0

tanh - l = 2 log ( @c < 1),
1- C1-22S

Someone
noco da 2+ 1

- coth - 1x = 1 log
X --- 1

(oc > 1) ; etc.;

and the analogy with the circular functions is now complete,

and the results can be more easily remembered and written

down, than when the logarithmic function alone is employed .

To avoid complications due to the multiplicity of the

values of these and subsequent integrals, in consequence of the

variable x assuming complex values and performing circuits of

contours round the poles of the integral , we suppose for the

present that æ is real, and increases or diminishes continually,

so as to assume all real values once only between the limits of

integration ; also that the positive sign is taken with the

radical under the sign of integration ; we thus obtain what is

called the principal value of the integral or inverse function .

35. The Elliptic Integrals.

With the elliptic functions, snu, cn u, dn u , we have (8 7)

d snu den u a dnu

= cn u dnu, sn u dnu, -K ?sn ucnu ;
da du du
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Site
0

Sva
X

and cn ?u = 1 - sn'u , dn u = 1 - kºsnºu ;

so that, if x = sn u , then cnu = / ( 1 - x2), dn u = / ( 1 - K2002) ;

dx

/(1-22.1-k%C2) ,
du

da

and
= sn - lac, or sn - 1( 8C, K )..........( 1)

J (1-22.1 - 62002)

when the modulus k is required to be put in evidence.

Putting x = 1 makesthe integral equal toK,the quarter

period corresponding to the modulus K (s 11 ).

Similarly, with

a = cnu, then snu = /(1 — ), dn u = / (x 2̂ + x2002),

dx
sn u dnu --/ (1 - x2. K ? + K2002),

du

dx

and
=U= cn - la, or cn - ' (x, K ),........( 2 )

(1/(1-02.K2 + k +x2)

so that the integral is K when the lower limit is 0.

Again, with

= dn u ,then k sn u = / (1-2 ),k cn u = 1/ (ac? - KQc2 — ??) ;

dic

and = -K?sn u cnu = -/(1 – 02.02 – K2),
du

da

=u = dn - tx, or dn - 1(a, K )...........( 3)
22.02– K )(1–22.22

We may also put x = tnu, using Gudermann's abbreviation

of tnu for tan amu; and now

1 (1+ k 202)

(1 + x2) /(1 +x2)

da dnu

1 ( 1 + x2.1 + k+2x2),
du cn²u

da

= u = tn - lx, or tn - C, K).......... (4)
/(1+2.17k 2002)

and the integral is K when the upper limit is .

Putting v = sin o , cos , Ap, or tan o in ( 1 ), (2), (3), or (4),

reduces the integral to

o k

X =

cn иU =
dnu ;

Sva

0

= am-( , k ) = sn - '(sin , k ) = cn - cos , k ) = dn- (Ap, k) ;

so that

ø = am u , and cos o = cnu, sin p = snu, Ap = dnu, tan p = tnu .
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fra
a)....

0

36. Thus, with a > b > ,

da хь

.... (5)
(a2 - x2.62 - 24) õ ' al

indicating that we must put x = b sin g ; and then the integral

is reduced to

1 72 - 1 1 1

1
(a bsin ф,

Õa

Sa
sn

en )
.....

Similarly, with co > > a,

da 1

..... (6)
(ac2 - a2.22 - 12) a x²

indicating the substitution x = a coseco (or a ceco, as Dr.

Glaisher writes it) .

Thus, for instance, with c > « > 1 /K,

dx 1

V (1-2 .1 - K202) kx '

2

Again,

dac

(a2 - x2.22 – 62)

Sweatere -403) Vla?+233en48 Jack the}... ( 7)

Sarathon - )- Viattenen -12 2012) . (S)

dn-14* 1 (1-6 )}.... (9)

Svet2763 tn -14% 11-3) ....(10)

a

7 11

2

1

a

37. As numerical examples,

i da

1/2 cn -1.0,1/2),
(1-24)

the integration required in the rectification of the lemniscate

pe = a ? cos 20 ; so that r = acn ( -/ 28/a, 1-2).

1/2

1 (24-1)

with Dr. Glaisher's notation ($ 17) of nou for 1 /cn u.

G.E.F. с
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Consider also the vibrations given by the dynamical

equation doc/dt = – 2n2x ( 02– ),

as in g 30 ; so that x = 0 gives the point of stable equilibrium ,

and x = c gives the points of unstable equilibrium.

Integrating, supposing the motion to start from rest where

x = , } (doc/dt)2 = C— n2c202 + In 2C4

= ? n ?(52 -- ) (2c2- 62 -- 22).

(i .) When b2 < 0, the motion is at the outset towards the

origin , and dx /dt = - n / (a — 22.62-22),

writing a2 for 2.2 - 62 ; so that

dx

nt =) J (a? —22.62—~ ?) JX JX

6

K with modulus by ( 5) ;

5 ob dx a doc

X 0

a '

or x = b sn ( K – ant) .

(ii . ) When b2 = c %, dx/dt = + n ( 62 — ~~);

and, by 8 34, the ultimate state of motion is given by

x = b tanh bnt, or b coth bnt,

according as the motion falls away from the position of

unstable equilibrium, towards or away from the origin .

( iii . ) When c < b2 < 2c ,

dx /dt = tn / (0c2 - a2.22 — 62),

da dx ' dx
nt =

(ac2 a ? . - ) JX
b 2

=](K -sh
or

Sec - 18

b

or

a

mod. 6
b

x = b /sn ( K — bnt) = b ns(K — bnt).

(iv.) When b2 = 202,

da 1

nta

2 - ] (002 – 62) 7

x = b sec bnt.

(v. ) When 62 > 2c , we must write a2 for 12-202; and now

dx /dt = tn / (a +22. 22 – 62),

das

nt

(a? +22.32 -12)

1 6

J (a +62) a Vla ? +62)

c = b/en / (a + b2)nt = b nc / (a ? +62)nt.

}
or
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38. So far the function X has been treated as an even

quartic function of x, or as a quadratic function of x2 , resolved

into two real factors; but according to Prof. Felix Klein there

are certain advantages in considering the integrals obtained

by writing a ? , in ( 1 ) , (2) , ( 3 ) ; and then , writing k for kº,

dz

= 2 sn- / ,
(z.1-2.1 - kz)

or 2 cn- 1/(1-2), or 2 dn - ' 1/ (1 - kz)........ : (11 )

Conversely, by writing for z the values x2,1 — , 1 - k « ?,we

reproduce the integrals ( 1 ) , (2) , (3) from (11), by the simplest

quadric transformations, and it will not cause confusion if

we sometimes call k the modulus.

For these and various other reasons, Prof. Klein suggests

(Math. Ann.XIV ., p . 116) that we should consider (11 ) as a

more canonical form of the elliptic integral than (1 ) , the form

with which Legendre and Jacobi have worked .

sn - 1
VX -

a

cn - 1 dn - 1

V - 6

39. Now, with X = X — a .x - ß.2 – y, and a > B > y,

we have, if > > a ,

dac 2
a-y

VI Vary)

2 2

(12)

Ja-y) Væ - y Vary) g '

with k = k = ( - y )/(a - y );

indicating that we must put

x - y = (a - y )cecao, x - a = (a - y)coto,

and then
x – B = (3-7) p cecao ,

to reduce the integral to Legendre's canonical form

Fo = / (1 – k sinạp) -$do.

a

=

Similarly ,by putting w- a = (a - B )tanạp, x - B = (a - B)sec-d,

* Mdx

S* sn - 1

Jx V-B

-B a - ß.x -

Vx- ß V - Ba - yox
.....( 13)

where M is used throughout to denote ida - y ).

= cn - 1WA
dn - 1
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Thus, with o > > 1 /k , integral (11 ) becomes

da 1

(c.1-2.1 - ka) V kxsi
2 sn - 1

–le V
2 ;

-1

= 2 cn - 1ka -1
ka - 1

ko

2 dn - 1 ;

doc

JVæ.1 -x.1 – kex )
= 2 sn - 1

ka - 1

Vk.x - 1

1/K

11 - .k.x11-1

: 2 cn - 1

Vk.c - 1Vi
: 22 dn

X- 1

40. When a > x > B ,X is negative , and

a Mdoc
X

si
sn - 1

N(-X)
2

aß

-B

-B

cn - 1 = dn - \/2 - Y ......(14 )
a a

' g '

f
yux - B

sn - 1

C

VO dn -4VB - y

rg Ma

(-X) Va - ß.x

B-yia
= cn- 1 . (15) ;

Na - ß.x - g 2-7

and now the modulus K is given by k2= k' = (a - 3 )/(a − y ),

and the modulus is therefore complementary
to the modulus

in (12) and (13) ; and the form of the result in these and other

subsequent integrals indicates the substitution
required to

reduce the integral to Legendre's standard form ($ 4) ; while

the results can be verified by differentiation
.

Thus, with 1/k > « > 1 , integral (11) is imaginary and may

be written

1/k
da

(s.1-2.1- x )=

1 - ICOC

2i sn - 1

V.1 - K

X - 1X

= 2i cn - 1

V11 - k
2idn - * / (kx ), mod.k';

X - 1

S168.14 .1–lce)
2isn - 1

V1 - k.x

VA
1 - kac

2icn - 1 = Zidn - 1

V1 - k.x

mod. K ';

i denoting (-1).
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41. When ß > « > y, X is again positive, and

wy.B-2

JX

-B Mdoc

Sama
=sn - 1Vary

VB - yia

a - ß.2 - Y = dn -1 -B
-cn - 1

VB - y.a
N

.. (16)
a ac

e

3 M dac

S
-sn - 1

x-

Bar

a - 3

= cn - 1
B - 3

dn - 1

V Υ

with k = (B - 9 ) /(amy), as in (12 ) and (13) .

VB Van . ( 17)

Thus

Sra.I

dac

= 2 sn - 1

1.1-2.1 - Icoc )

1 - C

1 kg

1-k.ac

= 2 cn - 1

V 1 loc
1 -

1-10

2 dn- 1

V 1 - kxV

while the result is as in ( 11 ) when the lower limit is 0.

C

ſi
sn - 1

We

Beg XC

on - 1 Vs
C V

1 -

Si
= sn - 1

a DC

dn - 1 .....
X

42. When y> x >-00 , X is negative, and

Y Mda y

7 - X ) VB- a

3 - y.adn ..( 18)
V B a - y .

* Mda

U - X ) V

= cn - 1
y B
Na ......( 19)

Va

with modulus k' = ( a - 3 )/(a - y ), as in (14) and (15) .

Thus, with 0 > x > -00 , integral (11 ) becomes

dx

= 2i sn - 1

(c.1-2.1 - kx )
V1-2

1 1 - kac

- 2i cn - 1 = 2i dn - 1 mod.k
V1 - X

dx 1

2i sn - 1

J (8.1-2.1 – kx )
1 ICC

- ka k.1

= 2icn-1 = 2i dn-1 mod.k
1-ka 1 kx

a

V1-3Wi

Vi

W toa
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43. We notice that the substitution

aC

or

B - Y
ΟΥ

Y

Se-a.4–3.6 -
Υ

vie
.... (20)

a Υ

a - Y_Y - Y X - Ba - Y

2- Bey 2- ßer α-γ α - γ

makes

dx dy

( oc - Q.X- ß.2--7) Jy- a.y -B.y - 7 )

or changes ( 12) into (17 ), or ( 13 ) into (16 ).

Thus

dac dy 2K

Vy-a.y - . Ja - y)"

where k = k = (ß - x)/(a - y).

Again the substitution

an X - B_y - y x - Y_B - Y

a - ß aa- y ' a -Ba- y' a - y

changes (14) into ( 19) , or ( 15 ) into ( 18) ; and shows that

dx dy 2K '

Na -2.2-2.2 - y) Va - y.y y) - J
B

where k ' = k 2 = ( a - 3 )/(a − y ).

The substitution which changes any one integral into another

is obvious by inspection of the preceding results.

a - X

Or or

ag

a,

44. Thus the integral ſdx/ X can be written down, ex

pressed by inverse elliptic functions, when X is a cubic form

in resolved into its three real linear factors.

For example ,with uż > b2 > c ,

dx 2 la2-62

v (a +1.62 +1.c2 + ) (az- ca) Va? + X' Va2-02 )

an integral occurring in the mathematical theories of Electricity,

Magnetism, and Hydrodynamics, in connexion with ellipsoids.

As another example, the student may prove that

ds 4Tube -109 la ? – 62

Va? - c2 )

when the integration is extended over the surface of the

sphere #c2 + y2 + 22 = 2

(W. Burnside, Math. Tripos, 1881) .

(a)ay2+(Y/b3*+(2/0)2= 3abc com
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X a

45. When two of the roots, ß and y suppose, of the cubic

X= 0 are complex, we combine ( c - B )(x - 7) into the real

quadratic (x - m ) + nº,suppose ; so that X = x - a . ( - m ) + na.

Now we substitute

X (C-mº+ n?

Y

(2 - a)2

a quadric substitution, the graph of which is a hyperbola, and

find the turning values of y, say y, and yy, the values of y

which make the quadratic in 2 ,

(« —m)2 + n2- y (oC ~ a) = 0

have equal roots ; so that y, and yg are the roots of

(žy + m )2- (ay + m2 + n2) = 0, or $ y2 + (m - a )y - n2 = 0.

(ic - 2,92 (8 - x )
Then Y - Y1 = Y- Y3 ;

dy _ (ac --- x )(x - 23)
and

dx (a - a2

, and x , denoting the values of a corresponding to y, and Y3,

and therefore denoting the roots of the quadratic equation

oc2 -- 2a + 2 am-ma-n=0 ;

X4 =m+ ŽY1, &z =m+ 1yz.

da da

Then

JX (x - a ) y (x -- & )(a — X3) / Y

>

- a a

;

so that

c
o

s dx =F @_lady=860-10 cm /?

-H10 ., -, ., -))
Y3

en - 1(V3-4
3

en

• Y - 41 : Y - Y )

2
y - Y1 -

Vyı - 43) Y - Y Yi - Y

12 -IQ - X1
.. (22)

(24 --23) X- X3

by ( 12) , with k ' = y / yu - Y3), k = -yz/ (Y1-43),

since y, is positive and yz negative, or yı > y > 0 > 93.

Again, with the same substitution,

dac dy

{ a - 3 . (oc — m )2 + na} /(-y:91-Y.Y3-y
)

2 Y3 - Y

(41–43) Yı - Y'

12
..... (23)

(21-23)

by (19), to a modulus ke the complementary modulus of (22),

namely k ' = y /( 4 ,-43).

Stia-e.commy+n*}=Svi-y.3.4- y.43–4)

W

-

cn - 1

DC3 XC

cn - 1 den C
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XC

cn - 1 , -
2 X3Six

};
cn K

a

« ),

46. We denote ( a - m )2 + n2 by Hạ, and then

2, = a +H, ag = a -H ;

and by means of the same substitution as in $ 45 ,

doc 12

{2-a .(x - M )2 + na} Jan - )

1 H - ( - a)

JH H + (oC -- a )'

ka = 1- 1(a - m )/ H ...........(24) ;

doc 1
- la- )

J a - .(x — )2 } + (a— «)'

k" = 1 + ] (a , m )/ H , .......... (25) ;

indicating that the substitutions c - a or a- x = 1(tot20 )

reduce the integrals to Legendre's standard form ; also that

2KK' = n / H .

Thus, as numerical examples,

dx
1 X - 1-3

1) -1 + 1/ 3

dx 1 V3 + 1 - a

1 (003 — 1) 1/3 +

doc 1 13-1 +

V (1—23) 1/3 -

doc 1
– 2–3

K';(1 203) / 3 1-2 + / 3

with 2KK' = * = sin 30° , k = sin 15°, k' = sin 75º..

47. We notice that p = 17 when x = a + H ; so that

da

[ {c - a.ac - m )2 + n }

dx K

[ {cc- a . (oc - m ) + na} JH. e- }
... (26)

dx

{a -- x . (x-m)2 + na }

dx K '

V {a - 2 . (2 - m )? + na} JH
... (27)

V3+1 da F (sin 159 )

7 (2c3 – 1) (203 - 1) / 3

1

en

5:

S
a+H

at

Q-H

a H

G –

6

Thus,sa i

73 + 1
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-S 11-20)
-V3+1

dac -V3+1 da F (sin 75 )

(1-2 ) 3

But, by the Cubic substitution x = (4 – *)/ 3za,

(23-1)( 28 + 8 )2 do 23 +8
then 1-23 ;

2726 dz

da dz

and

I V (1—28) 1 (73-1)

doc

13

(1-23) (23 – 1 )

322

X

" 13

ST( -1)

z

1

so that

S

1

c
o

1.

or F (sin 75°) = /3F (sin 15 °),

that is, K '/ K = 1/3, if k = sin 15°, as stated in § 12.

48. Degenerate Elliptic Integrals.

When the middle root ß of the cubic X= 0 approaches to

coincidence with either of the extreme roots, a or y, or when

the pair of imaginary roots become equal, the elliptic integrals

degenerate into circular or hyperbolic integrals.

We notice , from $ 16 , that when k= 0, sn - 1x becomes sin -la,

cn - 1x becomes cos - 1x , etc.; and that, when k = 1, sn - 1x becomes

tanh -1, cn - 1 or dn - I becomes sech -la , and tn -l becomes

sinh - la.

Thus, when k = 1, the integral (11 )

dx da

J (c.1-2.1 - ks ) ( 1 -Ja

2 tanh - l/z = 2 sech - l/(1 - c)

1

- 2 cosh 2 sinh - 1

V1 - C

This supposes that << 1 ; but with > x > 1 ,

dx

= 2 coth - ? x = 2 cosech - / (x - 1)
(oC - 1)100

1

2 sinh -1
21

2 cosh

Vä

But when k = 0, the integral ( 11 ) becomes

dx

= 2 sin-
vw.1 - x)

2 cos - ? / ( 1 - x ) = sin -12./ (w.1 - x );

dec

2 cos - 1/2

Væ.1-2 )

= 2 sin - 1 / (1 - x ) = 7. - sin -12./ (x.1–a).

C
-1

sinh
sinhhºc

1-2 1 -X

s
XC

V
sinh -

X - 1 x = 1 X-1°

f
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49. Making B = y, or a , in the integrals (12) to (19), and

still denoting idla - y) by M, then

(i . ) with co > & > a,

Mdoc x

=
en

(cy) / (x — a)

a a

- –

:

NX- 7

COS - 1 sin - 1

VX- 7

X

1 (x - 7)

= sin - iva- y.x - a)
, etc.;

sin - 1 , / - a

il

COS - 1 ܪ

Va-X Nx - g
afo

Sia

Mdoc

(oc - y ) / (a

Mda

( oc - a ) / ( - y)

tanh -1
. 1

Vary a

13C /
= cosh -1 Įsinh-1Vla -y.x -2)

a 3 (2-a)V c

this integral being infinite when x = a .

(ii.) With a > & > y,

Mda

Y =

(a - >)/(2-7)La
sinh - 1

OC - y

Va -

= cosh - 1 . /a - y

Vä- c'

Υ

which is infinite when w= a ;

Mdic

(x - 7 ) (a . )

a

la - x

Son -
sinh - 1 Ecosh - 1

Nic - g VX -
*

-1
COS= sinsin - 1 la - g

V
;

V
a XC

which is infinite when x= y.

(iii. With y > x > -O ,

Mdx iy

- ) / ( y - 2 )

M dx
y - 2

COS . Va

( a - 2 ) / ( y - 2)

Md

cosh

( y - 2 ) / (a - )

X

Sace

x y )

Si

1 sin - 1, Ja - yll ;
Va-X

C
γ

Vaat- sinh -1

7- XC px

this last integral being infinite when x = y.

The limits have been chosen so as to exclude these infinite

values.

50. Weierstrass's Elliptic Functions defined .

When the general cubic expression X is given, not resolved

into factors, then Weierstrass's notation becomes useful, and

may be defined here.
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where 92

Weierstrass writes s +f for x, and chooses f so as to make

s2 disappear in the new value of X , which he denotes by 18 ;

and thus S = 483 -9,8-93

and
93 are called the invariants ; so that the integral

dac ds ds

= U , suppose ;

2-X NS | (4.53-928–93)

and now, inverting the function in Abel's manner, s is an

elliptic function of u, denoted by pu in Weierstrass's notation,

S2x=S

so that

1143-288-93=9-18,or3-4 ; 9-9 )
ds

= 8-1s, or 9-18; 92, 93), ............ (A)
928–93)

S

sn - 1

N
i

S

ea

when the invariants 92 and 93 are to be put in evidence.

51. In Weierstrass's notation we are independent of the

particular resolution of S into factors ; but by what precedes

in equation (12) , if, when S is resolved into real factors ,

S = 4 (s - e )(s — e )(ses), with ez > e, > C3,

then, with > 8 >

ds 1
lez - ez

T 4.8-67.8-2.sez
) (ez -es) - ez

1 s - ly
1

Vlez - — ез

by ( 12) ; so that

e-- eg pu— l,

snº / {en - egu cn² / ( - eg) U =en u
JOU-ez Jou - ez

fou:-2

dn /(e - ex) = ( B )
pu - e3

The valúe of u for s = ( is denoted by wn, and called the

real half period ; and by (20) we notice that

cs ds K

. (28)W1

JS -

-1

cn

= (e - e) V

dn - 1

V S—

>

18* 3 );19- S “ Vs Vience,

1-16934 3+ ...

e1 lz

S

and by (13) and ( B ),(B) /

ds

NS

ez–€4.99–es+61). ( 29 )

S - ly

ei

With ez > 8 > @g, S is again real,and by (16), (17), and (B),

2 ds
el ez - ez

...... (30)
en -8s

s

V8 =9-1662
-22
.

S

sds
( e - lz . lq 63 + 6₂ )

+ ez )..
18
-9
-1

....... (31 )
$ - bz

e
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- = /S -S “ Is Themes
€2

52. For values of s between en and én, or between ég and

-0 , JS is imaginary ; however, the value of fds/JS be

tween the limits eg and - is denoted by wg, and called the

imaginary half period ; so that, by (21),

iK '

.(32)
VS Vlez - eg)

and, from (12) and (14),

K2 = (ez- ez)/(ez - @g), K2 = (2 -2)/(en - ez).

Also, from (14) and ( 15 ) , with e, > 8 > egy

by ds

S = iq -1(0; –0,00;– s–en;92,–92).......(33)e - 8

@ 1-le.ly lg
i 80 @

IS
- @s_en; 92,-93 ) ;-93) ;....... (34)

and, from (18) and ( 19), with ég > s > -00 ,

Sds=ip-1( –92a)....... (35)

/s vs =
¿8-11–8 ; 92, -93).. ... (36)

IS
8

$ ds
-1

8- ez

la

@z - @g. Og –C3+ eg ; 922 — 93

es- 8

s ds

53. The quantity 9,3 - 27932 is called the discriminant, and

is denoted by A ; it is called the discriminant, because the

roots of S= 0 are all three real, or one real and two imaginary,

according as A is positive or negative ; and A = 0, when two

roots are equal.

Since S = 483-928–93 = 4 ( 8 - ex)(s - en)(s ---@g),

therefore e, + en + eg = 0,

and 92 = -4(ez z + ezéı +6,62) = 2 (6,2 + ez +632), 93 = 4e7@g@z,

A = 16 (ez - @ 3)*(@z - e ) (e - e )2.

Therefore

K *K*2 = (en - )(ez - ez)/ ( , -es) , 1 - Kºk2 = { 92/( 0, - ez)?

4 (1 - kļK” )3_92
and

27

This quantity 93/A is called by Klein the absolute invariant,

and denoted by J ; and then , with k for k ”,

4 ( 1 - k + K2)3 ( 1 + k ) ( 2 – 1e)?(1 – 2K)2
J J- 1 = ... (C)

27 22(1-10) 27k4(1 - 1)2

*** 14

2
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54. For the present we reserve the difficulties of interpreta

tion of the multiple values of the integral u = fds/ JS,due to s

being allowed to assume complex values, and to perform

circuits round the poles, branch points, or critical points, so

called, of the integral, given by the roots of S= 0.

We suppose the variable s to pass once through all real

values from co to -00 ; and now

(i.) co > s > e,

ds/ JS 8-1(8 ; 92, 93) ,U

or U = W1ณ =(

a - falands w og-p-14-01-9+ e):-. 37)
ei

which , employing the direct functions, expresses the relation

$(w – U) –eq = 61-69.lq - es (38)

ol - e1

(ii. ) ey > 8 > Czy

-ei 92-93 . (39)

or

la

s - l2

(iii.) é, > 8 > ég,

8

u =w + faisy

= w ,+i 99-1663–64.0 -es en gs)

umesta ,-Faslys

=
= w +ws - i 9-16 -eg.bg -esez–ez.@g -es– ez ; 923 –92)....(40)

u = w +w + fašis

=w + we+9+1(84-6 co -extez; 92,93) ;.........(41)

a 20, + ws - Saisiws

--(63-6.03.-ez tez)+ em).....

= +

= 2w,+ w +ig-1( 3-6.9 -es+ es; Is –ga);.... (43)

or U =

eg

......(42)
s - l3

= 2w1tw9-80

(iv.) ég > s > -00 ;

U = 2w7 + wz + / ds/ S

es
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or

u =204+ 263- fasins

= 2w7 + 2w ,-18-1(-8; 92, – 93). ...... (44)

Thus

fasiJS= 2w,+29 .. (45)

and 2w, is called the real period, and 2w, the imaginary

period of Weierstrass's elliptic function pu.

With Argand's geometrical representation of a complex

quantity, such as x+ iy, the complex quantity

t +ta ( 0 << 1, 0<< 1)

represents all points lying inside a rectangle, called the period

parallelogram .

As s or you diminishes continually from o to – , the
argu

ment u describes the contour of this rectangle; and for

U = (i.) tw (0 < t < 1 ), (ii. ) wi + t'wz (0 < ť' < 1 ) ,

( iii.) twytwg (1 > t > 0) , (iv.) t'wg ( 1 > ť > 0 ),

the values of s or you are real, and lie in the intervals

(i . ) co > s > , (ii .) ez > 8 > z, (iii .) ég > s > @g , (iv. ) eg > s > -00 ;

while the corresponding values of g'u are taken as

(i.) negative, (ii . ) positive imaginary,

(iii . ) positive , (iv. ) negative imaginary.

For any point u inside the rectangle gou assumes a complex

value. (Schwarz ,Elliptische Functionen, p. 74.)

55. In the same way, with the integral (11), denoting its

value between the limits oo and z by u,

(i.) >>1/6 (8 39),

1 kz - 1

U= 2 sn = 2K- 2 sn - 1

V kz * *.2–1
.. (46)

(ii . ) 1 /k > z > 1 (S40 ),

- kz1
U = 2K+ 2i sn

1 - k

2-1

= 2K + 2iK ' - 2i sn - 1
Vi - k.z

(47)

(iii. ) 1 > z > 0 (8 41 ),

1

U = 2K + 2iK ' +2sn 1
1 - kz

= 4K + 2iK' - 2 sn - z. ....(48 )

-1

2 K – K') .

Vi
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--(VILE, K)

(VI- Tesyx').

Si .1

(iv) 0 >>> - 0 (8 42),

1

U = 4K + 2iK + 2i cn - 1
1 - z

1

= 4K + 4K'-- 2i sn - 1 (49)
1 - kz

dz

Therefore = 4K +41 K ', ... .. (50)
(3.1 - % . 1 - kz)

and 4K and 41K ' are called the real and imaginary periods of

the corresponding elliptic function, in this case snaju.

56. But if we take Legendre's and Jacobi's fundamental

integral ſdx/_X , where X = 1 – 22.1 – K ?se?, and denote

c/ X by u, then , by the preceding article, with x2 for 2,

( i.) . > > 1 /K,

k22- 1
=K-sn - 1 : (51 )

K2.22 - 1

(ii . ) 1 /K > x > 1 ,
1 - K -02

u =K+

'

C2_1

= K + iK ' - isn 6)... ...... (52)
K%22 "

(iii. ) 1 > . > - 1 ,

1 - 22

U = K + iK ' + sn -1
V11- K ?x2

= 2K + iK ' + sn - loc

1-2

= 3K+iK' - sn - 1
V1 - K222

...(53)

(iv .) -1 > x >-1/K,

loc2 - 1

u = 3K+ iK ' + isn Ć

Jdx ,

W .

i sn --(v

1

U = sn - 1

кіх

12

к

Vi

-- (

K
2 )

K222
)

x').........
k2x2

= 3K + 2iK ' - i sn - 1 ...... (54)12
к

(v. ) -1 /K > x > -60 ,

K 22_1

U = 3K + 2iK ' + sn “
V k ? .x2-1

1

=4K + 2iK ' - sn -1 ... (55)
KUCка

Therefore fi-v2.1–x?n?)-+dx = 4K +2iK';.... . (56)

and 4K and 2iK' are called the periods of the elliptic func

tion snu.
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57. If, with 1 > x >-1 , and X = 1-22, 1 - k % x %, we denote

0 0

the integralſac 2 / X by u ; then fda 2X= K ($ 11);and (8 41 )

um foiewsfla/JX= s \ /
K-U =

1-22

1 - k %22

X

onu

V1
or

K'sn u

dnucn(K –u)= V

or, employing the direct functions,

1-32

sn ( K – u) = cd u ; .........(57)
V1-6202 dnu

and then ( $ 17)

K222

or K'sdu ; .........(58)
1 - k % C2

K2

di

V1–K?22 dni
or k’ndu ; ......... (59)

relations analogous to equation (38) ; or to the relations

sin (17-0 ) = cos 0, cos(in- 0) = sin ,

of the circular functions of Trigonometry.

к

58. When the discriminant A of S is negative, and two of

the roots of the equation S = 0 are imaginary, we take e , as

the real root, and combine the product s- €1.8 - ég into

( 8 - m ) + n ?, as in $ 45 ; and since

S=493–928–93 = 4 (s - ex){ (s - m )2 + n4},

therefore m = -102,92= 3,2 – 4nº, Ig = e,3 + 4née, ;

while H2= (ez - m )2 + na = fe + n2,

4K*K?? = n2/H2 = 4n2 /(9e2 + 4n2),

1-16x% k 2 = 392/(94, + 4n %),

A = 9,8 – 27934 = - 4n4|(9e2 + 4na)?,

3 (1-16k + 1672)3
so that JE

д 108kºK2 108k(1-10)

(1-2 ) ( 1 + 32k - 32k2)
J - l = . ( D )

108k(1 - k)

59. Now , as in $ 45,by means of the quadric substitution ,

18 (s+ }e,) 2 + na

...(60)

(s - e.) S - 62

J= % = -(1 – 16x®x2)

0-62
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we find
2 2

->

s - l2

or ez

co do

=/ 2/(0-6.6-69 €)

do _ e H( s - ey) — H2_ (8-8 )(s_S2)

ds
, suppose ;

(s - ez) (s - e )

(8-8,S. )? (8-83).
while O E1 €3

s - l2

provided 81 = e, + H = }(€ – €2-62),

Sz = 6, - H = 3(ez — 62-62).

Thence + 83 = 2e = (€1 + €3)- €2–6 = - 3 €2 - Cq ;

- jez ; on the supposition that ez tezteg = 0 ;

and € 1 = e, + 2H , € 2 = – 2e2, €3 = e, -2H .

- ds (s - e,)do
Then

2 (8–81)(8-82) / (0- €2)

da

.. (61 )
2-1 (0-61.0 ~ €2.0 -

where E = 40– € )(0– € ) 0 - €3) = 408 – 720-73,

suppose ; and the discriminant of Eis now positive.

60. Now, y2 = - 4 (€9 € + €3 €1 + € €2) = 12,2 + 16H²,

73 = 4€€2€3 = 32e,H2 – 82,3,

A ' = y23 - 27734 = 256H2(4H2-9e,2)2.

Also with
€2- € 3

12=9–6–2H +3 ,
€1-63

+H
€1 - 63

4H

4H2-9e2 na
142222

372
1-2=

4H2 H2 64H2

Denoting by J' the absolute invariant of E ,then ($ 53)

4 ( 1 - XX2)3
J'

Y2

A 27 2424

If we put 4122 = 1 / 7 , then

(47' - 1 ) 3 ( = ' - 1) (8 + ' + 1)
J' J' - 13

277' 277

while, with 4K?K2= T in (D),

(47-18
J= 1

. (E)
277 277

Now, if 2kk' = 2XX, then ti' = 1, the relation which holds in

the transformation from a negative discriminant in s to a

positive discriminant in 2

If we equate the values of J in (C) and (E) , we find

(1 - 1 ) 7.2 1

47c 4 (1 --K ) 4k (1-1)

2H- 3e
2

12 =

3

<ܪ

TE

G.E.F. D
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8-62

S"
U = cn

-1
-en - H

or you

(493 93)

cn

15"}

Sports
(8 - ( /3-1)(+93) sin 75°750)

61. When A is negative, and when we know the real factor

s- ég of S ; so that, with 1022 + n2 = 193/€ ,

S = 4 (sea){( s + že )? + n2} ;

then, with H2 = 1 (9e22 + 4n %), and expressed as in § 46 ,

ds 1

......(62)
82,JH s - lg +H'

with 2KK ' = n/H ; so that

- @ g + H-(ez- H ) cn (24 / H )
cn (24 H ) = ; (63)

1 - cn (2u / H )pu - eg + HI

by means of which we change from Weierstrass's notation to

Jacobi's and vice versa , when A is negative.

Thus, for example, if 92 = 0, then eq = (193)},n2 = 1022, H2 = 3e22 ;

and , as in § 46,

ds

80-9(8 ; 0 , 93)

1
s - ( / 3 + 1 )(193) sin 15 °

2/3(193)? 18 + ( /3-1)(193)}'

ds

= 9-18; 0, -93)

(488 +93)

1

22/3 (193) 8+ ( 3 + 1 )(193)

62. Supposing s to range from to – in the integral

u /= fas,JS,when A is negative, then

(i. ) > s > b2

u = 8-8; 92, 93)

= 1 , –40-166 + ex) ...... (64)
ez

where denotes fds//S,the real half period of you.
W2

(ii .) e, > 8 > -00 ,

H2

U = w , + 18-1 -C2 ; 922-93-93)
es

= wn + w ' - ip -1e2-8; 92, -93), ......... ......(65)

where w 'denotes ſis JS,a pure imaginary quantity,called

the imaginary half period of yu ; and the period parallelogram

(s 55) is now bounded by w, and wz', as adjacent sides .

Also (847), we = K / JH , w = ¿ K / JH ... ....... (66)

en -1

S

C2

-S
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U

-= f

VA
к

)

63. Treating in the same way the integral (2) ,

dx

( 1 - 2.62 + x2x2)

by replacing z by 1 – 22 in $$ 38 , 55 ;

( i . ) > « > 1,

k2.22-1

uri cn - 1
K 2.02+ K??

= iK ' - icn - 1(1/2, k').....

(ii .) 1 > x > -1,

U = iK ' + on - 100

= iK ' + 2K - cn -1- ).

(iii. ) -1>>- 00 ,

K ' + 2K + i cn - 1( -1/2 , k')

2.24-1

= 2iK ' + 2K - icn - 1
K %202 + Kº'

... ( 67 )

. (68)

U =

<-.....(69)

64. By the substitution x2 = 1 /y, the integral

SaoVIA+ Bert of Corp+ Das)=S2.J(Ayº+B + 0y+ D)

--

SVA+B:**C**+ D.CS)

1 ds

(70)
IS

on putting y = s- } B / A ; which can be expressed by Weier

strass notation, or by the notation of Jacobi,when the factors

of the denominator are known, as in equations ( 12) to (19) ;

E + FX
-dx

J(A +Bx2 + Cx4+ D2C6)

can thus be reduced to elliptic integrals, of the form considered

in $$ 39-61 , the first term by the substitution = 1 / y, and the

second term by the substitution x2 = 2.

a a’dr ( 3 + 1)p2-- a2
Thus sin

) 16 /3-1)72 + a2

the integration required in the rectification of m3 = aʼcos 30.

But by substituting qu2 /a2 = 1/ y, we find

asdr
ady

= ap -14 ; 0 , 4) ;

J (ao — 706)

1.

S

)

( ; 0,4)
so that

a2

72
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2 -2
a -0

s
-1

sn

V
- 1

sn

We- 2

C

a

= en - 1 dn - 1

to modulus Voir

= sn - 1

X

cn Vas – 62.
= dn - 1. /a2.x2

-02

ac
a

= sn - 1

65. Write X for 22 - ap.x2-62.x264, where a ? > 12 > % ;

and write M for b/(a2 - c4) ; then we find, on substituting

Y for 1 /2c2, and taking a, ß , y for 1 /c2, 1/62, 1 /a² ;

(i .) 00 > x2 > a?, comparing with equation (18) ,

Mdoc
162.22 — a ?

JX V 6-2 2.cº – b2

la ?2- 62.22 la2-72.22 - 2

Va?.x2 - 62 V aa - 02.2c2 — 62
(71)

la2.72 -- c2

172.a2 - 2

( ii.) a² > 22 > b2, comparing with (17) and (16) ,

na Mda 162. a -- 22

bo
(-X) Va2 - 62.x2

Ja2.2-72

Va2 - 02.22
.......(72 )

* Mda la2 - ca.22-72

( -X ) Va2-62.22 — c

172-02.a? - 22 162 - 02.22

Va - 62.2 - 2 V 72.22 - 2
.. (73)

c2.a2-72

to modulus
V 62. a ? - 2

(iii .) 62 > 202 > c?, on comparison with (15) and (14),

Mda la2 - 02.62-22

( X ) V 72 - ca.a222

va
la ? -72.x2 - 02

las
a 62.c

V 72-ca.a ?-Q 62.

raMda 162.22 -C2

V ( X ) 1726
2 - 02.22

/c2.a2-x2

162 - 02.22
(75 )

al - c2.22

la ?.

V62.g2_2

(iv. ) c2 > x2 > 0, on comparison with (13) and (12),

c Mdx 62.02 - 2

( -X) V c2.62-22

162 - 02.22 162 02.a2-02

V 62.62 Val - 02.62 -- 22
... (76)

Vous

Wcn - 1 dn - 1

vi

-1

s
sn

Vi

-1

en = dn - 1

sn - 1

cn - 1. /02.6
2-22

Vi
dn - 1

to modulus fa .62-02

si
= sn - 1-

20

= cn - 1 = dn - 1
oc
a .
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Mda

(-X )

- 1
sn Ver

c2.22

c2.a2-22

-1

va
la ? .62-2

V 62.al - 22
.. (77)

c2_22

= cn
-1

V c2.a 22
= dn

c2.a2-62

62.a2 - 2to modulus Voice

66. When X is a quartic function of x, and we know a factor,

x - a, of X, then the substitution x - a = 1 / y reduces

Sdx/JX to the form Mſdy/JY,

where Y is a cubic function of y ; and this form can be treated

by the preceding rules.

But, independently, if we can resolve X into four real linear

factors, 9- a , x - R, & -ya- o ,

so that X = ---a.x -B.X - . * - 0,

and we suppose that a > ß > y > d ; then with

(i .) 00> x > a ,

dx

J -

2 B - 0.2 - a

Ja - y.ß - 0) a - 8.0 - B

2 a -- ß.x

Ja - y.ß - 0) Va - 8.x

2
a - ß.x - Y

Ja - y.ß - 0)

N
a

- yox

indicating

that
we must

put

B - 0.2C a - ß.x
- 8 a - ß.2-7

cos? o =sin?o = д ° ф :
a - ..x— B a - 0.2- B ' a - y.X -B'

to reduce the integral to the standard form (84)

2 do

( 1 - k sin

a

-1
sn

-1

en

AVat

dn - 1

- a

a

and then x2 = k = 8 - y.a - o

a - 7.8-5

the anharmonic ratio of the four points A, B, C, D, the poles of

the integral (8 54), given by x = a, ß y, d.

The verification by differentiation is a useful exercise for the

student.
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(ii .) With a > & > B , we change the sign of X to make the

integral real ; and now, writing Mfor in / a - y.ß - 8) throughout,

a Mda

7 (-X)

18-8.a-a la-8.8-8

a -2.2-8 Va -ß.x - s y

x Mda

=sn - 1 en - 1 = dn-2,/a-8.a-y

a -y.1-
9**...(79)

dn - 1

Va-ß.2-7
B -6.3-7-...(80)

k " = K '

S
X

a - 2.2 - y = dn -1= sn -2 /a - y.ß -a -1

cn

V & B
= dn - 1. /a-ß.x

VB - 0.a - ....(81)

= sn -1 /a-y.x-ß-cn-1
V

IB -ya B - y.x - o
-

a-ß.x-7

but now the modulus k' is the complementary modulus to k, so

a - B.yad
that

a-y.co

the different forms of the result indicate the appropriate substi

tution required for reducing the integral to the Legendrian form.

(iii. ) With ß > « > y , X is again positive, and

-ß Mdoc

JX

- 8

B - y.a- VB -a.a

** Mda

JX

15-8.x - y
y - d.ß - x y -

.. (82)
VB-y.x- VB - y.c - Va - y ..-

with the same modulus k as in (78).

(iv.) With y > x > 8, X is negative , and

og Mdx

1 ( -X)

- 18 - yox - o 18-n.a-a
-dn

y - o.B - a Vy - 8.8 - c x

• x dac

V ( -X )

a - o.y - a a - -

Vy-d.ay - o.a
..

with the modulus of (79) and (80) .

Y

-1

ansn - 1
= dn - 1. /y-0.a-a

X

-1 -1

sn - 1

a - y.æ - = en -1-1

sn

vi
= dn-2./a-8.8-x

y -d.a- ...(84)
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s

= sn -2. / a -y.o - x

Na- 8.y - a
= cn - 1

a

= dn - 1 7-8.8-
2

B - d.y=2** ...(85)

1

y

-1

sn 1 + 1.1-Y = cn -1

V 2.1- Лу

V27
-1

1-1.1 - Y = dn- 1

(v. ) With ô > x > -00 ,X is positive,and

8 Mda

JX

y - d.a-- X y -

a - o.y a

with the original modulus of (78) , (81 ) , and (82) .

67. Landen's Transformation.

When Legendre's and Jacobi's standard integral (1 ) is

treated as a particular case of these integrals (81 ) and (82) , we

write a = 1 /1 , B = 1 , y = -1,8 = -1/2 , so that M = (1 + 1 ) /A ;

and now, with y for variable,

* ( 1 + x)dy

✓ (1-42.1- \ 272)

1-1.1 + y = dn -1.1-1.1+ ny

у 2.1- лу "

y ](1 +x)dy

(1–42.1 - 1242)

1 1 - λ.l - λ )

(87)
2.1 +λ) V 2.1 +лу V1 + λ.1 + λy'

where the modulus k is now given by k2 = 4N/ (1 + x)?, so that

k = 2J / (1 + 1 ), k' = ( 1 - X)/( 1 + 1), or ( 1 + k ) (1 + 1 ) = 2 ;

and we are thus introduced to Landen's transformation, to be

discussed hereafter.

Changing, in § 41 , x into y , and k into X²,we find

dy

/(1-y2.1-12y ?)

1 - Y? 11 -X.y? 1-2

(
VI - л?у? V1-12y?

with modulus ; indicating, on comparison with (86 ) , results

such as

1 + 1.1 - y 2011
1

1 - Aºy? V 2.1 - ' 1 + 11 ?

1-12.y?] (1 + )cn - W1- X y2 ^ ) = cn -6A1-1.1 + y 2/4),

V 2.1- y 1 + 1

1-2 11-1.1 + y 2/4

1-1272 1 + 1.1 - Xy' 1++ 1

which can be translated into the various forms of Landen's

quadric transformation.

= sn -1V1+2.1+ y cn - 1

Sdra - -
Ni

- sn cn
-

] = dn - 1

W

1)= sn-1(V1.4.2.1.- ", JA

W

^) =dn--(1173(1 + 2)dn --(V.} 1- 2).
(89)
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.

(91)

Sza
0

= dn-'7(1-W?y*5=î ](1 y )(93)

Denoting integrals (86) and (88) by u and v, then

U = 1 ( 1 + 1 ) , v = (1 + k')u ;

1 +1.1 - Y
sn' (u , k ) =

2.1 -λ)

1-1.1 +y 1 - λ.1 + λ !
cnº( u , k ) = dn ' (u, k) = . (90)

2.1 - λ) 1 + λ.1 - λ'

1 - yº
snº(V, 1) ;

1-1272

1-)2.42 1-12

cn '( v, X ) = dn ” (v, X ) =
1-1272 1 - X ? y ??

( 1 +k'snu, k)cn(u , k)
whence sn (v, X) etc ................ (92)

dníu, K)

We can easily prove, or verify by differentiation, that

y 1( 1 + 1)dy

J (1-74.1-12y ?)

sn -1 { } / ( 1 + y.1 + y ) -1- (1 - y.l- \ y )}

= cn- {1 / (1 + y.l- ,y ) + 1 / (1 - y.l + ny)

1-2dn -1 / (1-1242)+1 /(1 -y2)

1 + λ -1)

to the same modulus k = 21/ 1 /( 1 + 1 ); so that, denoting this

integral by U, and denoting sn ( u , k) by x ,then

x = / ( 1 + y.1 + y) - 1 / (1 - y.l - ny),

( 1 22) = 1 / (1 + y.l - ny) + 1 / (1 - y.l + Xy),

1 - ? 1-)

(
1 + 1 / )-1

dn (0,1 ) + cn (0,1 ) 0,1
or dn (u , k) = u )

1 + λ 1

since y = sn (v, 1) , where v = (1 + x ) ;

and thence

dn (v ,X) = ( 1 + x)dn(u, k )+1(1 - X )nd (u ,k) , ... ( 96 )

1 cn(v, 1 ) = ( 1 + 1 )dn (u , x ) - {(1-1)nd(u, k ); (97)

(Cayley, Elliptic Functions,p . 183).

The relation (92 ) between x and y,namely,

( 1 + k ') N / (1-22)
y = -- (92)*

J ( 1 - k % C2)

thus leads to the differential relation

1(1 + x)dy dx

.. (98)

(1 - y.1 - X ?y?) J (1 - x2.1 - K22)
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2

68. The six anharmonic ratios of a , ß, y, d, arising by per

mutation or substitution, give rise to six values of the modulus

k, given by

1 1 1 k

k, 1 --k, 1 . (99 )
ki 1-1 ki k-1 '

or sin20, cec , cose, seco, -cot?, -tan’e, if k = sin²0 ;

or tanh’u , cothļu, sech2u , cosh-u, - cech’u,-sinh-u, if k = tanh’u .

We may notice that the expression for J in (D) of $ 53 is

unaltered if for k we substitute any of these other five values ;

and, on comparison with Weierstrass's notation ,

J = 923 /A , J - 1 = 27932 / A ,

so that we may put

1-1 + 12 (1 + 1)(1-2%) (2 - k ) 14(1-10)
92 = , 93 ;...( 100)

12 432 256

and then eq = 11 (2 - k ), eg=1( -1 + 2k) , eg = ( -1 - k );

so that k = ((2 - es) /( @z – ez), as in $ 51 .

69. Degenerate Forms of the Elliptic Integral.

When two of the roots a, ß, y, 8 become equal, the corre

sponding integrals degenerate into circular and hyperbolic

integrals, which can easily be written down, on noticing as

before (8 48) that (i. ) when k = 0, sn - 1x becomes sin - le , cn - 1

becomes cos - la, etc ; (ii . ) when k= 1 , sn - lx becomes tanh - 1xc,

cn - lx or dn- 1x becomes sech - 12, and tn - l« becomes sinh - Iac.

When two of them are equal , we may replace the four

quantities a , B, 7, 8 by the three distinct quantities a, b , c,

suppose, where a > b > c ; and now the degenerate elliptic

integrals fall into three classes, I. , II.,III.

I. Writing M for in / la - b.a - c ); then

(i . ) . > > a,

Mdoc la - b.x - c la - c.x - 5
sinh -1 cosh - 1

(x - a ) / (a − b.c — c) Vb - Cox - a

(ii. ) a > > b,

Mda la - b.x - c la- c .- 6
cosh - 1 sinh

(a- ) J (ob.x - c) Vb - c.a

18

Lox ) M
sinh --W1620.m -a cosh-6 = 0.00

fia Vb - c.aVi C XC

C,( iii .) 6 > >

Mda

(a- ) / (6 - 2.x — c)

с -a

fra-x)/(6 4.2–0
-1

11

COS
a - b..

Nb - c.a -
sin - 1

la - c.b

Vb - c.d c
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la - b.x-c

ļa

Mdac

(a- (6 -- . x - c)

ll

sin - 1

W
COS - 1

Vb - c.a vo
la-c.ba

Vbc.aX

C

(iv.) c > x > -00 ,

Mda

( a - x ) / (b - x.c— )

sinh -1
la - b.c - a

Vb- . - Xva cosh-1a - c.b =
- C

NO - C.Q - 2X

2

C. a

fo-b»
sin - 1

Vi
COS - 1

Na

II. Writing M for ida - 6.6 - c); then

(i . ) 8 > < > a,

Mda la - b.x - C

(x -b) / (a — a.x - c) -O Va - C.X - 7

(ii .) a > x > b ,

Mdac 1b -0.0-X la - b . & - C
sinh - 1 = cosh - 1

( x - 1 ) / (a - x.x - C) a- C.X - 6 a - C.X - 6

Va - c.cc

Six -b). V
20

50-2

(iii. ) b > x > c,

Mda

(6 -* ) / (a − x.x - c)

cosh - 1

1b - C.A -X

Va-c.ba

= sinh -Van
a - box-- C

Na- cob - x

с

(iv. ) c > x > -00 ,

Mdoc

(6-2 ) / ( a − X.C — 2 )

.C.a - X

Si

ll

cos - 1 6 -c sin - 1
la - b.c

Va - c.Va - c.b
2

III. Writing M for i/la- c.b - c) ; then

(i .) 00 > x > a,

Mda - C.X - b

a - c.cosh - 1

( C - 0) ( - a.x

sinh

-6) a - b.x - C

C. а
-1

V8-c) -a. VVa - b.2 - c

al

✓

(ii . ) a > x > b,

Mdx

(2 --C) / (a - 2.2-6)

cos -1

a- C.xmb

Va - box - c
= sin - 1

b - 0.0 - X

- -

Sir
A --C.X - 6

sin - v
16 - c.a - 30

Va - b.x-5.X -Va - 5.X - C

COS - 1

Six

Mda

(2C --C) / (a - x.x — b)

( iii. ) 6 > > c,

Mdo

OC -0)/(a− 2.6—20)

(iv. ) c > > -00 ,

Mda

(c— c) /la-x.b-2)

la - c.b - 2

Va - b ..-

-1
cosh

1b --0.a - ac

a - b.

C

le--
-c.b

cosh
VAVab.ca sinh -1

V

b - c.a - 3

a - 6.0 -ac
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70. When all four roots of the quartic X = 0) are imaginary,

so that

Ax2 + 2Bx +CDsuppose,

of Y ;

(a- a)(@ — ) = (x - m )2 + n2, (oc - y )(0 - 0) = (x -p)2 + 92

Sdx /2X= {(x — m )2 + n2.(x - ) +22} - dx

is reduced by the substitution

( oc - m + n2

y = ..(101)
(x -p)2 +22

Let us suppose that X is resolved into two quadratic factors ,

so that X is of the form

X = (ax2 + 25x + c) (Ax2 + 2Bx + C ),

where, by supposition , ac- 62 and AC - B2 are negative, so

that the roots of X = 0) are all imaginary.

ax2 + 2bx + c N

Let
Y , ...... (101 ) *

D '

then the maximum and minimum of y, the turning points of

y ,being denoted by y, and Y2

4.- y = (Ayı - a )(x1 - ) /D , y - y2= (a - Ay )(x – X ,) / D ....( 102)

X and X, denoting the values of x corresponding to Y1 and Y2

and now

dy - 2 (Ab - aB)(x , — « )(X -- ~ )
...... (103)

dx ( A x2+ 2Bx+ 0)2

For x is given in terms of y by the solution of

(Ay - a )oc2 + 2 (By - b)x+ Cy - C = 0 ,... .... ( 104)

and this equation has equal roots at the turning points of Y,

which are therefore given by the quadratic equation

(Ay - a )(Cy - c) - (By - 6 ) = 0,

(AC - B2)ya- (Ac + aC - 2Bb) y + ac - b2 = 0, ......( 105 )

and then

By - 6 ac + b bx + c

Ay - a or Y = Ax +BBC+ 0*

dx

NX J (ND)

Ddy

2 (Ab -aB)(@ z - x )(x -- X ) / Y

Ayı - ) dy

2(Ab- aB ) Y2

and (Ayı - a ) a- AY2) = - A’Y192 + Aa (Yi + ya)-a?

(Ab -- aB)

AC- B2

or

C

DJY= f the

S2(A6
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1

sn cn - 1

TY
, ( 107)

so that

dn - 1

dac

S
.. ( 106 )

JX - ) (4y.Yı - Y.Y - Y2)'

which,by (15),gives / * /(AC-B )dx

1

191–
1 y –-Y2 1

-dn
V7-42 Jyi Yı --Y2 Dyi Yi

with kº = 1 - y2/91, K2= y2/Yı;

the last expression , by the inverse dn function, being the

simplest, as expressing a function of an argument oscillating

between two positive limits, Y, and Yz.

71. For example, if

X = X4 + 2a - xc - cos 2a tat

= (x2 + 2ac sin a + a )(22- 2ax sin ata ) ,

and if y = (22+ 2ax sin ata ?)/(22—2ax sin a ta?),

then c = 0 , y1 = tan ”(17 + ja) ; 2, = -a, Ya = tan ”(17- } a );

k ' = tanº(17-1a ) = (1 - sin a) / (1 + sin a) ;

da

and

( 4 + 2a cos 2ata )

1 1 - sin a.x2 + 2ax sin a ta?

a’( 1 + sin a) 1 + sin a.x2 - 2ax sinata2
( 108)

# 2 1 + 2

But, by substituting
1-2

da 1 dz

2aJ (1 - z2.cos’a + z sin ?

1 1

cn -12 ; sin a) = ( 109 )
2a 2a X2 + a2

by (2), a reduction of the elliptic integral to a different

modulus, the modular angle being now a ; affording another

illustration of Landen's transformation of $ 67 .

Thus,with a= 17, equation (108) gives

1 + 1/2 x + 2

/ ( 1 + 2c4) 1-1/ 2 x

where k ' = ( 1/2-1)2 (when K '/ K = 1) ; and by ( 109),

da 22- 1

2/2) ,
(oct+1) 122 + 1'

dx

etc.

/(1 + 24) / ( 1 + 2c4) /(1+x4) 1 +222

For other numerical examples, the student may take

X= 204 + 202+ 2, x4+ 3x2+ 3, 204 +- x2+ 1 , 204 + 202+3, etc.

V

9
2

1

Part 2 cos 2a +a)= дa

722 — a2
en

= cn

-11-
22

0
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s dx= -

| B
NX

sn -1 / 41-4V
1

cn - 1 dn - 1
ß

Y :)

S.

72. When two roots only of the quartic X = 0 are imaginary,

we may still make use of the substitution (370)

y = N / D, where X = ND;

but now take ac - b2 negative, and AC- B2 positive.

Proceeding as before we find that the maximum y, is positive,

but the minimum yg is negative ; and y oscillates between 0

and y, for real values of JX ; and

doc 1
dy

JAC , B2) 7 (4y.Yı - y.y - ys)

so that, by (14) ,

J (AC- B2) 1
Y1 Y

da =

(41-43) Vyi

但 ,
1

y -Y3

(41 - Y ) Yi Jlyi -
... (110)

Yı - Y3

with
ka = y / Yı - y ), k”? = -4 / Y. - y ).

73. By another method of reduction we shall find

(Enneper, Elliptische Functionen , p . 23)
dac

V{ Q.X - B . (x — m )2 + n2}

1 en -1 { H (x - B )– K ( x - a)
111 )

D (HK) H (OC - B ) + K ( x - a)'

dx

J { a - X.X - ß . (oc - m )2 + nn? }

-JK (a - X ) – H ( C – B)
(112)

HK) (Ka- 2 ) + H (0 - 3 )?

etc.; where H² =( a-m)2 +n", K2 = (ß - ma+ na;

and 2 = 1-1{ (a -3)2- H2– K2} /HK,

K2= 1 + 1 { la - 3 )2 - H2- K2}/HK ;

2kk' = n (a - 3 )/HK .

Degenerate forms occur when a and ß are equal ; and now

da

(oc - a ) / {(x— m )2 + n2}

1
cosh - 1 _ {(a ^ m )2 + n2} / {(x — m )2 + n2}

/ {la - m )2 + 122} n (oc -a

dac

-X)/{(x- m )2 + n2}

{(a , m )2 + n2} / {(oc — m )2 + n2}cosh

/ {(a , m )2 + n2} na- )

a

Sa

JHK
к

3...(

к

so that

Ja
1
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74. Replacing y by N / D in equations (102) , then

Dy, - N = (AYı - a )(wy — )2,

N – Dyz = (a – AY )(x --- «2)2 ;

so that we may write, according to Mr. R. Russell,

D = Ax2 + 2Bx + C = P (x1 - )2 + Q (a – X,),

N= (x2 + 25x + c = P (x4 – x )2 + 9(x— X,)” ; ....... ( 113)

where P = (Ayı - a)/(Y1 - y2) , Q = (a – AY2)/(41-42) ;

and p = PY , q = Qy1

Interesting numerical examples can be constructed by giving

arbitrary integral values to X1, X2, P, Q, P, q ; and now the

BC DC ?
substitution

>

Xy -
C

Sex -Solamy and

will make, as in § 37,

doc
( 2C7 ,)da

. ( 114)
Jp + qz2. P + Q22)

75. When the factors of the quartic X are unknown, we

employ Weierstrass's function , and we shall show subsequently

in Chap. IV. that the elliptic integral fdx /1X is reduced to

Weierstrass's canonical form 1 ſds/_S( 50) by the substitution

8 = -H / X ,

H denoting the Hessian of the quartic X ( Cayley, Elliptic

Functions, p. 346) ; we may thus write

dc H

; 92, 93s : (115)
JX

where 92 93 are the quadrinvariant and cubinvariant of the

quartic X or ax4 + 46x3 + 6x2 + 4dxte,

so that 92 = ae - +60 + 3c2,

93 = ace + 2bcd - ad - eb2-63,

H = (ac — 62) + + 2 (ad - bc) (3+ (ae + 2bd — 3c2)x2

+2(be - cd ) .c + ce - d2;

and the general reduction of the elliptic integral of the first

kind ſdx / JX, where X is a cubic or quartic function of x,

is now complete.

The application of this general method to the particular

cases already discussed is left as an exercise for the student.

76. Systematic Tables of the integrals of the elliptic functions

snu, cn u , dnu, ns u, ds u, CS u, dcu, ncu , scu, cd u, sd

and of their powers have been given by Glaisher (Messenger of

Mathematics, 1881 ).

U , nd W,
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Supposeſen udu is required ;we may write it

cnudnudu d snu 1 1

= f 1(1-x*snºu
-sin - (ksnu)=- cos - 1 (dnu) ,dnu / (1 - k’snºu K к

etc.; so that

k cn udu =cos-dn u ) = sin - (k sn u) = tan - '(k sn u /dn u)2( = )

K

= 1 sin - 1(2k sn u dnu) =am(ku, 1 /K) , etc.

Similarly,

snudu = cosh -1(dnu /k') = sinh - (kcn U /K')= tanh - '(kcnu /dnu )

dn utk cnu dnutknu K

= log etc. ,
K dnu-к сn и

- + xen =

= ? log
anu =log

кс , к ,

dnudu = cos - (cn u) = sin - 1(sn u) = am U....
(116)

0

As an exercise the student may integrate ns u, ds u, ... ; also

snu, cnu, dnu, ... ; and obtain formulas of reduction for the

integrals of (sn u)", (cn u)”, (dn u )",

As a general method, for (sn u )" for instance, we put

sn?u = s ; and now

$ 3(12-1)ds

sn = Un , suppose.
(1-5.1 - ks)

By means of the well known formula of reduction ,

( p + 1 )aup + 1 + (2p + 1)bvp + pcvp- 1 = X ” JN,

for Vp = fxpdx /ZN, where N = ax2 + 2bx + c,

we have,on comparison,

a = k, b = -1(1 + k) , c = 1, p = } (n - 1) ;

= 2un + 2, Up - 1 = 2un - 2 ; and

(n + 1)kun + 2 -- n (1 + k )Un + ( n − 1)un -2 = snn - lucnudn
U ...(117)

the formula of reduction
for Un = / (sn u )rdu.

When the limits are 0 and K, we obtain the recurring
formula

(n + 1)kun+ 2 - n (1 + k )un + (n - 1)un- 2 = 0 , ...... (118)

analogous to Wallis's formulas for / (sin or cos 0)"do.

so that

ŽIT

The same formulas hold for Un = (cd urdu, since (s 57)

cdu = sn ( K - u ).

Thus Un is made to depend ultimately on Uy, already deter

mined, or on Uz ; and a similar procedure will hold for the

integrals of (cn u)” or (sd u)”, (dn u)" or (nd u)”, etc.
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77. The Elliptic Integral of the Second Kind.

We may mention here incidentally that the integrals of

snļu , cnļu , dnưu, ns´u, ds-w, csu, .

require for their expression new functions called elliptic in

tegrals of the second kind , such as occur for instance in the

rectification of the ellipse .

For if, in the ellipse (oc/a )2+ ( y /b )2 = 1,

we put x = a sin 0, y = b cos p ;

ds2_doc2 dy
then -a -cosap + bºsin ? p = al( 1 - e’sin o ) ;

do2 dp2'de2

so that å = \ \(1– eʼsinºp)dø ={ A(4$, e)dø =rſdn°udu, (119)

on putting ø = am(u, e) ; and e, the excentricity of the ellipse,

is now the modulus.

The integral //(1– K?sin )do or / A( , k)do is denoted by

E(d, k ) by Legendre, and called the elliptic integral of the

second kind ; and when the upper limit is t , the integral is

denoted by Ełk ,or by E simply, and called the complete elliptic

integral of the second kind.

Examples. - The following examples are collected chiefly

from Legendre's Functions Elliptiques ; the results, being

now expressed by the inverse elliptic functions,will serve as a

guide to the substitutions required to reduce the integrals to

the standard elliptic forms, and the correctness can be tested

by differentiation as an exercise.

1 .

1

2 .

1.f1+ )=#dex=1/2 en **{1+ 29-4, we)

2. f1-a)-kdow /?en={1-7)+; 12}}

3. fa-1)-do= en-(I= = }}12}

4. f(x -a.« – B)-3dx

VG 102]

Jia ) deVa-fen-1477 - ** 122)

4.

2
a - B - 2 ) (Q-Q.X - B )

a - + 2 / (x - a.x - B )'

cn

5.
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2

en

In

In

{(x - m )2 + n2}*' 02

7. Prove that, if wņ = 40 " ( 1 -"),

6. f{« – m)e+n }-Hdx= }

fi ndio fi mde-2012)1–19dx =ſimmy-umda =2-2m /(1 –vom)- dw ;
2-in

and express the result when n = 3, 4, or 6.

8. Prove that, if x - a is a factor of the cubic X, so that

X= ( -a)(ax2 + 2bx + c) ;

3 X

X

aa + 2bato 80=7 ( aa + 2ba +c.c)
- doc =

ac - 62

8
( 83

ac a

a

an integral occurring in the determination of the motion of a

projectile in a resisting medium .

Evaluate the integral when aa ? + 2ba+ c = 0, so that

X = (oc- a ) (x - 7 ).

1 - dnu

9. Prove that (i.)
1 +dnu V1 + dnu

k cn udu

✓0

( ii.)

Ksnudu 1

dnu tk K'(1 + k )

.)

s

(iii ) fu sn’udu = 2K (K –E)/«?.

(iv.) fi ,elein golon= oin->

(v).S

iKdk

= 472

1 + k

10. Prove that

Elk'2 > K > E > 2KK'?/( 1 + k " ).

11. Denoting the integral ( )="dø by Un establish the
formula of reduction

NK2Wm +2- (n - 1)( 1 + k 2)un + ( n - 2 )Un - 2 = -k’sin cos (Ap)-n.

Evaluate Un for n = 2, 3, 4, ....

G.E.F.



CHAPTER III.

GEOMETRICAL AND MECHANICAL ILLUSTRATIONS

OF THE ELLIPTIC FUNCTIONS.

78. Graphs of the Elliptic Functions.

Now that the Elliptic Functions have been defined and a

few of their fundamental properties have been established in

Chapter I. in connexion with the pendulum ; while in Chap

ter II . the reductions of the elliptic integral to the standard

form have been tabulated, let us consider some further applica

tions, and first in connexion with the graphs of am u, cnu,

sn u, dn u , represented by curves whose equations are of the

form y = am x , cn x, sns, or dn X ,

The graphs of these equations are given in fig. 5 , in curves

(i.),(ii. ), (iii . ) , (iv.) ; the modular angle employed is 45° , so that

the curves can be 'plotted from the numerical values given in

Table II. , analogous to the graphs of the circular and hyper

bolic functions, given in Chrystal's Algebra , Part II. ; thus,

for instance, the curve y = àm x is the graph of the relation

between and u in $ 5 .

We notice from the equations of $ 57, Chap. II. , that by

sliding the curves along Osc through a distance + K , the curve

y = sn x becomes changed into y = sn(K+x) = cn x/dn x or cd x,

and not into y = cnx ; while the curve y = cn x becomes changed

into y = cn (x - K ) = k'sn x/dn x or K'sd x, and not into y = snx ;

so that the curves y = snc and y = cn x are essentially distinct

curves, and cannot be superposed, like y = cos x and y = sin ..

The curve (i .) , the graph of am x, consists of a regular un

dulation , running along the straight line y = 17X / K ; so that

am x = 17xK+ periodic terms = 17c/ K + EBmsin (n7X / K ),
66
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dn =

in a Fourier series, where the B's are to be determined sub

sequently ; and then by differentiation,

= (1+/K ) {1 +2EnBạcos(n72/K)} .

So also the graph of Ep or Eam u, the elliptic integral of

the second kind (S 77) consists, like ( i . ) the graph of ams,

of an undulation running along the straight line y = Ex / K ;

so that we may write, in Jacobi's notation ,

Eam = ExK + Zx ,

where Zx is a periodic function of x , which can be expressed in

a Fourier series

Zoc = ECn sin n7 / K ;

and then , by differentiation ,

dn-x =EK + ( K )EnCncos n7X/K ;

whence also the expression for snøs and cn’s in a Fourier series .

(i)

Mo
ll
y

TT

B

C(iv) ( iv )

K 2K 3K
/TAK

Fig. 5 .

We proceed now to some mechanical and geometrical appli

cations of these curves.

79.PROBLEM I. The curve assumed by a revolving chain

We shall prove that

y/b = sn Kæla

( fig. 5 , iii. ) is the equation of the curve of a uniform chain ,

rotating steadily with constant angular velocity n about an

axis Ox, to which the chain is fixed at two points, 2a feet

apart, gravity being left out of account, e.g. a skipping rope.
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Denote by t the tension in poundals of the chain at any

point, and by w the weight in lb. per foot of the chain.

Then the equations to be satisfied are

ddy

,
t

dslºds

Therefore tdoc /ds = T, a constant, the thrust in poundals in

the axis due to the pull of the chain ; and therefore

naw dły dw , naw
+ y = 0,

dslda) da2 ds T

ddy
+TY = 0, or

the differential equation of the curve of the chain .

But
dy? ds

1+ daca daca

so that
dy d’y_ds d28

da dx2 dx doc2 '

d2s , n'w dy
and therefore

do + Ty To
().

Integrating, supposing y = b when dy /dx = 0 and ds/dx = 1,

ds n²w

da
= lt (0 - y ) ;

so that t = Tds/dx = T' + inaw ( 62 - y2).

dy? ds

Then + 1 62 –
doc \ dx T ᏎᎢ

n²w)

(a

so that æ is an elliptic integral of y, of the form (5) in

Chap. II . ; and y is an elliptic function of X , obtained by

inverting the function of the integral.

To obtain this function , let y = b sin ; then

dy? do2 new naw

62 - y
T 4T

dc2 = b'coso
bacos? o da? – yo

: –x **marub )(1 - sing),1+or

so that ;

do2 naw / newb2

=
doc2 T 4T 4T + n2wb2;

Kk nawb

p = am K ", where
2T

and
y/b = sn Kx /a,

the equation of the curve formed by the chain ; and now 2a

denotes the distance between the ends of the chain .

al a
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12

K Kk=
و

;

12 - Y 1 +
-1 ,

12

к

12
к

Дф;
al

a 1 a 1
so that

Κ Δή

We may denote T /In - w by hạ ; and now

62 h2 K2 h 2ab 2a

K2 KK'
h2 +62 h2 +62 K2 62 h2 hh

whence the modulus k aud quarter period K can be determined

when h and a are given ; and

ds
2x”cos?q = 240-1 + 2

dx h2

do_K
while

dx

ds 2a K2

ДФ -A9 ;

do KK Κ Δφ 2α

and integrating, with the notation of SS 5 and 77,

Kh2

E ( Kk .
2a

If 21 denotes the length of the chain , then s = 1 when p = 1 ,

and F (d ,k) = K , Ed, k) =E ; and therefore

Ita = įEKha|a = bE /k = 2aE /KK'?,

from which k, K , and E must be found by a tentative process,

from Legendre's F.E., II. , Table II. , when a and I are given .

For instance, if k = k = / 2, as in Table II . , page 11 ,

K= 1.85407, E= 1.35064 ;

and bla = 1.5255 , l/a = 1.9206 .

80. When the chain is fixed at two points not in the axis,

nor in the same plane through the axis , the chain when re

volving in relative equilibrium will form a tortuous curve,

which will sweep out a surface of revolution , of which the

preceding curve ylb = sn Kæja is a particular case of the

meridian curve, while the general equation is of the form

y2 + x2 = sn ?(Kx/ a ) + c4cn? (Kx/a ).

For in this more general case the equations of relative

equilibrium are now

d dx d dy )

t- 0 , + nawz = 0 .
dslºds ds ds dslºds

Three first integrals of these equations are

dac

t=T ;T ; .....
ds .... (1)

dy) = H , a constant ;.. ( 2)
ds

and
t + inaw (y2 +22) = ) , a constant. (3 )

(1

dz

t ?
Yds 2
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dy x ?

Y ax 2 doc

2

Putting y2 + 22 = 72

dz dr2
then

da

dz

and from (1 ) and (2) , y
dy H

da dadoxT

therefore, squaring and adding,

dya , dz2 H2

docet do
+

da 72

ds2 4H2

(d , 4712 -1)
dac da2 T2

4 + 2 4H2 2p2

4) =72 T2 pr2(2 — n -wp2 )2 – 4.2.2

dp212

72
4

or

412

= 702

» *( T2

n4w 2 ntw2

(96 - Apt +B72 – C) =
T2

12 (72
–64) (72 - c^) (72

-0
4
),

sup
pos

e
; and for 9.2 to lie bet

wee
n

b2 and c , we mus
t

sup
pos

e

d > > 72 > c , and as it is of the for
m

(17 ), p . 37, we put

92 = b2sin -o + c-cos?o ,

62 — 72 = (62 - (2)cos p , 72 —c? = (62– ( 2)sin’d,

012 - 22 = d ? – (2— (62— (2)sin'd = ( cl2 — c )^{0 ,

where x = (62 - c )/( cl2 — c?).

do?
Then = 4 (b2 -- c2) ?cos’o sindda?

dx

(62–62) (d? — ( 2)cos - o sin o APQ ,

d1212

(0)
ntw2

7'2

or

so that

do2_n+w2
(d2 — c2)APP ,

dac2 ᏎᎢ2

p =am Kx /a,

where Kaſa = ntw2Cd2 - c2)/4T2 = 4 ( 012 - c%)/h4;

and then go2 = y2 + 22 = b sn Kx/atc-cn²Kx/a ,

the equation of the surface swept out by the chain , the meridian

curve being similar to curve (iv.) in fig. 5 .

81. The chain will obviously take up the form which, with

given length between the two fixed ends, has the maximum

moment of inertia about the axis of revolution ; and we have

thus investigated the solution of an interesting problem in the

Calculus of Variations.
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The form of the chain for a minimum moment of inertia is

obtained by supposing that p2 > d ?, as in (13), p. 35 ; and by

putting 992 - d2 = (d ? — 62)tan’d ,

92 — 22 = (d2 – 62) sec - 0,

22 - 2= ( cl2 – )440 sec 0,

ka = (62 – (2)/( d ? — c ), as before.

Then dos do?
= 4 (d ? – 62)2tan o sec*°222°dx

n4w2

(d2 — 62)2(d2 —c2) tanếp sec404²0 ,
T2

dø? ntwa
( 42 — c2)A’o,

daca 47'2

p = am Kæ/a,

and then ya + z = d ?sec- p - b2tan o

de - bºsn’Koca

cn²Kx a

= d ? nc Kx /a - bºscKx /a

is the equation of the surface of revolution upon which the

chain lies; when its moment of inertia about the axis of x is

a minimum.

The projection of the chain upon a plane perpendicular to

the axis is to be investigated subsequently.

or

so that

82. When the two points to which the ends of the chain are

fastened lie in the axis, or in a plane through the axis, the

chain takes the form of a plane curve, whose equation is

y/b = sn Kx / a

for a maximum moment of inertia, as already shown in $ 79 ;

and
y en Kx/a =d , or y = d ncKx/a

for a minimum moment of inertia ; which can be proved as a

simple exercise in the Calculus of Variations, by considering

the variation of the integral

(y2 + 1) / (1 + p )ds.

83. PROBLEM II . “ The curve on which an ellipse , of semi

axes a and b, must roll for its centre to describe a straight line

Os is the curve whose equation is

yla = dn ./b,

the modulus k being the excentricity of the ellipse.”
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For if the centre M of the ellipse describes the horizontal

straight line Ox ( fig. 6) , M must always lie vertically over P,

the point of contact with the fixed curve, so that the ellipse

rests in neutral equilibrium if its centre of gravity is at the

centre M; teeth being cut in the curves, if requisite, to prevent

slipping

Therefore the polar subnormal

ar 1 cos20 sin

MG . in the ellipse +
JA 32

must be equal to the subnormal

= in the fixed curve AP, where MP=p= y.

72 a2

dy

A

B'

M
G K 2K

B

B
A

( Р

A

Fig. 6.

or

Nowin the ellipse, differentiating,

2 dr 1 1 1 1 1 1

2 sin cos O = 2
73 do 62 a ? 22 a2 72 72

1 1 1 1 1 . 1

since sinao, cos20

2p2 a 2 62 a ? 72 72 62

dr_1 / a² – 92.72 – 32)
.

de ab

so that in the fixed curve AP

dy--J(au — y2.y2– 62)

doc ab

= b dn- 1.
Y

J (a2 - y2.y2-62)

by (9), p. 33 ; or, by inversion of the function,

yla = dn < /b.

و
ه
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The arc of the rolling curve is obviously the same function

of r as the arc of the fixed curve is of y ; and therefore the

arcs are expressible by elliptic integrals of the second kind.

The curve AP can be described as a roulette, by a point P

fixed to a certain curve which rolls on Ox, and therefore

touches Os at G, since G, the foot of the normal PG, is the

centre of instantaneous rotation.

Since PM is the perpendicular from a pole P on the tangent

of the rolling curve, and that the relative orbit of P and M is

the ellipse, therefore the pedal of the rolling curve with respect

to the pole P is an ellipse ; or, in other words, the rolling

curve is the first negative pedal of an ellipse with respect to

its centre, that is , the envelope of lines drawn through each

point on the ellipse perpendicular to the line joining the point

to the centre of the ellipse.

The first negative pedal of an ellipse with respect to its

centre is called Talbot's curve ; its (p, w) equation is

1 cos w sinaw

+ 3

p? a2 62

and it is of the sixth degree (Cayley, Proc. R. S., 1857-9, p. 171).

84. For a rolling hyperbola, changing the sign of b2, the

fixed curve must be given by

abdy ab Sa b

[ ( ya - az. ya+62) 7 (a +62) y' (a2 + 62)

by (8), p . 33 ; so that, by inversion of the function ,

a / y == cn < /ak , or yla = ncwc/ak,

is the equation of the fixed curve for the hyperbola.

85. When the fixed curves are of the form of curves (ii .) and

(iii.) in fig. 5, we shall find in a similar manner that the rolling

curves which will rest upon them in neutral equilibrium are

given by

1 cosh20 , sinh20 1 cosh20 sinh20

+

gp2 a2 92 a2 72

Taking the first of these two rolling curves,

1 1 1 1 1

cosh20
72 a ? 72 ' 62 12'72

2 dr

or

62 ,

+ sinh90, +2

a

1 1 1 1
and +

22 do 62 p2 72'72

1
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ar
or

>

XC

7 / (a ? — 72.62 + 72)

do ab

so that in the corresponding fixed curve

dy = -J(a-— y2.b2 + ya)
da ab

abdy
ab

J (as_y2.62 + y2) J (az+62) a ' Ja2+62) )

by (7 ) , p . 33 ; so that , by inversion ,

yla= cn </bk, with mod. k = al / ( a + b2).

Similarly it can be proved that the second rolling curve can

rest in neutral equilibrium on the fixed curve (fig . 5, iii . )

y/a = sn x /a, with mod. alb .

-/ga chở - V.

“ The curve86. PROBLEM III. Dynamical Problem .

r cn (= c is the relative orbit of the centres of gravity of a

straight rod fitting into a smooth straight tube, resting on a

smooth horizontal table, when struck by an impulsive couple ,

the centres of gravity of the rod and of the tube being initially

c feet apart.”

Suppose the rod to weigh m lb. and the tube to weigh

M lb., and denote the moments of inertia about the centres

of gravity by mk2, MK2 (lb. ft.?).

Then, if P is the c.g.of the rod, Q of the tube (PQ = r ), and

O the (stationary ) C.G. of the system,

OP = Mr/(m + M ), OQ = mr/(m + M ).

Denoting by n the initial angular velocity communicated to

the system by the impulsive couple, then from the Principle of

the Conservation of Angular Momentum ,

{ m (1.2 + 0P2) + M (K²+ 0Q2)} (do/dt),

m Mp2 \do mMc2

+ mka +MK2 + n .... ( 1)
m + M ) dt

Again, from the Principle of the Conservation of Energy,

M %d72 M

m + M ) dt2 m + M dt2

2d72

m +M) dt2

or, after reduction,

1 MM ( d72 102

2 m + M dt2 dt2 dt2 '

or d
o

=( mk m+M

2 d02
72

1)

M ).

dt2+ ămk2
d02

Iml

} m +}MO

2
т

)
na
do
r

m + M

dta + }MK2
d02

d12

the game)+ (mkº+ MK”)dp
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m + M

do2 = (p2– 62)

the kinetic energy in foot-poundals, is constant, and

1 : mM

2 m + Mc+n2 + 3(mk²+MK2)na. ( 2)

Therefore, employing the value of do/dt given by (1 ) ,

mM7212

mk2 + MK2 +

mM /d72

+72 ) + mk2+MK2 -
M mMc2

mk2+MK+

or, finally,

d ,2 mk2 + MK2 + mM72/( rn + M )

mle2 + MK ? +mMc2/(m + M )'
.. ( 3)

so that r is an elliptic function of 0 , given by (8) , p. 33.

We therefore put r = c sec ; and then find

d02
1 - késin?p = 4?0,

002

mk2 + MK2

where K2

mka + MK2+ m Mc2 /( m + M )

so that p = am 0, cos p = cn 0 ; and therefore

ho cn = c.

87. When c = 0 , k = 1 , and this method fails ; but now

1 dp2 inMr2

go2 d02 (mk2+MK2)( M + m )

suppose, where aż = (m + M ) (mk2 + MK2)/mM ;

dr

0 sinh - 1

r / ( 1 + p2/a )
go²

Ở sinh 0= 0,

the equation of one of Cotes's spirals, the relative orbit of the

centres of gravity of the rod and tube, ultimately described

after leaving the unstable position of coincidence.

The system of the rod and tube may be supposed started

by any arbitrary impulse, not necessarily a couple, and the

essential character of the relative motion is unaltered ; but now

the C.G. of the system is no longer at rest.

88. Other mechanical arrangements, leading to the same

equations of motion, will readily suggest themselves ; thus the

tube may be supposed to be one of the hollow spokes of a

wheel of weight M lb. , moveable about a fixed vertical axis,

while the rod is one of a number of equal rods, or balls, of

collective weight m lb., one in each tube, and initially placed

with the c.g. at a distance c from the axis of the wheel.

72

-1+ = 1 +

C2

and now
>

or

!
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22

u2).2
doatu

z

Now, if the wheel is started by an impulsive couple with

angular velocity n, the path of the c.g. of each rod or ball in

its spoke will be of the form

ron O = C.

89. PROBLEM IV. Central Orbits and Catenaries expressed

by Elliptic Functions.

When a Central Orbit, expressed in the polar coordinates

(1/4 , 6), is described under an attraction to the pole, of magni

tude P (dynes per gramine), then, as is proved in treatises on

Dynamics, P is given by the equation

2221 1 do

P h u2( ++ =
do2 dt u2 dt

and the constant h is twice the rate of area swept out by the

radius vector ; and v the velocity is given by

h2 du ?
h2

Given the equation of the orbit as a relation between u and

0, the value of P as a function of u is thence easily determined

by differentiation, as in $ 30 ; let us then determine P for the

orbits au = sn , cn, tn , or dn mo ;

also for the inverse curves

au = ds, nc, cs, or nd mo,

in Glaisher's notation ; the remaining orbits

au = cd , sd, dc, dsme;

are not distinct curves, being merely formed by reflexion in the

line 0 = 1K /m , since cd mo= sn(K-MO) (S 57), etc.

As in 8 30, we shall find by differentiation that (dłu/d02) +u is

always of the form Au + Bu ’, so that P is of the form uu8 + vus;

and conversely, given this form of P , we find by integration

that (du /do) is of the form C + Du? + Eu ; so that 0 is an

elliptic integral of u, and u an elliptic function of e, of which

the results are given in § 36.

When the orbit is given by

au = sn mo, cn²me, dnéme, ... ,

we find by differentiation, as in 30, that P is of the form

Xu ?+ uus+ vu *; and conversely, when P is of this form,

(du /do )2 is a cubic form in u ; and O is given as an elliptic

integral or inverse elliptic function of U, by the results of

equations ( 12) to (45), Chap. II.
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or

« 3 »

doz
tu

so that

As an exercise the student may determine the value of P

and v2, as functions of u or r, in the orbit

1 cn mo sname

十+

22 a2 12

and its inverse curve, whose equation is of the form

pe = a - cn mo + bºsnamo.

Similarly the central forces required to make a chain assume

the form of one of the preceding curves can also be determined

( Biermann, Problemata quaedam mechanica functionum

ellipticarum ope soluta , Berolini, 1865) .

When a transverse force T is introduced into the field of

force, then h is no longer constant, but, as demonstrated in

treatises on Dynamics and the Lunar Theory,

dh22T T d log h
;

do hus do

d²u P T du

while
+ h2u2 h2u3 do

P = h?u?(d?u +2+
d logh du

do do

If we assume P = h243; then

d du. d logh du

+ 0, or h C , a constant.
do do do do

dᎾ du dr

But. = hu ?, so that = Cu ?, or -C, which shows
dt dt

that the body approaches the centre with constant velocity C.

Suppose, for instance, we take an orbit given by

mo =am au,

de
then h = C = Cdn au = CⓇJ(1–K sin?mo);

du

and P = h23 m2 ( 1 - x'
si
n'
me

),

k sin mo cos mo ;
do

so that V , the potential of the field of force, is given by

1 C2 a2

V

72

av av

and then P T

rad

dt

m m т

C20
223

T = ļuzdk C2A %u3

m т

11 ar '
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90. PROBLEM V. The motion of Watt's Governor.

“ The oscillations of Watt's Governor between the inclina

tions a and B to the vertical, when constrained to revolve with

constant angular velocity w, are given by

tanj0 = tanja dn(nt, k ), with k ' = taniß /tanja,

where o denotes the inclination of an arm to the vertical axis

at the time t."

Consider the motion of either rod and ball, as if unconstrained

by the other, and denote by C the moment of inertia of the

rod and ball about its axis of figure, and by A the moment of

inertia about the axis on which the rod turns at the upper

joint 0 ( fig. 7 ) .

A

X

B

Fig. 7.

Drawing the three principal axes OA, OB, OC at 0, and

three moving coordinate axes Ox , Oy, Oz, such that 0.

and OA are coincident, Oz is vertical, and yOz, BOC in

the same vertical plane, then the components of angular

velocity about 0A , OB, OC are - (do/dt), - wsin 0 , w cos ;

and the corresponding components of angular momentum are

-A(do/dt), - Aw sin 0, Cw cos 0.

The components of angular momentum about Osc, Oy, Oz

will therefore be

hy = -A(do/dt), h = (C-A)wsin cos 0, hz = (Ccos20+A sin20)w ;

while the component angular velocities of the coordinate axes

Ox, Oy, O2 are 0 , = 0, 0, = 0 , 0 , = w , with the notation of

Routh's Rigid Dynamics.

Take the poundal as the unit of force, and denote by M the

weight in lb. of either arm and ball, by h the distance in feet

from 0 of the centre of gravity ; the equation of motion
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dhz–1,03+ h30, = L,

or

obtained by taking moments about Ox or OA is

03
dt

A (d20/dt2 ) + ( A - C )w ?sin cos ( = Mgh sin 0 ; .......... ( 1 )

so that, if A = C ,the motion reduces to simple pendulum motion.

Integrating, on the supposition that a > 0 > B, and that

do /dt = 0 when ( = a and B ,

062 A - C

w”(cos4 –cos a)(cos B - cos 6)......... (2)dt A

The position of relative equilibrium is given by d20 /dt- = 0 ;

and then, if 0 = y,

cos y = Mgh /{ ( A C ). } = { (cos a + cos ß ),... ( 3)

so that in these oscillations the point D , which controls the

valve, makes equal excursions above and below its position of

relative equilibrium .

The technical name for these oscillations is “ Hunting ” ; and

some kind of frictional constraint is required to prevent these

oscillations from becoming established.

(Maxwell, Proc. R. S., 1868.)

Denoting tanja, tan iß, tanjo by a, b, X respectively, then

equation (2) may be written

4 dac2 A - C 1-22 1 - a21-521-22

( 1 + x2)2 dt? А (1 + 2-1+ a )(i + 62-1+ x2

dx2 A - 0

w ?cos la cos2iB (a2 - x2) (2c2 - 52) ;
dt2 A

and this, by equation (9), p . 33, gives

= a dn(nt, k), or tan 20 = tanja dn nt,

where k' = b / a = tan 3B /tan ja ,and n = wsin jacos iB / (1 - C / A ).

For a small oscillation , we put a = B ; and then k' = 1 , k = 0) ;

and now the period of an oscillation

27 47 А.

w sin aVA-1-09

91. If we suppose the whole weight of a rod and ball con

centrated at the centre of gravity, we have C= 0, A =Mh2 ;

and now the motion may be assimilated to that of a particle

in a smooth circular tube, which is made to rotate about a

vertical diameter with constant angular velocity w.

( Prof. B. Price , Analytical Mechanics, $ 403 ).

2

ON

C

Wт
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The equation of motion (1 ) now reduces to

d20

h -hw sin 6 cos 0 = -g sin 0,
dt2

where h denotes the radius of the circle ; and for oscillations

on one side of the vertical between a and B, a > 0 > B ,

(20/dt)? = w ? cos -cos a )(cos B - cos ),

the solution of which is, as before,

tan 10 = tan za dn nt,

where K ' = tan B /tanja, n = w sin ja cosi .

If the particle in its oscillations just reaches the lowest

point of the circle, B = 0 ; and then k= 0, k = 1 ; and now

dn ntdegenerates into sech nt (s 16) ; so that

tan 10 = tan la sech nt, where n = w sinja ;

the position of relative equilibrium being given by

cos y = g /wh = i( 1 + cos a) = cos a.

If the particle passes through the lowest point, it will come

to rest again where 0 = a ; and now

(d0 /dt)2 = w +(cos 0 - cos a)(2 cos y -cos a - coso),

where 2 cos y - cos a > 1 ; and the solution of this equation is

tanj0 = tanja cn nt, where n = w/(cos y - cosa).

When a = , we shall find the motion given by

sinh / (w2 + g /h )t

/ ( 1 + hw ?/g )

so that, after an infinite time, the particle just reaches the highest

point of the circle, where it will be in unstable equilibrium .

A still greater velocity of the particle relative to the tube

will make the particle perform complete revolutions, which

will be expressed by

tan jo = Ctn nt.

We have supposed the circular tube to be made to rotate

with constant angular velocity about a vertical diameter ; but

the motion of the particle relatively to the tube will be found

to depend on similar equations when the tube is attached in

any other manner to the vertical axis.

tan 10
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92. Such will be the motion of a pendulum swinging about

an axis fixed to the Earth , and now it is interesting to notice

other cases of motion of bodies which can be directly compared

and made to synchronize with the motion of an ordinary

pendulum, swinging through a finite angle .

Thus the pendulum, if moveable about a smooth vertical

axis, which is fixed to a wheel moveable about a fixed

vertical axis, the inertia of the wheel being sufficiently great

for the reaction of the pendulum to have no sensible effect on

its angular velocity, will perform pendulum oscillations, with

g replaced by aw ?, w being the angular velocity of the wheel

and a the distance between the axis of the wheel and of the

pendulum .

Again a cylinder of radius a and radius of gyration k, rolling

inside a fixed horizontal cylinder of radius b , will synchronize

with a pendulum of length 1 = (b - a )(1 + k /a²).

If the fixed horizontal cylinder is free to rotate about its

axis, and has its centre of gravity in the axis, then the length

of the equivalent pendulum is

h2

l = ( - a ) ( 1 + n ), where n =
a2

13. ( 1+
62 mk2

1+

a2 MK2)

mk ?, MK denoting the moments of inertia about the axes

of the rolling and fixed cylinders.

The rolling cylinder may be replaced by a waggon on

wheels, and the motion can still be compared with that of

a pendulum .

A circular cone, whose C.G. is in its axis of figure, and whose

axis is a principal axis,performs pendulum oscillations when

it rolls on an inclined plane, or inside or outside another fixed

cone, whose axis is sloping, the vertices of the cones being

coincident; the determination of 1, the length of the equivalent

pendulum ,in these cases is left as an exercise to the student.

In those cases where the finite oscillations are not of the

pendulum character ,we suppose the motion indefinitely small;

and now, in small oscillations under gravity, instead of giving

the formula for the period of a small oscillation , it is in general

simpler to give l, the length of the pendulum , whose small

oscillations have the same period.

G.E.F. F
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vG - )

Thus for the vertical oscillation of a carriage on springs,

l is equal to the permanent average vertical deflection of the

springs, due to the weight of the body of the carriage.

For the small vertical oscillations of a ship, l = V / A , where

V denotes the displacement of the ship (in cubic feet), and A

the water line area (in square feet) ; and if the ship is floating

in a dock of area B sq. feet, then it is easily proved that

1 1

I = V
A В.

93. The Reaction of the Ascis of Suspension of a Pendulum .

It is important to know the magnitude of this reaction in

the case of a large swinging body, like a bell in a church tower .

Denote by X and Y the horizontal and vertical components

of this reaction, considered as acting on the swinging body;

and take the gravitation unit of force, the force of a pound.

Then X, Yand W , applied at the centre of gravity G ( fig. 1 ) ,

will be the dynamical equivalents of the motion of the body,

collected as a particle at G ; and since the component accelera

tions of G are h(do/dt)? in the direction GO,

and h ( d20 /dt ) perpendicular to GO,

therefore, resolving horizontally and vertically ,

Wh(d²0 /dt2 )cos 0 – Wh(do /dt)?sin 0 = Xg,

Wh(d20/dta)sin 0+ Wh (d0/dt)̒ cos ( = Yg- Wg;

while , from the pendulum motion ,

| (A²0 /dta) = -9 sin 0, 324d0 /dt) = g (2R - Ivers ).

From these equations we find

Y h 4Rh 2h

1 - sin20 + cos 0(1 -cos ),
W 7

Y h 2h 4 Rh 3h

cos 0 + cos20 ;
W 7 1 22 1

X 2h 4R 3h

sin 0 -W 1 22 7 sin 0 cos ,

and therefore the resultant of X and Y - W (1 -h/l) is a force

2h 4Rh3h
T= + +

12 l 12

in the direction GO ; and T varies as the depth of P below

the line y = } + AR,

whence X and Y are easily constructed.

12
cos o .

21

or -17

-44
COS 0

6)=WP(32+ 3R —y
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94. In the simple pendulum ,h = l, and the tension T of the

thread PO is given by

T 3

w=7(3+4K-y),

At the end of a swing y = 2R, and T / W = 1–2R /l; so that,

if 2R is less than 1, T is always positive.

But if 2R is greater than l, so that the plummet swings

through more than 180°, T changes sign, and the thread will

become slack , unless replaced by a light stiff rod.

When 2R is greater than 21, the pendulum makes complete

revolutions; and now , at the top of a revolution , y = 21,and

T / W = 4R /1—5 ; and when 2R is greater than 1, T is again

always positive, and the plummet can be whirled round at

the end of a thread, without the thread becoming slack.

95. When the axis of suspension of the pendulum is hori

zontal, and cut into a smooth screw of pitch p, the equation of

energy gives

1 W (ha + k2 +p2)d0/dt) 2 = Wg( H - h vers 0),

if the centre of gravity descends from a height H above its

lowest position ; so that

(h2+2+ p ) (d20/dta) = - gh sin 0,

and therefore l = h + (k2 + p%)/h ;

and now in addition to X and Y, the reaction of the axis exerts

a horizontal longitudinal component Z and a couple pZ, given by

W 22A Wph sin e

Z=
Pр

g
dt? ha+k+pa

Similarly the increase in l due to the pendulum being sup

ported on friction wheels may be investigated.

As an exercise the student may investigate the small oscil

lations of a system of clockwork, in which the wheels are

unbalanced about the axes , and prove that for small oscilla

tions the length of the simple equivalent pendulum is given by

1 = (Ewk2p2)/(Ewhp?cos a),

where w denotes the weight, wh the moment, and wk2 the

moment of inertia of a wheel about its axis ; a denoting the

angle which the plane through the axis and centre of gravity

makes with the vertical in the position of equilibrium ; and

p denoting the velocity ratio of the wheel .
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96. The Internal Stresses of a Swinging Body.

These internal stresses are most forcibly realized on board a

ship rolling in the sea, not only in their effects as producing

sea -sickness, but also in causing the cargo to shift, if the cargo

is grain, coal, or petroleum, in bulk.

It is usual to consider the ship as acted upon by two forces ,

(i .) W tons, the weight or displacement of the ship, acting

vertically downwards through the centre of gravity G ,

(ii . ) W tons , the buoyancy of the water, acting vertically

upwards through M the metacentre ( fig. 8 ) .

Pe

P

N

L

W

K

o

w

K
A
N

DU

L
OK

2

.

M
U
T

Fig . 8 .

These two forces form a couple of moment W.GM sin e

(foot tons) , so that the ship will roll about a horizontal longi

tudinal axis through G, like a pendulum of length GL = k4/GM

feet, Wle2 denoting the moment of inertia of the ship about

this axis of rotation .

Now to find the force which acts upon w, any infinitesimal

part at P of the ship, to give it its acceleration and to balance

its weight, we refer the point P to axes Gæ and Gy, drawn

upwards through GM and perpendicular to GM .
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w w 2012

OC

( 9)-2

Ww

C

d02

dt g

This force will balance the reversed effective force of w at P

and the effect of gravity on w ; and therefore, in gravitation

measure, will have components

d20

Y +w cos 0, parallel to Go,
g dt dt

g

020

Y tw sin 0 , parallel to Gy.
g

dt .

If w is suspended as a plummet by a very short thread ,the

thread will take the direction of this force, and will therefore

make an angle with Gx

19 sin 0 -- ~(d20/dt2) - Y (de /dt)?
tan

g cos 6 + y (d20 /dt2) - x (do/dt)2

Supposing the ship to roll like a pendulum of length 1,

through an angle 2a, then

(020/dta) = -g sin 0, and fl(d0/dt)2 = g(cos 0 -- cos a) ;

and by $ 8,

d20 /dt- = -mºsin 0 = –2n’sinjo cos 20 = – 2nºk sn nt dn nt,

(do/dt)2 = 2n4(cos - cos a) = 4nº(sinaja - sina 0) = 4n2k?cnant.

At any instant the lines of reversed resultant acceleration

will be equiangular spirals, of radial angle o, round the centre

of acceleration Gas pole, the resultant acceleration at P being

g; sin 6 cosec ø, and the resultant effective force w'; sin 6 cosec op,

when we put GP= r, and Id0 / dt)2 = g sin coto ; so that

tan p = (sn nt dn nt)/( 2K cnºnt ).

Superposing the effect of gravity, the resultant lines of force

or internal stress will be equiangular spirals of the same radial

angle ø, round a pole J, the position of which is obtained as

follows (fig. 8) :-Draw LK perpendicular to GL to meet the

horizontal line GK in K ; describe the circle on GK as diameter,

and draw KJ making an angle GKJ = 0 with GK ; this will

meet the circle in J.

For the resultant effective force of w at P, being

PG

f = w sin 0 cosec p =wGS

making an angle o with GP, will, when compounded with w

upwards, and taking the triangle PGJ turned through an

angle o as the triangle of forces, have a resultant

t = w.PJ/GJ, making an angle g with JP.
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This will be the tension and in the direction of a short thread,

from which w is suspended as a plummet at any point P ; and

the deflection of this plumb line from its original mean direc

tion in the ship will be a measure of the tendency of a body

to slide or of a grain cargo to shift ; and to a certain extent of

the tendency to sea -sickness at this point of the ship and at

this instant of its motion.

The tendency will clearly have its maximum value at the

end of a roll, when do/dt = 0, and p = it, and then J coincides

with K. (Prof. P. Jenkins, On the Shifting of Cargoes, Trans

actions of the Institute of Naval Architects, 1887. )

The plumb line at P will now set itself at right angles to

KP, while the surface of water in a tumbler at P will pass

through K ; and a granular substance at P will begin to slip

if KP makes with its surface an angle greater than the angle

of repose of this grain.

Thus up the mast, at a distance a feet from G, water would

be spilt out of a tumbler ,or sand in a box would shift, by the

rolling of the ship through an angle 2a, which would not spill

or shift, if the ship heeled over steadily, until an inclination ß

(the angle of repose of the sand) was reached, given by

tan B = (1 + all)tan a.

At the centre of oscillation L, where a =--1, there is no

tendency for the water to spill , and this shows that the motion

of the ship is felt least by going down below as far as possible

in the middle of the ship .

In a swing the body is very near the centre of oscillation ,

so that ordinary swinging is very little preparation for the

motion of a vessel .

A swing to act properly as a preparation for a sea voyage

should be constructed as in fig. 5 , to imitate, in full size, the

cross section of the ship , suspended at M ; and now the varying

effect of the motion can be experienced by taking up different

positions on the deck, up the mast, and in the cabins, con

structed in this swing.

Sir W. Thomson proposes to find the axis of rotation of a

ship and the angle through which the ship rolls by noting the

direction of the plumb lines of two such plummets, suspended
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at two given points across the ship ; planes through theplum

mets perpendicular to the plumb lines at the extreme end of a

roll would intersect in K; the horizontal plane through Kwould

meet the median longitudinal plane of the ship in the axis G ;

while the plane through K perpendicular to the median plane

would meet it in L, whence GL, the length of the equivalent

pendulum , and therefore the period of small oscillations could

be inferred, as a check on this construction .

Example. A rod AB, whose density varies in any manner,

is swung in a vertical plane about a horizontal axis through A.

Prove that the bending moment of the rod is a maximum at a

point P, determined by the condition that the C.G. of the part

PB is the centre of oscillation of the pendulum.

97. PROBLEM VI. The Elastica or Lintearia .

The Elastica is the name given to the curve assumed by a

uniform elastic beam, wire,or spring, originally straight,when

bent into a plane curve ( fig. 9 ) by a stress composed of two

equal opposite forces T, on the assumption that at a point P

at a distance y from the line of the applied stress the bending

moment Ty is equilibrated by a moment of resistance Blp ,

proportional to the curvature 1/2 ; and the constant B is called

the flexural rigidity of the spring (Thomson and Tait, Natural

Philosophy, $ 611 ).

B' G 0 M B 0 M G I

STO
3

B' B

Fig . 9.

Then Ty = B /p, or yp = B / T = c%,suppose ;

and by Kirchhoff's Kinetic Analogue, the normal of the Elas

tica performs pendulum oscillations on each side of a perpen

dicular to the line of stress, as the point on the curve moves

with a constant velocity .
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For, when the normal has turned through an angle 0, the

1 do y

1 dy

so that

so that

curvature

dsc21
рP

and by differentiation

020 1

sin ,
ds2c2 ds c2

which agrees with the equation of pendulum motion

d20 /dt = – n’sin 0, if s/c = nt.

Corresponding with the oscillating pendulum we have the

undulating Elastica, intersecting the line of stress at an angle

a ; and thus, writing s/c for nt in $ 8,

sin jo = k sn 8 /c, cos 10 = dn 8/c,

sin ( = -dy/ds = 2k sn 8 /c dn 8/c,

y = 2ck cn s/c,

measuring 8 from the point A , at a maximum distance from the

line of thrust ; and a graduated bow might thus be employed

for giving mechanically the numerical values of the cn function.

In the nodal Elastica corresponding with the revolving

pendulum ,

0 = 2 am s/ck, sin 0 = 2 sn s/ck cn s/ck = -dy/ds ;

y = 2(c/k) dn s/ck.

In the separating case , K = 1 , and y = 2c sech 8/c ; and

50 = anh s/c, sin 50 = tanh s|c, tan 30 = sinh sc, etc.

In the undulating Elastica

doc

= cos ( =(1 - 4kº snºs/cdn´s/C) = 1-2K snºs /c;
ds

and in the nodal Elastica

dx

= cos ( = /(1-4 sn´s/c cn’s /c) = 1- 2 sn´s/c;
ds

so that « is given in terms of s by means of elliptic integrals

of the second kind (S 77).

A great simplification is introduced when k = k' = } ,/ 2 ; the

Elastica now cuts the line of thrust at right angles, and

cos 6 = cnºs/c = 2y2/c%,

which shows that this Elastica is the roulette of the centre of

a rectangular hyperbola, rolling on the line of thrust.

It is easily proved that in this curve the radius of curvature

p is half the normal PG ; also that a chain can hang in this

curve as a catenary, provided the linear density is proportional

to (nc s/c )) ; this is left as an exercise for the student.
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When k = 0 , the undulating Elastica corresponds with small

oscillations of the pendulum, and the Elastica is ultimately

coincident with the line of thrust , the ordinate y varying

as sin s/c or sin x /c ; and then the length of the beam,

7C = " / ( B / T ), is the extreme length at which the straight

form of the beam begins to become unstable under the

thrust T.

The nodal Elastica becomes practically a circle when k == 0 ,

corresponding in Kirchhoff's Kinetic Analogue to the practi

cally uniform revolutions of a pendulum when the velocity is

indefinitely increased.

The Elastica is also called Bernoulli's Lintearia , being the

cross section of a horizontal flexible watertight cylinder, when

filled with water, the free surface of which lies in the line of

thrust Ox ; for if t denotes the constant circumferential tension ,

t/p = wy, the pressure of the water ,

Yp = tw = c2.

It is also the profile of the surface of water drawn up by

Capillary Attraction between two parallel plates (Maxwell,

Encyclopædia Britannica, Capillary Action).

The student may prove, as an exercise, as in $ 80, that if the

wire is bent into a tortuous curve by balancing forces and

couples at ius ends, it will assume the form of a curve in a

surface of revolution defined by an equation of the form

y2 + x2 = aʼcnº(8/c) + b?sn (8/C).

( Proc. London Math. Society, vol. XVIII. )

or

98. PROBLEM VII. Sumner Lines on Mercator's Chart.

Sumner Lines, so called after Captain Sumner, of Boston ,

Massachusetts, are the projections on Mercator's chart of

small circles on a sphere ; if simultaneous observations are

taken of the chronometer and of the altitude of the sun or a

star, the observer knows that he must lie on a small circle

having its pole where the Sun or star at that instant was in

the zenith , and having an angular radius the complement of

the observed altitude ; and two such observations are

ployed in Sumner's Method for determining the ship's place.

According as the observed altitude of the Sun or the star is

greater or less than the declination, the small circle on the

em -
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or

Earth does not or does enclose the polar axis ; and the cor

responding Sumner line will be a closed or open curve, whose

equation may be thrown into the form

cosh y/c = sec a cos x/c, .. (i. )

sinh g/c = tan 8 coS cực. ( ii.)

On Mercator's chart ($ 16) the latitude and the longitude

of a point whose coordinates are x, y may be written

p = x/c, 0 = amh y /c,

where 7c/180 is the length on the chart of a degree of longitude

at the equator.

These relations are obtained by noticing that the bearing by

compass of two adjacent points on the chart will be the same

as on the terrestrial sphere, if

dy
dA

da cos Odo

and now , if x = cp, so as to make the meridians of longitude

equidistant parallel straight lines, then

dy/de = c sec 0 ,y /c = /sec odo,

or (§ 16) = amh y/c.

Now let è denote the declination of the Sun or star, y the

observed altitude, the difference of longitude of the observer

and of the object; then in the spherical triangle SPZ

PS=7-8, SZ= 17 - a , PZ= 17-0 , SPZ = 0,

S denoting the Sun or star, Z the zenith of the observer, and

P the pole of the Earth's axis.

Since cos SZ = cos PS cos PZ+ sin PS sin PZ cosSPZ,

therefore sin a = sin o sin 0+ cos d cos O cos ,

cos & cosp = sin a sec 0 -sin & tan

= sin a cosh y/c- sin & sinh y/c ;

and according as a is greater or less than 8,this is reducible to

the form A cosh(y — b)/c or – B sinh (y - b)/c ; and this again

by a change of axes to the form of (i . ) or (ii . ) .

(Crelle, XI., Gudermann, on the Loxodrome ; Messenger of

Mathematics, XVI. and XX. , Sumner Lines.)

Differentiating equation (i . ) with respect to X ,

dy sec a sin c/c sec a sin /c

dx J (sec?a cos2x /c— 1 )'

ds sin a

dx /(secʻa cosa/c - 1) J (sin ?a - sin?cc/c)

or

sinh g/c

tan a
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so that, as in SS 3, 4 , and 8,

sin x /c = k sn 8/C, cos a /c = dns/c,

cosh y /c = sin a dn s /c, sinh y /c = tan a cn s/c,

the modular angle being a.

This shows that sc in the closed Sumner Line (i. ) may be

equated to nt in the oscillating pendulum, and then c/c will be

half the angle made by the pendulum with the vertical; also

in the Sumner Line

da

cos = cn s/c, or y =am s/c,
ds

the intrinsic equation ; and p = csin a sec x /c.

The differentiation of equation (ii . ) gives in a similar manner

ds 1

doc J (1 - sin -ß sin c/c )'

ac /c = am s /c, with mod. angle ;

and now, in the corresponding undulating Sumner Line,x/c is

half the angle made with the vertical by a revolving pendulum,

if we put 8/c = knt.

dx

Also cos y= = dn 8 / c = (cn ks/c , 1 /K)
ds

by & 29 ; so that yram (KS /C, 1 /K),

the intrinsic equation ; and prccosec 3 sec x /c.

so that

*

Fig . 10.

The second curve , by a shift of origin a distance it to the

right, becomes sinh g/c = tan 8 sin acc,

and then it cuts at right angles the first curve (fig . 10)

cosh y/c = sec a cos ac/c.
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For, differentiating these equations logarithmically,

coth y dy XC

cot

c ?c của

Y dy

C da

tanh 3 của C

tan

с

dy's is -1and therefore the product of the 's .

da

In fact putting sec a = coth á, the curves are derivable as

conjugate functions from the equation

tiy = camh(a' + iß ).

99. PROBLEM VIII. Catenaries.

“ The catenary for a line density proportional to cosh s/a ,

where s is the length of the arc measured from the lowest

point, is of the form

tanhylb = dnoca, or dn oc/b ,

according as a, the ratio of the tension in pounds to the density

in lb. per foot at the lowest point of the catenary is greater

or less than b ; the Catenary of Uniform Strength being the

curve in the separating case of a = b .”

The equation of the Catenary of Uniform Strength, in

which the linear density or cross section is so arranged as to

be proportional to the tension, is well known (Thomson and

Tait, Natural Philosophy,$ 583) being

eylbcos oc/b = 1, or eylb = sec x /b ;

or as it may be written

tanh 3/6 = tanº.co.

For if o, denotes the density in lb. per foot, and ob the

tension in pounds at the lowest point A , o the density and

ob the tension at any other point P, at a distance s from A ,

measured along the curve, the equations of equilibrium of

AP are

so that

ob cos ys = gb, ob sin y = fods.

Thence o = c ,sec ys, and fods= ob tan \ ;

( = ob secydy ds= 0 ,secy ,

ds/dy = b sec ys,

8 = / b y bsec ydy = b cosh - Isec x = b cosh - 10100;

o= o.cosh s/b.

or
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XC

so that

$sinhso that tan ypor

CL

sds

We might therefore take a piece of uniform flexible and

inextensible material, cut out from a plane piece by two

catenaries, or modified catenaries, say y/c = I cosh c/b, and

hang it up in a catenary of equal strength .

Also
= ſcosYrds = ſbdy = by,

y = ſsin Yrds = ſb tan ydys = blog sec ys;

y/b =log sec x /6 , or eyl = sec x/ ,

the equation of the Catenary of Uniform Strength .

But now suppose two supports at the same level to be made

to approach or recede from each other ; the piece of cloth or

he chain will hang in a different catenary.

Denoting by a the tension in pounds at the lowest point

A, and by t the tension at P , then

t cos fs = 0 A , t sin fo = fods = oob sinh 8/6 ;

dy B

sinh

doc

the intrinsic equation of the curve.

dp 1 1

Then cosh

doc 7 dx
1

abdp

(62 + a -p2.1 + pa)'

an elliptic integral, of the form (10), p . 33 ; and putting p = tant,

dy cos? % , sin²4
+

da a2 72

In the separating case, a = b ; and then x = b4, as in the

Catenary of Uniform Strength ; the greatest possible span of

a catenary of given material is therefore mb = mT/W , where -

denotes the tenacity of the material, in pounds per sq. foot,

and w the density or heaviness, in lb.per cubic foot.

But with ab,

1

K k 'Ydas

ža ty = am x/6,

dy cn x/b
and

doc sn /6'

c
YE

sn´x/6 1 - dn2c/6

tanh g/b = dn c/b .

CL

- La
or C

ve

dy 1

so that

tan Yo =

- K?snæ/b snx|bdx = b tanh - 1dn æ/b ,

f
0

or
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one =2 (1-x*sinº /)= (4, «), where x'= a / b;

= f 12

0

a

or

With a < b,

d 1 1

dx

so that Y= am /a,

dy sn ca.
and tan for

dx cn xla'

* sn ma cn
100

: kasn x/a cn la
dacy =

cn cc/a dn scla- K

dnxat dnala
log b coth - 1

2K ' dna- K K'

K'

tanh g/b = dn(K– </a) ,
dn xla

by 57 ; so that by a change of origin, taking the axis of y in

a vertical asymptote
of the curve, its equation may be written

tanh y/b = dn x/a.

(Compare Cayley, on A Torse depending on Elliptic Func

tions,Q. J. M. , XIV., p . 241.)

100. In the catenary formed by an elastic rope or flexible

wire, obeying Hooke's Law " ut tensio sic vis,” we may still

have p = sinh v ; but u is no longer proportional to the arc s.

We use o , to denote the uniform density of the rope when

unstretched , and 8 , to denote the length of rope which stretches

in AP to length 8, ob denotes as before the tension in pounds

of the rope at the lowest point A, and o , c is used to denote the

modulus of elasticity of the rope in pounds ; so that, by

ds t

Hooke's law , = 1 +

OOC

Then, as before, for the equilibrium of AP,

t cos y = 0,0 , t sin y = fods = 008,

dy
P = ,

dx . b

if we put So CU sinh t ;

and then troos / (a +5,2) = ra cosh u.

ds t \ds.
Then = a coshut coshau,

du

ds

and / ( 1 + p2) = cosh u,
dar

dso

so that

a2

Coc /dui Cс
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a2

so that
doc

= at

du

cosh W,

с

dy a2

Ca sinh + cosh du sinh .
du с

Integrating, putting a/c = h,

sla= sinh u tih (u + cosh u sinh u),

ola = + h sinh cu,

ga = cosh a + sinh .

For the corresponding points on the rope, when it is supposed

inextensible , putting c = 0 , and h = 0,

so/a = sinh U , Xo/a = u, yo/a = cosh u ,

giving an ordinary catenary ; so that the tangents are parallel

at corresponding points of the catenaries of the elastic and of

the inextensible rope .

The terms depending on h, considered separately, define an

ordinary parabola ; so that the catenary formed by an elastic

rope is something intermediate to a parabola and a common

catenary.

72

101. PROBLEM IX. Geodesics.

“ Investigation of the geodesics on the Catenoid ,the surface

formed by the revolution of a catenary round its directrix , and

on the Helicoid , into which it can be developed ; also of the

geodesics on the Unduloid and Nodoid ,the capillary surfaces

of revolution , of which the meridian curves are the roulette

of the focus of a conic section , an ellipse or hyperbola, rolling

upon the axis of revolution ."

The simplest mode of determining a geodesic on a surface of

revolution is to treat it as the path of a particle moving

under no forces on the surface, considered as smooth , so that

ds/dt is constant ; and then, since the reaction of the surface

passes through the axis, 72d0/dt is constant ; and therefore

22do = b,a constant
ds

r and denoting the polar coordinates of any point of the

projection on a plane perpendicular to the axis Ox ; and thus

ds2 do2 dp2 904

do2 = 402 +202 262 62

+22
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so that sinh dla
Сі

gog

a2
da2 + 102 + 12 =

or

=

so that

In the catenoid ra = cosh x]a,

dr » / (72-a2)
= ( — ),

da

and therefore, in the geodesic,

922 - a2 dp2 d72

72

dp2_ (3:2 — a?)(712 — 12)

d02 72

We must distinguish the two cases according as b2 z a?.

When b? > a-, then 72 > b2; the geodesic osculates the circular

cross section of radius b ; and we have

r sn = b, with k = a/b,

as the polar equation of the projection of the geodesic.

When b2 < a ”,then 0-2 > a ; the geodesic crosses the circular

section of minimum radius a ; and supposing it cuts the

meridian here at an angle a, b a sin a ; and now

r sn(O/k) = a, the modular angle being a.

In the separating case, b = a and k = 1 ; and then sn ( = tanh 0 ;

2 tanh 8 = C ,

is now the polar equation of the projection of the geodesic, a

curve having r = a as an asymptotic circle.

Generally in any geodesic on a surface of revolution, which

cuts the meridian curve at a distance r from the axis at an

do

angle x;
sin

ds

so that sin x varies inversely as 1 .

102. Now suppose the catenoid is divided along a meridian

curve AP, and again along the smallest circular section A A ',

and that this section AA' is drawn out into a straight line, of

length 27a ; the rest of the surface,if flexible and inextensible,

will assume the form of a Helicoid ,or uniform screw surface

of pitch a, such that its equation is

2 = аф,

taking the axis of z along the axis of the surface, and p, the

polar coordinates of the projection of a point on a plane per

pendicular to the axis ; and AP will become a generating line

of the Helicoid ; this is proved geometrically, by noticing that

the length of the helix PP' on the Helicoid is equal to the

length of the circle PP' on the Catenoid .

X = 1 ;
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The surface being inextensible, and a circular cross section

of the Catenoid becoming a helix on the Helicoid, it follows that

po2d02 = pdp2 + dz2 = (p2 + a )d02 ;

and since po2 = pa + a >, therefore 0 = p.

12

A P

I

A

M

pf

Fig. 11 .

Therefore the equation of the projection of a geodesic on the

helicoid is either of the forms

(02 + a2)sn '( 0 /k ) = a ?,

p tn ( k) = 0 ;

(02 + a2)snºp = b2 = 0 !K ,
or

a dnº

po

K sno

pen(K 0) = ak'|K.

The Catenoid is the surface of revolution formed by a

capillary soap bubble film , when the pressure of the air is the

same on both sides of the film . The surface is easily formed

practically by dipping a circular wire into soapy water and

raising it vertically ; and it is evident from mechanical con

siderations that the surface is a minimum surface (s 31 ).

The Helicoid, into which the Catenoid can be deformed, can

be produced in the same manner by a film between two coaxial

helical wires of the same pitch (C. V. Boys, Soap Bubbles).
G.E.F. G
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These surfaces are particular cases of Scherk's minimum

surface, whose equation is

z = a tan - 19 + a tan - 1+a tan- ( * + y?– 62)+6tanh -1 / (xº + y2– 62)
b ) (Q2+42+ a?)

b
J (@c2+42 + a ?)

z = a cos-,bæ (x2 + y + aº) –ay / (x2+ 42 – 62)

J(a2 +62) (x2 + y2)

or

+ b cosh -1 / (x2+ y2+ uz)

(a ? +62)

reducing to the Catenoid when a = 0, and to the Helicoid

when b = 0 .

The verification in the manner of § 32 is left as an exercise

for the student

103. The meridian curve of the Catenoid is the roulette AP

of the focus of a parabola aG, the pressure of the air being the

same on both sides of the film ( fig. 12).

But when the pressure of the air inside the film is increased

or diminished, we find that the surface of revolution formed

by the capillary film has as meridian curve BP or CP, the

roulette of the focus of an ellipse or hyperbola ,the first surface

being called the Unduloid and the second the Nodoid.

(Maxwell, Capillary Attraction, Encyclopædia Britannica .)

Denoting by y , y' the perpendiculars from the foci P, Pon

the axis Ox on which the conic rolls, then in the Unduloid

BP, generated by the focus P of a rolling ellipse bQ,

y + y' = (PQ + QP ) cos y = 2a cos y

and yy' = 62 ;

12 + ya = 2ay cos y.

If in the meridian curve BP of the Unduloid, we denote

the radius of curvature by p, and the normal PG by n , then,

since
62 + y2 = 2ay cos Y = 2ay-/n ,

1 22

so that

1

therefore +

n 2ay2 ' 2a

62
Y

and since cos y = +

2ay'2
a

differentiating,

62 1dy

2ay2 2a ) ds
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X

IR

!

6

p ' 1Mм

Q

M

c "
BELO B

M "

Fig. 12.

1 72 1o
r

;

p 2aya 2a

1 1 1

so that

Nт . a
P

Then, if p denotes the excess over the atmospheric pressure

of the air inside a capillary film , in the shape of an Unduloid,

and t the tension of the film ,

1 t .1

p = t
N al

so that, if inside a Catenoid , the pressure is increased, the

surface is changed into an Unduloid.

If the pressure is slightly diminished by p, the surface be

comes a portion of a Nodoid CP ; for now

1

p =t( -5)р

and in the meridian curve CP of the Nodoid , the roulette of

the focus P of a hyperbola cR with foci P and P",

y" - Y = ( P " R - RP)cosy= 2a cos y, and yy' = 62 ;

62 - y2 = 2ay cos y = 2aya/n ;
so that

1 62 1

n 2aya 2a

1 72 1

p = 2ay2+ 2a

and p =ta.
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24

+22 ;

or
do2 = p ?sin y Cat

136a -sin y

In the geodesic on the Unduloid,

y2d0/ds = a= a sin y:

supposing the geodesic cuts the meridian curve at an angle y

at its maximum distance a from the axis ; also a = a(1 + e), and

the minimum distance B = a(1 - e), so that aß = , a +b = 2a ;

and y lies between a and B.

Now, in the projection of the geodesic on a plane perpen

dicular to Ox, writing r for y, so that tan ys = dy /dx = dr /dx,

d2 do2 dr2 dr2

+

d022027 202
cosec / + 2 =

202 a’sin ”y

dr2 72

1 ) ;

a'siny

and r cos y = (52 +52)/2a ; so that

d22 (62+ 7227 72

22 -1

do2 402

(a? — ,-2 )(p2 – B2)(p2 — a sin’y) .

a ’(a + ß ) siny

leading to integrals of the form (72) and (73), p . 52.

We suppose first that ß > a sin y, so that the geodesic crosses

the minimum section of the surface, and therefore all the

sections if produced ; and now with a > p > ß > a sin y, we

have, according to equation (72),

mala + B )sin ydr 182.a?-72
mo

(az- y2.g2 - B2.72 - aʼsin’y) Vaz - 82.722

1 cnamo , snamo

+

22

Secondly, if a > r > a sin y > B, then the geodesic osculates

the circle of radius a sin y , and is limited by the convex part

of the surface between two such circles ; and the equation of

the projection of the geodesic is obtained from the above

merely by interchanging a sin y and B.

In the separating case a sin y= ß ; and then k = 1, m=tan jy ;

and the polar equation of the projection of the geodesic is

1 sechémo , tanhamo
+

22 22

a curve having an asymptotic circle y = ß .

The formulas are similar for the geodesics on the Nodoid.

-fi
-1

sn

o
r

2

ах B2

a2
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104. Euler's Equations resumed . Poinsot's Geometrical

Representation of the Motion of a Body under No Forces.

We now resume these equations of motion , of which the

solution by elliptic functions has been indicated in $ 32. p . 18

By the Principle of the Conservation of Angular Momentum

(Routh, Rigid Dynamics, Chap. IX. ) the axis OC of the re

sultant angular momentum G will be fixed in space ; and the

direction cosines of this axis with respect to the principal

axes of the body being

Ap/G, Bq/G, Cr /G ,

the component angular velocity about OC will be

Ap2 + Bq2 + Cp2_T
a constant,

G G

where, as before, T denotes twice the kinetic energy of the body.

It is convenient to denote this component of angular velocity

about OC by a single letter, say m ; and also to replace G and T

by Du and Du?, making T /G = u and G2/T= D; and then D will

be a constant quantity, of the same dimensions as A ,B, C.

If I denotes the moment of inertia about the instantaneous

axis of rotation OP, and if OP denotes the vector of the

momental ellipsoid at 0 ,then I varies as OP- 2, so that we may

put I = Dh2J0P2, where h is a new constant length .

Now, if w denotes the resultant angular velocity about OP,

T = Iw , or Dua = Dh264/0P2,

so that the angular velocity w varies as OP ; and

h OP
Y

P a

The direction cosines of the normal of the momental ellipsoid

at P being proportional to Ax , By, Cz, or Ap, Bq, Cr, are

therefore Ap /G , Bq/G, Cr /G ; so that OC, the axis of G, is

perpendicular to the tangent plane at P ; and if OC meets this

tangent plane in C , it follows that OC = h ,so that the tangent

plane at P is a fixed plane; and during the motion the

momental ellipsoid rolls on this fixed plane , called the in

variable plane, with angular velocity proportional to OP.

The curve traced out by the point of contact P on the

momental ellipsoid is called the polhode,and the curve traced

out by P on the invariable plane is called the herpolhode;

3C z

M
r
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these names are due to Poinsot, as well as this geometrical

representation of the motion.

( Théorie nouvelle de la rotation des corps, Paris, 1852.)

The equation of the momental ellipsoid may now be written

Ama + By + Cz2 = Dha ;

while Ax / Dh, By/Dh , Cz |Dh are the direction cosines of the

invariable line OC ; so that

A %x2 + Bºya+ C2,2 = D2h2.

The polhode is therefore the curve of intersection of these

two coaxial quadric surfaces, and therefore lies on the cone

A(A - D )m2 + B ( B - D )y2 + C ( C - D ) z2 = 0 ,

called the polhode cone ; and the projections of the polhode

on the principal planes are therefore

(A - B) By2 + ( A - C ) Cz2 = (A -D)Dh-, .

105. Denoting by v the component angular velocity of the

body about the axis OH , where OH is equal and parallel to CP,

pP + + y2 = m2 = u +1?,

Apa + Bq2 + Cr2 = T = Du?,

Aạp ? + B4q2 + C2po2 = Gº = D4m2 ;

and, by solution of these equations,

A - BA - C 1 G2

= w? — Wa , suppose,
BC B. BC

D

- va ?, suppose ;
or

pe=w2–66 OT

2+ (1- B)(1- ) ?=

q = v +(1-3)(1-3

+ (1-2)(1 -Bu?= – vº....;

B- C.B-A DY

= 12 - vö ?, ... ,
CA A.

C-A.0-B D

AB

and in these equations we may replace p, q , r, W , M , v by

X, Y, Z ,OP, h, p, respectively, where pa = 0P2 – h2.

Example. -Prove that

dp
A +

dt
?

dt dt

dp da A - D.B - D.C - D

A = u , ?
dt dt dt ABC

and simplify

dp
+ +

dt dt

let,

2

( 2)
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106. On the supposition that

AT > BT > Gº > CT, or A > B > D > C ,

re never vanishes, and the polhode encloses the principal axis C ;

but Pр and q alternately vanish, so that y? oscillates in value

between (1-B2-1)u?and (1-26-1),?.

11

Du² - ,cos ? e +

sin cos e ,

nº= Du24 – D.B - C

If we put
u?

then
D - 0

Apa = Du ? cos20,
A - C

Bq2 = Du
D - C

sin²0 ,
B- C

A - D B-D

+ sin

A - C B- d

We now find, on substituting in one of Euler's equations,

102 2A --C.B- CIA - D B-D

dt2 ABC A - C B

d20
and -

dt? ABC

the solution of which is of the form, as before in SS 18 and 32,

O = am (nt, k) ,

C

where
A -B.D- C

and ka

ABC A - D.B - C

the anharmonic ratio of A , B , D , C ; while

C

cnant,
A - o

D - 0

Bq* = Du2? snant,
B - C

Cr? = Du24 –D dnềnt ;
AC

giving (832)

D.Do D.D_0 D.A - D

P2 :
C.
Ac
iu

?

107. Qua
dra

nta
l

Osci
llat

ions

.

The osci
llat

ions

give
n
by a diff

eren
tial

equa
tion

of the for
m

d20 /dt = -- mºsin 6 cos 0

are called quadrantal oscillations (Thomson and Tait, Natural

Philosophy, $ 322), the system having two positions of stable

A p? = Du2D - C

2 R2
>A. A - OM ?, Q2 B.B- Cine?
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equilibrium given by 0 = 0 and 0 = 7, and two unstable posi

tions in the remaining quadrants, given by ( = + ; for

instance, an elongated piece of soft iron in a uniform magnetic

field ,or an elliptic cylinder moveable about its axis in a cur

rent of liquid performs quadrantal oscillations. (Q.J.M., xvi.)

When the system performs complete revolutions, the solu

tion is (8 18) = ammt/K, K) ;

but if it oscillates about the positions of stable equilibrium,

given by 0 = 0 , the solution is (s 29)

o = am (mt, 1/K) ,

cos ( = dn (mt/«, k ),

sin ( = k sn(mt/k, k),

where k is less than unity.

The second solution will apply to the second state of motion

in § 32, where AT> G- > BT > CT, or A > D > B > C , and where

p never vanishes, and the polhode encloses the principal axis A.

or

@dt
V" P

at r

or

108. Differentiating the equations of $ 105 with respect to t,

do dv_A - B.A - C dp_B - C.B - A da_C - A.C - B dr

at ВС CA Iat AB dt

B - C.C - A.A – Bpar;
ABC

do2

J (4.wa? --w2.672-6%.w.2 - w *),
dt

d22

-A/ 4 .J (4.va?- 12.12 – 12.v.2 -v );
dt

so that w? and v2 are elliptic functions of t, of the form given

by equation (15), p. 36 .

But, on reference to equation (A), p. 43,we see that

pou = - / (489%u3 – G284-93) = -_(4.pu—la PU r.Su ~ ee),

if las eb, le denote the roots of 4 :3 — 428-93 = 0) ; so that on

comparison we may make

wal - w ?, wa - w?, w. -w", or val – v ?, v2 — v?, ve? - 19,

proportional to pou Pas fou - bc ;

or, symmetrically, we can put

Apa = -mº(B- C )(ou- ea),

Bq2 = -mº(C-A)(pu - es),

Cy2 = -m A - B )(pu - e);

where the factor -m is introduced for the sake of homogeneity,
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m being of the dimensions of an angular velocity, such as p, q,

7, w, M , v ; and now, on substitution in Euler's equations ,

du B - C.C -A.A -B B -CC - A A - B

+

+ -)mdt2 ABC A B c

U= a constantInt.

m2 2 = n?,

suppose ; so that

109. As in $ 32 , we take A > B > C ; and then

( i.) when AT>BT> G > CT, or A > B > D > C ,

r never vanishes , and we must take

lc > ea > pou > lo ;

so that
eq = lc, lz = las lz = eb ;

(ii . ) when AT > G ? > BT > CT, or A > D > B > C ,

p never vanishes ; and then

Ca > c > pu > 6b ;

and we must take
en = las lz = ec, lz = lb.

Since pu oscillates between la and
ez,

and is taken

initially equal to ég, we find, on reference to equation (42),

p. 45, that we must put

u = 2w , tw ,-nt,

so that the constant of integration for u in $ 108 is 20, + wg.

Now, at the cost of symmetry, to get rid of the imaginary

Wg, and to make the argument of the elliptic functions a real

quantity nt, equation (42) , expressed in the direct notation,

gives
-

pont - ez

e - pont.cz- ég
Jou - la

pont - eg

by – lz.lz - pont

pue =
pont - eg

and ez always replaces ég, while ea replaces éq, le replaces @g, or

vice versa , according as the polhode encloses A or C.

pu – ez = 9 - lz.62 - es

110. For the determination of ea Cole, we have the equations

Cat eot bc = 0,

(B- C)eat (C- A)ept (A – B )eo = T /m2 = Du?/m²,

A ( B - Clea + B (C - A )e + C( A -Beo = G2/mº= D2 /mº,

whence AT- G2 = m ?( C – A )( A - B)(eo - éc),

BT - G ? = m2(A - B ) (B - C ) (ec - ba) ,

CT - G ? = m2(B - C )(C - A )(ea - es) ;
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or

Du ? A -D

е , — ее

m ? C - A.A - B

Du? B-D

lc - la

m? A - B.B - C

Du? C-D

lalo

m2 B - C.O- A

so that e - la is taken positive or negative, according as

BT - G? or B -D is positive or negative ; while @p — éc and

€ ) -- la are always negative,as explained above.

Also (la - en) - ( Ce - a ) = 3ea, ... ,

whence the values of la lb, lc.

Then gọ =={ ( e - ee) ? + ( e - eq)2+ (ea - e )2}

can be found ; and the discriminant ( $ 53)

A = 16 (ep- @ c) (ec - ea )?(la - 60)2

Bu12 (A -D) ( B - D ) (C - D )2

m12 ( B - C )*(C– A )'( A - B)4 '

ga { (B - C) (A – D )2+ (C – A ) ( B - D )2+( A – B) (C— D )2}:J =

A 108( B - C )2(C- A )?( A – B ) ( A - D )?( B - ){( C - D )2

3

111. We have supposed no forces to act ; but the case in

which the impressed couple is always parallel and proportional

to the resultant angular momentum leads to equations which

can be solved in a similar manner ; in this way we imitate the

motion of a body, like the Earth , which is cooling and con

tracting uniformly.

Now, the component impressed couples about the principal

axes being of the form Ap, XBq, Cr,

A (dp /dt) - ( B - C ) qr = \ Ap, .

which, on putting p = e - 1tp, and it' = l - e - it, reduce to

Adp' - (B - C)qʻr' = 0, ... ,
dt'

so that p', q', n 'are the same functions of t' , which p, 9,7 would

be of t, in the case where no forces act.

In the case of the cooling and contracting body, we put

A = e - 11A, B = e- AtB , C = e - Co; and the equations become

A - ( B. - Coqr = 0, ... ,

which are solved as before ; and Poinsot's geometrical repre

sentation of the motion still holds, with slight modification .

dp

A
odť
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A similar procedure will solve the following theorem :

A rigid body is moving under the action of a . force whose

direction and magnitude are constant,always passing through

the centre of inertia (e.g. gravity) , and of an absolutely con

stant couple.

" If p, q, r denote the component angular velocities about the

principal axes at the centre of inertia, and if u, v ,w denote the

compound velocities of the centre of inertia along the principal

axes at the time t ; then the determination of

p/t , g /t, rt, ult, v/t, w/t,

in terms of it is the same as that of p, q, r, u, v, w , in terms

of t,when no forces act ; t being reckoned from the commence

ment of the motion .” (W. Burnside, Math. Tripos, 1881.)

112. To obtain the equation of the herpolhode, we notice

that during the motion the polhode cone, fixed in the body, rolls

on the herpolhode cone, fixed in space, O being the common

vertex ; corresponding areas of these cones are therefore equal ,

as also their projections on any fixed plane, for instance the

invariable plane.

Therefore if p , o denote with respect to the polar co

ordinates of P on the herpolhode ,

edo _ Axl de
-zdy + By(2

Czdz dy dx '

+
dt Dhldt Dr\"dt

Since
Y3 р

h
P

р 9

doc B- C

therefore

dt F A
Ya,

dz dyulA - B C- A

X32

h o B BC

dф C - D
Ax2+ C22

at BC СА. AB

_ ( A - D ) A2x2 + (B - D ) Bºy2 + (C - D )C222
M

ABC

A - D.B - D.C - D ,
=put

ABC

which, combined with the value of dva/dt or dpa/dt of $ 108,

dp

dt TV(4.pa? - p.po2 - p.pe - p ),

will determine the equation of the herpolhode.

dx

y
dit dt

a
c

r V M

A uhu,
and ($ 104) Yat - % dt ეყ2

B-DBy +
so that

C22)

C -D2 ;

M

:
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113. Using Weierstrass's functions of $ 108,

0² v² p² + 9² +22
-1

h2 M²?

ma/ B - C C - A AB

(pu - ea ) + (pu -- +
А. B o

MM2

ll -es)+4 (sou —e)+ 2
M²

na

11 2(pv - pou ),
иM

2

M²

ACat lot

m2
with

B- C CA A -B

· le
A. B o

pov =
B -CC - A A - B

+ +

A B o

;

and then pu - la
иM²

n2

M²

KO - еъ

1 - B)2-1), (positive )

24-1), (positive),

26-1), (negative)

1

n2

2

иM

pov - ec 2

n

no

do

do _M
or

n

po2 = 4 (pu - ca)(pv - es)(ovec)

4. (A – D ) (B— D) (C - D )2
;

A2B2C2

and, since ez (or ec) > pv > ez (or la) ,

we must,by (39), $ 54,where t' is a proper fraction ,take

v = wi + t'wz.

Therefore
jigov

dt
= ut n

sv - pu

Ligov
十

du pu - pu

and, integrating p = ut + £i
pu -

and we are thus introduced to a new integral, called an

elliptic integral of the third kind.

The cone described in the body by OH ($ 105) is called by

Poinsot the rolling and sliding cone ; during the motion this

cone rolls on an invariable plane through 0, while at the same

time this plane turns with constant angular velocity u about

OC ; so that, if p, & denote with respect to O the polar co

ordinates of H on this plane,

$ = p - ut = ji

po'vdu

iſ ou – poru

pu - pu

o'vdu

= jsou
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114. With the notation of the elliptic functions of Jacobi,

as in § 106 ,

pa
DD - C DD- C DAD

dnant

h2 " A A - C

snant+c A - Ccnemt+ B B - CB B - osn nt +

A -DD -CD.A - BD - C

snant,
AC ABC

which can be thrown into the form

p2_A – D.D - C (1– K ? sn ? a sn?nt)
h2 AC

on putting kºsn’a
D.A -B

DA- D '

DB- C B-D A B -D

sn’a cn'a dn’a

BD - C BD- 0" BA - D

With eq = @ , ép = @ g, le = e7, and v = w , + t'wg, then by (32) , p . 44,

vlei - es)v = K + t'i K ' ;

and

A B-Dpu - la _
dn ?( K + t'iK ') = = dn’a ;

pov - 60 BA -D

so that a = K + t'ik '.

B - D
M

Then
dt

= -

B 1 - k’sn’a sn ?nt

i cn a dn a

= M

1 - k’sn’a sn ?nt'

and, writing u for nt,

i sn a dn a du

p = ut
1 - kasn’a snu

do

n

sn a

sn a

0

li

-ifacem
= ut

i cn a dn a

-U

sna

K’sn a cn a dn a sn2u

1 - kºsn’a snau
du ,

the last term an elliptic integral of the third kind, in the form

employed by Jacobi.

On putting sn u = sin 0, and sn a = sin k?sn?a =

αΔα dA

p= ut-

( 1 m ) -

a, K -m , then

.COS a

sinasSa+ m sin?e}S(1–x* sinºo )
0

the third elliptic integral, as employed by Legendre ; the

further discussion of this integral must be reserved for a

subsequent chapter.
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EXAMPLES.

1. Prove that, if the excentric anomaly in an undisturbed

planetary orbit of excentricity e is represented by 2 am(u, e) ,

the mean anomaly is

d2 am urod
am

u

edu2

2. Prove that the envelope of the straight line rays

K2 sn u + (cn utk dn u ) y = k sn u(dn utk cnu)

where u is the variable parameter, is the curve

K”?c = x (1–ķ - 8y )} + x (1 – kyk));

the caustic of parallel rays, after refraction at a circle, of

refractive index 1 /k ; and find the order of this curve.

(Cayley, Phil. Trans., 1857, “ Caustics. " )

3. Prove that a portion of a flexible inextensible spherical

surface of radius a, bounded by two meridians (a lune, or gore

of a spherical balloon) can be bent into the surface of revolu

tion given by

x = a cos O cos( p /k ), y = a cos sin($/k) , z = aE ( 0, k) ;

0 , o denoting the latitude and longitude of the point on the

sphere.

Explain the geometrical theory, distinguishing the cases of

K < 1 , and k > 1 .

Cuz

,12

4. Denoting by w the solid angle subtended by a circle of

radius a at a point whose cylindrical coordinates are r, z with

respect to the axis of the circle, prove that

dw K3

E

da 2(ar) k

Har 22+ ( a - r )?
where K2 =

z2 + (a + r ) ? 72+ (a + r )2

Show how to determine the illumination at any point of the

surface of the water at the bottom of a deep well, due to the

light from the sky.

12

к
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5. A uniform circular wire, charged with -e coulombs, is

presented symmetrically to a fixed insulated sphere of radius

a centimetres, so that every point of the wire is at a distance

f cm from the centre of the sphere , the radius of the wire sub

tending an angle a at the centre of the sphere.

Prove that the electricity, in coulombs per crn ”, induced at a

point of the sphere whose angular distance from the axis of

symmetry is 0, is given by

f2 - a? E

27’a {a – 2af cos(0 - a ) + f2} / {a – 2af cos(@ + a ) + f2}

4afsin a sin e a – 2afcos ( -a) + f?
where ka

a – 2af cos (eta) + f ?? az – 2afcos(@ + a ) + f2

6. Prove that if this sphere and wire gravitate to each other,

and if the wire is free to turn about a fixed diameter perpen

dicular to the line joining the centres, the wire will be in stable

equilibrium when its plane passes through the centre of the

sphere ; and prove that the oscillations of the wire due to the

gravitation will synchronize with a pendulum of length

762(b+ c)

12

K

2CMF 9 cm ,

where b denotes the radius of the wire, c the distance between

the centres of the sphere and wire in cm , M the weight of the

sphere in g, C the gravitation constant ; and

1 +k2 d

F E - K = žk (1 + x2) {(1 +x2)) K },
dk

where Ka = 4bc/(b + c)2

Determine the position of stable equilibrium and the length

of the equivalent pendulum, when the attraction is changed to

repulsion.

2K2

7. Two uniform concentric circular wires of radii b and c cm ,

weighing Mand M'g, are freely moveable about a common fixed

diameter. Prove that in consequence of their gravitation, the

oscillations will synchronize with a pendulum of length

7762c2(b + c)

g ,

CF (M62 + Mºczy9 cm ,

where F and k have the same values as before.



CHAPTER IV.

THE ADDITION THEOREM FOR ELLIPTIC

FUNCTIONS.

115. So far we have considered the elliptic functions of a

single argument u ; but now we have to determine the for

mulas which give the elliptic functions of the sum or difference,

utv, of two arguments u and v,in terms of the elliptic functions

of u and v ; and thence generally the formulas for the elliptic

functions of the sum of anynumber of arguments u tv + w + ...;

and the formulas for the duplication, triplication , etc. , of the

argument.

The Addition Theorem for Circular and Hyperbolic

Functions.

The analogous formulas in Trigonometry for the Circular

Functions are well known, namely,

sin ( u Iv) = sin u cos v Ecos u sin v,

cos( u + V ) = COS U COS v#sin u sin v ;

or, as they may be written,

sin (u Iv) = sin u sin'v # sin'u sin v,

cos( u + v ) = COS U COS VFcos'u cos'v ;

the accents denoting differentiation ; and to these may be added

tan utan v

tanu + v =
17tan u tan v

these formulas constituting the Addition Theorem for the

Circular Functions.

For the Hyperbolic Functions , the formulas are

cosh ( u + V ) = cosh u cosh v + sinh u sinh v,

sinh (u V ) = sinh u cosh v + cosh u sinh v ;

112



ADDITION THEOREM FOR ELLIPTIC FUNCTIONS. 113

or, as they may be written,

cosh ( u V ) = cosh u cosh v cosh'u cosh'v,

sinh( +1) = sinh du sinh + sinh , sinh 0 ;

and to these may be added

tanh uttanh v

tanh ( u + V ) .

1 - tanh 1 tanh+

constituting the Addition Theorem for the Hyperbolic Func

tions,

116. The Addition Theorem for the Elliptic Functions.

For the Elliptic Functions the analogous formulas of the

Addition Theorem are found to be

sn (UV) = ( snu sn'v + sn'u sn v) /D,

cn (u v ) = (cn u cn vi cn'u cn'v) /D,

dn (u * v ) = (dn u dn vik- 2dn'u dn'v)/D,

where D= 1 -ksn’usnév ;

or,performing the differentiations, and dropping the double signs,

snu cn v dn vtcn u dnu sn v

sn(u + u) ( 1)
1 - k ?sn ? u snav

cn u cn v - sn u dnu sn v dn v

cn (u + v ) = .......(2)
1 - kºsnļu snar

dn u dny - k?sn u cn usn von v

dn ( u tv) (3)
1 - k ?sn ? r snav

Putting k = 0, we obtain the formulas for the Circular

Functions, sin(u+ v) and cos(u + v) , the denominator D re

ducing to unity.

Putting k = 1 , remembering that then (S 16) snu becomes

tanh u, cn u or dn u becomes sech u, we obtain from (1)

tanh u sech ? v + sechar tanh v

tanh (u tv)
– tanhº , tanhºa)

tanh ( 1 - tanh21) + ( 1 tanh2 tanh 10 tanh titanh 20

1- tanhºu tanh20 l + tanh o tanh cº

as before ; with the corresponding formula for sech ( u + v)

or cosh (u + v),the formulas for the Hyperbolic Functions.

117. To establish these formulas of the Addition Theorem

for Elliptic Functions, let us employ the geometry invented

by Jacobi (Crelle, Band 3 ; Gesammelte Werke, I. , p . 279), at

the same time interpreting the geometry in connexion with

Pendulum Motion.

G.E.F. H
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To do this, let us suppose that P' would be the position of

P in fig. 2 at the time t, if it had started 7 seconds later ,and

put t - q = ť ; then (8 6)

AN'= AD snant', N'D= AD cn²nt, N'E=AE dnềnt', etc.;

and we shall prove that PP touches a fixed circle through B

and B' during the motion (fig. 13) .

E

EE

N

D B

L

N
P

R

0

L

Cс

R

N

N

A A

Fig. 13 . Fig. 14.

= VND

For suppose that, in the small element of time dt , P has

moved to an adjacent point p and P to p '; and let PP', pp'

intersect in R, so that R is ultimately the point of contact on

the envelope of PP'.

Then since, by a property of the circle , PP' cuts the circle

AP'P at equal angles at P and P',

PR Pp_velocity of P
= lt

RP P'p' velocity of P ND

Now describe a circle with centre o on AE, passing through

B and B', and touching PP' at a point which we shall denote

by R ' ; then

PR2 = P02-0R2 = P02 + 002-200.ON - R2

- OB2+004- 200.ON- Bo2

= OD2 – Do? +002 - 200.ON

= 00(OD+ Do +00-20N)

= 00 (201–20N) = 200 . ND.

Similarly, RP2 = 200.N'D,

PR ND PR

R'P = VN'D - RP"

so that
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so that

Vi=cCos 364-205

and therefore R and R' coincide ; and we have thus verified

that PP' touches at R the circle oR (using the notation oR to

mean a circle of centre o, and radius oR).

Putting 0o = d, and denoting the angles AOP, AOP' by 0,

e ', and ADQ, ADQ by o, y, then

PR2 = 2a . ND = 4aR cos’ys = 4alk? cos'o , RP2 = 4alk ?cos < /s ;

P'R+RP= 2/(al)k(cos y+ cos Q),

while PP= 21 sin }(0-0),

and therefore sin (0-6 ) = 1/ (a (l)x ( cosys + cos p).

Putting nt = u , nť = V ,NT = u - v = w ; then since (88)

p = amu, sin 10 = k sin q = k sn u, cos 10 = dnu ;

4 = am v , sin je' = k siny = ksn v, cos 10' = dnv ;

sin }(0-0) sn u dn v- dn u snu

a constant.

1 k(cos y+cos ) cnvtcnu

Putting ť = 0 , v = 0 , and therefore u = NT = W , we find

1 - cnw 1 - cn w

Vī 1 + cnw 1 + cn w

so that

1 - cn (u - v ) _ snu dnv- dnu sn v cn von u

V1 + cnu - V) cnvtcnu sn u dnv + dnu snu

one form of the Addition Theorem, which by algebraical trans

formation can be reduced to one of the preceding forms of $ 116 .

118. Representing, as in g 31 , sn u by sq, cn u by Cz, dnu by

dy, and the corresponding functions of v by S2, C2, d,; then

(1 - cn (u — v )_9,d -8,d1- Co - C,

Vi + cn ( u - v) C2 + 1 8,da + s,di

1 - cn ( u — v ) _ (c2 - C )(s_d , -s,d )
so that

1 + cn (u — v) (0, + )(s,d , + s,d ,)

d

8,c,d + 8,c,d ,

and changing the sign of v,

sn w

NE visn w

Vฟ

or

cn(u — v)= 8,0,0, +8,0,0 ,.

cn(u + v) = 86 d, - 8,09d

2

Szcądz-Sącydı

another form of the Addition Equation.

1 -cnu- V) C2 - C1

Again
1 + cnu-V ) C2 + syd , + s,d1

( c2 + c )2- (s_d , - s du)
cn ( u - v )

(s,de + s,dy)2 – (C2 - C4)2

(c + c )” + (s_d, - 8,d.) (8,d , + s,d,)2+ (c, -0,12;

and, adding numerators and denominators (componendo ),

7.)

Or
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2 (C7c2 + s,d,s,d )

en (u — v) = c++C + 8,2d3 +8.?dn

= C1C2 + 8_d, s,d

cn (u + v ) = C162-8d4
8d

,

2

ܪ

1 - kºs,45,

s,d
:(2)

1 - kºs,28,2

the usual form (2 ) of the Addition Theorem for the cn function.

But, subtracting numerators and denominators (dividendo ),

c/ + cy? -- 8,20,2—8,2d,
cn(u- V) =

2(C,C2-8_d,s,d2)

_1–82–8,2 + k+s48,";
C7C2 - s_d ,s, d ,

S2

u
CzC2 + 8 d,s,d,

and another form can be easily established in the same way,

c,d,c,d, – K-8,82
en (u + v ) =

d.de + k +s (18,62

(Glaisher, Messenger of Mathematics, vol . x . , p. 106 ;

M. M. U. Wilkinson, Proc. London Math. Soc., vol. xiii., p . 109 ;

Woolsey Johnson, Messenger of Mathematics, vol. xi. , p . 138.)

119. Expressed again in Legendre's trigonometrical form ,

with o = amu, yo = am v, y = amu - v),

la 1 -- cos y _sin pays - sin y A $

cos y + cos o

7 1 + cos y sin pay + sin 440

cos Yo - cos o

Therefore, eliminating Ay,

2siny sinyAp = ( cosys - coso)( 1 + cosy) - (cosys + cos )(1 - cosy)

— 2 cos 0 + 2 cos y cos y,

cos p = cos y cos y - sin sin yap.

Expressed in Jacobi's notation, since u = v + w ,

cn(v+w) = cn vcn w - sn vsn w dn( v + w ).

Changing v+w into u- v, this becomes

cn (2-2) = cn u cnvtsn u sn v dn (u — V ),

cos y = cos o cos y + sin o sin Yay.

Conversely, these relations , treating y as constant, lead to

the differential relations du- dv = 0,

do/Ap -dy/Ay= 0,

(do)? ( 1 - kʼsin ? 4 )- (dy)? ( 1 -- k sin’d ) = 0.

V 7 sin y

VV a sinn

or

ΟΥ

ΟΥ

or
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Writing x for sin o sin y, y for cos o cos y, and m for Ay,

then cos y = 1/ (ma— K’2)/K ($ 17) ; and the integral relation

becomes
y + mx = N/ (m2- K ?)/K,

leading to the differential equation , of Clairaut's form,

y - xp = / (p2 - K2)/K,

denoting dy /dx by p ; this is the form of the differential

equation when we change to these new variables x and y.

120. We have begun in § 117 by supposing the points P and

P' to oscillate on a circle with velocity due to the level of the

horizontal line BDB ', cutting the circle in B and B' ( figs. 2, 13) ;

but if they are performing complete revolutions with velocity

due to the level of a horizontal line BB' through D not cutting

the circle, but lying above it ( figs. 3, 14) , a similar proof will

show that PP' touches a fixed circle having with the circle

PP' the common radical axis BB', the two circles not inter

secting ; and the Landen point L (S 28) will be a limiting

point of these two circles.

But this motion of P and P' in fig. 14 is imitated by the

circulating motion of Q and Q' on the circle AQ in fig. 13 ; so

that QQ touches at T a fixed circle, centre c ; and the hori

zontal line through E is the common radical axis of this circle

and the circle CQ, the Landen point L being a limiting point ;

and thus the Addition Theorem for Elliptic Functions can be

deduced from the motion of P and P' in fig. 14, or of Q

and Q in fig. 13,as given by Durège, Elliptische Functionen, X.

For if in fig. 14 a circle is drawn with centre o and radius

oR, such that BDB' ( fig. 3) is the common radical axis of this

circle and of the circle AP, then, since the tangents to these

circles from D are equal in length ,

DO2- OP2 =Do2-0R2

and now , if the tangent to the inner circle at R cuts the outer

circle in P and P '

PR- = P02 – 0R² = P02 +002 - 200.ON- PO2 + OD2- Do2

-OD2 – D02 + 002 – 200.ON = 200.ND,

as in $ 117 ; and similarly RP2 = 200.ND ; so that§

PR ND_velocity of P

RP V N:D velocity of pri

and therefore PP' will continue to touch the circle R , during

the subsequent motion of P and P '.

·
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so that

с

or

Similarly, in fig. 13, QQ' during the motion touches a fixed

circle, centre c and radius cT ; and putting Oc = c,

QT2 = 2c . NE = 4cl dnềnt, TQ2 = 4cl dnant'.

We notice, on reference to $ 28 , that

LQ2 = 2LC . EN = 2LC . EA dnent = 422 (1 - K')?dn?nt = LA?dnant,

LQ = LA dn nt;

LQ LQ
and therefore

QT + QT

or LT bisects the angle QLQ in fig. 13 ; while LR bisects the

angle PLP' in fig. 14 ; we may state this theorem geometrically,

" the segments of a tangent to one circle, cut off by another

circle, subtend equal angles at a limiting point of the two

circles."

Then, with the notation of g 117,

QT+TQ= 2/(cl) (A4+40),

and
Q'Q = 2R sin (0-4 ) = 2x -l sin (0-4 ) ;

so that, in Legendre's trigonometrical form,

k sin ( -y )
a constant,

Δψ+ Δή Vk?K2V R'

Putting y = 0, then g = y ; so that

C _k sin ($ - 4 ) _ksin y 1- Δη

R Δψ+ Δή 1 + Δy k siny

R_ksin ( + 4 ) _k siny, or

V Ay - Ap 1 - Ay' ksin y

the product of the two equations being unity.

Conversely, the relation

sin (p + 4 ) = C (Ay + Ap),

where Cis an arbitrary constant,leads to the differential relation

do/Ap dy/Ay = 0.

121. Taking the equations

1 + Ay_k’sin (0 + 4 ) 1 - Ay _k?sin (0 - ų )

sin y Δψ– Δή siny Δψ + Δή

we find, on eliminating sin ,

2Kºcos o sin y sin y = ( 1 + Ay) (A4- Ap) - (1-Ay)(A4 + 40)

= -2A0+ Ayay,

Ap = AyAyy - k cos o sin y sin

dn u = dn v dn 2 - k cn u sn vsn W,

with 21 = V+W.

VA
OL

1 + Δy

с

Y,

Or
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or

or

By eliminating cos ,

2k?sin o cos y sin y = 2A4-2A740,

Ay = ApAy + k +sin o cos y sin y,

dn (u - w ) = dnu dn w+ k?sn u sn w cn(u -w).

Changing w into v ,

dn (u - v) = dnu dnv + k'sn u sn v onu–v),

Δγ= ΔφΔψ+ κ"sin φ sin ψ cos γ.

Writing - for kºsin o sin y, y for Apay, and m for en y,

then y +mx = / (K ? + K ?m ?),

the integral relation of Clairaut's differential equation

y-« p = / (k+2 + k+pa),

which is therefore the transformation of

do/Ap-dy/Ay= 0,

when we change to these new variables x and y.

Taking the two trigonometrical expressions from $ 119, 120,

for the Addition Theorem ,

sin Ay - sin yAp 1-Ay_k’sin (0-4)

g cos V+ cos o A4 +40

we obtain , by subtraction and reduction ,

Ay- cos cos y Ap - cos QAY

sin + sin

dn(u—V) - cn (u - v )_dn u cn v - cn u dn v

snu-V) sn utsn v

the form of the Addition Theorem given by J. J. Thomson

( Messenger of Mathematics, vol. IX., p . 53).

1 - COS YY

sin y siny

sin y

or

122. With the notation of the elliptic functions,

1 + dn(u- v) _k(sn u cnv + snvcn u )

K sn(U - V) dnv - dnu

1 - dn ( u - v ) _ K ( sn u cn v- snvcnu)

Kanu - V dnv + dnu

Therefore, as before, with Glaisher's abbreviations,

1- dn(u, v) _ (da - du)(sıcz – Sącz)

1 + dn (u - V ) (d , + d )(sc2 + 8qcı)

–8;d € + 8,dąc

s
dn( u–u)=s,dce+8gdics
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cn 2u

K2

Similar algebraical reductions to those given above for

cn ( u - v) will establish the formulas for dn ( u - v) and dn (u + v ),

given by Glaisher (Messenger, X. , p. 106),

dn(u + 4) = 84762—89d961 – €,d,d, + x ?s,82

8,d ,c2 – 8,d ,cC9 + 88,d,d ,

1 -kºs ? -k*$ * + x s,*8.9 _d4d2 - x*8,8,962,
dd2 + k+s 8,2102 1 - k %8,482

the last of form (3), S 116.

123. The Duplication, Triplication , etc., Formulas.

Puttingvru in formulas ( 1 ), (2 ) , (3) of $ 116, and writing

s, c , d for snu, cnu , dnu, we find

2scd

sn 2u=

1 - K2,4'

1-282+ k294 --K2 + 2K"2c2 + k C4

1 - K284 * 2 + 2K2C2 - kºc4 '

1--2Kº2 + k % 94 K2 – 2x2d2 + d4

dn 2u

1 - k%94 -K2 + 2d2-4

Writing S, C ,D for sn 2u, cn 2u , dn 2u, we find

103202 1 - D K252c2 D - C K282

1+02' 1 + D d2 D +Cc2d2

1 - C 1 1 - D

etc.,

1 +DK 1 + 0

D+C K21 - D
c2 etc. ,

1 + D K2 D - 0

D+ 0 1 - C
etc.

D

Putting u = 2K, then S = 1, C= 0, D = k' ; and

1

= K '.
11+ 11tk

Again , in $ 67,

(1 + r ) sn (u ,k )cn (U ,k)_1 + k' 11 – dn(2x ,k )
snív, X) =

dn (uk)

and 2u = (1 +1)v, = (1 - k ') /( 1 + k'),

1- snºv, X)

dn(1 + 2.V, k)
1+ snºv, )

( 1 + Xsn (v, X)

sn ( 1 + X.V, K ) =
1 + 1 snº(v, x)'

cn(v, X) dn (v, )
cn (1 + 1 . V, K ) =

1+ snu, )

which is called Landen's second transformation.

gu?

12 12

K

1 + 0

t

x K (zu,
к
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و

11 dn 3u = 1 = (* +22520= 2)*,

و

Again ,putting v = 2u, and making use of the above formulas,

we shall find

38-4(1 + k %) 83 + 6K'95 – K4,9
sn 3u =

1-6k +94 +4( 1 + k %)K2,6 - 3K498'

1 - sn 3u 1 + 8 /1-28 + 2K2,3 - 294 2

1 + sn 3u1-81 + 28 -2K293 - K% 84

1 - k sn 3u 1 + k8/1-2ks+2693 - Kºs412

;

1 + ksn 3u1- ks 1 + 2k8 - 2k98 - K294

with similar expressions for en 3u and dn 3u, leading to

1 - cn zu 1-0

1 - c (** + 2 "2c + 2x®c® + x?ct) ,
1 + cn 3u1+ 0 k2-2K2 C - 2k % c3 + k % C4

1 - dn 3u 1 - d K2 + 2k%2d - 2d3

1 + dn 31 1 + d1 +02 -2Kd + 2d3 -d4

dn 3u - K d - K ' / d * + 2'13 -- 2K'd -K2

;

dn 3u tkd+ k' \04 - 2K'd + 2k'd

the algebraical work is left as an exercise for the student.

124. Poristic Polygons of Poncelet,with respect to two Circles.

Starting from the point A in fig. 13, and drawing the

successive tangents AQ1, Q1Q2, Q2Q3, ... to the inner circle,

centre c, from the points Qu, 22, 23, ... on the circle CQ ;

or starting from A in fig. 14 , and drawing the tangents AP,

P.P2, P ,P 3, ... to the inner circle , centre o,from P1, P2, P3,

on the circle OP ; then, if we denote the first angle ADQ, or

AEP, by am w, it follows from this construction that

ADQ2 =AEP , = am 2w, ADQ; =AEP ; = am 3w, ... ;

and we have thus a geometrical construction for the elliptic

functions of the duplicated, triplicated, ... argument.

When w is an aliquot part, one nth, of the half period 2K , or

t of the half period 2T seconds, then after n such operations

the polygon AQ, 2, Q3, or AP,P,P. will close on itself

at the starting point A ; and the preceding investigations show

that during the subsequent motion of these points, the polygon

formed by them will continue to be a closed polygon, inscribed

in the circle CQ and circumscribed to the circle cT, or inscribed

in the circle OP and circumscribed to the circle oR ; and thus

we have a mechanical proof of Poncelet's Poristic Theorem for

two circles, a problem discussed by Fuss, Steiner, Jacobi,

Richelot, and Minding

( Cayley, Philosophical Magazine, 1853, 1854 , 1861.)



122 THE ADDITION THEOREM

Let us consider the particular cases of w equal to 1 , } , } , },

... of the half period 2K .

(i.) When w = 2K , PP' is horizontal in fig. 13 ; and P and

P' coincide in fig. 14.

(ii . ) When w = K , the circle oR in fig. 14 and the circle cT in

fig. 13 shrink up into the limiting point L, Landen's point

(s 28) ; and now any straight line through I will divide these

circles OP or CQ into two parts described in equal times, 1T ;

while in fig . 13 the line PP' will touch the circle described

with centre E through B, L, and B', subtending an angle 4a

at 0 ; and any arc PP' will be described in time 2T, half the

time of describing BAB' ; hence the following theorem

" Two segments of circles are described on the under side of

the same horizontal straight line, one subtending twice as

many degrees at the centre as the other ; if a particle oscillates

on the lower segmental are under gravity, any tangent to the

upper arc will cut off from the lower an arc described in half

the time of oscillation. ” (Maxwell, Math . Tripos, 1866.)

As P' is passing through A in fig . 15 , P is instantaneously

at rest at B or B' ; and AB, AB' are obviously tangents at B

and B' to the circle BLB', drawn with centre E ; while PP is

one side of a crossed quadrilateral, escribed to this circle BLB' ,

and inscribed in the circle BAB'.

When the circle cT shrinks up into the limiting point L ,

then , as in $ 120,

QL- = 2CL.EN, LQ2=2CL . EN ';

and since QL.LQ is constant in the circle CQ, therefore

EN.EN ' is constant, and equal to LEP, the value it assumes

when N and N' pass each other at the point L.

Since EN . EN ' = EL = EBA,

a circle can be drawn passing through N , N', and touching EB

at B ; and the triangles ENB, EBN ' are therefore similar, so

that ENB = EBN ', EN'B = EBN .

( Landen, Phil. Trans., 1771, p. 308.)

Translated into a theorem of elliptic functions ,

EN . EN ' = EA?dn ?u dn2v, and EB2 = k2. EA ”,

so that, as in (59) , S 57 ,

dn u dnv = k', when u- V =K,



FOR ELLIPTIC FUNCTIONS. 123

Otherwise, since ($ 28 )

QL = AL dnu, LQ = AL dn v,

and QL.LQ = AL.LD ,

therefore dnu dn v = LD /AL = k'.

L'

E

B '
DI B

N

P3
L

P 1

R

P

N '

0

С

А

Fig. 15.

The similarity of the triangles AQL,LDQ' shows that

AQ /AL = DQ | LQ ';

and since ($ 10) AQ =AD snu, DQ = AD cn v ,

therefore, as in (57) , $ 57 ,

snu = cn v /dn v or cd v , when u = v + K .

DQ /DL = AQ/LQ ,

DL snu K'snu

therefore

AL dnu

as in (58) , 57, when v = u - K .

Again, since

cnv=
dnu



124 THE ADDITION THEOREM

It.92

с

2

KK

12

к

r

COS Y , or sn
on w

R- C

Conversely, if the straight line QLQ , passing through L,

moves into the adjacent position qLq, then

QL EN velocity of Q

IQ IQ VEN' velocity of O"

if Q and Q move under gravity, or diluted gravity, on the

circle CQ with velocity due to the level of E ; so that QLQ

will continue to pass through L, and will divide the circle CQ

into two parts described in the same time 1T ($ 28) .

If in fig. 13 we denote the radius of the circle cT by r, then

cos y = r / R + 0 ),

y or am w denoting the angle A DQı; while, from $ 120 ,

1 - Ay R- C

or Ay =
1 + Δy R’ R+ C

4cR (R - c ) 2 - 72
and thence

( R + c )2 — 7-2 ( R + c)2 - 72

Again, if Dq is drawn from D to touch the circle cT, and

the angle A Dq is denoted by y' or am w' , then

n'
W

Ay
dn w

so that ( s 57 ) w + w ' = K .

125. Poristic Triangles.

(iii . ) When w= ;K or K , triangles Q.Q2Q3 can be inscribed

in the circle CQ and circumscribed to the circle cT, while at the

same time triangles P P2Pz (or hexagons) can be inscribed in

the circle OP and escribed to the circle oR ( fig. 16) .

The well known relations of Trigonometry

c2 = RP - 2Rr, or a = R2 +2Rr ',

where Co = c, 0o = a , cT = r, oR = r', are now easily deduced.

We may write these relations, more symmetrically ,
gó n '

+

e
-1 , or

= 1 .

R - C ' Rto a-R1+R

In fig . 16 , ADQ; = y = am K , ADQ; = y' = am_K ;

and since cQz bisects the angle N ,Q24, which is equal to y,

therefore DQ; = }(1-3 ); and DQ; = DQzc, or DQ; = Dc.

Similarly ÄQ = Ac; so that

AQz + DQ ; = AD.

Therefore sin y ' + cos y = 1 ,

sn } K + cn K = 1,

r V

or

79 po

or = 1 .+

R-C'R+ c
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We shall employ this suffix notation for the points N , P , Q

to signify points corresponding to aliquot parts of K.

Corresponding to w = 4K , the circle oR becomes the circle

through B, N3, B' ; and now PAP4 is a triangle escribed to

this circle, and inscribed in the circle OP.

For w = { K , the circle oR becomes the circle through

B, N, B’ ; and now we shall find that hexagons can be

escribed to this circle, and inscribed in the circle OP.

E

D

B B

23.

Past w
i
n

2

3

I

L

est N OP's3

А

Fig. 16 .

The tangents at Pp, P. touch the circle BN , B', and the

tangents at P1, P , touch the circle BN B ' ; while AP, AP
។ 륭

are the common tangents of the circles BN , B ', BN B'.

Denoting the sides of the triangle Q.Q2Q3 by 41, 42, 43, then

9,9293

Rr =

2 (91 + 72 + 93)

But W7, Uiz , Uz denoting the value of u corresponding to the

points Q1, Q2, Q3, and dy , da, dz denoting the corresponding

values of dnu, then (S120)

21q = Q2Q3 = 2 / ( cl)(d ,dz), ... ;

(d, + dz)(dz + d ; )(d ,+ d2) _ Rr

di + d2+ dg

a constant, a relation connecting dy, d,, dg, when

U - U , = U , -Ug = K

so that

cł
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126. Poristic Quadrilaterals.

( iv.) When w = ? K , quadrilaterals Q1Q2Q3Q4 can be inscribed

in the circle CQ which are circumscribed to the circle cT, and

now the corresponding relation is found to be

6-1) +6

ܪ

79

R + c1

4

= 1 ,
R + c

while T , T3, T4T4 intersect at right angles in L, being the

bisectors of the angles between QyLQ2, Q2L23 ( fig. 17) .

This relation is proved immediately by taking the quadri

lateral in the position AQ_DRş; and now y = x' = am K,

sn }K =R- en }K =

so that squaring and adding leads to the desired relation.

As in (ii.), quadrilaterals can be escribed to the circle BLB',

which are inscribed in the circle OP, since N1 coincides with L.

But the circles BN B ' and BN3B' are related to the circle

OP with regard to poristic octagons; and the common

tangents of these circles are easily recognised at the points

P1, P1 , P
4 1 :

Conversely, starting with the circle cT and the internal

point L, and drawing T LT3, T ,LT, through L at right angles

to each other , the tangents to the circle cT at T1, T2, T3,

28
32
4

wh
ic
h

is in
sc
ri
be
d

in a

cir
cle

CQ, the dia
gon

als

QiQ
3

, Q22
4

pas
sin

g

thr
oug

h

L, an
d

bei
ng

equ
all

y

inc
lin

ed

to T_T, and T.T
.

If Qıc, Q2c, Q3c, Qąc are produced to meet the circle.CQ again

in lv 92, 93,94, then 993 and 9244 are diameters of the circle

CQ ; for Qu91 bisects the angle Q2Q1QĄ, so that the arc

2,91= arc q1Q4, and similarly the arc Q293 = arc 9324, so that the

arc 912293 = arc q1Q493, and each is therefore a semi-circle.

It follows, from elementary geometrical considerations , that

LT2 + LT, + LT 2 + LT 2 = 472,

T, 1,2 + T T2 = T, T32 +7,7,2 = 472 ;

1
and

+

Qi? ' cQ = cQ +CQ22'Q.272

cq.? + c932 = cq22+ = ( R ? — c2)? /m2,

leading to 2 ( R2 + c2) = (R2-02)2/72,

4

or

1 1 1 1

,

so that

or, as before,

( ---) +672) =1
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Denoting by U7, U2, U3, U4 the values of u at Q1, Q2, Q.3, QĄ,

so that
Uz - U2= U2 — Uz = Uz-U4 = ; K ;

and denoting by dj, da, dz, da the corresponding values of dn u,

didz = d ,dy = k ';

and ($ 120) LQ = 21(1 – k')dnu,

Q1Q3 = 21(1 - k ')(dy + d2), Q2Q4 = 21(1 – « ') (dada) ;

while Q1Q2 = 2 / (cl)(d , + d ),etc.

then (857)

so that

E

B'
D B

PIA 0 P3

N3

0

T4 Q1
4

93

P3 PII

T

03

IT21
N.

P.1
PI

9.92

А

Fig. 17.

so that

Now by a property of the circle (Euclid VI. D)

Q1Q3 . Q2Q4 = Q1Q2 . QgQ4+ Q1Q4 : Q2Q8 ;

12(1 – K )?(d , + dz) (d2 + d .)

= cl{(d , + d .)(dz + d .) + (dy+ d2)(d , + dg)}

= cl { (dy+ d2)(d,+ da) + 4K' } ,

( d , + d3 d2 + d ) is constant, and = 2Jk'(1 + ),k

the value obtained by putting U= 0, when

w = K , Ug = K , Ug=K ;

and d. = dz=K', d2 = k ', do = 1.

Or
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K

Then
K

(dn uyt dnu.)(dn(dn ustan )-2/x(1+x)
when U - U , = K .

K

Thus dn (u + 1K ) +
dn(u+ 1K)

K

u )

2.VK '(1 + k ')dnu

dnºut

— 2 / K'( 1 – K )sn u cnu

dn utk
dn(u + } K) -dn(w + K

K

so that

dn(u+ } K ) = DK'(1 + x')
dn u- (1 - k')sn u cnu

dn’utk

U

sn (2+1K)=
dnéutk

1 (1 + k%)K’sn u + en u dn

cn ( u + } K ) = VK / (1 + x')cnu - sn u dnu

or

snu dnu

1K (
dn utk

127. Poristic Pentagons, etc.

( v .) When v = 3K, or K, the poristic polygons are pentagons

( fig . 18) , and the relation to be satisfied is of the form

1 + p + q- (p + q)2- ( p + q )( p - q)2 = 0 ,

( p - 9)? = p + q - 1-1/(p + q),

where p and q are used to denote r /( R - C) and r /( R + c).

We notice that the relation for pentagons leads to a cubic

equation, when two of the three quantities R, r, c are given ;

but the equation reduces to a quadratic when c= 0 or the circles

are concentric, the case considered by Euclid.

The reader is referred to the articles of Cayley ( Phil. Mag.,

Series IV., Vol. 7, and Collected Works) and to Halphen's

Fonctions Elliptiques, t. II. , chap. X., for the proof of this

relation and the similar relations for other polygons.

We shall find that Halphen's a and y (t. II . , p . 375 ) are con

nected with our R, r , C, K, and w by the relations

4Rc R
2

a = K2 =

CA( R + c)2,2 y = dn’w =
R + c /

and thence Halphen's x and y can be formed.

By the use of Legendre's Table IX . for F ( p, k ) (F.E., t. II.)

we are able to construct geometrically, to any required degree

of accuracy , figures of circles related to each other for poristic

polygons of any given number n of sides.

Having selected an arbitrary modulus k or modular angle

ja, we lookout the value of K , and then determine, by pro

portional parts, the value of p in degrees corresponding to an
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amplitude of K /n , 2K /n , ... ; and these values of 0 will mark

the position of the points Q1, Q2,

Thus, in drawing figs. 13, 14 , 16, 17, we have selected

k = sin 60°, when K= 2:1565 ; and in drawing fig .16 for poristic

triangles, we find, from Legendre's Table IX. ,

am }K= c.m . of 38 °49', am 3K = c.m . of 6805 '.

E

D
P4PB 25

3

PI / O ?
P3 -

5

P2

Palo agosto

Na

I

PAVO
을

NI

15

1
/
4

A

Fig. 18 .

These angles enable us also to set out figs. 13 and 14, where

the circles are drawn so related as to admit of poristic hexagons.

In drawing figs. 15 and 17 , Landen's point L is sufficient to

complete the diagram ; also to double the number of sides of

a polygon of an odd number of sides.

In fig. 18, k has been taken as sin 75°, as in figs. 1 , 2 , 3 ; and

now K = 2.76806 ; and from Legendre's Table IX .,

amK = c.m . of 30°18', amK = c.m . of 70 ° 20 ',

by means of which the figures can be drawn.

Fig. 19 shows poristic heptagons, to the same modular angle

of 75 °, laid out by means of the relations

φι == am ? K = c.m . of 22°8', 03 = am K = c.m . of 56°49 ',

Po = am K = c.m . of 77 °6'..

G.E.F. I
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128. The poristic relation between the quantities R , r, c

has been obtained by placing the polygon in a symmetrical

position ; but another method is employed by Wolstenholme

( Proceedings London Math . Society, vol. VIII. , p. 136 ; also

by Halphen, F.E., II. , chap. X.),where the polygon on the circle

OP is considered in its limiting form, when passing through

one or both of the common points B and B'.

Thus with triangles, the tangent to the circle oR at B must

meet the circle OP again at a point Pų, the point of contact of

a common tangent of the two circles P and R, the degenerate

triangle being BPP.

For quadrilaterals, the tangents to R at B, B' must meet at

A on the circle P, BACAB being the degenerate quadrilateral.

For pentagons we obtain the degenerate form BP P P P2B ,

where BP , is the tangent at B to or, the circle through

B, N., B', and Py is the point of contact of a common tangent

of the circles OP and oR ( fig. 18) .

For hexagons ( fig. 16) the limiting form is BP, P ;B'P P , B ,

where BP ,PB' are tangents at B, B' to the circle through

B, N1, B ' ; and so on.
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sin c

so that

or

129. Geometrical Applications of Elliptic Functions to

Spherical Trigonometry.

Taking the fundamental formulas of Spherical Trigonometry

COS C = cos a cos b + sin a sin b cos C,

sin A sin B sin a

= k, suppose ;
sin a sin b

then
cos C = / (1 - k’sinac) = Ac,

cos c = cos a cos b + sin a sin bAc,

a formula like that of $ 119, with a, b, c for 0, , y ; so that if,

keeping C , c, and therefore a constant,we vary a and b , then

cos B.da + cosA.db = 0,

da /Aa - db /Ab = 0 ;

and, conversely, the integral of this differential relation is the

formula above.

( Lagrange, Théorie des fonctions, p . 85, SS 81 , 82 ;

Legendre, Fonctions elliptiques, t. I., p. 20.)

If, in Jacobi's notation, we put

a = am(u, k), b = am (v, k), c = am(w, k ),

then the differential relation becomes

du - du = 0,

U- v = a constant = w,

since a = C, or U = w , when b = 0 and v = 1) .

Supposing k is less than unity, and the angle C is acute, then

c > C, and of the other angles, one, A , must be obtuse, and the

other, B, acute.

But by changing to the colunar triangle on the side BC, we

may convert the triangle ABC into one in which all three

angles are obtuse ; and in such a triangle we may put

a =amu, b = n - am v = am (2K – V), cram (2K – W ) ;

so that if the triangle ABC has three obtuse angles , we may put

= am uy, b = am U2, C

where Uz + Uz + Uz = x + 2K -v + 2K -2 = 4K ;

and now

- dn Uy, cos B = -dn Un, cos C =

so that, by $ 29 , we may write

A = m - am (kuy, 1 /K), B = - am(KUz, 1/K) , C = 7 - am (Kuz, 1 /K) ,

where k is less than unity.

so that

CL am Uz

COS A = C = -dn Ugy
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1

3 )

K

sin a 2KK'= 3 / 15

so that

COS A

For instance, if ABC is the spherical triangle formed by three

summits of a regular tetrahedron,

A = B o - ,,

and cos arcos b = cos C =

sin a = sin b = sin c = / 2,

sin A 3/3 3/6 _10

4 , / 2
8 16

while U = U2 = 0 , = 4K ,

cn fK= - }, sn 4K = { / 2, dn 4K = 1.

When k = 0; K= Źr, and the triangle ABC is coincident with

a great circle ; and now

a = wy, b = U2, C = Ug, and a+ b + c = 27 ;

while = cos B = cos C= -1 , A = B = C = .

When k = 1 , K = 0 ; and therefore of uy, Un , Ug, two of them ,

say U, and Uy, are infinite ; so that

cos a = sech uy = 0 , or a = 37 ; and similarly b = it ;

the triangle ABC now has two quadrantal sides and therefore

two right angles, the third side c and angle C being equal, and

taken greater than a right angle.

130. For values of k which would be greater than unity, we

change the notation by considering the polar triangle ; and now

if ABC is such a polar triangle, having three acute sides, instead

of three obtuse angles, we put

sin b

sin A sin B sin

and
=am Vy, Bram Vz, C= am uz,

where Vu = 2K - Uy, V2 = 2K — U2, Vz = 2K — Uz,

Vz + V2 + V3 = 2K .

Now sin a = ksn Vy, sin b = k sn V2,

cos a = dn Vy, cos b = dn vz, cos c = dnv.

so that a = am (KU,, 1 /K ), b = am (KV2, 1 /K ) , c = am (KV3, 1/K).
The fundamental formula

cos c = cos a cos b + sin a sin b cos c

now leads to the formula of $ 121 ,

dn vy = dn v dn vz+ k sn visn v2 cn Vz,

dn(vi + v.) = dn v dn vz - k %sn visn v,cn(vi + v2).

In the degenerate case of k = 0 , K= 1, and

Vi + V2 + vz = T , or A +B+ C= T ;

and now a = 0, b = 0, c = 0, so that the spherical triangle is

sin a sin c

= K ;

A

so that

sin c = k sn Vz ;

Vz ;

or
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= k,
sin a

= K,

indefinitely small, and may be considered a plane triangle;

and we can thus deduce the formulas of Plane Trigonometry.

131. A spherical triangle thus falls into one of two Classes ,

I. or II.; in Class I. the triangle, or a colunar triangle, has

three obtuse angles ; in Class II, the triangle, or a colunar

triangle, has three acute sides ; the quadrantal triangle falling

into Class I. , and the right-angled triangle into Class II.

In Class I. we put

sin A sin B sin C

sin b . sinc

and then k is less than unity ; and we put

a =am uy, b = am U2, cram Uz,

where
Uz+Uz+Uz = 4K ,

and then

A = r - am (kUy, 1 /K ), B = r - am (KU2, 1 /K ), C = r - am (kug, 1/k ).

In Class II . we put

sin a sin b sin c

sin A sin B sin c

and then k is less than unity ; and we put

A = am V , B = am V2, C= am Vz,

where
V + , + =

and then a = am (KV4, 1 /K), b = am (KV2, 1 /K), cram (KV3, 1/K) .

When this triangle of Class II. is the polar of the triangle

in Class I., Uy + vy = Uztv2 = Uz+ vz = 2K .

The change from one Class to the other affords an illustration

of the change from one modulus to the reciprocal modulus (829) .

The spherical triangles employed originally by Lagrange

and Legendre fall into Class I.; and a full discussion of the

connexion between Elliptic Functions and Spherical Trigono

metry will be found in the Quarterly Journal of Mathematics,

vols. 17 , 18, 19, in articles by Glaisher and Woolsey Johnson.

But it is preferable in some respects to work with the

spherical triangles of Class II., as growing out on the sphere

more naturally from the infinitesimal plane triangle; so it is

proposed to develop here the relations with Elliptic Functions

by means of a typical triangle of Class II., having three acute

sides, and to refer to the articles of Glaisher and Woolsey

Johnson for the corresponding relations of Class I.
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so that

or cos Ce

so that

132. Writing C1, 81 , d, for en vų, sn Vy , dn Vz,etc. ; then with

v + v . + vg = 2K ,

we may put, in Class II.,

Aram Vy, B = am vn, C = am vz ;

cos A =C, sin A = s , etc.;

and now
sin a = k sin A = K81, cos a = dy, etc.

From the fundamental formulas

COS C = cos a cos b + sin a sin b cos C,

cos C= cos A cos B - sin A sin B cos c,

we obtain dz = d_d2 + k +s482C3)

-C3 = C_C2– ,dz,

where dx = dn vg =dn (v. + v2 ), Cg = cn vg = -cn (v1 + ve).

Again, from these two formulas of spherical trigonometry,

cos C= cos A cos B - sin A sin B(cos a cos b + sin a sin b cos C');

COS A cos B - sin A sin B cos a cos b

1 - sin A sin B sin a sin b

-- C3 = cn (Vz + v2)
CjC2 —848,dyd ,

1 - k % 8/282

cos a cos b.- sin a sin bcos A cos B

Similarly, CoSc =
1 - sin A sin B sin asin b

dida- kº8182C7C2
leading to dz = dn( vi tv2)

1 - k- 8,25,22

As a specimen of Class II.,take the spherical triangle formed

by three adjacent summits of a regular icosahedron ; then

A = B = C = ;

cos C+ cos A cos B 1

and

sin A sin B 1 -cos 75'

k = sin c/sin C = (10—2- 5 );

and then V = V2 = vz = 3K ,

cn ZK = cos C = ( 5-1),

dn K = cosc = } / 5.

133. To prove that in a triangle of Class II. we obtain the

differential relation

cosb.dA +cosb.dB = 0, or dA /AA + dB /AB = 0,

when we change A and B, keeping c and C constant, dis

place the triangle ABC into the consecutive position ABC ”,

keeping the points A , B fixed and the angle AC'B unchanged

in magnitude ( fig. 20).

cos c

COS Cc =

so that

so that
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Then, if CA and CB produced on the sphere meet the great

circle of which C is the pole in P and Q, the arc PQ = C ; and

if C'A and C'B produced meet this great circle in P' and Q ',

the arc P'Q is ultimately equal to the arc PQ, or

lt (PP /QQ ) = 1.

СC
c '

C

F

BВ

O
Q
I

D

AА

А B

B'

PP 0
9

so that
؛

or

B = am V2:

H

Fig. 20. Fig. 21 .

But PAP' = -dA,QBQ = dB ; while ultimately

PP' = -sin AP DA = - cos b.dA , QQ = cosa .dB ;

cosb.dA + cos a.dB = 0 ,

dA/AA +dB/AB= 0,

since sin a = ksin A , cosa = AA .

With A = am vy, this becomes

dv, + dv, = 0

so that V1 + V2 = constant = 2K - Vz, where Cram Vz ;

since B+ C= T, or r , + = 2K , when A = 0,0 = 0).

Conversely, this differential relation, interpreted with respect

to the triangle ABC, of which the side AB is fixed, expresses

the constancy of the opposite angle C.

134. If, as is customary, we deduce the differential relation

cos B.da + cos A.db = 0, or da /Aa + db /Ab = 0,

from a spherical triangle ABC of Class I., in which

sin A = k sin a, cos A = Aa,

we keep the angle C fixed , and displace the side AB into its

consecutive position A'B ', without change of length , through

an infinitesimal angle about the centre of instantaneous

rotation I, the point of intersection of the arcs AI, BI, drawn

perpendicular to CA , CB respectively ( fig. 21 ).

db AA' sin IA sin IBH

Then .lt

da ВВ' sin IB sin IAH

COS B

COS A
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so that

or

135, To obtain immediately the addition formulas (1 ) , (2) ,

(3) of g 116 for the elliptic functions, Mr. Kummell draws the

arc CD perpendicular to AB (fig. 20) , and denotes the perpendi

cular CD by p, the segments BCD, ACD of the angle C by

F , G, and the segments BD, DA of the base C by f,g ; so that

F+ G= C, f+g = c.

(Kummell, Analyst, vol. V. , 1878.)

Now , from the right-angled spherical triangles ACD, BCD,

cos G = sin A cos b /cos p, sin G = cos A /cos p ;

cos F= sin B cos a/cos p, sin F= cos B /cos p ;

or with sin A = $ , cos A = C7, sin a = ks, cos a = dy, etc.,

and writing M for cos P,

cos G = 84d2/ M , sin G = C / M ;

cos F = s,dj/ M , sin F = cz/M .

Also sin p = sin A sin b = sin a sin B = K8,820

M2= cos? p = 1 - kºs,28,?,

a quantity which we have found it convenient to denote by D.

Now , cos C= cos F cos G- sin Fsin G,

Cz = (8182d4d2 - C4cx)/ D,

cn (~ + vy)= - cn vs = (0,0, -848,d,d )/D ,

formula (2 )

Again, sin (= sin (F+ G)

= sin F cos G + cos F sin G,

Sz = (8c2da + s ,c,d )/ D,

where
$z = sn vg = sn(V2 + v2), as in formula ( 1).

Changing the sign of V.,

sn (vi - V2) = sin ( F - G ),

F - G = am (v1 – 12),

while F + G = am v ; ram (2K – V4 -V)

= - am(vi+ v2),

F= 17- am ( 44 + ve) + } am (V1 — v2),

G = - } am(vi + v,) - am ( 1 - v .).

Thus, for instance,

tan { 1 am(uz +v) +1 am(vz - v,) } = cot G = tan A cos b = 8d.jcı,

tan { 1 am (vtv.) - 1 am(vz - v,) } = cot F= tan B cos a = s,dz/cz.

Again, from the right-angled spherical triangles BCD , ACD ,

cos f= cos a /cosp = d /M , sin f= sin a cos B /cos p = k8 c,/ M ;

cos g= cos b/cos p = d ./ M , sin g = sin b cos A /cos p = K8,C / M ;

or

or

or

so that

:
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2

8,02 + $ 2C1

and therefore

dn(~4 + v ) = dn V, = cos c = cos(f+g)

cos f cos g - sinfsing

= (d ,da --K *8,8,C,C )/ D

dyda–k²818,C1,C2

1-48452

as before, in (3), S 116 .

Also sin(f+9) = K SN ( V + v2), sin ( f - g ) = k sn (V2 — V ,) ;

whence f and gcan be found as functions of v + v , and v1 – V2.

136. The formula employed by Morgan Jenkins in the

Messenger of Mathematics, vol. XVII., p . 30, as fundamental

in Spherical Trigonometry, is

sin (A +B) sin c

.....(a))
cosb + cosa 1 + cosc

and this now leads to

83

da + dy 1 + dz

or, in the Legendrian form

sin (A +B) sin c

AB+AA 1 + AC

a formula already obtained from pendulum motion in $ 120.

Then the formula

8, C2-8,01 =$ z

d, -d; 1 - d .
sin c

AB - AA 1 - AC

sin (A -B) sind

gives .. (%)
cos b - cos a 1- cos C

The formulas of $ 120, in the form

8,d2 + 8,0 ,-8g 8d, -s,d,
Catci C2-01 1 - C

lead to the relations

sin (a+ b)

...... (7)
cos B+ cos A 1- cos C

sin ( a ) sin c

.....( 8)
cos B - COS A 1 + cos C

and from these four formulas of Spherical Trigonometry Mr.

Morgan Jenkins deduces the analogies of Napier, Delambre,

and Gauss.

sin (A - B)
or

S3

1 + Cg

sinc
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2 2

....(2)

137. Write, as before, in $ 135,

A = amu, B = am v,

F = 17- 1 am(u+v)+ 1am (u - v) ,

G = 17- 1 am (u tv)- 1 am (u - v ).

Then, since

sin ( F + G ) + sin ( F - G ) = 2 sin F'cos G ,

therefore,writing C1, 81, dy for cn u, sn u , dnu,and Cz, Sz, d, for

cn v, sn v, dn v, and D for cosp or 1 - kés/25,

sn(u + v) + sn(u - v) = 2 s ,c,d ,/ D ; ... ( 1)

cos(F- G) - cos( F + G ) = 2 sin F sin G,

cn (u - v) + cn (u + v ) = 2c7c2/ D ; ..

cos(f- 9) + cos(f+ 9) = 2 cos f cosg,

dn(u - v) + dn( u + v ) = 2 dd ,/ D ; .... ( 3)

sin ( F + G ) -sin ( F - G ) = 2 cos F sin G,

sn(u + v ) – sin(u — v) = 2 8,c7d7/ D ;.... ...(4 )

cos(F- G) + cos( F + G ) = 2 cos F cos G,

cn(u - v) - cn (2 + 0 ) = 2 s_d182d2/ D ;. .... (5)

cos (f- g) - cos(f + g) = 2 sin f sing,

dn(u - V) – dn(u + v) = 2 K²8,428,c ,/ D ; .... (6)

sin ( F + G )sin ( F - G ) = sin F - sin -G ,

sn ( u + v) sn (u - v ) = (0,2 - C2) D = (82 - 8,2)/ D . ( 7 )

Again, since

1+ sin ( f + g )sin ( f - 5) = cos’g + sinºf,

and sin (f+ 9) = k sn(u + v) , sin (f- 5) = k sn (U - V ),

1+ Kºsn (u + v) sn (u- v) = (0,2 + kºs_20,2)/ D ; ..... . (8)

1 + sin ( F + G ) sin ( F - G ) = sin²F + cos-G ,

1+ Sn ( u + v ) sn (u—V) = (0,2 +8,20,2)/ D ; ...(9 )

1 - cos( F + G )cos ( F - G ) = sinºG + sin F,

1+ cn(u + v ) cn (u - V ) = (c2 +0,2)/D ; . (10 )

1 + cos(f+ g) cos( f - 5) = cos f cosag,

1+ dn(u + v ) dn(u - v ) = (d2+0,2)/ D ; ... ( 11)

1- sin(f+ g) sin ( f - 9) = cos? f + sin g),

1 –Kºsn(u + v) sn ( u - v) = (d 2+ x²8,20,2)/ D ; .......... (12)

1 - sin ( F + G )sin ( F - G ) = sin G + cos2F,

1- sn ( u + v) sn(u - v) = (cº +8,"d,2)/ D ; ... (13)

1+ cos( F + G )sin ( F - G ) = cos G + cos2F,

1 - cn (u + v) cn (u - v ) = ( 8,4d , +8,20,3)/ D ; .... ( 14 ))

1 - cos(f + g) cos( f - 9) = sin ? f + sing,

dn(u + v) dn (u - V) = k ($_PC,2 +8,20,2)/D .; .......(15 )1



FOR ELLIPTIC FUNCTIONS,
139

{1 + sin (.F + G ) } { 1 + sin ( F - G ) } = (sin F = cos G )?,

{1+ sn(u + v) } { 1+ sn (u .— v) } = (cz+ s_d2)/D ; ....... ....... (16)

{ 1 + sin ( F + G )} {1 + sin ( F - G )} = ( sin G # cos F )?,

{ 1+ sn (u + v )} { 17 sn (u — v ) } = (cz + s,d ) / D ; ... (17)

{ 1+ sin (f+ g) } { 1+ sin(f-g) } = (cos g + sin f) ,

{ 1 +ksn (u + v )} { 1 + ksn (u — v)} = (d , +k8c,)?/D ; ......( 18)

{ 1+ sin(f+ g) } { 1+ sin ( f - ) } = ( cos f # sin g)?,

{ 1 + ksn(u + v )} {17k sn (u - v )} = (d , +ks,c.)?/ D ; ...... (19)

{ 17cos(F + G )} { 1 + cos( F - G )} = (sin F # sin G )2

{ 1+ cn (u + v )} { 1+ cn (u - v )} = (c + c ) / D ;
(20)

{ 1 + cos(F+ G)} {1 + cos (F- G) } = (cos G # cos F )?,

{ 15 cn(u + v)} {1+ cn(u— v) } = (s_d2Fsd,)2/ D ; ......... ( 21)

{ 1+ cos(f+ g) } { 1+ cos ( f - g)} = (cos f + cos g)”,

{1+ dn(u + v )} {1+ dn(u - » )} = (d , + d ,)2/D ;. : (22)

{1+ cos(f+ g) } {15 cos( f - g )} = (sin f sin g) ?,

{1+ dn (u + v) } { 17 dn(u – V )} = k (81C2782C1) / D ; ( 23)

sin(F + G)cos(F- G) = sin G cos G + sin F'cos F ,

sn (u + v) cn (u — v ) = (8cd2 + Sącądu)/ D ;.........(24)

-- sin ( F - G ) cos( F + G ) = sin G cos G - sin Fcos F ,

sn (u - v) cn(u + v) = (8.c,d )-89cd1)/ D ;......... (25)

sin( f+ g) cos(f - 9) = sin f cos f + sin g cos g,

sn(u + v) dn(u —v) = (s_dc2 + sąd,c ,)/D ; .........(26)

sin ( f - g) cos( f + g ) = sin f cos f - singcos g,

sn(u-v) dn (u + v ) = ($_d ,ca – Sąd281/ D ; ......... (27)

- cos( F + G )cos( f - g) = {cos A cos B - sin A sin Bcos( f + g)} cos ( f - g),

cn(u + v) dn (u - v ) = (c7c2d4d2 –K"28,82)/ D ; ....... (28)

cos( F - G )cos ( f + g) = cos( F - G ){cosa cosb + sinasinbcos( F + G )},

cn(u- v) dn(u + v ) = (ccądyd , + k”28482)/D ; ....... (29)

sin 2G= 2 sin G cos G,

sin {am (u + v ) + am (u — v )} = 2 8,c,d , D ; ....... (30)
sin 2F= 2 sin Fcos F ,

sin {am ( u + v) - am (u - v )} = 2 8,c,d,/D ; .. (31 )

- cos 2G = sin G - cos- G ,

cos {am (u + v )+ am (u - v )} = (c2-52d22 )/ D ; (32)

- cos 2F = sin F - cos F .

cos{am(u + v) - am (u - v ) } = (0,2 – 5,20,2)/ D ;8,2d/2)/D ; ............. (33)

the thirty -three formulas of Jacobi , given in his Fundamenta

Nova, 18, and reproduced in Cayley's Elliptic Functions.
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Similarly any other formula in Spherical Trigonometry is

converted into a form of the Addition Theorem of the Elliptic

Functions, and conversely ; by writing C , 84 for cos A , sin A ,

and dy,KS, for cos a, sin a, etc. , with

Vi + ve + vg = 2K .

Thus the six four-part formulas , of which

cot a sin c = cot A sin B+ cos c cos B

is the type, obtained by eliminating cos b between (a) and (B),

lead to
szdy = 8201 + 84cądz ,

with five other similar relations.

By means of these and the preceding relations we can prove

the following examples on the formulas of Elliptic Functions.

EXAMPLES.

-0 .
SU - sn v

;

܀

1. Prove that, if u to + w + x = 0 ,

cn u dn v - dnu cn v cn w dn X - dnwen x

(i . ) + =

sn W - Snac

(ii.) K2 – K?K 2̂sn u sn vsn w sn x + k?cn u cnvcn w cn x

- dnu dn v dn w dnx= 0.

2. Prove that

2k sn u cn v dn v

(i.) ns (u - v + snu + v ) =
dna --- dn2u

(ii .) 1 - kºsnº(u + v )sn (́u , v ) = (1 - k’sn ^u )( 1 – K?snºv )/D2;

(iii . ) k’sn (u tv)sn (u — v )sn( u +w)sn(2–W)

( 1 - k’snºu ) (1 - K'sn'v snaw )
+ 1 ;

( 1 - k’sn’u sn v ) (1 - k ? sn u sn²W

1 - k ?cd?(u tv)cd (u - v ) 1 - k ?sn ? u snav 12

(iv. )
1- K?sn (u + v)sn´ (u — v) 2 + k ?cnưu cnav )

1 - snu _cn ” ](u + K )dnº }(u+ K ),
3. ( i.) ;

1 + snu K”?sn? 1 (u+K)

1 - K'dnu + k snu

(ii .) k’snºj( u + K ).
1 + k'dnutk'snu

4. Prove that

{ 1 + k sn21(u + v )} {17ksna ] (u - v ) }
1 ksnu sn v =

1 - kºsnºj(u tv)sn22(u—v)

and hence prove that the expression

1 - k sn x sny 1 +ksn z sn w

1 + k sn sny 1 - ksn z sn w

12

K

)12

KK

— К
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remains unaltered when for x, y, %, w we substitute respectively

1(o+y+ z+w) , 3(o+ y - -W), 3 (x - Y + z - w ),

3 (2 - y - +w) .

5. Prove that, if tanh A = k snʼa, tanh B = k snaß ,

tanh (A — B ) = k sn (a+ B)sn(a − ) .

Deduce Jacobi's relations,

sn (B + y)sn ( -y) + sn (y + a)sn ( y - a) + sn (a + b )sn ( a - 8 )

+k%sn(B+y)sn(y +a)sn(a+B)sn( -y)sn(y - a)sn (a -3) = 0 ;

or

1 - ksn(B +y)sn (-y) 1 - ksn ( y + a )sn ( y - a ) 1-ksn (a + )sn (a+B)

1 +ksn ( + y )sn ( -y) 1 + ksn ( y + a )sn ( y - a ) 1 +ksn (a + b )sn (a - B )

+ +

= 1 ;Or

1 - ksn (t- )sn ( y - 2) 1 - ksn (t - y) sn(2-2) 1 -ksn (t - z )sn ( C- y )

1 + k sn (t - o )sn ( y - 2 ) 1 + k sn(t - y)sn(2-2) 1 + k sn (t - z )sn (o-y )

= 1 ;or

+

1 - ksn u snv 1 + k sn (u + w ) sn (v + w ) 1 - k sn (u + v + w )sn w
1 .

1 + k sn u snv 1 - ksn (u + w )sn (v + w ) 1+ k sn (u + v + w )sn w

(Glaisher, Q. J. M., vol. XIX. , p. 22. )

6. Prove that the tangents at the points on an ellipse of

excentricity e whose excentric angles are

p = i- am(u, e), y = žn - am (v, e ),

will meet on a confocal ellipse when u - v is constant, and on

a confocal hyperbola when utv is constant.

Hence show that the general integral of

do/J(1 – e-sin o )- dy / J (1 – e-siny) = 0

may be written

a2 62

sinºl ( + y ) + cos2 ( 0 + y = cos2 1(0- % ) ;
a2 + 1 62 +1

and convert this into the form

cos y = cos o cosy + sin o sin y/(1 – e -sin’y ),

2(a2+ 1)
proving that y =

a (62 + 1 )

7. Prove that the straight line joining the points

tan212

con (u tv), c sn(utv) and con(u - v) , c sn (u— V),

on a given circle of radius C, will touch an ellipse whose semi

are csn (K – V ), con v, when u is constant and v is

variable; and determine the envelope when u is variable and

vis constant.

axes



CHAPTER V.

THE ALGEBRAICAL FORM OF THE ADDITION

THEOREM.

138. The first demonstration of the existence of an Addition

Theorem for Elliptic Functions is due to Euler

(Acta Petropolitana, 1761 ; Institutiones Calculi Integralis),

who showed that the differential relation

or

dx//X+ dy// Y= 0,

connecting X = 4x4 + 46x3 + 6cx2 + 4dx te,

(a, b, c, d , e)(2, 1 )4,

the most general quartic function of a variable x, and Y the

same function of another variable y, leads to an algebraical

relation between x and y, X and Y.

This algebraical relation is

d

= a (x + y)2 + 4b(x + y) + C,

or

where C is the arbitrary constant of integration ; and this

relation when rationalized leads to a symmetrical quadri

quadric function of x and y, of the form ($ 148)

ax?y2 + 2ßxy(x + y ) +7(Q2 + 4xy + y2) +28(2+ y)+ e = 0,

(ax2 + 2ßx + y )y2 + 2(Bx2 + 2yx+ )y+32 + 288 te= 0,

(ay + 2By + y)x2 +2(Byº + 2yy + 8)x + yy2 + 28y + e = 0.

(Cayley, Elliptic Functions, chap. XIV.)

With a = 0 and b = 0, X and Y reduce to quadratic functions

of w and y ; and then

NX-NY
a constant

or

OC -Y

is the general integral of dx / X + dyld/ Y = 0.
142
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139. By writing ( loc' + m )/(lxc +m') for X, which is called a

linear substitution , this symmetrical quadri-quadric function

becomes unsymmetrical, the five constants a ,b , y , è, e being

thereby raised in number to nine ; and then

dx/ JX becomes changed to (Im' — I'm )da '// X ',

where X' = (a, b, c, d, e )(lxctm , læ + m )4.

The invariants 92 and 93 of the quartic X have been defined

in $ 75, and in 8 53 the discriminant A = 973 — 2798%, and the

absolute invariant J =9A; and now , if ga', 93', A', J' denote

the same invariants of X', we find

ga = (Im ' - I'm )-92, I :' = (l'm- lm )°93, A ' = (Im ' - I'm )12A ;

while the absolute invariants J and J ' are equal.

Conversely, any unsymmetrical quadri -quadric function

whatever of and y may be written

G(x, y ) = (ax2 + 23x + y )ya +2 (B x2+ 2y +8y + "2c2 +28" x + e"

= Ly2 + 2My + N = 0 ;

G (x , y ) = (ay2 + 2Byty")x2 + 2(By2 + 2y'y + 8%)x + yy2 + 28'y + "

= Px2 + 2Qx + R = 0 ;

L, M , N being quadratic functions of X, and P, Q, R being

quadratic functions of y .

Then by differentiation

( P # + Q )dx + (Ly + M )dy = 0 ;

and by solution of quadratic equations

Ly + M = / (M2– LN ) = / X , suppose ;

Px + Q = / ( Q2 - PR ) = / Y, suppose ;

and thus we are led to the differential relation

dx/JX + dy/ JY = 0,

where X and Y are quartic functions of X, not necessarily of

the same form , but having the same 9, and 93.

A linear transformation, such as that given by

g = ( + m )/(1+ ),

can however always be found , which will transform

dy/JYinto dy'\_/Y',

where Y ' is a quartic having the same coefficients as the quartic

X ; in other words, the quartics X and Y have the same in

variants; so that we may, without loss of generality, consider

X and Y as of the same form , and therefore drop the accents

in the expression forGa,y) .
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so that

OC - Y

Now 2X = Ly + M = (ax? + 2Bx + y) y + Baca + 27w + d,

JY = Px + Q = (ay2 + 2By + ya + By2 + 27y + d ;

X -NY
= axy + B (x + y ) + y ,

a form of the integral relation, in which the coefficients a, b, c,

d, e in X and Y are functions of a, ß , y, d, e, determined by

acc* + 4bxc3 + 6c2c2 + 4date

(Boc2 + 2yx + 8)2- (ax2 + 23x + y )( 702 + 28c + €),

the Hessian, with changed sign, of (a ,b, y; è , c)(X, 1)4 ; and

a (x + y )2 +46( + y ) + C

= {axy + B (a + y ) + y } 2

(82 - ay)( c + y)2 +2(By - as)(@ + y) + 72 - ae.

140. Lagrange proves Euler's Addition Equation as follows:

Put dxc/dt = _X, and therefore dyldt =-_Y; then

12

= 2 (ax: + 36x2 + 3cx + d ) = 2X1,
dt?

d?y = 2(ay3 + 3by2 + 3cy + d ) = 2Y,,

suppose ; so that putting x+y =p, x- y = 9, then

dp
X-NY, dq = _X + Y;

dt

dt2

, dt

dép

dp dq = X - Y

or

= 2 ( X + Y )
dt2

= ja (p3 + 3pq2) +31 (pa + q2)+ 6cp + 4d,

X

dt at

= japa(p2 + q2) + bq(3p2 + q2) + 6cpq + 4dq ;

Cºp_dp dqwhence

9 dt2dt dt
apq: + 2bq

2 dp dép 2 dq(dp up

q2 dt dt2 q dt \ dt) dt dt

Both sides of this equation are now integrable, so that

= ap2 + 4bp + C,
dt /

JX NY ?
or = a (x + y )2 +46 (0 + y ) + C.

OC - Y

We notice here that, if C= 462/a,

_X-_Y_a(x+y ) +26

y Ja

ta
bd
a

1 dp
2

4

C
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0 ,

or

141. In the canonical form considered by Legendre, with

X = snu , dx /du = N/ (1-22.1 - K 22),

Y = Sn V , dy /dv = / (1 - y2.1 - køy ?),

then X = 1 - x2.1 – K ? C?, Y= 1-42.1 - k’ya

Therefore dx/X+dy//Y= 0,

leads to dut du

ut 2 = constant ;

which, in Clifford's notation, may be written

sn - la + sn - ly = constant.

Euler's Addition Theorem of $ 138 now gives

C
VX - DY ?

k ( y 2

2- Y

( cn u dn u - cn v dn v )2 — « ?(snºu - snềv )2

(sn U - sn v)2

dnucno
cn u dn ſdn( u + v ) - cn( u tv)l2

sn ( u tv)

by J. J. Thomson's formula of $ 121 .

no) = { +0}}?sn USA v

142. But the Addition Theorem (1 ) for sn ( u tv) of g 116,

sn u cn v dnv+ sn von u dnu

sn ( u tv)=
1 - k ?sn ? u snu

when translated into the inverse function notation , gives

sn -1q + sn -ty = sn -142/ (1 – 72.1 —xºy?) + y / 11--22.1 – k?2c2)

1 -ky?

This reduces, for k = 0, to the trigonometrical formula

sin -1c + sin- ?y = sin- {X / (1 - y ) + y / (1 — 2)},

the integral of dol / (1 – x2) + dy//(1 - y ?) = 0 ;

and for k = 1 , to

tanh -le + tanh -lyetanh -12 + 4
1 + xy'

the integral of doc /( 1 – 22) + dy/(1 - y2) = 0 .

Similarly, equations (2) and (3 ) of g 116 may be written

cn -18 + cn -by = en -tay - V (1—2%.ke”? + x2x2) / (1 – Y%.k?2 + x+y2)

1 - k ?c ? y?

dn-1q + dn -ly = dn --my - « -\ / (1 –22.x2 — « ?) / (1–92.72 –K2)

1 – k oczy?

We can now see why so little progress was made with the

Theory of Elliptic Functions, so long as the Elliptic Integrals

alone were studied, and also why Abel's idea of the inversion

of the integral has revolutionised the subject.
G.E.F. K
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к

143. A slight change of notation in the canonical integral

(11 ) of $ 38, suggested by Kronecker (Berlin Sitz ., July, 1886) ,

introduces a further simplification ,on writing

& = ksnºlu/JK) ;

then dx /du =k sn (Iu/ JK)cn (žu//k )dn(ju / VK),

daca

= (1 — )
du?

= X(1 — px+22),

with p =k - 1 +k ;

and now

/da// x,

with X= X(1 — px + 2).

Now

1 (u + v )/ k = sn- / ( c/K ) + sn - 1 / (Y /K )

= sn -1Vx / (1-py + y ) + Ny /(1 – px +22)

U

0

1 -Y

144. In Weierstrass's notation, we take

X = 433 — 922—93

so that, in the general expression of the quartic X,

a = 0, b = 1 , c = 0, d= -49 , e = -93 ;

and now Euler's form of the Addition Theorem becomes, with

z for C the arbitrary constant,

✓X-NY?
z = 1 - X - Y .

OCY

Now if x = yu , y = pv, so that _X = -gu, Y = -øv,

then we shall find (8 147) that z = $(utv) ; so that

s'u – pʻa ) ²2
( = - Jou - Jov ;ou - ...... (F)

su - su

or, in the inverse notation,

80-4x + 8 - ly = 82
X - Y2

X- Y

X - Y

Put utu = -w, so that

( u tv) = pw , po (u tv) = -8oʻw ,

since (8 51) gow is an even function, and yo'w an odd function

of w ; then, with

uto+w= 0,

sp'uso v

pu— pv)

and therefore also, by symmetry,

so'v - gaw po'w - gor ?
( F ) *

Қ0 - 00 Кои - Кои

2

you + pu + pow = (p’u –g'z
)

2

..
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or

or

go'v - so'w _ p'w -p'u _ so'u - golv
Thus

pu - pw pw - yu you -- gov '

( ou - pw ]pou+ ( pow - you løv+ ( pu-- pv )p'w = 0,

(so'v — p'w ou + (8'w- goʻu ) pov + (86'u— soʻv ) gow = 0,

1 , pu, bu

1 , pu, po'v = 0 ...-0 ....... ...... (G)

1 , pw , p'w

Weierstrass thus replaces the three elliptic functions snu,

cnu, dnu by a single function pu, and its derivative sou.

or

ac- 72

>

a

ac - 62

= 4

a a

145. Take for example the integral of ex. 8, p. 65 ,

/ x-$dx,where X= (x- a) (ax2+ 2bx+ c),

a cubic function of x, having a factor — a.

This example shows that we may put

X}

Jou = with 92= 0, 93 = 4
aa ? + 2batc

ax2
and then

po ?? 4
4.

(x ~ a)2 aaa + 2batc

4 {laa + b)(a) — a ) + aa” + 2ba + c }2

(aa? + 2ba + c) ( -a)?

Now, if y and > are the values of a corresponding to the

values v and w of u, and if

u+v+w= 0, or ſx -xdx + / v - šdy + ſ 2-3d2 = 0,

then the integral relation (G) of 144 connecting x, y, z becomes

(y - 7) X $ + (2 - x ) " } + (x , y) 2 } = 0..... .... (1 )

We notice that the integral relation does not require the

nowledge of the factor x - a of X ; so that, writing

X = A2 + 3Bx2 + 3Ca + D ,

we have, on rationalizing the relation ( 1 ) ,

3(y - 7)(z - X )( — Y)(XYZ)} = (y - 2)$ X + (2 - a )3Y + (« - y)sZ

3 ( y - 2)(2 - x )( - y) { Axyz + B ( yz + zx + xy) + C (x + y + z ) + D };

XYZ = {Axyz + Blyz + zx + xy) + ( (x + y + z )+D} &. ... (2)

(MacMahon, Comptes Rendus, 1882 ; Q.J. M.,XIX ., p . 158.)

Then xły} {(y - 2) X ? + (2 - ) Y }}

+ (x - y ) {Axyz + B (yz + zx + xy) + C ( + y + z ) + D } = 0 ,

X { y } (yX * - « Y }) + (c - y ) {Bxy + C (x + y ) + D }so that a

XtY( X - Yt) - ( - y ) {Axy + B (x + y ) + C }

equivalent to Allégret's result (Comptes Rendus, 66).

or
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or S

146. We shall find it convenient to replace the constant o

in Euler's integral relation by 4c+ 4s, and to consider s as the

arbitrary constant, the meaning of which is to be interpreted ;

and then

-
s= 1 2 - y -C

X- Y

F (x ,y)-NXJY

2(2 - y)?

where

F (x, y) = ax?y2 + 2bxy(• + y ) + c(2c2 + 4xy+y) + 2d(x+y) + e

(ax2 + 2bx + c)y2 + 2(b «c2 + 2cx + d )y + cx2 + 2dxte

= (ay2+ 2by + c )mc2 + 2 (by2 + 2cy + d)x+ cy2+ 2dy te,

a symmetrical quadri-quadric function of x and y.

Treating s as a function of the independent variables x and

y, we shall find

1 OF 1 dx

cas 2 дах F / X - XJY
X
axc (x - y)2 ( oC –Y)

(ay: + 3by2 + 3cy + d )ɔc + by: + 3cy2 + 3dyte

(oc -- y)3

+ +
(ax: + 36x2+ 3cx+d)y + 6x3+ 3cx2+ 3dxte

JY
(-y)

Ya+ Y

(oc - y)3 ( 3C - Y)3

cas

and similarly we shallfind that Jys has the same value.
ay

But if s is taken as constant, then

J 4 dx
VY

il 3

=

NX

Xıy + X2 / Y,suppose ;JX +

or

as as

do + dy = 0,
дах ду

doc/JX + dy/JY= 0,

so that the differential relation which leads to Euler's integral

relation is thus verified.

147. But now denote

493 - 9,8-92 by S,

where garde -- 4bd + 3c2, 9; = ace+ 2bcd- ad2 - eb2 -- ,

so that (875) g , and 93 are the quadrivariant and cubicvariant

of the quartic X (Burnside and Panton, Theory of Equations ;

Salmon , Higher Algebra ).
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3

or

3

-926

We shall find, after considerable algebraical reduction , that

VS = (Yjæ + Y ) X-(X,y + X ) / Y,
( x - y )

1 da 1 dy 1 ds

so that +

JX dt . JY dt AS at

and the elliptic elements dx /JX and dy!JYare now reduced by

this substitution to Weierstrass's canonical form ds/JS of $ 50 .

Mr.R. Russell points out a concise way of performing this

algebraical reduction, by means of the linear substitution

t = ( 5x + y )/( + 1) in the quartic (a , b , c , d, e )(t, 1 )* ;

which then becomes of the form

X + 4 + 4 (X1y + X , 73 + 6F(x , y )= + 4 ( Y% 2C + Y2)7+ Y,

A + 4 + 4 B73 + 6C++4D + E, suppose.

If the invariants of this new quartic are denoted by G2, G.

then
Gy = (oc - y )492, Gz= (x - y)®G3 ;

and S = 483 - 928-93

(C - JAJE) C - JANJE
93

2(x - y ) 2-y)2

(C - JAME) -- G, (C- NAJE) — 2G ;

2 (0 - y)

_ (D.JA-BJE)

(oc - y )

{( Y/2C + Y ) / X—(X1y + x2) Y }

( x - y )

148. Rationalizing the integral relation of $ 146,

{ 2s( x - y)2 – F ( , y ) }2 = XY,

${(o- y)2 – F (x , y ) - E (x , y) = 0,

where E (x ,y) = {(ac— B2)y2 + (ad - bc)y + i(ae — c ) } ac2

+ {(ad - bc)ya + (žae + 2bd - ca) y + be - cd }#

+ ] (ae ---2) y2 + (be - cd) y + ce - d2;

(52 - 1292)( x - y )2 – SF (x, y) – H(2, y) = 0,

where Ha, y) = (ac— 62)ąc2y2 + (ad—bc)xy( + y)

+7(ae + 2bd - 3c2)(ac2 + 4xy + y2) + (be - cd )( C + y ) + (ce - d ),

a symmetrical quadri-quadric function of w and y.

149. When x = y, F (x , x ) = X , and

E (x, x) =H(a, x) = (ac— 62)ąc4 + 2(ad - bc)x : + (ae + 2bd - 3c2)w2

+2(be -- cd ). + ce - 4²,

the Hessian H of the quartic X.

6

B

or

or
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One value of s is now infinite, and the other

t = -H / X ,

as in $ 75 ; for, when x = y ,

F(x ,y) -MXJY_0
t =

2 (x − y ) 0

{ F (x, y ) } – XY - 2E (x, y) H

=lt =lt

2 (3 - y ) { F (x , y ) + JXJY } F (x, y) + ZXJY = X

a substitution due originally to Hermite (Crelle, LII ., 1856) .

Now, since t = 0 , when X= 0, or x = a,

2

doc/2X = 1 /dt/ / T = 16-10 - H / X ),Sat)y }
a

a denoting a root of the quartic X= 0 ; and here

T= /(4t3 — gat - 93)

(YX + Y ) X-(X1y + X2)JY_0
= 10

(oc — y)3 0

( Y % 2C + Y )2X- (Xy + X ,)- Y
G

= lt

(a -- y ) {( YX + Y X + ( X , Y + X / Y } X

where G is a certain rational integral function of a of the

sixth degree, called the sextic covariant of the quartic X ; the

preceding algebra showing that

T2X= G2, or 4H 3-9,HX2 + 93X3 + G2 = 0 , ......... (H)

this is called a syzygy between X, H, and G.

( Burnside and Panton, Theory of Equations,p . 346. )

For instance, if X is already in Weierstrass's canonical form ,

so that, if x = you ,

X=? u = 423 – 922-93,

then H= -- (22 + 492)2 -- 29z2C ;

and now t = p2u,

(922+ 192)2 + 2930u
$2u =

4503r - 9284-93

This may also be written

1 02

82u = gou

so that

4 duz log pʻu .

150. With y = 0 ,

28 = axa + 2bx + c - daX,

or — (ax2 + 2bx+ c)s- (ac- 62) 2 – (ad - bc).- (ae- c2) = 0.

With y = 0,

28 = (cx2 + 2dæ te- de-/ X )/a >,

or x g2— (cx2 + 2dx + e)s - (ae-- ( 2) ? - (bc - cd)x- ce + d ? = 0 .
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Writing Fla , y) in the first equation of $ 146 in the form

Y + ] Y '(x - 7 ) + 1Y"(0 --y)?,

we can find as a function of s and y by the solution of a

quadratic, in the form

JY / S + ? Y '(8 - Y ") +AYY''
8- y =

2 (8 - Y " )2 -- jaY

This method of the reduction of the general elliptic element

doc /JX to Weierstrass's canonical form ds/-/ S is taken from a

tract “ Problemata quædam mechanica functionum ellipti

carum ope soluta . — Dissertatio inauguralis," 1865, by G. G. A.

Biermann, where the formulas are quoted as derived from

Weierstrass's lectures.

S

151. Changing the sign of JY, we find that

F (x, y ) + JXJY

2 (oC — y)2

leads to the differential relation

1 dæ 1 ds

~AX dt av at As at

1 dy

so that, putting ſdx)2X=u, ſly!WY=v,

-felclnX =fasilns,
UV

y9 S

implying that u- v = 0 when x = y , since sro when x = y ;

and now, in Weierstrass's notation ,

F (x, y ) + JX / Y
s = $ u—v)=

2( -y)

Changing the sign of v, and therefore again of Y ,

F(x, y) -JXJY .
plu +v) = ;

23 - y)

so that
$2u= -H ,/ X , $20 = - Hy/ Y,

implying that u = 0) when X= 0, v = 0 when Y = 0); so that

U = /dx/ / X , v = ſdylJY,

2

a a

where a denotes a root of the equation X= 0.

Foc, y)
Then 8 (u - v ) + ( u + v) =

( -y)?

$ (u - v ) - ° (u + v ) =
JXJY

( oc - y)2
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;

UI 1

2

Mr. R. Russell finds, as is easily verified algebraically, that

F(x, y) Hx_ (Xy + X , F2, y)(X1y+X2)2 F( , y ) Hy (Y2C + Y )2

(o- y) 2 X (o - y )-X ' (ac - y) 2 YY (o - y )-Y

But, from the Addition Theorem (F) of 144,

pu - v) + ® ( u + v) + p2u = l{p (u — v)—f'(u + v)??
( - v ) -8 (u+ u)

p (u - v ) + plu + v ) +8320
1 /pu - v) + $ '(x + v)?

4p(u , v) —P (u + v )
and therefore

Xy+X, 18'(u - v) —p'u + v )

(x - y) / X 28 (u - --- V) -8 (u tv)?

Y_2C + Y 1 $ ( u - v ) + $ '( u tv)

(x - y) / Y 2 ( - v ) -8 (u tv)

the sign being determined by taking v small, when y = a, nearly.

Now, $ ( u —v)—f'(u + v) = - 24,9 + X, / Y,
(o- y) 3

so (2 —v) +$ (u + v)= -27,« + Y,_X;
( 3C - y)

so that, as in § 147 ,

$ '( u—v) = - (Y æ + Y ) / X -(X,Y + X.) / Y,
( -y)

$'(u + u)= - (Y + Y ) / X + (X ,Y + X ,) / Y
( -y)

152. When y = 0 ,

$ 2v = -lt Hy/ Y = (b2 - ac)/a,

and p’2v = - It G ,/ Y ! = (a’d --3abc+ 263)/as;

1 $ '( u - v ) + $ '( u tv) Y . + Y . acc + 6
- It

280 (u - V) — ( u tv) (x - Y )JY Ja

Again, from equations (F)* and (G) of g 144,

1 $ (u - v ) -82v_1 po ( u - v ) + $ ( u tv ) Ya + Y

2 % ( u - V )-2v 2 ( u - v ) - ( u + v ) (a - Y ) JY

and putting u = 0 , and therefore x = a, we find

aa + b_ov +82v

da © 2) - $e 2 )

so that the quartic can be solved, when you and so'v are known.

(Solution of the Cubic and Quartic Equation, Proc. London

Math . Soc., vol. XVIII. , 1886.)

2



OF THE ADDITION THEOREM. 153

Otherwise, with t = -H / X ,

dt H'X - HX ' 2G

dac X2 X2 '

while T3 = 443 — 92-93 = G2/ X3,

d / / T = - 2de X ,
so that

and

-= s/nX= } (dt)JT=}4-1 - H / X )fdeln
S

a denoting a root of the quartic X = 0 .

Then p2u = t = - H / X , p2u = -T = -G / X ;

while v = 0 when y = a, and Y = 0);

so that
F (x, a)

Tou = s =

2( -a)

poʻu = -JS =
(aq) + 3ba? + 3ca + d ) + ba? + 3ca² + 3da + e

(a - a)3

If v, k, K denote the values of U , s, S, when x = w ,

k = } (aa? + 2ba + c) = pu, K = (aq + 3ba? + 3ca + d ) Jar - pv;

aa! + 3ba?+ 3ca + d

VY.

8 - k=

XC-- a

so that 8C m a =

K - pov)

(s - k ) Ja (pu-pu) ja

and now $2v = Cb2- ac)/a, gʻ2v = (a d– 3abc + 263)/a *.

Conversely, given these values of p2v and p2v, and supposing

the bisection of the argument of the elliptic functions to be

carried out,we can determine yv and goʻv ,and thence solve the

quartic equation X = 0).

153. Since F (x, a) vanishes when x = a, a root of X= 0, it is

divisible by - a ; so that

(aa? + 2ba + c)x2 + 2 (ba? + 2ca + d ) x + ca² + 2date

2(x - a )

á

= } (aa? + 2ba + c) suppose,

8

2

C

Xa

a typical linear transformation, which converts dx / 1/ X into

ds/JS, the canonical form of Weierstrass.

Denoting the four roots of X= 0 by a, b, y, o, then since

b /a = -2(a + B + r + 8), cla = f(aß+ ay+ að+ yo + 8B+By),

we may write

iba
a - B.a - y.a - 0 / C - Bx B

8
12 + * = * = * = ).

+
Ca a Barn
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and now

--Bla - yla - 0) + y(a - 8)(a – B ) + (a – B )(a - y )

( a -ya - 0) + (a - da - ) + (a - B )(a - y )

with three other values ß', ', & corresponding to B, y, 8.

Now Vs = (ac® + 3ba? + 3ca + d }x + ba:+ 3ca? + 3date
NX

(oC — a)3

= (aq: + 3ba? + 3ca + d )
JX

(oC — a)?

= fala– B/a –v)a -o)/{a(0-—B)(x = y)(a –o))
(-a)

Denoting by ez,ez, ez, the roots of the discriminating cubic

4e3-92-93 = 0,

S= 4(s - ex) (8-2)( s-ez) ,

then we may write

s - en = fafa - y)(a - 8 ) - ß.

so that

2C

Ca

3C
7

8—6, = fala - 8 ) (a - B)
X a

XC

8C a

7- / + 2 a

Si = 12

S

8 - eg = la (a - )(a - y )

so that, to x = a, ß, y, d, corresponds s = 0, @q, 62, 6z ; and then

€ = a {(a - 7 )( 8 - B ) - (a -88-7)},

en = la {( a - 8 )( - y ) - (a - B ) ( y - s ) },

ég = 1ga {(a -- 3 )( y - o ) - (a - 7) (8-2)}.

If we interchange a and B, and put

bab - y.3-0.ß -a-al 2 -

2-3 B - y B -SB- aB .

then to z = B, 7, 8, a, corresponds sz = 0 , @z, bz, bı;

so that s = sı gives a linear substitution converting

doc /1X into dalJZ,

in which x = a, ß, y, d, corresponds to ; = ß, y, d, a .

If s is replaced by pu , and the same function of x by pov , then

we find from $ 54 that

v = u, u+ w1, u + w + wz, u + 2w1 + wg,

gives the four linear transformations which leave dx /dX

unaltered ; and corresponding to the values (a, B, 7 , 8) of a

we find (a, B , 7, 8), (B, y, d, a) , (7, 8, a, ß), (d, a, ß, y) of 2

the first transformation being merely z = x , not a distinct trans

formation .
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154. When, as at first,

F(, y) - „XY

2(x - y )2

and when e is a root of the discriminating cubic, then s - e is a

perfect square ; and we find

(8 – e) = N ~~/ D, - N,q/ Dx
2 - y )

where, as in $ 70, the quartic X is resolved into the quadratic

factors Nx and Dx, and Y into the corresponding factors Ny

and Dy; this can be done in three ways,corresponding to the

three roots of the discriminating cubic .

Thus the integral relation

JN «-Dy - Ny / Dx
constant

2— Y

leads to the differential relation

dx//(NxDx) + dy J (N ,Dy) = 0,

as is easily verified algebraically, N and D being quadratics.

155. A more elegant expression can be given to these rela

tions if we follow Klein (Math. Ann. , XIV., p . 112 ; Klein and

Fricke, Elliptische Modulfunctionen, 1890) in1890) in employing

homogeneous variables X and X , by writing x ,/ « , for x , and

y /y , for y ; and now

dae
xxdxy — X_dx2

JX Jax_4 + 46x;8% , + 6cx,4x2 + 4dx_20,8 + ex ,4)

Conversely, by writing x for x7, and 1 for X , we return to

our original non-homogeneous variable x .

Klein employs the abbreviations

(odx) for xdx4 – xdx2, and (wy) for xzY2 — X2Y1 ;

also fæc for (a, b , c, d , e)(27, 29)"; and now with

w =UV

= fdx// X,
Y

s = 8020 =
2

1 12fx

where

F (@, y)= 112 əx,29;* + 2

Foc, y) + _/ fo / fy

2 ( ocy )

22f 22f

Y1Y2 + 2Y2

Ox_ax

22f 22f

ayay ду,

42, 00 )

1 (72f4c72 +2 )12loy,2«,2+2
-87X2 + 20

6,
2
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ofy afy

-x +
Ox2 )./fx

-2C2
Oy

2

;
3

2x2

afa afa

Yıit Y2 ) [ fy +
дах ,

and S=-go w =
4 (ay)

reducing to the above in $ 153, when fy = 0.

The Hessian H or H (x1, x2) of X or f (07, 22) is now given by

22f 22f

144H

де?” де,дах,

22f 22f

Oxzaxz' 2x22

and the sextic covariant G or G (xy, cz) by

af af

8G =

Ox ' дах ,

aH aH

Ox ?

We may also use s and y as the homogeneous variables in

the quantities, instead of xy and
22:

Thus, for example, the integralſf- (wdy), where

f = wly + 11xbye--- wyll (the icosahedron form )

is shown to be elliptic by means of the substitution

– Hf-%

22f 22f

where H= 1
age2

22f 22f

дахдуду?

-220 +228201545 – 494x10y10 – 228x5y15 – Y20.

Then we can verify the syzygy

H3 + 1728f5 = T2,

af af

where :

azci ду

aH ӘН

Z

1

12 1

дхду

T =
1

20

ax dy

Now

- 2030+ 480+522(242545 — $y25) – 10005 ( 2020,410 + 10,820) .

dz 3TI' - 5'H -5T

z(ady) Зf H 3fH

5 (ady)
;

(4.23– 93)

423 – 9 ; = 4T2f- 5, provided 93 = -6912 ;

-572 f .

so that

31H 27(wdy)=
.

6 foto

since
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6

580

1xdy_6
dz 6

and -12

uf (423-93)
580

-14 - Hf- 5).-

Similar reductions will show that the integrals

SH -16(xdy) and ST -16 (edy)

are also elliptic ; also the integrals

S (aby- xyo)- $(wdy) and S (x8 + 14x+ y++ y8)- $(xdy),

depending on the octahedron form , 28 + 14x4y4 + y8.

( Schwarz, Werke, II.,p . 252 ; Klein ,Lectures on the Icosahedron .)

156. The further development introduces the theorems of

Higher Algebra on the quartic and cubic, for the treatment of

which the reader is referred to Salmon's Higher Algebra and

Burnside and Panton's Theory of Equations.

Thus, H denoting the Hessian of a quartic X , and @q, ,ez

the roots of the discriminating cubic

4e3 – 922-93 = 0,

then 4 ( H +eX)(H + e, X )( H +e X ) = 4H3–9,HX2 + 93X3= - G2,

where G denotes the sextic covariant (s 149) ; so that H+eX

is the square of a quadratic factor of G.

Following Burnside and Panton (p. 345) we shall find it

convenient to put 16 ( H + eX ) = - P2 ; and then

P , P ,P3 = 32G ,

P1, P2, P3 denoting the quadratic factors of the sextic covariant G.

Then P ? + P 2 + P = -48H,

since
ez teztez = 0) ;

while ( - ez)P 2 + (@z -e,)P ,2 + (e, -e, P ; = 0);

and ; P 2 + e,P22+ egP ; = –16 (e,2 +0,2 +0,2) X = -892X.

Since (ez – @ )P2= (@1 - e ) P ,2 - ( - e )P32

= { 1 / (ez - @g)P tad (ez- ey)P3} { / (ez - @g)P, - Vlez- en)P3} ,

therefore each of these factors must be the square of a linear

factor, and we may therefore put

pley- ez)P, +/(en - € ) P3 = 2uz?,

vlei - eg)P2 - lez - e,) P = 2u ,?,

so that uy and Uz are linear ; and pow

(ez-ez)P1= 247U2,

1 (0 - eg) P , = u_2 + u ,

Je, -e,) P ; = u_2 – U ,

2

2 )

2
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and 4t - get - 93 = 73

so that

22U 2

157. Mr. R. Russell points out (Q. J. M., XX., p. 183) that

Hermite's substitution of t = -H/X reduces the integral

FG -3dx to 1 / (4t3 – Get - 93)-$dt. .......... ( 1 )

dt 2G G2

For

da X2

G-3dx = - }(4+3 – get - 93)-3dt.

Again the integral S (443- 92–93)-$dt,as well as the general

integral ſU -3dx, ( 2)

where U or U (2 , 1) denotes the cubic (a, b, c, d) (x, 1)3,

is again proved to be elliptic by the substitution

33 = -K3/ U ?, .. (3)

where K or K (x , y) denotes the Hessian of the cubic UC, y),

22U O2U dº a ?

given by 9K (OC, y) =
2002 : Onay

(4)
Əxc2 aya Voxdy

22 U 22U

дхду” ду?

The cubicovariant J of the cubic U is given by

at OU

3)(x, y) =
anc ду

.. (5)
ƏK OK

acc ' ay

and the discriminant A by

A = a_d2 + 4ac3 - 6abcd + 4db3 - 36202; .... (6 )

and now we have the syzygy

J2 = -4K + AU ( 7)

(Salmon, Higher Algebra, $ 192 ; Burnside and Panton,

Theory of Equations, $ 159.)

Differentiating (3) logarithmically

3 ds 3K 2U 3J

K U KU 's dx ;

J

while
(4sº + A) = 0

ds

JJ(493 + A )

ſu-$dx =9-1(8; 0 , - A ) =3-14- KU -3).......(8)

dx

so that

sde Uds

KUi

and
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93 = 4

and now

(1 + 29 )dz* =

2

x

When we know a factor, x— a, of U , then we may employ,

as in ex . 8, p. 65, the substitution

% = U */(x- a). ....... (9 )

Putting U = (2 - a )(ax2 + 26'oc + c')

= (x- a ) {ax2 + (aa + 36) + aa? + 3ba + 3c),

then 423 -92 is a perfect square, when

ac' - 72 (aa + b )2 + 4(ac - 62)

aa? + 2b'a to' aa? + 2ba+ c

:-)
Iz_ax2 + 26 x + c' - 93(0 a )?

22 U?

-3K 3s

(aa? + 2ba + c)U8 aaa + 2ba + c

3ds

aa? + 2batc

while

292 3 { (aa + b) ( a − a) +2(aa? + 2ba + c )}2

(438–93)(1+ 23
(aa? + 2ba + c)( - a )2

3 (2x- a ) {(a²a² + 2aba -- 262 + 3ac) + ...} ?

(aa²+ 2ba+ c)2U?

9J2 9 (483 + A)

(aa? + 2ba + c)3U2 (aa? + 2ba + c)3

dz

(473–93)
..( 10 )

a transformation equivalent to that of S 47 .

158. Mr. R. Russell also shows (Proc. L.M. S.,XVIII., p. 57 ),

lx2 + 2matn
that da ,

J (aX + BH .-X + ß'H )

where X denotes a quartic and H its Hessian, can be reduced

to the sum of three elliptic integrals by Hermite's substitution

t = - H / X .

For we may replace (8 156 )

lac2 + 2mx+n by pPz + qP , trP

or by 4p / l - H @ X ) + 49-1/ 1 - H - , X ) +47 / ( - H-@zX ),

where p, q, r are determined by equating coefficients ; while

da/JX = {dt/ JT = {dt/ J (t - ex.t - bg.t - eg);

so that the integral becomes

p / ( -H-_X)+91/(-H-e,X +r/-H-2X ) JXdt

JaX + BH.X+ B'H ) J(t- ez.t- lg.t- (3)

so that Vlad? + 2ba + C) / (488 + A)

SA BH

3

( 6 ) (
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- / te +

- *

p / (t - en) + / (t - ex) + rnit -- ez)
dt

Jla - ' - ) J(t-@y.t-bg.t- 3)

P
dt

t - es) / (t - eg.t - en) / (t - .t-e,) Ia- ßt.a'- B't)?

the sum of three elliptic integrals.

Particular cases may be constructed by making B and ß'

zero, or a and á zero ; when we obtain

5 (1x2 + 2ma + n)dx / X , or ſ (lx2 + 2mæ + n )dx / H .

159. Mr. Russell remarks that the reduction of the well

known hyperelliptic integral

( la ? + 2mc+ n )do

J (1 – 22.1 + kæ2.1 + 1x2.1 - < \ xC2)

to the sum of elliptic integrals is a particular case of this

theorem , since the quartics

1 -22.1 - kXx2 and 1 + kx2.1 + x2

can be expressed in the forms aX+BH and a'X + R'H ,

by taking X = 1 + κλας, and therefore H = κλα2 ;

and now a = 1 , a = 1, B = - (1 + kX )/KA, B = (k + X )/KA.

These integrals are considered in Cayley's Elliptic Functions,

chap. XVI. , where x2 is replaced by x ; they arise in the expres

sion of Legendre's elliptic integral

(do/A (0,6) in the form E + iF,

when the modulus b is complex , so that b2 = e + if.

(Jacobi, Werke, I., p .380 ; Pringsheim, Math . Ann., IX. , p .p. 475.)

Writing P for «(1 - x )(1 + 2 )(1 + x )(1 - KAx), Jacobi finds

dx/ / P = 2(b + c'){ F ($ ,c ) + F ( 0, b)},

' 2

} { F( , c) — F (0 , b )},
b ' — ć

'b - c

where λ :

b - c b + c ) ?

data 1 - K
b =

/(1+k.1+1)' ( 1 + k.l + 1 )

DK 1 +ka
Ć

J (1 + k.1 + x )' (1 +r.1 + )

( 1 + x )( 1 + 2 ) ( 1 - 0) ( 1 -2 )
and

(1+κα)(1 + λα)' ( 1 +x)(1+ 12)

( 1 -IKA)?2 ( 1 +XKX )
Δ2(φ, ό) : AQ, c) =

( 1 + x)(1 + 12C)' (1 + kx )( 1 + 1 )

2

B ' -
2

(6676
0670

KS

OL b' =

و

sin ? p = cos? o =
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si

vy{sn-(71( stb + snº(7 #kl.12 c)}

st

c }

som S
sad

a

Then employing the inverse function notation,

dac

JP

1 1 +k.1 + 2.X 1 + k.1 + 1.X

1 (1 + k.1 + 1 ) 1 + kx.l + 2x l + k21 .1 +λα'

adac

JP

1 1 + k.1 + . 11 + k.1 + 1.2
sna 6

+ ) 1 + k2.1 + 12 V1 + kX . 1 + c

When is negative, then b and c are conjugate imaginaries ;

so that we can now express Flo, b) in the form E + iF, when

62 is of the form etif.

For, writing - for , and now writing

P for X ( 1 — )( 1 + x )(1- \ x ) ( 1 + k \ x ),

dx 2E adac 2F
then

JP ) (1 + k.1-1) JP J ( 2.1 + k.1-2)

In the particular case considered by Legendre, 1 = 1 ,and now

P= 2(1 – x2) (1 - K2x2),

on replacing k by k” ; so that

fo=1dx//(1 – 22. 1 – K ?x2)

can be expressed by elliptic integrals.

Mr. R. Russell employs the substitution .

y = Ax /( 1 + B.c )?,

and now

dy A(1 - B.c )doc

vy.1 - y.l - oy) [ Ac{ (1 + Bac )^ – Ac} {( 1 + Ba)?- Ae}

so that, putting

ac {(1 + Bx )2 – Ax } {(1+ Bx )2– 0 Ax } = P ,

therefore B4 = k?X?, B = £/(kX) .

Taking B= J(KA ), and

(1+ Bx )2 – Ax = (1 - )( 1 -koc ),

(1 + Bx)2 - Ax = (1 + ką )( 1 + 2x ),

then 2JK - A = -1-6 ,

2-/ KA - GA = k + 1,

A = (1 + kX ) ?, cA = -WK + )?;

and taking B = - J (KA ),

then A = (1 – KA), A = - ( 1/ x -_ ^ )2

S70.1- %.1- 64)= [48 (1+ Bay Albay -Bep-cAx}]

or

q

G.E.F. L
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or

160. Mr. Roberts's integrals ( Tract on the Addition of the

Elliptic and Hyperelliptic Integrals, p . 53)

K(A + Bx2)dx/ JQ,

where Q is a reciprocal quartic in x2, say

Q = a08+4686 + 6ca4+4682 + a

aQ = (ax4 + 25x2 + a )2- (202 +422 – 6c)mc+,

furnish another particular case of Mr. Russell's theorem, since

Q can be expressed in the form

(aX + BH ) (a'X + B'H ),

where X and H are in their canonical forms,

X = 24 + 6 ma2 + 1 , H = mx+ + (1-3m %)a ? + m.

Or we may put x + x - 1 = u , x -x - 1 = v, when the integral

becomes JA ( U + V ) + B ( U - V ),

du
where U

N {aut - 4 (a − b )u2 + 2a – 86 + 6c}'

du

[ {avt +4(a + b )v2 + 2a + 8b + 6c}

Thus
1 + 2 = (1 + 222 +24)(1 – 1/2002 +24)

= ( X + 2H )( X - M2H ),

where X= 1 + x4, H = 2.

A + B.C2

Therefore the dx

( + 28)

is reduced to elliptic integrals by a substitution, such as

y = (1 + 4)/ xc2 ;

and then becomes

= — –

V = b

Therefore the integral / Det

-#(B + 4) 763–2.9j*—2)
dy dy

B - A
(y + 2.42 — 2) -

Another particular case of the general theorem occurs in the

reduction of the integral

S (lx + m )dx/ JR,

where R is a sextic function ,the roots of which form an involu

tion, and whose invariant E therefore vanishes (Salmon , Higher

Algebra, 1866, p . 210).
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This invariant E is the one tabulated in the Appendix,

p. 253, Higher Algebra, where it occupies thirteen pages.

The sextic covariant G of a quartic X is a specimen of a

sextic of which the roots form an involution ; and writing

32G or

P2P, P , = (a_22 + 26_x + c+)(azu ? + 2b2x + c2) (azx2 + 262x + cz)

= Q7(e - 04.2-01)a (2-02.< -- P2)a :( - 03.2-43),

then since the squares of P1,P2, P , are linearly connected by

the relation of $ 156 , therefore P1, P2, P, are mutually har

monic, and any one is therefore the Jacobian of the remaining

two ; this leads to the three relations

Aącz + azC2 - 25,63 = A361 + 27C3 – 2b,bı = 0,62 + QzC2 - 25,62 = 0).

--0, 2-01 X-0, X - 02 * -- 0 , X - P3
Now

P X x2 - Dia - 0 ' x - P2 X – 02 ' it - P3' 2–0;'

are the six linear transformations which reduce

* dx dz

to Legendre's canonical form
(A4 + 6Cz2 + E )'

as in § 74 ; so that if the quartic X is resolved into the

quadratic factors N and D, we may write

N = p (x - 0 )2 +9(2-0)?,

I) = P (x - 2) + Q (x - 0 ) .

Now N / D is maximum or minimum when x = 0, or o .

Making P1, P2, P3 homogeneous by the introduction of y,

which is afterwards replaced by unity , so that

P = (an , bz, c)(x, y ) , ... ,

then the three distinct linear transformations of $ 153, which

leave daJX unaltered, are found to be

ОР, ӘР, ЭР , ӘР. ӘР /ЭР .

sdo S /(A +602 + EY

OP
1 2 2

z

ду / дах ду де ? ay doc

(R. Russell, Proc. L. M. S., XVIII., p. 48.)

Txtm
(Au, + Bu,){ u,du - uydu ,Now dx, or

NG { ,(2,4 4,4) }

where Uy, U, are defined in $ 155 , is reduced by the substitution

ya = uz/Uy, or poc - )/(2-0),

+ ?to the form dy.

V (1 yº)
S 4 + By
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91dy

S Or

This integral has been considered by Richelot (Crelle,

XXXII., p. 213) ; and by differentiation we find

d 1 - Y2_1 + ( 2-1)y2

sn - '( 1/ 2 + 1 )y
2 1 +yº ( 1 - y8)

- y2_1- ( 1/ 2 + 1 )y2 ( 1/ 2 + 1 )y2–1

sn - ly
dy 1 + y J (1-48) (1-98)

according as yº is less or greater than /2-1 ; and thence the

integration can be inferred ; the value of K to be taken is

12-1 or tan 221', when it will be found that K'/K= /2 .

161. As further applications, consider the integrals

S (Ap)-5d ", S (A $ )-#do, / (Ap)- $do,/ (Ap )-$dø,
where Ap = 1/ ( 1 - b2sin'p ).

(Legendre, Fonctions elliptiques, I. , p . 178.)

Putting Ap = x?, and 1 - 62 = c2, then

202da

(1 – 24.24 --- c2)

the integration required in the rectification of the Cassinian

oval, given by

7212 = ß?, or 94 — 202p2cos 20 + a + = B4,

where r , r, are the distances from the foci ( + a, 0 ).

The expression l - 24.04 – c2 can be expressed by H2– X ,

where X = 24 + c, H = ( 1 + coca;

and now the substitution y =X/H gives

do
a+ _{ ( 1 + c)y + 2Jc} , x- {( 1 + c )y- 2-/c} ;

3C C

so that f(Ap)-_de

ve+29[enu{ature on The

dy dy

23 J { 1 + c)y-2./c} \ (1 – y ) +27 J{(1 + c)y + 2Jc } /(1 - y2)

s x² + / c 22-Jc 1 -vc 17
1

(2 + 2c 1 (1 + Jc). 7 (2 + 2c) ( 1 – Vc) ' (2 + 2c

by means of the results of ss 39-41 .

In the Cassinian

- ßt

22,2

[ {(12 + a )2 --14} sin - 1 {p4–(7•2 — a )2}
2ar 2an

JA 204 — at+84

dr [ {4a494 — (74 + at - 34)2}

0 = } cos-174 + a* — 84

11
= COS

r

]]
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S =

ds 20272

dr { a +82)2 – p4} / {p4~ (a? - 32)2 }'

vla + B2) 2a2qadr

{(a ? +82)2 – p4} / {p4 - (a2-82)2}

Now, if we put

p4 = (a ?+22) cos-p + (a ?— B2)2sin o ,

then a ?

T ] =

do.

2 JelaVi{l+o)y-2% )/(1+ya)2/0 S ) 1 y

f

(Ap)-&do

0

a? 4a -82
1 .

(a? +82) (a ? +32)2

2dx

Similarly
N (1 - **. 24 - 0 )

dy 1 dy

2J0J /{(1+c)y-2.Jc}/(1-y?) 2.JcJ V {(1 + c)y +2Jc }/ (1-44)

which can be expressed in a similar manner.

Again, substituting A?p = x3, then

3 dx

2 J ( 1 - 33.202 -0 )

adac

2 (1 - 23.23 - 04)

particular cases of the preceding general integrals.

Mr. R. A. Roberts (Proc. L. M. S. , XXII. , p . 33) has shown

that (lx + m )(ax6 +263+ c) - or - bdx

can be expressed as the sum of elliptic integrals, not always

however in a real form .

Mr. Russell shows that if x - 01, 2 – 0, are the factors of P

a quadratic factor of the sextic covariant, then

+ m dx

JP1JX

is reduced by the substitution

y2 =p(x– 0,)/(0 - 02)

Ay?+B
to the form

Vlays+ 2byt + c)

and this again by the substitution

z = y Ja + y -20

PV(2–22/ac) + 91/(x + 2 4/ac)
to the form

(22– 4 Jac) / (x2 + 26-2, / ac)

two elliptic integrals, not necessarily however in a real form .

19

f .

dy,
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Abel's Theorem applied to the Addition Equation.

162. Euler's Addition Theorem is now found to be a very

special case of a Theorem of great generality, due to Abel, the

method of which we shall employ here, in the very limited form

required for the Addition of the First Elliptic Integrals.

Consider the points of intersection of the fixed quartic curve

whose equation is

ya = X, ... ....( 1)

with any arbitrary algebraical curve whose equation in a

rational form may be written

f (oc, y) = 0 . ...... ...( 2 )

By continually writing X for yż, we can reduce equation

(2 ) to the form P + Qy = 0); ....(3 )

and now the abscissas of the points of intersection of ( 1 ) and

(2) are given by the equation

P + JX = 0, ..... (4 )

or, in a rational form , P2 - Q2X = 0. .....( 5)

Denoting the degree of this equation (5 ) by M, and its roots

by 8 , 29, ... Un, Abel puts

Yræ = P2_Q_X = C ( — « 1)( — X ) ... (oc — Xu), .........(6)

and now he supposes the roots of this equation to vary in

consequence of arbitrary variations in the coefficients of the

terms in equation (2), corresponding to arbitrary changes in

the shape and position of this curve ; the coefficients in

equation ( 1 ) are however kept unchanged .

If əP, an denote small changes in P and Q due to the

changes in the coefficients, and if då , denotes the correspond

ing change in any root o , of equation (5) , then

Yo'lg. dx, + 2P8P - 2Q8QX , = 0,

or, making use of equation. (4),

V'x . dx , -2(QOP - P8Q )JX, = 0,

= QƏP - P8Q_ Ox !
..... ( 7 )

JX, px VX,

suppose.

Now, if the degrees of P and Q are denoted by p and q,

then the degree of Ox is p+ q ; and we shall find this is

always at least one less than u - 1, the degree of y's , or two

less than u, the degree of yx.

da ,
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For if in equation (3), Pa and Q-X are of equal degree, then

q = p - 2 , and u = 2p ; so that up - q = 2 ; and u -p - q is

greater than 2, if q is less than p - 2.

But if q is greater than p - 2, then the order of yx is given

by that of Q2X, and therefore u = 2q+ 4, while p = q+ 1 at

most ; so that up - q = 3 at least.

Since xDx is thus of lower degree than yox, we can split the

fraction « Ox / into a series of partial fractions, such that

αθα α , θα ,.

You

and now, if we make x =if we make x = 0, we find that

r = u

=iV'x ,(ac— x,)- )7 =

Σ

θα ,.

Yoxcam
0 ,. .....( 8 )

r = u
770

r = u

ge = 1

Sada,
a

2

a theorem in Algebra due to Euler ; otherwise stated as

Xa ?

Σ 0 ;.. ........... (9)
1 (x , - x )(a ,.- . ,) ... * ... (23. - )

provided m is less than k - 1, the * marking the position of

the missing factor 3;. — Xp

Applying this theorem to equation (7), we find

dw«/ / X, = 0 ,... :(10)

so that, if, in consequence of any finite alteration of the

coefficients in equation (2) or (3 ), the roots of equation (5)

become changed to ' ,a'2 , ... , x'u ,then

dx,/7X, + ) **da,//X2 + ... + dau = 0,...... (11)

c' x

the Theorem of Abel, as required for present purposes.

It is the combination of the theory of Integrals and of the

theory of Algebra which furnishes the key of Abel's Theorem ;

the algebraical laws are expressed very concisely by a single

equation (5 ), of which the variables are the roots, and whose

coefficients are not independent, but are connected by a number

of relations.

Thus, if we take P of the pth order, and Q of the order p - 2,

we have a plexus of u or 2p equations of the form (4)

AXqP + Bx,h -1 + yx ,h -2 + ... + ( ŷ 2c,h - 2 + ...) / X , = 0);

and the elimination of a, ß, y, ... , y , ... leads to a determinant

of 2p rows, each row of the form

2,P, 2,2-1, x ,k - 2, 20,h -2JX ,, wgh -3 X1,

M

s ... , X.
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1

X

4

+

163. Suppose for instance that (2) is the parabola

y = ad ? + 28c + y . (2) or (3)

then equation (4) becomes

ax2 + 23x + y = X = 0 , .....(4)

and (5) becomes the quartic equation

(ax2 + 23x + y )2- X= 0, ....(5)

Denoting the roots by 27, X2,Mg, xg, then the elimination of

a , b, y leads to the determinant

?, X , 1 , Jx

?, X2, 1 , Jx, = 0,

832, X3, 1 ; » X

2C4 ?, X4 , 1 , vX

as the integral relation, corresponding to (u = 4) ,

day dxa diz dx
-0.

78,78, 78, 78,

By making a = va, so that the parabolas are of constant

size, or by writing equation (5) in the form

(ax2+ 2B.c+y)2 - aX= 0,

one root, X4 suppose, becomes infinite ; and now

40(B - b )x3 + (4B2 + 2ay - bac)x2 +4(By - ad )x + yu- ac = 0,

so that

4 (3-6)( 4 + x2 + x ) = 6c— 27–482/a

= 2ax,2 + 48x3+ 6c - 2 / a / X , -432/a,,

4 (B - ) (@ z + * 2) = 2ax 2 + 46x2 + 6c - 2 /aX,-482/a .

Now the two relations

ax + 2ßx; ty - axX = 0,

ax,2 + 23x2 + y - va / X2= 0,

give by subtraction

(0 , - x2){ a (x1 + x2)+23 } = Jul X , -X,),

X , ?
482

= a (a + x )2+48 (x2+ x2) +
1-2

= a(Q4+ x )2 + 4b( + x2) + C,

where C = 2ax 2 + 4bxz + 60-2,Jan/ Xg ;

and we thus obtain Euler's original integral relation , the

general integral of the differential relation

dx /JXz + dx, _X = 0,

when C is constant ; and a particular integral of

dx /JX + dx, JX, + dx /JX, = 0,

when xz is considered as variable.

or

a
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2,
2

X,

164. When X is in Legendre's canonical form 1 –22.1 - k %22,

then Abel takes P = ax + xcº, Q = b ;

and now equation (6) becomes

fox = (2x + )2– 62 (1 – 22)( 1 - k %22)

= 26 — (bạK2 – 2a)x + + (62 + 62K2 + a ?) 2 -- 62

= (x2 – 2,2)(x2 – 2,2)(22 — X ,?),

where
2 2 + + 2= b2k2— 2a ,

8,2x72 + 372x72 + x22x22= 62 + 6 %kº + a ?,

2,23,2x0,2 = 32

But a and b are determined by the equations

ax , + < +bX = 0, ax2 + +bX = 0) ;

so that b = 27& 3(« ;? — ~ ,2)

X , X -X,X_ '

and therefore, as in formula (1 ), $ 116 ,

2C22 XyX , + x , XX X1
23

XzX , -X, X 1 - K2X202

Also 1 - x2.1-2.2.1
- x2 = 1-62K2 + 20 + 62 + 62K2 + a2-62

= ( 1 + a ) ,

while x2 + x ,?+ ,2 – Kºx ,20,20,2 = -2a,

so that

2—2,2 – 3,2 – 2,2 + k +x42x22x22= 2( 1 + a)

= 2/(1 – 2,2.1 - x2.1 – xg ),

or (2- « 2 - 3,2– 3,2 + k %2,200,200,2)2= 4(1 - x ,?) (1 - x2 ) (1 -- Xg?),

which may also be written

(1 - 3,2) = ( 1 x72.1 – X22) X722 / ( 1 - k xg?),

as in $ 119 , with a = snu, , = sn v, & z = sn (u v ).

This, with x, = sn Uy, X , = sn U7, Ug = sn Ug, may be written

1 - cn - u , - cnluz - cn’Uz + 2 cn uycn Ugcn Uz = k sn ?uysn uzsnºug ;

where U1 + U2 + Uz = 4K ,

(S 131) ; and, with a triangle of Class I., is equivalent to the

formulas in Spherical Trigonometry

1 - cosa - cos2b - cos-c + 2 cos a cos b cos c = k?sin’a sinab sinac

= sin A sinab sin ? c = sin’a sin B sin c = sin’a sinab sin’C .

165. To obtain the Addition Theorem for Weierstrass's

functions, we consider the intersections of the cubic curve

y2 = 4x3 — 922-92, or X, ....... ( 1)

with an arbitrary straight line

y = ax + ; ( 2)
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a =

Now, if X1, X2, X, denote the roots of the equation

4x3 —-922-93- (ax + 3 ) = 0 , ... ..(5 )

then
axy + B + X = 0 ,

AX2 + B +NX, = 0,

/ XE - VX, ,so that
_X75X7 - X / X

B =
X - 2 X1 X2

and (S 144)
-- X , ?

x1 1a?

21-22

The elimination of a and ß between these two equations and

axg + B + / X2 = 0

leads, as in § 144, to the determinant (G)

1 , X1, X 1 , gu , poʻu

1 , X , ZX, = (), or 1 , ov, pov = 0 ,

1 , X3 , X 1 , yw, rów

where utv + 2 = 0.

In addition, from (5),

XqXz + XgX1+ X7kg = -492- jaß,

X % 94 , = 293+482;
so that

(x1 + x2 + xz)(4x4XzXz- 93) = (XzXz + Xg& z + x7x2 + 492)2 ........(I)

166. Consider the intersections of the fixed cubic curve

y3 = A x3 + 3Bx2 + 3Cx + D , ....... ... ( 1 )

with a variable straight line

y == ax + ß .... ..... ( 2)

Then Yox = (ax+ 3)2 – (A2P + 3Bx2 + 3Cx + D )

== (Q3 — A)(x − x)( &C --- x ) ( — X3), ...... (6)

and
X1+82 + x3 = -304B - B

ai- A

Wzilz + xyly+ && , = 3a82 – C
a? - A

23 -D

Xyz
Q? - A

Denoting by Yu, Y2, Yz the corresponding values of y, then

Y1Y2Yz = (axi + ß )(ax , + B )(ax: + ß )

= a®X XqXz + { B - ] ( A )(x1 + x2 + xz)} (Wg& z + Xg& z +2,22)

+ { C+ } (Q — A )(XqXz + XgX7 + « )} (X7 - X , + xz)

+D- (a? - A )XX2X3

- Axzxzxz + B (xzxz + Xg& z + & % ,) + C (2x4 + x2 + x2) + D ,

as in § 145 .
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so that
2

+

+

3
1 3

+3

(az- -R
+

-0 ,

Now, if the constants a and receive small increments

da and sp, then

Y'x_dx ,+3(axy + ß ) (c ,da +88 ) = 0,

and
Víx = ( 3— A)(x4 – x2)(x4 – x3),

dxn wyda + oß
= 3 ..(7 )

yi (as -- A )(22 – ) @ 1 -- x2)

and

da dang dang = 30
X2

da
X3

Y Y X3-Xq.& 1-22 X 1 -22.82--R3 22-23.23-2q/ a

1 1 1. 8

03-21.87 - X , ' 84-89.8 , -83 ' 82-93.23-2/08 - A

.( 10)

and the sum of the three integrals is a constant, which can be

made to vanish by taking for the lower limits a root of the

equation y = 0.

In the particular case of the cubic curve

203 + y: = 1 ,

the relation expressing the collinearity of the three points is

angil , + 919293 = 1.

Now, as in $ 145 , with g, = 0 , 9, = 1 , and

(1 – 2c3)
gou = ;pu = -3

and, by symmetry, with

(1-73)
pv) po'v = - 13

1 - y

we find from (F) S 144, after reduction ,

pofu - poʻry ?
pritv) = 1 -- Sou - pov = 1,

pu - pv)

utv= , a constant.

With pa= 1, then ($ 149) p2a = 1 ; so that ( 62)

p2a = (2w , -a), or a = 3w.g.

We may therefore put

U= iwa+ t, v = tw , -t,

and express x and y by functions of t.

For any other arbitrary value of a, the integral relation

connecting x and y will be, by $ 145 ,

(1 — xº)(1-43)(1-23) = (1 - Xyz)3 ;

and treating z as constant, this leads to the differential relation

( 1 – x3)- $dx + (1 – 73)-dy =

1 + x

1 - X1 - 2

1 + y

1 - Y .

164
so that
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We can put

1-2
1 - Y

( 1 – x3) ( 1–43)} (1-2 )]

Jou SOV = Pw
1-2

where Utu+w= 0) ;

and yw = 1 , for the value 2 = 50 ; and then

203 + y : = 1.

167. When the quartic X is resolved into two quadratic

factors N and D, we may replace (1 ) by the quartic curve

y2 = N / D ; .... ( 1 )

and now equation ( 4) is replaced by

PD + QAN = 0 ; ... ... (4 )

so that equation ( 5 ) becomes

P2D- Q2N= 0. ..... (5 )

The elimination of the constants from the plexus of equations

determined by the roots of this last equation (4) leads to

determinants, whose rows are of the form

XP / D ,, ,,P -1 JD, ... , X ,9 _Nm, 2,9-1JN, ....

For instance, by taking P and Q linear, so that the variable

curve (2 ) or (3) in § 162 is a hyperbola, we can obtain the

integral relation of $ 154 in the form

VN, D , - JN,JD.N3JD.- _N.JD; = constant.

81 82 X3 -- 24

(W. Burnside, Messenger of Mathematics.)

We have taken X as a quartic function of a, so as to apply

to the elliptic functions, but Abel's theorem holds for any

higher degree of X, the method of proof being exactly the

same ; and, according to Klein , we resolve X, supposed of

even degree, into factors N and D, differing in degree by 0 or

a multiple of 4, when we wish to make use of the fixed curve

ya = N / D.

168. The reader is referred to the treatises of Salmon or of

Burnside and Panton for the proof of the Theorems in Higher

Algebra quoted here ; they are easily verified, however, if we

work with the quartic in its canonical form

U= 204 on 22y2 + y4 ;

when
H= -mat + (1-3m %)o - ya - my“,

G = { (1-9m22)xy(24 – Y4).
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The following examples, taken from recent examination

papers, will illustrate the character of the algebraical work.

EXAMPLES.

1. Denoting by U the binary quartic, reduced to its canonical

form , x4 - 6mx- y2 + y4, its quadrinvariant and cubinvariant by 92

and 93, and its Hessian and sextic covariant by H and G,

prove that

(

Ox2 lay

+

( 9)*-2

(i. ) 4m3–g m - 93 = 0) ;

(ii. ) H + mU is a perfect square ;

(iii.) 4H3-92HU2+ 93U3 + G ? = 0 ;

ƏH

(iv.) H = 16H (gH –9 U )(9 ,H + 393U );
ay ' axc

22H/2012 22H OUOU, 22H /> U \?
(v. ) -2 32( 9,U2-6H2);

дхду дах ду ду? \ де

22U /ƏH12 22U ƏH ƏH 22 U , 2

( vi.) = )
2x2 даду дах дут ду? \ де

(vii. ) the Hessian of 10 + uH is

(A2-99, u ?) + (kgAu + lau ?) U,

and the sextic covariant is

1(413 – g2 -934 ) G.

2. Denoting the roots of 4e3-9,0-92 = 0 by @j, Cz, eg, prove

that the roots of (62 +19.) + 2g = 0

are of the form
J(ezeg)+1(ezen)+1(ezen) .

3. Denoting the discriminant , Hessian , and cubicovariant of

a cubic U by A, K, and J, prove that

AU ? = J2 + 4K3

(Work with the canonical form U = ax : + bys.)

Denoting the same functions of U + uG by A', K', J',prove

that A ' = (22 -- u - A ) A ,

K ' = (12- u’A ) K ,

J' = (12 – u’A )(AJ + uAU ).

4. Prove that X and Y in § 139 have the same invariants 92

and g, (Burnside and Panton, 1886, p. 418).

5. Prove that, in $ 156 ,

Jez - eg) P + J (ez - e,) P , + en - en ) P

is the square of a linear factor of X.
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1

6. Discuss the properties of the quartic X ' in $ 153 , whose

roots are a', B', 7 , 8 .

7. Prove that (8 160) 01, p1 ; 02 , 03 ; 03, 02 ; define an involu

tion of the roots of the sextic covariant G (R. Russell) .

8. Prove that the cubic substitution

y = -- (6x2 + 3cx2 + 3dx + e)/(ax: + 36x2 + 3cx+d) = -X,/X

dy 3dac

makes

79,4 , -93Uy) (9,4x+39 U2)

where Ux = (a, b, c, d, e) (2, 1 )).

(Hermite ; Crelle, LX . , p . 304 ; R. Russell, Proc . L. M. S.,

XVIII., p. 52.)

P , P
9. Integrate

H 1X

10. Prove that, with 8 = you ,,

po 2u = ( 2,6 – 19294--109383 – 69,292 - 192938–9:2 + 31292%)/ 80"34 ;

(p2u - e) = - (52 — 2es – 2e2 + 192)/s'u ;

(892u - ca)+ (p2u – ep)= – 2(8 - ea)(s— eß )/p'u ;

4 2w= s + е — е , . et — езе, — ез . е. — С. Оз — е . 4 — е,
+ +

Sei

11. Prove that, if

(i . ) PV ; -20 , -40) = 5 , then p2v = 0 , 93v = -5, p4v = 1, ...

(ii .) ®( ; -60, – 10) = 5, 3 ,

(ii.) ( v ; -15, 19) = , ............ ,

12. Prove that

(i .) ( A + Bx)dx /y is elliptic, if yº = ( 1 -- ~ 2)(a + 3& — 4x2) ;

af .

(ii .) S (A + Bx + Cy)dx is elliptic , if
ay

f (x, y) = (a, b, c , f, g, h)(@?, y², 1) .

(W. Burnside).

s - l2 8 - la

... O ,
4 5

2

4 5 6

2 5 7



CHAPTER VI.

THE ELLIPTIC INTEGRALS OF THE SECOND AND

THIRD KIND.

169. The Elliptic Integrals, and thence the Elliptic Func

tions, derive their name Elliptic from the early attempts of

mathematicians at the rectification of the Ellipse.

It was some time before mathematicians perceived that the

simple integral to begin considering is

Fø = / dp /Ap,

which has not originally such a special connexion with the

ellipse ; but the name Elliptic Integral has nevertheless been

retained generally for all integrals of this nature.

To a certain extent this is a disadvantage ; not only because

we employ the name hyperbolic function to denote cosh u,

sinh u , tanh u , ... , by analogy with which the elliptic functions

would be merely the circular functions cos o, sin , tan , ... ;

but also because it is found that the elliptic functions are a

particular case of a large class , called hyperelliptic functions,

but included in a larger class, called Abelian functions after

Abel, which, beginning with the algebraical, circular, hyper

bolic, and elliptic functions of a single argument u (p = 1)

are in the general case the functions of p arguments which are

met with when we consider the integrals

| (1, 0,a? ...,XP - 1) dx /JX,

arising in the linear transformations of ſdx)[X, in which

X is a rational integral function of w of the degree 2p + 2 ;

for now the linear transformation (lx + m )/(lx + m ') converts

Sdx /JX into (lm' — I'm ) / (l'x + m'p-1dx/ JX.
175
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170. Legendre's elliptic integral of the second kind has already

been defined in $ 77 ; and denoting it by Ed, then the length

of the arc BP of an ellipse is given by aEd, where the arc BP

and the excentric angle of the point P are both measured from

the minor axes OB, and now the modulus is the excentricity of

the ellipse .

The quadrant of the ellipse BA is given by aЕ, where,

as in $ 77,E denotes /Adap, the complete elliptic integral of
0

the second kind, in which p = žm .

The perimeter of the ellipse is therefore 4aE, the same as

that of a circle of radius aE/ .

The periodicity of sin p and Ap shows that,as in § 14 ,
+0

T + + 2E+EO,

0

and generally Em7 + 9 ) = 2mE + Eo,

when m is an integer.

Expanded in ascending powers of the modulus k,

Ap = (1 – K?sinºp)} = 1- 22.4.6
n = " 1.3.5 ... 2n - 1 (k sin o )2n ;

2.4.6 ... 2n 2n - 1

so that, employing Wallis's theorems of integration , as in g 11 ,

n = (1.3 .1.3.5 ... 2n - 1)2

E
1 . Σ 2.4.6 ... 2n 2n - 1

n= 1

2n

K

김
0

whence the numerical value of E can be calculated .

Tables of the numerical values of EQ for every degree of $

and of the modular angle are given in Legendre's F. E., II. ,

Table IX. ; while the values of log E are given in his Table I.

for every tenth of a degree in the modular angle.

We reproduce this Table of log E , and of log E ', correspond

ing to the complementary modulus k', to 7 decimals, and to

every half degree in the modular angle ja, corresponding to

the values of log K in Table I. , p. 10 .

171. By differentiation and integration , we prove that

Fo d do _Eg ka sin q cos 0
;

dk k2 dk Δόφ

and therefore, with p = 1 ,

d / E K

(KK ):
K21 TK

d'E

CE ) 2 )
K AP

dklk K
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We can now prove Legendre's relation, that

EK ' + E'K - KK ' is constant, and = 1 ;

for denoting it by A, we find that dA /dk = 0, so that A is

independent of k ; and taking k = 0, then

A ?( 0, K ) +4 ( V ,K ')
A = lt ŠT.

Δ(φ, κ) Δ ( ψ , κ )//
0 0

0

o
r

172. In Jacobi's notation, with pramu,

Ep = E am u = ſdn udu ;

and now, from the quasi-periodicity of am u (S 14),

Ema + ) = Eam (2mK + x ) = 2mE + E amu,

where m is an integer.

We may therefore, as in $ 78, separate Eamu into two

parts, one the secular part, increasing uniformly with u, at a

rate 2E per increase 2K of U, and the other a periodic part,

denoted by Zu in Jacobi’s notation, and called the Zeta

function ; so that

Eam u = Eu / K + Zu,

Zu = /(dn’u–E )K )du.

The Addition Theorem for the Second Elliptic Integral.

173. A well-known theorem, due to Graves and Chasles,

asserts that if an endless thread, placed round a fixed ellipse, is

kept stretched by a pencil, the pencil will trace out a confocal

ellipse (fig . 22). (Salmon, Conic Sections, S 399. ))

If the excentric angles (measured from the minor axis of the

ellipse) of the points of contact P, Q of the straight parts of

the thread PR, RQ are denoted by 0, y, so that the

arc BP = aEd, arc BQ =aEy ;

and if we put p = am u, Yoram v, the modulus k being the

excentricity of the ellipse, then , as asserted in ex. 6, at the end

of Chap. IV., R moves on a confocal ellipse, when u-v is

constant, and conversely.

For the coordinates of R being given by

cos Y- cos 0 sin p - sin y

sin (0-4) sin ( -V

we find from Jacobi's formulas (4), (5 ), and (31 ), $ 137,replacing

U and v by i(utv) and 1 (u— ),

XC6

; Y = 6
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с 2 — Спи.

= a a

sin (amu- am v) C2

848,d do–284d,-qsn }(u + v)dn3(u — v)
s,c,d, cni(u - V)

K'cn (utv)

8,c,d1 cni(u — v)

Snu Snu

y = b
== 680,

0
= 66

СІ,

sin(am u—am v) C2

R'

K

T

B D

O'
N

E
Q

MM
P

SA/ HH
S '

1

!

1

1

OC

Fig. 22 .

Therefore

so that

Y

cn ) cn ;
b

and (oc /a )2+ (3/3 )2 = 1,

where a = a dc }(u , v ), B = bnc } (U—v) ;

a-- 22 = a2-64,

and therefore R describes a confocal ellipse, if u - v is constant..

If utv is constant,

we find
( c/a )2- (y / B )2 = 1,

where a ' = ak sn (utv ), B' = ak cn (u + v ),

a'? + 8'2 = u_k2 = a ? — 62,

and R therefore describes a confocal hyperbola (MacCullagh).

To realise mechanically this motion of R on the hyperbola,

the threads RP, RQ must pass round the ellipse, and be led ,

in the same direction, round a reel moveable about a fixed

axis at C ; so that, as the reel revolves, equal lengths of thread

are wound up or unwound.

If the hyperbola starts from the ellipse at L, then

PR - arc PL = QR - arc QL.

so that α
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If the threads are wound in opposite directions on the reel ,

then R will describe a confocal ellipse, as at first ; but in this

case the reel may be suppressed ,and the thread merely made

to slide round the ellipse , as in the theorems of Graves and

Chasles.

Moreover, it is not necessary that the tangents RP, RQ

should proceed to the same ellipse, but to any two fixed con

focals, and the same theorems hold .

If tangents R'P ', R'Q', are drawn to the ellipse from any

other point R'on the confocal hyperbola RR', forming with RP,

RQ the quadrilateral RrR'r', then r, r ' lie on a confocal ellipse,

by the preceding theorems; and now a circle can be inscribed

in this quadrilateral whose centre is at T , the point of concourse

of the tangents to the confocals at R ,r, R ', r' ; for TR, Tr, TR ',

Tr bisect the angles of the quadrilateral ; (Salmon, Conic

Sections, $ 189).

If R is brought up to L, the circle touches the ellipse at L ;

so that the point of contact of the circle inscribed in the area

bounded by two tangents and the ellipse is at the point where

the confocal hyperbola through the point of intersection of the

tangents cuts the ellipse.

174. Putting 24 - v = w , or Fø- F &r = ty,

then when v = 0 and Q is at B, u = w and P is at G where

p = y suppose ; while R will come to D on the ellipse RD, where

it is cut by the tangent at B.

Now, since

PR+RQ- arc PQ=BD+DG- arc BG,

arc PQ- arc BG=PR+RQ - BD-DG ;

therefore E - Eys- Ey = a certain trigonometrical func

tion of p, y, y, which is found to be -- kºsin o sin f sin yi

this is the Addition Theorem for the Second Elliptic Integral.

For PR2= a sino
sin p-sin y

cosy - coso
0

sin(0-4) sin (0-20)

( a -cos- p + bäsin’d ) {1- cos( p - 1 )}

sin (0-4 )

1 -cos(0-4)
so that PR = aAQ

sin (0-4 ) sin (0-0

1 - COS Y
while BD = Y DG = aAy

or

2 2

a={si }
+62 -COS

2

>

RQ = aAy1 - cos(4-1)

1 - cos

r

sin y sin y
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sin y

Therefore, by $ 121 ,

Ap +44-41- cos(69–4 )}= a2+ 4 (1-cos(43–4)}PR + RQ = a

sin(0-4)

1+47{cos y - cos($ —%)} ;PR+RQ-BD-DG= a

1+47{cos o cos y + sin o sin yrAy - cos(0-4)}

1 - Apr
sin o sin y

sinsinn

al

sing

ab
sin y

ak’sin o sin y sin y.

In Jacobi's notation this is written

E am u—E am v -E am(u— v) , or Zu- ZV -Z(u- v)

k’sn u sn v sn(u - v).

175. Putting v = w ,and therefore u = 2w, then

E am 22- 2 E am W = kasn 2w sn’w,

or changing w into tw ,

1 - dnu

Eam w- 2E am lw = -kºsn w sna1w = (S 123) .
1 + cn w

Then PR + RQ - arc PQ = BD + DG - arc BG

1 - cn w

= a( 1 + dn w )
aEam w

SN W

sn w

sn 2

sn. w

30ย 2a w) ;

and now

1 - dn w

= a ( 1 + dnw ) tasn w 2a E am w

1 + cn w lton w

sn tw dn tw
- 2a E am w = 20 - Eam w

1 + cnw cn iw

cn jw, or cn :(u—V ) = b1B , where B = OK .

176. A ready way of proving the Addition Theorem is to

take the spherical triangle of Class II. , in which

A = am vt, Bram Vz, C = am Vz,

where Vi tv2+ vz = 2K ,

and to vary all the sides and angles, keeping k constant.

Then dv, tdv, + dvz = 0,

dAcos a+ dB/cos b + dC /cos c = 0),

cos b cos c.dA + cos c cosa.dB + cos a cosb.dC = 0 ,

or (cos a- sin b sin c cos A)dA + (cos b - sin c sin a cos B)dB

+ (cos c - sin a sin b cos C ) C = 0,

cos ad A + cosbd B + cosdo

= k %(sin Bsin Ccos AdA + sinCsin Acos BdB + sin A sinB cos CdC )

= k dl(sin A sin B sin C) .

or

or

or
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را

Integrating,

E ( A ) + E ( B ) + E (C ) -2E = x ?sin A sin B sin C,

since

|cosacos ad A = ) [ (1– Kʼsin’A)dA =E(A ) ,

and Va = 0 makes B = 0, and A + C= , or E ( A ) + E (C ) = 2E.

In Jacobi's notation

E am v, + Eam v , + Eam V -2E= k%sn vsn v , sn vg,

Zv + Zv2 + Zv; = k sn vysn v,sn V'z,

with Vitv.tv, = 2K.

With u+ v+w= 0,

Zu + Zv + Zw = -k’sn u sn v sn W,

Zu + Zu - Z (u + v ) = Késn u sn v sn (u tv).

or

Or

Or

or

Fagnano's Theorems.

177. The particular case of the Addition Theorem, obtained

by putting y = it , or u - v =K, was discovered by Fagnano

( 1716), and leads to his theorems, namely, that if P, Q are two

points on an ellipse of excentricity k ,whose excentric angles

0, y measured from the minor axis, are such that

Apay= k', or tan o tan y = 1/k' = a /b ,

then the arc BP + arcBQ- arc AB= Akºsin o sin y,

arc BP - arc AQ = ak’sin o sin y = kwx'/a ;

# 2x2 C12

and then tan o tand' =
(a? — 2)( C12 – 22) 82'

K oc-x 2̂— a ?(2c2 + 2'2) + at = 0 .

On reference to fig. 23 it will be found that, if OY, OZ are

the perpendiculars on the tangents at P and Q, then

(i. ) AOZ= 0, AOY=%,

(ii . ) arc BP - arc AQ = PY = QZ = VQ - PT,

so that V2 = PT, and PY or QZ = k ?xxc | a ;

the tangents at P, Q meeting OA , OB in T , V ;

( iii.) OP2-0Q2 = 0Y2 - OZ2 ; (iv. ) OY.OZ= ab.

When P and Q coincide in F , then F is called Fagnano's

point ; and then

(i .) the arc BF- arc AF= a - b ;

a3 73

(ii. ) the coordinates of F are
a + b

(iii .) KF = A , FH = b, FG = A - 6, OG = N/ ( ab ) ;
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a

(iv.) the tangents at P, Q intersect in R on the confocal

hyperbola FRD, through F ,D, whose equation is

22 72

a - b ;
b

(v. ) the tangents at P and Q intersect in R ' on the confocal

ellipse KDH , through K ,D, H , whose equation is

22,42

+ = a + b ;
b

( vi.) PR - arc PF = QR - arc QF ;

( vii.) the circle inscribed in the region bounded by AD, DB

and the ellipse AB touches the ellipse at F ; ete.

The proof of these theorems is left as an exercise.

CL

K

R'

B

Ng' 2 Y

R

E

M
PР P

A H

Fig . 23 .

dp

dy dulz2 + P, while PY=

178. Denoting the arc AP by s , the perpendicular OYon the

tangent at P by p, the angle AO Y by y, then by Legendre's

formula

dds dºp

dy

s + PY = / pdys;

and in the ellipse

p = / (a cosay, + b sin’y ) = aAys,

while

PY= -dp /dy = akºsin y cos y /Aysrakésin o sin ys;

sin f aE

so that

or arc BQ - arc AP= ak’sin sin y,

as at first, in Fagnano's Theorem .
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2

so that

ca,

Confocal Ellipses and Hyperbolas.

179. If we put

x+iy= c sin(0 + 10),

then w = csin o cosh 0, y = ccos o sinh O ;

x2

+ c?,
cosh20'sinh28

22 y?

sin cos

the equations of a system of confocal ellipses and hyperbolas,

since cosh20 — sinh²0 = sin -p + cos? p = 1.

dw2, dya_dx ? dy
Then

c (cosh²0 – sinap ) ;
d $27d2d027 202

so that, in an ellipse BP, along which is constant, the

arc BP = c / (coshạ0 -- sinʼp )dø = aE $

as before, with a = ccosh 0, and the modulus equal to the

excentricity sech 0.

For the confocal hyperbola, along which p is constant,the

arc is given by

c / /(cosh²0– cos? p)do,

which can be expressed by elliptic integrals of the first and

second kind, of Legendre's form .

Putting

a = csin o, b = ccoso,

the equation of the hyperbola is

(oc / a )2- ( y /b)2 = 1 ;

and now the coordinates of any point P on the hyperbola may

be given by a cosec x, b cotx ; and the tangent at P by

x- % cotx = 1,

and then amh 0 = -X

cosh = cosec X, sinh 0 = cot X, tanhtanh = cos x, etc.

The tangents at P, and at another point Q defined by x ',

will therefore meet at a point R, where

cot x' -cot x sin (x - x ) y_sinx - sinx

cosec x cotx'- cosec x'cot x cos x'- cos x 6 cosx' - cosx

When we put

x= am u, x ' = am v

the modular angle being o, then as in § 173 for the ellipse,

C

C

cosec x
a

a
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BC 8,c,d, C2 cn i (u - V)

a sd,s,d, s,da sn (utv) dn (u - v )

y _ ,8 ,c, d, Cq cn z ( + v)

bsdys,d, sd, sn j(u tv) dn }(u — v )?

and therefore, eliminating en 3(u , v) and dn } (u - v ),

( ac /a²) + (3/3 ) = 1,

bcn i(utv) _a cn ] ( u tv)
BE

K sn (utv)'] K’sn } (u + v ) Ksn }(u + v )'

and
a — B2 = c2= a²+32,

so that R describes a confocal ellipse, when utvis constant.

a

where a

y

R

F

P

X

R

A MES N

2

Y

OC

V

1

{

a =

or

Fig. 24 .

180. By putting utv = K , we obtain theorems for the hyper

bola (fig. 24) analogous to Fagnano's theorems for the ellipse.

Now ( 8 123) c / ( 1 + k'), B = crk',

aż = c(c + b) , B2 = cb ;

and R describes the ellipse FD, whose equation is

22

c+ b'b

which will intersect the hyperbola in a point F , the analogue

of Fagnano's point on the ellipse, the coordinates of which are

c sin /(1 +cos p ), c(cos )

X 3
2 C,
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or

and thus

Now , as in $ 57, with

x= amu, x ' = am v , and utv = K ,

AxAx' = k ' = cos ,

and
cot x cotx' = k' = COS ,

sinh 0 sinh 8 = k ,

and if x , y and X', y denote the coordinates of P and Q,

x= a cosec x = aAx/cos ', ' = a cosec x ' =' aAx/cos X ;

y = a cot x = ak’tan x ', y = a cot x ' = ak'tan x ;

YY' = a ?k' = c- coso.

Drawing the perpendiculars OY, OZ from 0 on the tangents

at P, Q, and denoting the angles AOY, A OZ by w ,w' ; then

do y /62
tan

dy /a?
tan cos x= tan o tanh 0 = sin o sin x '/Ax';

sin w = sin o sin x', cosw = Ax', sin w ' = sin o sin x, cosw ' = Ax.

Now denoting OY, OZ by p, p' , then

p = 1/ (a cos w - bºsin’w ) = cn/ (sin p - sin’w ) = c sin cos x ;

pp' = c-sin -pcosy cosy' = cʻsin pcos singsinx' = c-cospsinwsinw'.

Making use of the formulas

ds dép
= _dp

do do

then

PY- arc AP =fpdw = cſ (sino-sin’w)dw

cſsin o cos’x'dx'/Ax' =cſ(A’x — « ?)dx'/Ax'

= c(Ex - K2Fx ) ;

also PY= c sin w cos w / / (sinap - sin’w )

= ctan x'Ax' = c/tan χΑχ

= c cosh O sinh 01 / (cosh²0 – sin’d).

181. The arc AP of the hyperbola is now expressed in terms

of an elliptic integral of the first and of the second kind ; we

can however express the arc by means of two elliptic integrals

of the second kind, or by two elliptic arcs by means of Lan

den's transformation (8 67).

We shall find that if we put

w+x= 24, sin ( 249 - x ) = sin w = sin o sin x ',

( 1 + sin )A(4,7)
then sec x'

sin o + cos 2y, sin o + cos24

4 sin 0
where 72:

( 1 + sin ) 1 + sin

dw2P, and PY

0

or

sin 24
tan x' =

y = 1 - sing.
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sin 24
sin w =

sin o sin 24
sin x ' =

( 1 + sin p )AV , y ) (1 + sin p) A (4,7)

1 + sin q cos 24
cos w = AX'=

(1 + sin o ) A ( y , x)'

do
dy 2d4

and

J (sin p - sin’o ) AX (1 + sin o ) A (V , )

cos w + / (sin -o - sin’w ) = AX + k cos X = ( 1 + sin )A(V, Y) ;

so that

(Ax' + k cos x )dx
(1 + sin o )AY, y )dys =

2AX

= (4x +2 cos x = )dx';

(1 + cos )tan x , secţ= 1 - cosa tanºx

sin =

Integrating

( 1 + x ) E ( y , y ) = Ex' + k sin x'- } K 2Fx ';

and now the arc of the hyperbola

AP=PY+ 2Ck sin x ' + cEx'— 20( 1 + k)E(y, y ).

182. If we put x - x = 37

then we find (S 180)

secxAx
tan =

1-cos o tan²x cos ”

(1 + cos b )sin x'cos x

Ax

1- (1 - сos p )sin x_ A’x' + cos
ACÉ, X) =

Ax ( 1 + cos p )Ax

dξ dx
and 10

A (

Now , sin(2x' - 3) = sin ,

as in Landen's second transformation (S123) ; and

( 1 + cos )ACE 1 )d & = (A % x' + cos p ) dx'/1ºx

= (4x+2 cos o +Ax Δίχ

sin x'cos x

= 2Ay'dx'+2 cos PAY - sin’dd
Ax

Integrating,

( 1 + cos p)E(Ë, ) = 2Ex + 2 cos 0FX - sin sin x' cos x '/Ax';

and the arc AP can be expressed by means of Ex and E ( §, X )

When x = x' = am K, then = } ;

also ($ 175) 2 Ex = E (k ) + 1 - coso , while 2Fx =K ;

(1 + k')E(X) = E(k) +k'K.

1

)dx

dx

X)

so that
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183. The following theorems, analogous to those of g 177,

can easily be proved by the student :

(i. ) The difference between the infinite asymptote DT and

the infinite arc FT is equal to AD - arc AF ; so that

the difference between the infinite asymptote OT and

the infinite arc AT is equal to OD +AD— 2 arc AF ;

(ii . ) the coordinates of F are (c + b)/ { (c - b)/c } , ( 63)c) ;

and the tangent FK = AD = b,KG= c ;

( iii.) the tangents at P, Q intersect in R on the confocal

ellipse through F , whose equation is

2c2 y?

c + 6 + 7
C,

and the tangents at P', Q intersect in R on the con

focal hyperbola through D and K, whose equation is

2c2 y?

C ;
C - Cl СІ

ΟΥ

>

( iv .) PR - arc PF = QR - arc QF ;

(v.) P'R ' + R'Q - arc P'Q is constant ;

(vi.) the circle inscribed in the region bounded by the

straight line AD, the asymptote DT and the hyper

bola AQ touches the hyperbola at F ;

(vii.) PT= c cot xAx, QV= c cot x'Ax', Qv = cAx'/sin x'cos x' ,

PT . QV = FK ?, PY.QZ= ca,

Qv - PT = QZ, vZ = PT,

Ax 1- cos (x - x ) Ax' l - cos (x - x ?
PR= C RQ = C etc.

sin x cos x'- cos x sin x cos x'- cos X

184. The geometrical theorems of § 173 for the ellipse hold

with slight modification for the mechanical description of con

focal ellipses and hyperbolas from a fixed hyperbola.

The threads from the reel must be led round distant points

on the hyperbola APQ ( fig. 24) and be wrapped on the curve ;

and now , starting from F , the confocal ellipse FRD will be

described , if the threads are led off in the same direction .

At D, one thread DT must be supposed of infinite length ;

and, beyond D on the ellipse FD, the thread DT must be trans

ferred to the other branch of the hyperbola.

By making the threads come off the reel in opposite direc

tions, the confocal hyperbola DK can be described, starting

from D or any other point R.
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185. The integration of the functions of S 77 can now be

expressed by means of the elliptic functions,and of the function

E am u, defined by

E am u = dnčudu.

Then

=!!

x?sn?udu =u– E am u

{ xºen?udu = E am u —« ?u.

To integrate a reciprocal function, for instance ndau, we

notice that

(12

duz log dn u =k?nd?u — dnļu,

=so that

kºnd’udu =E am vs —x?sn u en uſdn u ;
and so on .

Again, since cd?u = sn ?( K – u ),

Liv’edudu = u -ſdn?(K –u)du
0

= U-E+E am ( K — 2 )

= u-E am u + k ?sn u en u/dnu ;

and since K ?nd ?u = dn'K - u ),

Skandʻudu = E-E am ( K – U)

= E am 2 k sn u cn u /dnu,

as before.

In Problem III. , 86, we find

dt dn20

= dce,
do cn20

n

and

mt= facºde= 0–E am 0+ sn 6 dn Đ/cn 0.

EXAMPLES.

1. Prove that the area of the Cassinian

74-2a2rcos 20 + a 64

is /2 / ( 4 - a-sinºp) dp, if b > a ;
-a 'ds >

0

IT

or 2/ (a- —- b*sinao) -4b4cosʻpdo, if a > b.
a
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2
K

K

к

2. Rectify, by means of elliptic arcs (pointing out the

geometrical connexion ),

(i .) y/b = sin /a, cos </a, cosh x/a, dn x/a, cn x/a, sn x /a ,... ;

(ii . ) r= b cos(60/a) or a cos(a0/b ), the pedals of an epi- or

hypo-cycloid ;

(iii.) r cos(60)a ) = b , or r сosh(b0/a ) = b , Cotes's spirals ;

( iv.) the limaçon r= a+ b cos 0, the trochoid , and the epi

and hypo-trochoids.

3. Express x as a function of s in the Elastica of $ 97.

Prove that if the ordinate is made equal to P, the perpendic

ular on the tangent from the centre of an ellipse or hyperbola,

and if the abscissa is made equal to the arc AP+ PY, the

curve will be an Elastica (Maclaurin ,Fluxions, 1742.)

d2K 1-3K dK
4. Prove that (1 - K ? + - K = 0) ;

dk dk

d2 E 1 -KE

( 1 - K ) + +E = 0.
da ? dk

Change the independent variable in these differential equa

tions from k to k , e , or u, where

Jk = sin 0 = tanhu ;

and reduce the resulting equations to the canonical form

1 day
+1= 0.

doca

Solve the differential equations in which

1- kk

I 41:21:2, cosec-20, - cosech22u, – sech -2U, ....

(Glaisher , Q. J. M. , XX. , p . 313 ; Kleiber, Messenger, XVIII .,

p. 167.)

õ . Prove that, if u, tu, + uz + = 0,

Zuz + Zug+Zuz+Zug

K +8,828384 ( c,dy code egdg cd
+ 2+

1 + k + s4828384 8 82 84

k%C4C2C3C4 sydı , s,dą , sądzszdą , sed
+ +

- K C1

k?d_d ,d9d4_ ( 8,6 S2C2

K2+dyd ,dzdal di d ,

= k / (82+8,2 +82+82- 2828,8384 + 20,0,0,04 - 2 ).

К —

y

83

k %
C4C2C3C4 C2

+

S.C
40483C3 ++

d ,
da
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The Elliptic Integral of the Third Kind.

186. We can now make a fresh start, and prove the Addition

Theorem for the Zeta Function independently ; and then pro

ceed to Jacobi's form of the Third Elliptic Integral.

( Fundamenta Nova, 49 ; Glaisher, Proc.L.M.S. XVII. p. 153.)

Multiplying formulas (3) and (6 ) , S 137 ,

4k?sn u cn u dn u sn von v dn v

dn´(u + v) - dn´( u — v) =
( 1 - késn’usnav )

... ( 1)

and, integrating with respect to v ,

2 cn u dn u/snu
E amu + v ) + Eam (u - V ) = C

1 - kºsnļu snar

where C is the constant of integration, independent of v.

To determine C , first put vru ; then

2 cn u dn u/snu

C= E am 2ut

1- k sn4u

so that, replacing Eam u by Eu /K + Zu ,

2 cn u dn u/snu 2 cn u dn u/sn u

Zu + v ) + Z (u - V ) -Z2u =
1- kasn'u 1 - k sn u snav

1 - k'snu snºu - snlv

sn
1 -késn'usn2n ) = k + sN

201
- k’sn u snév

Ek’sn( u tv)sn (u - v )sn 2u .......... (2)

Replacing utv, u- v, and 2u by U , V, and utv, this

becomes the formula given above, $ 176,

Zu + Zu - Zu + v ) = k'sn u sn v sn (u + u ). ( 2) *

Again, put u = 0 for the determination of C ; then

C = 2EU + 2 cn u dn u /sn u ;

1

sn 2u

1

and now

- 2Kºsn u cn u dn u snév

Z(u+ v) + Z(u - v) — 2Zu .......(3),
1 - k sn'u sn

another form of the Addition Equation of the Zeta Function ,

leading immediately to Jacobi's form of the Third Elliptic

Integral, as required in § 114.

187. Integrating this equation (3) again with respect to v , and

employing Jacobi's notation of

Psn u en u dnu snav dv

II (V, U) for
1 - ksnu snu

kк

f-
།

0

where u is called the parameter, and v the argument, then

II( V, U) = vZu— 1 Z(u + v)dv- } / Z(u , v )dv.
0
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Jacobi now introduces a new function Ou, called the Thetco

Function, defined by

Өи,

lu

00 '

or

Ou=60 exp [Zudu .......
...... (4)

so that

u + v)dv = log (u + u)

0

Θ'ι

Zu =

Ou

0(

Z(Now

Өи

Өи

u — v)dv = log (u — 0)

Өсі — 1)
and II(0,u ) = vZu + } log o(u + v)

O
...... (5 ) ,

O (u tv)"

so that the Third Elliptic Integral is expressed by Jacobi's

Theta and Zeta Functions,the arguments being u and v, two

in number only, and not three, n, k, o, as in Legendre's form .

= log evzu,(u - v)

188. Integrating equation (3) again with respect to u ,

(ſån (u+ v) – dn?(u —v) }dvdu= log(1 – K?snºu snļu) ,
v = 1 sn®0 0

or

-2 log

or

0 ( +0) Ou - V ) Өи

log +log = log(l- k’snļu snềv ),
Ov Θυ 00

(u + v ( u - V )020
-1 - kºsnļu sn’v,... (6)

824020

a formula which takes the place of the Addition Theorem for

the Theta Functions .

For instance, putting u = v,

O2u= ( 1- k’sntu)04u/030. (7)

Interchanging the argument and parameter, u and v, then

Ouv)

1

.

II (u , v ) = uZu + { log o (u + v)'

...... (8)so that II (u, v) - II(U, U ) = uZv— VZW ,...

and II(v , u ) is thus made to depend upon II(u, v).
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189. In Legendre's notation , II (n, k, p) or simply Ilo, " is

employed to denote his Elliptic Integral of the Third Kind

A :
0

(1 +n sin -p )48'

n being called Legendre's parameter (S 114) ; and with Jacobi's

du

notation, n K )
1 + n snawi

But Jacobi changes the notation , by putting n = -k’snʼa,

and by calling a the parameter ; also by denoting the integral

Kºsn a cn a dn a snaudu

by II (u , a),
1 - k’sn’a snéru

0

and not the integral

du

1 -kºsn’a sn’ri

which equals ut
sn a II (u , a)

cn a dn a

0

tan - 1

or

In Legendre's notation, the Addition Equation of the elliptic

integrals of the first kind

Fo + Fy = Full,

leads to Ep + EX - Eu = k ?sin o sin y sin M,

the Addition Theorem for the second elliptic integrals ;

and now for Legendre's elliptic integrals of the third kind,

the Addition Theorem is (Legendre, F. E. I., Chap. XVI .)

1 nna sin o sin y sin uM
IIp + Ily - IIe

da 1 + n- n cos o cos y cos ui'

1 tanh - 1 n / ( - a )sin o sin y sin u
(9)

(-a) 1 +n -n cos o cos y cos u

according as a is positive or negative ,where

a = (1 +n)(1 + k4/n) ;

this can be verified by differentiation .

This relation is very much simplified by the use of Jacobi's

function II( u ,a) ; and now with

o =amu, yram v , u = amu + v ),

it becomes II (u , a ) + II (v, a ) - II (u tv, a) = 1 log 12 ,

e(u- a)e(v - ale(ututa)
where Ω : ...(10)

Ou + a )e (v + a ) (u + v - a )'

and 12 is capable of being expressed in a great variety of ways

by means of the elliptic functions cn, sn ,dn of combinations

of U, V, a.

...

G.E.F. N
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2

LOC
2

+ a}}

Ou - a )O (V - ? ( u - ve (utv - 2a )
For

00 1 - k'sn ' (u - a )sn (v - a )'

re (uta)O (vta) (U - VO ( u + v + 2a )

Ꮎ0 1 - k ?sn ? (uta )snề(vta )'

SOO (utv - a ) /2 Ou + vou + 1-2a)

00 1 - k’sn’a snº(u tv - a )

JOO(u tuta) l? ( u + v (u + v + 2a )

Ꮎ0 1 - K?sn ?a snº(u + v + a )'

(S 188), so that ( Fundamenta Nova ,$ 54)

1 - k’snºuta)snº(v + a ) 1 - k’sn’a sn (utv - a )
122 ( 11)

1 - k’snº( u - a )snºv - a ) 1 - k’sna snº(u tvta)

One of the simplest expressions, equivalent to that given

above in (9) in Legendre's notation, is

1 - ksnusn vsn a snu + 1 - a
12 (12)

1 + k'snusn vsn a sníu tuta)

and a systematic collection of different forms of N is given by

Glaisher (Messenger of Mathematics, X.).

190. According as Legendre's a or ( 1 + n )(1 + k /n ) is positive

or negative, so his Integral of the Third Kind II(n, K, ) falls

into one of two classes, the first called circular, the second

logarithmic, or hyperbolic , as we shall call it.

In the corresponding classification of Jacobi's form , the para

meter a is imaginary or real ; and it is remarkable that in

dynamical problems, it is the circular form , with imaginary

Jacobian parameter a, which is of almost invariable occurrence.

When Legendre's

a or ( 1 + n )( 1 + k /n )

is positive, and the corresponding Elliptic Integral of the Third

Kind is circular, then Jacobi's parameter is imaginary ; and

( i.) with n positive, we must put n = -k ?sn ?ia ;

(ii.) – kº > n > -1, we must, according to $ 56, put

n = -k?sn? ( K + ib ),

as in $ 114 ; and now the integral is expressed by

TI( u, ia) or II (u , K+ ib),

involving Theta and Zeta functions of the imaginary arguments

ia or Ktib ; for which there is no theorem ,short of expansion ,

to express the result in a real form .

We shall find however,in the applications, that this imagi

nary form constitutes no real practical drawback .
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-C) / {O(u +a)O(u –a))Quba

Taking for example the result of $ 114, then , by (6) $ 188,

JA - D.D - C 00

= h
р

AC

with u = nt, and a = K + t'ik '; while

cn a dn a

i (put) = u+II(u , a) ,
sna

sna

cn adna

exp i(p - ut) = exp
-u + uza.eu

O(uta ) '

so that, by multiplication,

( oc + iy ) (cos ut— i sin ut), or pexp i(0 - ut)

A - D.D ө ( и — а )Ө0 cn a dn a

= h

АС
exp ( )

ӨиӨa

which , when resolved into its real and imaginary part, gives

the vector of the herpolhode, or its coordinates with respect to

axes resolving with constant angular velocity u.

4-2 -990 ) ( sn cl

{ S +A

+

sna

191. Take Jacobi's II(u , a ),and split up the quantity under

the sign of integration into a quotient and partial fractions;

therefore

1 cn adna du du

2 1 - ksna
snu

J 1 + ksna
snu

= ucn a dn a/sn a + II ( u, a) ;

while

1 cn a dna du

- 1tk sn ci snu
)2 1 - ksn a snu

k on a dn a snu

au

1 - K?sn?a snu

= / {Ik sn (a+u) – 3k sn ( a − u ) }du
1

+ ) -
( 876) .

dn (a - u ) + k cn ( a - u ) dna

Therefore, by addition and subtraction,

cn adna du cn a dn a

u Zat
1

Sesna

= ien a snºu

= log
— к сn a

" S
la dn a)sna - Ksn a snu sn a

tölog
1 Oa - u ) dn (a - u ) -ken ( a - u ) dna+kcna

2 elatu) dn(a + u ) + ken (atu) dna - kcna'

du cn a dna

= ul Zat

1 + ksn a snu

on a dn a

u + ina)
sna sna

1 ea - u ) dn ( a – u)+ kcn(a - u) dna - kcna

+ logola + u ) dn(a +uh- ken(a + u ) dna trena
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+

log
2

0

uZa + į log sn(a - u) O (a —u )

-uZu + log Ha - u )

192. Again, taking the formula (7), § 137,

sn'a- snu

sn(a+u)sn(a - u) ,
1 - kºsn’asnari

and differentiating logarithmically with respect to a,

sn a cn a dn a k’sn a cn a dn a snļu

+
sn’a - snar 1 - kºsn’a snéri

1 cn (a + u )dn ( a + u ) , 1 cn(a - u)dn(a - u)
;

2 snatu) 2 sna

and then integrating with respect to u ,

sn a cn adn adu 1 sn (a tu)

- II (u , a)
sn’a -- snare sn(a - u)

1 sn(a +u) Olatu)

Ola

1 Hatu

(14)
2

introducing Jacobi's function Hu, called the Eta Function ,

defined by the equation ( Fundamenta Nova , $ 61),

1 Hu

... (15)
Vk Ou

This form (14) and Jacobi's II(u, a) are the two forms of the

hyperbolic integral of the third kind to which Legendre's form

can be reduced for negative values of a.

When 0 > n > -K", we put n = -k’sn'a ,

and obtain Jacobi's form II (u , a) of (5) .

When -1 > n > -00 , we put n = -1/sn’d,

and obtain the above form (14).

This form again can be split up into partial fractions; and

a similar procedure shows that, since

dn 2 - cnu

or log
dnuten u

therefore, by equations (4) and (7), S 137,

on a dna snudu

sn’a - snu

sn (a + u ) — sn (a − u )du

sn (a + u )sna - u )

du du

I
sn(a - u) sn (atu)

sn U =

sn 2

Shun=log Snu

S
1

2 S

+ /su(0+
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sn(a+w) dn(a - u) + cn(a - u) dna - na

) - cn

sn(a-u) dn(a+u) + cn (a+u) dn a - cn a

) - -
(16)

Therefore, by addition and subtraction of ( 14) and ( 16) ,

cn a dn adu

sna - snu

(a + u ) dn (a + u + cn (a + u ) dna - na

- uZa+ }log o (a - u) dn(a – u ) –cn(a - u ) dn a + cn a'

cn adn adu

snatsnu

(atu) dn (a + u ) -cn (a + u ) dna + cna

= -uZa + { log ola - u) dn(a - u ) + cn(a − u) dn a — en a

By means of equation (6) , S 188 , and the formulas of $ 123 ,

these relations may be written

cn a dn adu

sna snu

УS
0

1- cn (a + u ) - II(V , a )

cn a

021(a tu) sn za cn latu)dn 2( a + u )
-uZa+ log

0-1 (a-U) sn ( a - u )cn la dn ja

cn adn adu

snatsnu

O22 ( a + u) sn ( a + u )cn za dn ja
- uZa+ log

022 (a -u) sn la cn (a - u )dn ] (a - u )

The student may prove, by a similar procedure, that

sn a dn a du

= 1 log
с ,

,
1- cna - u )

sn a dn a du 1 + cn ( 1 )

+ II ( u, a),
cn uten a

kasn a cn a du 1 - dnatu

- II (u, a),
dnu- dn a

kasn acn adu 1+ dn (a - u )

= 1 log + II( u, a ),
dnutdnco 1 + dn(atu)

snacnadna snucnudnu

sna - sn

sn u dnu Olatu)80 1 - cn(a+u)

U - a

s = } log 1 + cn(a + u)

log 1 - dna - u)su

s non aen adu

du = log sn(a + u )O (a + u )00
e -uza >

snu

snadna

du = uZa - log
ӨaӨи,s 1- cna
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Euler's Pendulum .

193. Consider for instance the rolling oscillations on a

horizontal plane of a body with a cylindrical base, such as a

rocking stone, or a cradle.

Then the Principle of Energy, considering the line of contact

as the instantaneous axis of rotation , leads to the equation

3 (02 — 2ch cos 0 + ha + k2)(d0/dt) 2 = gh(vers a - vers () ,

where o denotes the inclination to the vertical of the plane

through the axis and the centre of gravity at any time t, a the

extreme value of 0, c the radius of the cylindrical surface, h the

distance of the C. G. from the axis of the cylinder, and k the

radius of gyration about the parallel axis through the C. G.

When c = 0, this equation reduces to ordinary pendulum

oscillations, as in (3 ) $ 3 ; but in the general case we have the

oscillations of what is sometimes called Euler's Pendulum.

dt2 _ {(c - h )2 + k2} cos210 + {(c + h )2 +22} sin210
Then

d02 4gh (sina} a --- sinjo )

(c - h )2 + k2 + { c + h )2 + k2}tan 10

4gh cosaa(tan -ja- tan210)

and now, if we put

tan;0 = tanza cos ,

dt2_c2 - 2ch cos a +12 + ? – {(c + h)2 + k2} sin ” Ja sin o

do? gh( 1 -- sinºja sin o )

dt 62 – 2ch cos a + h + k2 Δή

do
ch

1 - sina a sino

on putting ne = g/c , and

(c + +22 (c - h ) +12

c2 - 2ch cosa + h + k2sinºfa,k?? = 2-2chcosa tha +22cos } a.

To reduce this to Jacobi's canonical form , put pramu,

and sinº ark'sn’a ; then dn’a = cos } a ,

C2 -- 2ch cos a tha+ 1.2 4ch cosia
and sn?a = cn?a =

( c + h) 2 +12 (c + h )2 + k2

dt snadna dnar

so that n 22

du 1 - kºsn’a snau

sn a dn a 2k?sn a cn a dn a snļu

=: 2

1 - kºsn’a snu

sna dn a

and nt = 2 U— 21/ (U , a)

2

ON n >

2

cna

en al

сп СІ,

while tan : 0 = tan a cnu.
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In the ordinary pendulum, where c = 0, this reduces, as

in S 8, to

tan ? o = tan \ a cn ( K - nt),

equivalent to

sin10 = sinta sn nt ;

where n now denotes / {gh /(ha + k2) }.

As another application of the Third Elliptic Integral the

student may rectify the inverse (or pedal) of an ellipse or

hyperbola, with respect to any point ; examining the parti

cular case when the point is the centre ; also the case of the

Lemniscate, the inverse or pedal of a rectangular hyperbola,

with respect to the centre (R. A. Roberts ,Integral Calculus,

p. 310).

EXAMPLES .

-

S /

= 27 .*

0

Y- X

12

KKSS

S%%

1 -1

71

1. Prove that, if k + k= 1 ,

CA (le cosao + k'cosy )dodal
= 1 ;

J ( 1 - ksin p ) / (1-K'siny)

and deduce Legendre's relation of $ 171 .

k(y- x)dxdy
2 .

J (8.1-2.1 - kx ) / ( - y.l - y.l - ky)

dady
3.

(1 + Kx )(1 + ky) / (1 -x2.1- K % 2c %) / (32-1.1- kay?)

(S 66).

(y- )dxdy
4.

= r
(4.X:- @7.2–62.1C - 63) /(-4.7-64.Y-C2.y-cz

(8 51 ) .

(y -2)dxdy
5 . 47

V {(a - ).(a , m )2 + n2} / {( y - a ).(y - m )2 + n2}

(S 47) .

(B - a) (y - a) (8- a )(y-2 )dxdy
6. = 27 (S 153) .

(x-a)(y - a ) / ( - XY)

γ β

7. Denoting K-E, K ' - E , E - K2K , E ' – kểK ' by J, J', G, G'

respectively (Glaisher, Q.J. M., XX.) , prove that

dK

KK
K

dk dk dk dk

de dJ 1

J ' E

dk dk dk dk .

P2 e3

$

a a - H

dK
12

K

к

JE

GOG GdG= K

K



CHAPTER VII .

ELLIPTIC INTEGRALS IN GENERAL, AND THEIR

APPLICATIONS.

D + D X

194. The general algebraical function ,the integral of which

leads to elliptic integrals, is of the form

S+TX

U + VIX

where S, T, U , V are rational integral algebraical functions of

x, and X is of the third or fourth degree in x.

We first rationalize the denominator, so that

S + T / X __( 8 + T / X ) ( U –VX)_M , N 1

U + VIX U2_ V2X

suppose ; and now the integration of the rational part M / D is

effected by elementary methods, when it is resolved into its

quotient and partial fractions.

In the irrational part N /DJX, the rational fraction N / D

is also resolved, into a quotient, having a typical term X "

and into partial fractions, having typical terms

1/(x- a) or 1/(2 - a)"

By differentiation, we find that

d

( ecm - 3 / X ) = {(m - 1)axm +4 (m- )bxm - 1 + 6 (m—2 )cam - 2
doc

+4(m- .)dom - 3 + (m_3 )exm - 4 }/ 1/ X ;

so that, integrating, and denotingSoemds /JX by Um,

2cm - 3 / X = (m - 1)aum +4(m- )bum -1 + 6 (m—2 )cum - 2

+ 46m -_)dum - 3 + (m - 3)eum - 4

a formula of reduction by means of which the integral wyn is

made to depend ultimately on the integrals U7, Uy, and Up.

in

4,

200
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since vo

Similarly, by differentiation and integration , denoting

Sdx /(x – a)" JX by un

we can determine another formula of reduction, of the form

NX
= Aun + Bun - 1 + Cun - 2 + Dun - 3 + Eun - 4,

(oc-a)n

by means of which the integral vn is made to depend ultimately

on the integrals V , V, V - 1 , and v - 2 ; or rather , on V , Ugg Uy , W2 ;

and Un are the same, and

V- 1 = Uy - aup, V - 2 = - 2au, + aug.

By the various substitutions of Chapter II.,U , is reduced to

Legendre's First Elliptic Integral,while at the same time the

integrals U7, U9, and v, are reduced to elliptic integrals of the

Second and Third Kind.

When x- a is a factor of X, the substitution x- a = 1/y

shows that v, becomes Gydy/ / Y, where Y is a cubic function

of y, and v, now reduces to the Second Elliptic Integral.

But without carrying out this work in detail, now only of

antiquarian interest, we adopt instead the Weierstrassian

notation ; and by means of the substitutions of the previous

chapter we express x and JX rationally in terms of pu and

pu ; so that the integration is reduced ultimately to that of

A + Byou with respect to u , A and B being rational functions

of pro

195. We must at this stage introduce the functions

Eu and ou,

the functions employed by Weierstrass, in conjunction with

his function pu.

The function cu ,called the zeta function, is defined by

Š'u = -yu,or çu = - /pudu ;

while the function ou, called the sigma function, is defined by

d

du log ourfu,

or log ou = ſçudu, ou = exp / ğudu ;

d2log ou
-

du ?

and thus sou .
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U

Taking the definition of s or you in $ 50,

- ,

Кои

expand in descending powers of s,and integrate ; then

es (Uи.

S
N
o
8

* + * ++ 18928-* + 16938-3 + ... )ds

S

9 : ,

11

S

s or you

u2

20 x Izu
t

42

8--+ * +
92

t s -at ...
40 56

the * marking the place of a missing term in the expansion.

Therefore, by Reversion of Series, since u2 is a rational

function of s,we obtain, in the neighbourhood of w = 0,

1 Iqu2 ,9:44
+ + to ..

28

To obtain further terms of the expansion, assume

1

pu + * + cu+c , u4+c7u6+ ... + Cqu2n + ... ;

and since poʻ ?u = 4908u - 924–43,

po" u = 6p4u– 392

SOU =u = 12pug'u ,

we can obtain from the last equation a recurring formula for

the determination of the coefficients c ; and as far as u8,

1 3929zU8
Кои = + + t ....

20 28 24.3.52 ' 24.5.7.11

The expansion of the zeta function is now

1
9,48_9zu

gu

929 ,

60 140 24.3.52.7 24.3.5.7.
11

so that, defined more strictly ,

1 1

Su + Кои

9 , u ?
9
2226

+

+

*u
2
X
X

9

9,7

+

w

9,9

Similarly we shall find, for the sigma function ,

9,05
OU = ut

9zu ? 9.9,411

24.3.5 23.3.5.7 29.32.5.
7

27.32.52
.7.11

so that, strictly defined,

log orum log w+ /<su-- )du,
du, or ou = Uexp / (su – u)du.
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mт

25
0

1 w

no
so

1

т.

Homogeneity.

196. From considerations of homogeneity it follows,that if

u is changed into u/m, and at the same time if y , and 93 are

changed into m4g, and mºgz, then 8 or you is changed into mas

or mayou ; so that

1

( u ; 92,93 ) = on ; m ^y , m®93) ;

po '( W ; 92, 93) m ; m *ga,mº93);

and similarly

$(u ; 92, 93) = $ ; m g»,møg :)

o(U ; 92, 93) = mo Com ; m g»,møg :).

At the same time the discriminant A becomes changed to

m12A, but the absolute invariant J is left unchanged (S 53) ;

we may in this manner alter the argument u proportionally ;

for instance by taking m= V(ez - @g) we can make the argument

the same as in the corresponding elliptic functions (8 51).

When m is chosen so that m12A = 1, or m = A - 13, the elliptic

integral is said to be normalised (Klein) .

Suppose,for instance, that 92 = 0,

and m, m2 are the imaginary cube roots of unity, -1} ix/3 ;
then

m3= 1, and u / m = mau ;

so that @ in2u ; 0, 93) = m_g ( u ; 0, 93) ,

pmu ; 0,12) = m pu ; 0, 93 ),

while
boʻu = go'mu po’m2u .

1 1

Again $ (u ; 0 , 93) Š Ŝ

U u

2'
т m т . m2 m

пи,

m2

U

o(w ; 0, 93) = mo = mo

m

This is the simplest illustration of the theory of Complex

Multiplication of Elliptic Functions, of which we shall make

use hereafter ; the general theory is required in the integration

of the equation

Mdy doc

/ (4y - 929–93) / (403(4x3 — 922—93)

for particular numerical values of 92 and 93, when 1/M is a

complex number of the form atib n ; in this instance 92 = 0,

and M is an imaginary cubic root of unity.
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197. With the aid of these three functions of Weierstrass,

fou, fu , and ou , it is possible to express any elliptic integral,

and we can thus complete the problem left unfinished in $ 194.

The function fu is analogous to Jacobi's Zeta function ; and

with s = pu, it may be defined by the relation

s ds [
gu = S $= (48 –948–93)- #s de

言 + 18928-
등

$ * + * - 1928 - : - 15938-3

Thus, for instance, from $ 153, with appropriate limits,

a - ß.a - y.a - 82 -B2-7 ) dx

8 JX'

where
da

šu = fizq -B .XC - a aа -B amo a

--U =

✓X

To obtain the Addition Equation of the zeta function

analogous to (2) and (3) of $ 186 , take the formula (F) of $ 144,

s'u gou ²

pu (
pu pv

implying also the formula, obtained by changing the sign of v,

you + gov + p(u — v)= (eu +gu);و

pu - PV

so that, by subtraction,

po'u go'v
p(u- v) - (utv) = .( a )

(pu—pv)2

Integrating (a) with respect to v ,

p'u

$(u — v ) + ${ u + v ) + C =
pu - gu

where C, the arbitrary constant of integration , may be obtained

by putting v = 0, when pu = 00 ; so that C= -2&u, and

pou

8(2 — v ) + $ (u + v) - 2EU = ... ( )
pou - gou

An interchange of u and v gives

- po'v)

-S(u v ) + Š(u + v ) — 280 = ...(B )
epL - e)

so that, by addition,

{(utu) - Eu &
u

..... (y )
Кои — Ко

= N/ {pu + 5v + (u + v ) }

the Addition Equation, analogous to (2*) § 186.

>

i

8V =18'u – p'r
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With Utu + w = 0,

this may be written, analogous to § 176 ,

fu + 60 + 6w = - / (pu + pv + pw ).

12

p2

>

a

'+ Kp’u + pv

198. We can now take the function A +B go'r of $ 194, and

suppose that A and B are resolved into their quotient and

partial fractions.

Writing p, p', p", ... for pu and its successive derivatives,

then the relations

4p3 – 92-93

p " 6p2 - 192

p"=12pp', etc. ,

enable us to express the quotient or integral part of A +B pu

in the form

C = co + c8991cco + ....

Considering next a partial fraction of A + B g'u of the form

P + Qo'u

pu - a

we replace a by pu, and write the partial fraction in the form

U -- 8ovs'uH

pupu Коu — од

= 2H { f( + v ) - 84-80 } + 2K { }(U - V ) - 8u + fv }.

All such partial fractions can thus be expressed by a series

of terms,

L = 1,8(u—v1) +1;$(u—V ,) + 1; $(u—V3) + ....

where the sum of the coefficients 1 is zero for each partial

fraction , and therefore for the whole series ; so that

12 + 12 + 13 + ... = 0.

Again ,by repeated differentiation of equations (Ⓡ ) and ( B )

(S 197),with respect to u or v , we obtain equations , such as

po'u gov

(pu - pu)2 = P (u + v ) - ° (U + 0 ),

$ 200 po" v
= plu + 1) + ( u --V) + 2pv

(pu- pv)?

by means of which partial fractions of the form

P + Qp'u P + Qo'u

or generally
(sou - pov )? (pou - gv)n?

be expressed by terms of the form 8(utv), f(u — v), and

by their derivatives ; as well as by terms of the form L and C.

pu - pu?

can .
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Thus, finally, A + B p'u , or any rational function of you and

boʻu, can always be expressed as the sum L + P of two series of

terms, L = 148(U— v.) +1,8(U V2 +138(U - V3) + .

where
1,+1, +13 + ... = 0,

and P= c+ Em gə(r)( u - V ) ;

and now the integral can immediately be written down, in

volving, in general,the sigma, zeta, and gə function ,as well as

its derivatives .

When the sigma and zeta functions are absent, the integral

is a function of pu and g'u, and is not properly elliptic,but

only algebraical.

This method of integration is taken from Halphen's Fonc

tions Elliptiques, I. , chap. vii .

Halphen points out that to obtain the coefficients in the

series of terms

15(U—V ) + mol (U—v) + my '(U - V ) + m28 " (U - V ) + ... ,

corresponding to the same v , it is only necessary to take the

coefficients of ( u - v )-1, (u , v) -2, (u — v ) -3, ... in the expansion

of A + Bg'u in ciscending powers of u- V ; the coefficient i

being Cauchy's residue.

199. Integrating (B) with respect to v, then

ro'u du olu + 0 )

= log - 2vcu,
pou – you oU- )

.(2 )

0

which may be considered a canonical form of the Third Elliptic

Integral, in Weierstrass's notation.

Thus, for instance, in $ 113,

cu - 90
ig' = > $ vdu

1 log (utv)o(u + u)– uğu,

Or

= }
OU - 0

eid'

o ( u - v )

By integration of (y), with respect to u and v,

= e -ušo, Jo(u + v)

s'u —gvdu = log o (u + v)e -ušv
, ....( 71)du = log ( u + 2) ugv = log ( u + v)

OUOV ORLOV

s !

2 ου –ου

1 p'up'v 0(utv)
-vğu = log o (u + v)e-všu;....(ya)dv = log

2 pou- You σιισυ OUOU
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either of which may be taken as a canonical form of the Third

Elliptic Integral; and also as illustrating the interchange of

amplitude u and parameter V , as in the Jacobian Elliptic

Integral of the Third Kind, II(u, v), in s 188.

Or otherwise, interchanging u and vin (B1), or integrating ( B ),

Sevd
u = log (u ~-~ )

- log 7(u tv)
.+ 2učv,.... (P2)

Кои - Kov

so that, by addition of (B.) and (B2),

p'u dvtpvdu

= 2ucv - 2vcu , . (8)
SOU - JOU

a form of the theorem of the interchange of amplitude and

parameter, analogous to (8), S 188 .

200. Integrating (1) with respect to u ,

o(V— U ) ( v + u )
log +log 2 log ou = log(@u — ),

συ συ

or

duz log ou. K

porus

ov +Uv- u )

olvo20
- You - You,

ou + vou - v )

ou ou
= fou — gou ,

d2 02

log ov...(K ) ;
dv2

the fundamental formula is the use of Weierstrass's elliptic

function , analogous to equation (6 ) of $ 188.

As an application consider the herpolhode of 113 ; then

nh
Th 7( +0)x ( x – 10 )

p > (pov pu )
M συσ2

while Le .
Vou - v )

so that, in the curve described by H,

h ( +0)

2+ iy = peid'
M

while in the herpolhode described by P we must multiply this

function by eit or cos ut+ i sin ut.

Putting u = v in (K), we obtain

o2u 80 - 89 )
-It - Ko U.

otu 0(21— V)

This may be obtained by integration of the formula of $ 149 ,

1 22

p2u = pu

o (u + ºse - ušo,еіф»

e -usv

σσυ

4duz log pu.
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If u , v, w, x denote any four arguments,

( u - vou +VW- (w + x )

tolv -Wov +wo (u ) ( u + x )

tow - u )o (wtulo ( )o ( v + x ) = 0 ............. ( L )

since it is of the form

( U - V ) ( W - X ) + ( V – W )( U - X ) + ( W - U ) ( V – X ),

where U- V= -o U02v (pou — pv), etc.

201. We notice that the Third Elliptic Integral can be

expressed very simply as the logarithm of a function, so that

we may write ( w ) in the form

1 ç'u— g'u du = log f ( w, v) ,

2 ou pou
0

where (u, v) = o(u + u)e-uši
σεισ

OUOV

and p(u , v) is called by Hermite a doubly periodic function of

the second kind .

Changing the sign of u, or v,

o ( u , v )qušv;
$(U, – v ) = P ( -U, v) :

p(u, v)q(U, - v ) = you — sav .

202. Suppose pov = by, , or ez ; then, according to $ 54, we

can take v = wy, w , tw , or wg, to correspond ; and now

pv = 1, and log d(u , v) = 1 log (pu - pu) ;

so that

so that

Q(u, wy) = (U, - ~ ) = 1/ (pou – ez), etc.;

and y ( u ,v) is an elliptic function for these values of v.

We may thus put

o (u +w1)e-ušas, or Czu

:

(pu - @ ) = (u + w )
σιι σω1 ou '

where qqu denotes (u + w )e-us ,
σω,

Similarly,

T20

Jou — ( 2) ou (pu - e ) =
ози,

ou '

o (u tw3) -usw .o (u + w + ws),- u$(w,+w2 - u $ w ,+ w .), o , u =where 0,0 =

O(Wi+ w3) σω3 :

Also poʻu = -- 2/( u- @z . pou – €2 . gpu – @3) = - 2042022.1030/0 %W ,

and ( 200) σ2 = 2συσχισ,ισχυ.
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ๆ

n103 --- 9301

Denoting by a, ß, y the three numbers 1 , 2 , 3 ,taken in any

order, then the relation

Oru round (pou - ea )

gives, by a combination of the expansions of ou and you in $ 195 ,

Oq = 1 - žequ2 - 15 (6ea2-92)44 -

so that gau is an even function of U, and unaffected by Homo

geneity ( 196) .

Thus , for instance, from ex. 9 , p. 174,

ca2u + op2u = { (p2u - ea) + (p2u - es) }o2u

2(you — ea )(pou — eß )
2u = o a'u og'u.

s'u

The symbol na is employed to denote fwa, so that is

the analogue of Legendre's E of $ 77.

With positive discriminant A (S 53) , we find (exs. 4 , 5 ,p. 199),

= jint ;

and with negative A ( 62) ,

ηρω, -η, ω, = υπ ;

formulas analogous to Legendre's relation of s 171 .

203. Denoting pu, pu, pw by ., y ,z, then (S 165) if

utv+ w= 0,

( oc + y + z ) (4xyz - 93) = (y2 + 2x + ay + 492)2 . (I. )

Denoting also ( x -- Ca)(y - ea) (z - ea) by sa?, then since

Ca’ = 4921a +193)

8a2 = wy% -193- (yz + zx + y +19,)ea + (x + y + z )ea?

yz + 23 + xy— 2(x+ y + z) ea
Sa

2/(x+ y + z)

by means of (I) ; and this is of the form A + Bea, so that

(ez - @g)sz + (ez - ( ,)sz + (21 - én)sz = 0);

or (ez- ég)04W04VOW + (@z- @7)02U02VOqw + (@ y - )C3UozVozw = 0,

Oall oall o al

since

>

sa =

OU V W

(W. Burnside, Messenger of Mathematics, Oct. 1891.)

As an exercise the student may prove that, with

u+ v+w+x= 0,

(ez – ez) / U 07V O W 072+ (ez - e1)0,0 0,0 0,W OX

+ (€ - én)OgUOZVO32063&C + (en- 3)(ez - ez) (ez - @y)OU OVOW OX = 0,

the analogue, in Weierstrass's notation, to Cayley's theorem ,

given in ex. 1, ii. , p . 140.

9

G.E.F. 0
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2

204. The solution of Lamé's differential equation, which may

be written in Weierstrass's notation

1 day
n ( n + 1)puth ,......... ... (1 )

Y
?

is given, when n = 1 ,by the function (u ,v ) of $ 201 .

For,differentiating o logarithmically with respect to u,

1 do 1 g'u— so'v
= $(u + u) – EU - EV,

o du 2 pu - pv

and differentiating again ,

1 do 1 do?

2 du ?
-8(utv) + yu,

duz 02

so that

(Su=p.)*–s(u + v)+ souØ du24

...

1 d?p_1 ( oʻu — gov

PU - 8 u

= 2pu+ pv,

Lamé's differential equation, with n = 1 , and h= øv.

The general solution of

1 day
= 2pu + pu . ( 2)

y du ?

is therefore

y = C(u, v) + C '$ ( u , — v ), or Co (u, v) + C'P( -u, v ).

When h or pov = lz, ez , or bz, the solution is one of Lamé's

functions, as in $ 202.

One solution is now you- ea ), where a = 1 , 2, or 3 ;

the other being

{ }( u twa)- bal} / (pou- ea),

as may be verified by differentiation, or determined indepen

dently from a knowledge of the particular solution / (pou - ea ).

205. The revolving chain, resumed .

We are now able to complete the solution (S 80) of the

tortuous revolving chain , by obtaining an analytical expression

for its projection on a plane perpendicular to the axis of

revolution.

Putting y =r cos y, z = r sin y,

then we have found in $ 80 , p. 70, that, when the notation of

Legendre and Jacobi is employed,

dy H HT

dx Ty2b?sn ?(Kx /a ) + ccn (Kx /a )'
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.

SΏυ

which , on putting u = Kx /a, and

késnév = - (62- C4)/c2, dn?v = b2/c2 ,

so that,with Kº= (12-2)/(d ?—c),

sn?v = - (cl2 — %)/ cº, cn?v = d2/c ,

diy cn v dn v/sn v
becomes

du 1 - kºsn’usn v

cn v dn v

so that iy = -2 - IIU, v) .II . (1 )

Since sn´v is negative , we may, by (67) $ 73, put v = t'iK ',

where t' is a real proper fraction .

Now go =0/( 1 -k’snºu snºv)

eu + v (u - v)
= COO .. (2 )

A24 Olv

Outu) cn v dn v

while exp

Volu - V)

eu+ v)
cn v dn v

y tiz = c00
Ou OV

exp

which, when resolved into its real and imaginary part, will

give y and z as functions of u or Kx /a, and thus represent the

equation of the chain .

Volut

( sn u – Zvju;

Zv)u.....(3)
so that xp (

SYυ

dr22

206. The procedure is more rapid with Weierstrass's notation.

Writing y2 + 22 = p2, we have found that ($ 80)

n4w 2

( 716 - A74 + B , 2 - C ),
da) 72

so that we may put

p2 = k ($ u , — pov ),.... . ( 1 )

du !nawe
provided that

dac T

and 92 , 93 are suitably chosen .

Since v is the value of u which makes 72 vanish , therefore

du? 4H2

K4020
da2 T2

the value of (dra/dx )? when 92 = 0 (S 80) ; so that

p "20 = -16H4/n *wake, ( 2 )

and sov is therefore a pure imaginary, which we take to be

negative imaginary, so that v = tw, ($ 54) .

dy H da 2H 1 lig'v
Now

du - Tp² du n²wl pu- pu pu - sav
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div -pvข
or

du
if(v + u ) + 16(v - u ) - EV ........( 3 )

pu - pu

from ( B ) ($ 197) ; so that

u
iys = } log UGU,

c (0-01)

ov +
-- usv

..... (4)
Volv - u )

o (v + w )o (v - u )
while ke ...( 5 )

ovozu

ko(v + u )e-usoy+iz=

eit

Il u+u

V

and

OVOU

ko (u, v) ,

y - iz = ko(u, – v ),.... .....( 6 )

giving the form of the chain.

For a revolving chain fixed at two points, we must have p2

restricted to lie between positive values, b2 and ca , and therefore

pu must be restricted to lie between c, and ez ; so that with

du/dx constant , we must put u = ww / a + wz.

For a chain attracted to the axis with intensity proportional

to the distance, and thus taking up a form of minimum

moment of inertia, we have u = xw /a ; and now pu can become

infinite, and the chain reach to infinite distance.

In this and other mechanical problems, the parameter of the

elliptic integral of the third kind is almost always imaginary ;

the apparent awkwardness of this imaginary parameter is

removed when we proceed to express the vector y +iz by a

doubly periodic function of the second kind o (u , v ), whose

logarithm is the elliptic integral of the third kind ; and thence

determine y and ; theoretically by resolving ( u, v) into its

real and imaginary part.

Familiar instances of the same procedure are met with in

Elementary Mathematics ; thus

x+ iy = c cos(nttia), or c cosh (nt + iß ),

will represent elliptic or hyperbolic motion about the centre.

Generally , with x + iy = % , X + iY = Z = F" z ; then

dz

ž = F , 4: 2 = Fz + h , t =
(2Fz + 2h)

will give the motion of a particle of unit mass under component

forces (X, Y) . (Lecornu, Comptes Rendus, t. 101 , p . 1244.)
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207. The Tortuous Elastica .

A procedure, similar to that just employed for the revolving

chain, will show that the equation of the curve assumed by

a round wire of uniform flexibility in all directions can be

expressed by the equation

y + iz = ko(u, v)

and
z = kčutyu,

where U = 8w / c + wg

s denoting the length of an arc of the wire, and 2c the length

of a complete wave.

( Proc.London Math . Society , XVIII . , p . 277. )

The elastic wire differs thus from the revolving chain in

having u = sw / c + wa, instead of u = ww/a+wz (S 97) .

To establish these equations, take the axis Os as the axis of

the applied wrench, consisting of a force X along Ox and

a couple L in a plane perpendicular to Ox ; denote the tor

sional couple about the tangent at any point by G, and the

flexural rigidity of the wire by B.

Then the component couples of resilience about the axes

Ox, Oy, Oz are taken to be

Byʻz"- y":/), B (e'a " - "X'), B(a'y"-" Y )

the accents denoting differentiation with respect to the arc s ;

the equations of equilibrium are therefore

Byz" - Y":') = Gx ' + L . . ( 1)

B(z'x" — " X ') = Gy' +X2.. .. (2 )

Blac'y " — " y ') = Gz' – XY .... .... (3)

(Binet and Wantzel, Comptes Rendus, 1844) .

Differentiating each equation with respect to 8,multiplying

respectively by ac', y', z , and adding, gives

G' = 0) ; so that G is constant.

Multiply equations ( 1 ) , (2 ), ( 3) by x', 4 , 2 , and add ; then

G - X (yz':- Y'= ) = 0 ,

yz - y'z = rady/ds = G/X , a constant ;

and
yz" — Y"z = ().

Again, multiplying ( 2) by y, (3) by z, and adding, gives

Bx"(yz' — Y'z) – Bx'(yz"- Y"z) = G(yy' +zz),

Bac" = X (yy' + zz'),

so that, integrating, Bx' = X (y²+2+H.

so that

or
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or

;

* = fu +(sow + X12

Then B2c"2 = X?(yy' + zz )?

= X { {(y²+22)(y2+ 2) - ( ya'-Y'z) ??

= 2X (Bx' – H )(1-22) - G?,

a cubic function of x' ; so that, by inversion of the elliptic

integral, c' or y2+ zº is an elliptic function of the arc s, which

may be written

y2 + z2 = k2($ w - pu),.... .... ( 4)

Bx' = 1X12($ w - pu ) + H ,

du XK

provided I
ds 2 B

dac 2H

and now
= k ($ w - you ) +

du Xl

2H

fut ( li ; .... (5 )
ko X2

diy iG ds 2iBG 1 10
also

du Xr2 du X2:3 po -pu Pw - ou

By Kirchhoff's Kinetic Analogue, it follows that the axis of

a Spherical Pendulum , Gyrostat, or Top can be made to follow

in direction the tangent of a certain Tortuous Elastica, when

the point of contact of the tangent on the elastica moves with

constant velocity; so that, if x , y, z are the coordinates of a

point fixed in the axis of the Gyrostat, and Ox is vertical ,

d outw )
exp ( - Ewu,

du ollow

x = k(you- pu) ,

where now u = nt twz,

and 2w / n is the period of the oscillations of the Top, or Spheri

cal Pendulum.

:(6 )

y+ iz = K

The Spherical Pendulum and the Top.

208. To prove these formulas independently for the spheri- .

cal pendulum, let the weight of the bob be W lb., and let the

tension of the thread be a force of NIW poundals ; then the

equations of motion are, with the axis of x drawn vertically

downwards,

dc d²y
dz

, + Ny = 0,
dt

+ Nz = 0); ......... ( 1 ) .
dt

subject to the condition, 1 denoting the length of the thread,

+ y + z = 12.

+ Næ = g , ať
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so that

or

and eg:

The equation of energy is

} ( 2 + y2 + 2 ) = 9 (x + c) ;. ... (2 )

while y2 - yz = h, a constant. . (3 )

Now, së + yy + z2 + N12 = gX ,

N12 = g® + 2 + 32 + z2 = g (3x + 2c) ;

thus giving the tension of the thread .

Hermite writes ( Sur quelques applications des fonctions

elliptiques, 1885)

( y + iz )( y - iż ) = yº + zž - ¿(yż --iz)

= -xc - ih ,

so that the norni of each side is

(y2 +22)(y2+22) = 22:32 + ha.

Then

(12 — 2) {29(2 + c)- 22 } = x-:c2 + ha,

22:02 = 2g (x + c)( 2 – 22) — ha

= - 2003 — 2gcx2+ 2gl-x+ 2gcl – h2;

so that x is a simple elliptic function of t, which we may write

a = k (pu - pu ), . (4)

where u = nt + W3,for
Кош

to lie between ez

Then 12K2n28020 = 2gkº (pou – pv)3 - 2gck ( ou pºv )2

– 25kl4(pou - $v) + 2gcl2 -- h2

= 3gk®(493u - 928u -93),

provided na = igk /1?, and pur - 3c/k ;

while
92

and 93 are suitably chosen .

The value of soʻv is found by noticing that x = 0 when u = v ;

and thus 22k2n280%20 = 2gcl2 — h2 ,

Now Hermite writes

02

dtz(y + iz ) + N (y + 12) = 0,

1 d2 2012 3x + 2c

N 2
ogou + 69ov,

gk k

Lamé's differential equation for n = 2 , with h = 6you.

The formal solution of this equation is reserved for the

present ; but it can be inferred for this case by taking the

equation (3) and writing it

dy h

dun(y2 +22)

dix_ ih / n - jih /nl ; lih /nl
+

22 - 22du
..... (5 )

1 - 2 1 +

y + iz duz(y + iz) = - udt?
du²

or
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We now put

l - x = k (pu - pa ), 1 + 2 == k (80b - pu) ; . . ... ....(6 )

and since 1:2 = -h, when < = +1, or when u = a, or b , therefore

h2

p ?a = p2b =
1:27222

With k positive, and gb > pou > pa, we take go'a negative

imaginary, and pb = -b'a positive imaginary, so that (8 54) ,

d = pwg, b = w, +902, where p and q are real proper fractions.

Then dif- - {p'a hob
du

... (7)
pu - pa pb - pu

and integrating, by equation (B), S 199,

o(btu)

- Ufb.( 8 )
oU - a )

Now e2i4
o(uta)o(btu)
o (u — a ) (b - u )exp( –2 &a— 256 )u,

while

(y+ iz)(y - iz) = y2 + z2 = 72 – 22 = k2(80u - pa)(8b - pu )

= k20 (ut
a)o (u - a ) o (b + u )o (b - u ).

σ2α σ2u o2b olu

so that k
o

exp( - fu— )u ,
σα σεσου

y - iz= ko(u — a)o().— u )exp(+ $a + Ebyu ........(9)
od ob orre

thus giving the solution of Lamé's differential equation for n = 2 .

iys= log (u + a) -uga + £log (b ~~)

y + iz

y -iz
=

209. It is interesting to verify that these values of y + iz

and y - iz are solutions of Lamé's equation for n == 2 .

Denoting y tiz by ®, and differentiating logarithmically,

1 do
= f(u + a ) - cu fa + (b + u ) -- u-

$ du

1 gou - go'a , 1 pob - gou .
+

2 ou — goc 2 pb - pu

and differentiating again,

1 d ?P = (1 dp)? -plu + a ) +pu–p(6 + 2) + pu
du2 = lp du )

1 /8'u – poa 1 g'u - so'a g'b - soʻu , 1 /8b --s'u 2
+

4 -pu - pa 2 you - pa gb - you 4\ ob -sou

+ 2pu - p (u + a ) - (b + u )

Ø

2

+

)
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1 g'u - g'a gó'b - poʻu
= 48u+ pa+øbt

2 pupa pb - pu

But with g'a = -8b,

1 gou - go'a gʻb -- fo'u 1 poʻ2u – 80'2b
= 2 (yu+ ya+ pb) ,

2 pou - pa pb- sou 2 (pu --pa )(sob - you )

1 do

y + iz = k (u + a)o(b + u)

b u?

so that = 6pu + 3pa + 39b,

φ

Lamé's differential equation for n = 2, with h = 3pa + 39b, in

place of the previous value of h = 6you.

From Kirchhoff's Kinetic Analogue in S 207 we may put

o
exp( -fa- $6)u

σα σε σ2u

d foluta + b)
=EK

du )
- )u

d

= k du {p (u , a+ b)elry ,

where

1 = $(a + b) - ca - cb.

With go'(a - 6 ) = go'a = -8b,,

therefor
e sla - b ) = fa - 8b ;

and, changing the sign of a,

o(u — a)o(b + u) exp ( ša – šb)u-duplu ,– a + b).
d

σα συσου

(Halphen , F. E., I. , p. 230. )

ܐܘ

210. In the slightly more general case of the motion of the

Top,we shall find it convenient to draw the axis Ox vertically

upwards, and to call @ the angle which the axis OC of the

top makes with the vertical Ox .

Then, from the principles of the Conservation of Energy and

Momentum , we obtain the equations (Routh, Rigid Dynamics)

1A(d0 /dt)2 + 1A sin’d (dy |dt)2 = Wg(c - h cos 0), ......( 1)

A sin’e(dy /dt) + Cr cos 0 = G , .. ( 2 )

where r denotes the constant angular velocity of the top about

its axis of figure OC, dyldt the angular velocity of the verti

cal plane through Ox and OC, h the distance of the centre of

gravity G from 0, W lb. the weight of the top, and C , A

its moments of inertia about the axis of figure 0C, and about

any axis through 0 at right angles to OC.
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3}l sin+o( ) =r( –cos 0)(1– cos 0 ) – }( cose)

2

) 24a

Putting A /Wh = l = OP, as in the simple pendulum, then

P is the centre of oscillation for plane vibrations.

The elimination of dydt between equations (1) and (2) gives

G - Cr cos 2

dt А.

= g ( cos 0 -- cos a)(cos 0 - cos ß)(cos 0 - d) ,...... (3)

suppose ; the inclination of the axis of the top to the vertical

being supposed to oscillate between a and ß,

a > 0 > B, or cos a < cos 0 < cos ß < d .

Guided by equation (17), p . 37, we put

cos 6 = cos a cosap+ cos ß sin’o,

cos 0 - cos a = (cosß-cos a )sin’d ,

cos -cos = ( cos B- cos a)cos'o ; ...... (4)

and therefore ,

dф 1 g
(d

dt
cos )

1 g

{{d - cos a – (cos ß— cos a)sinºop ?2 1

= n2( 1 – Kºsinạp),

cos ß- cos a d- cos B

where K2
d- cos a

and In2 = įg(d - cos a).

Now we may put p = am nt, and

cos 0 = cos a cnant + cos B snant, ... (5 )

so that the projection on the vertical Ox of the motion of a

point on OC resembles ordinary plane pendulum motion.

When d= 1 and cos a =

na = g /l, k = cos2iß = sin 1 (7-3) ;

G and Cr vanish, and the oscillations are in a vertical plane.

But, in the general state of motion,

dy G - Cr cos e
А

dt sinée

1 G + Cr 1 G - Cr

+

2 1 + cos 0 ' 21 - cos o

1 G + Cr 1 G - CH

+

21+ cosa + (cos B - cosa )snant 2 1 - cosa-( cos B - cosa)snant

so that y is expressed by two Third Elliptic Integrals.

12

K

d - cos a

-1 , then
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Žøb
>

Putting cos ( = +1 in equation (3), show that

G + C )= 2%a1( 1 + cos a )(1 + cos )(d + 1) ;

G- Ch.12

24(1 – cos a) ( 1 – cos B)(d – 1),А

while, in accordance with Jacobi’s notation, we put

cos ß - cosa cos ß - cos a
k’snév , K? sn v ,

1 + cos a 1- a

so that, finally, with u = nt, we find

ditt _cn v dn v/sn vi cn v,dn vz/ sn v2
+ ..(6 )

du 1 - k’snév, snļu 1 - kºsnév ,snļu

and, as in the spherical pendulum (S 208), we take

v= ipK', V =K+iqK',

where p and q are real proper fractions.

In the Weierstrassian notation , we put, as in (6), S 208,

1 + cos O = k(pu- pa), 1 - cos O = k ($ b --pu) ;

and thence ($ 224 ) c - h cos ( = hk{p(a + b) -pu } .

diy_ - pa
We thus obtain + ......(7)

du pou - pa ' gob - pou

but now the relation g'a = -pb holds only when Cr = 0 , or

when the motion of the top is comparable with that of the

spherical pendulum ; on the other hand, the relation g'arg'b

implies that G = 0.

The Kinetic Analogue of the Top with the Tortuous Elastica

($ 207) is obtained by putting

a+ b = w, and \ = f (a + b ) - 80 - 86 .

In the Steady Motion of the Top, a = B, k = 0, K = } ;

and the elliptic functions degenerate into circular functions.

We thus obtain the condition for the steady motion, and the

period of the small oscillations, given in Routh'sRigidDynamics.

211. A similar procedure will solve the general equations

of motion of a solid figure of revolution, moving under no

forces through an infinitely extended incompressible friction

less liquid ; the work will be found in Appendix III. of

Basset's Hydrodynamics, vol. I ; also in Halphen's Fonctions

elliptiques, II. , chap. IV. The problem is of practical interest

from its bearing upon the determination of the amount of spin

requisite to secure the stability of an elongated projectile.

( Proceedings, Royal Artillery Institution, 1879.)
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o,
or

212. We again resume the consideration of the motion of a

body under no forces, first mentioned in $ 32, as affording a

good practical illustration of the necessity for the introduction

of various analytical theorems of Elliptic Functions.

Geometrical Representation of the Motion of a Body under

No Forces, according to MacCullagh, Siacci, and Gebbia.

Quadrics concyclic with the momental ellipsoid , that is,

having the same circular sections,are given by (Smith, Solid

Geometry, $ 170)

(A - H )x2 + ( B - H )y2 + ( C - H )2 = Dha;

and now, if we produce the instantaneous axis of rotation OP

to meet the concyclic quadric in P', and denote OP' by R',

(A - H )p2 + ( B - H )q2 + (C - H )p2 = Dh-w2/ R ’?,

while ApP+ BqP + Cp2 = Dhw / R ,

so that, by subtraction,

1 1 h2 h2 H

H (pa + q2 + 7-2) = Dh w2
R2 R2 R2R2- D

Along the polhode, R= h sec 7, where o denotes the angle

between the instantaneous axis OP and the fixed axis of

resultant angular momentum OC ; and then

72 H

cos20 ....( 1)
R'2

the polar equation of a quadric surface of revolution.

Since R2 is less than h?sec-0 for all points adjacent to P on

the momental ellipsoid, therefore in the concyclic quadric

1 cos? H

R2
is greater than

h2 Dh2

except at the point P', and therefore the concyclic quadric

touches this quadric surface of revolution at P ' and rolls

upon it during the motion .

We may also take concyclic quadrics, given by

( H - A )X2 + ( H – B )ya + ( H - C )22 = Dha,

22 H 2 H
and now

R2 - DR2 D
cos?0, ..... . (2)

the polar equation of a quadric of revolution.

In particular, if H=D, then R’sin ( = h, the polar equation

of a cylinder of revolution,outside which this concyclic hyper

boloid rolls during the motion ( Siacci, In memoriam D.

Chelini, Collectanea mathematica, 1881.)

D '
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1

213. By reciprocation of these theorems, we prove Mac

Cullagh's theorem, “ that the ellipsoid of gyration,

x² y² 22
++
A'B Ꮯ Ꮇ

always moves in contact with two fixed points on the axis of

resultant angular momentum, equidistant from the centre ” ;

and we also deduce Gebbia's extension of MacCullagh's theorem ,

that “ confocals of the ellipsoid of gyration, the polar recipro

cals of the concyclic ellipsoids of the momental ellipsoid , slide

without rolling on fixed quadric surfaces of revolution .”

In particular, the polar reciprocal of Siacci's cylinder of

revolution is a circle, upon which a certain confocal to the

ellipsoid of gyration slides without rolling.

Geometrical Representation of the Motion, according to

Sylvester, Darboux, and Mannheim .

214. In Sylvester's splendid generalization of Poinsot's re

presentation of the motion of the body, it is proved that a

confocal to the momental ellipsoid rolls upon a plane per

pendicular to the axis of resultant angular momentum OC at

a constant distance from 0, which plane rotates about OC with

constant angular velocity, and therefore gives a geometrical

representation of the time. (Phil. Trans., 1866. )

The proof of this theorem depends upon two geometrical

propositions, in connexion with confocal quadric surfaces

(i. ) “ The locus of the pole of a fixed tangent plane to a

quadric surface, with respect to any confocal, is the normal to

the first surface ;

(ii. ) “ the difference of the squares of the perpendiculars from

the centre on two parallel tangent planes of two confocals is

constant and equal to the difference of the squares of the

corresponding semi-axes."

Thus, in fig. 25 , if OP is a surface confocal with the

momental ellipsoid OP, then Q, the pole of the invariable

plane CP with respect to the surface OP', will lie in the

normal PQ to the momental ellipsoid at P ; while the surface

OP' will touch a plane C'P ', parallel to the invariable plane

CP , and such that 002 = 002 – X ?, ? denoting the difference

of the squares of corresponding semi-axes of the confocals.
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Since C is a fixed point during the motion of the body,

therefore c' is also fixed .

Drawing the plane QL through Q, parallel to the invariable

plane, and denoting OC by h , as before; then since Q is the

pole of CP,

OQ.OV = OP ', or OL.OC = 0C\' = h2 – 12,

OL = h - 12h, LC= \?]h.so that

H
P.

L IC

Fig. 25 .

Again, denoting as before (S 104) by u the constant com

ponent of the angular velocity of the body about OC, so

that the resultant angular velocity of the body about OP is

le cosec OPC, then the velocity of the point P' in the body is

M cosec OPC.OP'.sin POP' = u.P'V',

where V ' is the point in which the line OP cuts the plane C'P' .

Therefore the angular velocity of Pabout the invariable

PV ' РИ PQ 22

line OC is

UCP = ” CP - MOČ = M12

a constant ; so that if the surface OP' rolls without slipping

on the plane C'P ', this plane must revolve about OC with

constant angular velocity u12/h2.

The point P' lies in the plane OQPC ; and since

C'P C'P OC OC

CP LQ OLOC"

therefore 03. CP = 00 . CP,

and P' lies on the rectangular hyperbola PP' ; this is the

geometrical property principally employed by Prof. Sylvester.

(Solid Geometry, Salmon, SS 167, 180 ; Smith, SS 163, 167.)
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The angular velocity of the vector C'P ' with respect to the

do

revolving plane C'P' being it follows that, if p, o
dt

2

Mh2

12

p

2

p

M (1-2)
12t

denote the polar coordinates of a point P' on the herpolhode

described by P' on the revolving plane C'P' , then

OC2 22

OL h2-22

A - D.B-D.C-Duhe
and

ABC 1,2-22

equations similar to those required for the herpolhode of P.

In particular, if we take 12 = h²,then OC' = 0 , and the con

focal OP' is a cone ; and the plane through O rotates with

constant angular velocity M, while the cone, called by Poinsot

the rolling and slipping cone, rolls on this revolving plane ,

the angular velocity about the line of contact OH being v.

If we consider the curve described on this revolving plane

by the point H , the foot of the perpendicular from P on the

plane, then p , ' being the polar coordinates of H (8 113),

do do A - D.B - D.C - D h2

dt dt ABC

so that the point H describes on the revolving plane an orbit

as if attracted to 0 ; and, as in $ 89, we shall find that the

requisite central force is of the form Ap + Bp .

(Pinczon, Comptes Rendus, April, 1887.)

This is otherwise evident, by noticing that the vector x + iy

of this curve satisfies Lamé's equation (S204)

c12

dtz (
@tiy ) = (29u + $ v )(x + iy ),

where př = k ( you - gou ),

clc dạy

dt2
Ja, 3pu

dt2

M =—

pal,

so that

A value of , may be found which makes the herpolhode of

P'a closed curve ; and this closed polhode is an algebraical

curve, when v is an aliquot part of a period, the correspond

ing elliptic integrals of the third kind becoming pseudo-elliptic .

Abel has devoted great attention to the subject of pseudo

elliptic integrals (Euvres, XI. ), and the algebraical herpolhode

affords an interesting application of his theorems ($ 218) .
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or - 12 ,

The Addition Theorem for the Third Elliptic Integral.

215. Theorems (9) and (10) of $ 189 show that, employing

the function (u, v) of $ 201 ,

log $( , v) + log ø (U2,V) = log P (uz + U2,v) + log 12,

$ (W7,V)$(U2 , V)

(Uy+ W2, v)

o(v+ wy)o(v + U2)o ( + U2)
12 ...... . (1 )

συ +1 + , συ σισιι ,

where, expressed by elliptic functions of Uy , Un,and v,

do }( 1 - 1 ) - ( + . + ) 3 (16+ )
Ω

$ } (W4 + Uz) - (0 + 1 .Uq + ug) $ ( U + U2) - ° } (wy - U2), p! 4 ] 1 " (2)

Also, as in equation (8) , $ 188,

log o (v ,u) = log d (u , v ) + ucu - vĞU ;

or

so that

log Ø(V, wy) + log (v, U2)

= log Ø (V , W ,+42) { SW7+842- $(Uytun)} v + log 12 ... (3)

the Addition Theorem for the parameters U7, Uz.

These theorems have been generalized by Abel for the addi

tion of any number of amplitudes or parameters in the

Third Elliptic Integral,and the proof is a simple extension of

his method ,employed in $ 162 ( Euvres, XXI.) .

Denoting by a any arbitrary quantity, equation (7) of $ 162

may be written

1 da , θα,.

- Xz JX, (a – X ,) ¥r x ,

Now, since Oa is of lower degree in a than yra, and

ya = CII (a 2 ;.),

it follows that, when resolved into partial fractions,

θα OX ,
Σ

Ya (a - XmYX

and therefore, writing fx and px for P and Q respectively, and

A for the value of X when x= d,

1 day да, fαδφα
Σ

a - X JX, yra (fa)2 – (pa )?A.

1 Sfa - opa A 1 Sfatopa . A

JAfa - 09.JA wa fa + pa . JA

fα – φα/Α
28 tanh

a-Ur Jx , fa

;

or va dir
IVA

8 log fat pada
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s
0

Integrating, with the notation (SS 197, 199),

ipv du

You gov

| log (pou — you) – log p(u, v) = ] log o (v = u )e2u.
( v + u )

where x = yu, JX = -pu, a = pu, JA = - 'v ;

fa + pa . A f'a - pa.A PU, -- pv
=

p (um, v) fa-pa. A f'a + s'a . (Apu's - you'

(5 )

so that

b (Un, v)

(u'r, v ) o(vtu'r)

is expressible by elliptic functions, and g', of v ; provided that,

as in (11 ) , $ 162,

E log (Ung v )

II
or 11° (v + U ;.)

Σ / ac,/ J/ Χ , = 0, or Σου, = Σu'r, . (6)

x '
X

the coefficients in fa and pa being determined as functions of

fou and g’r , by the plexus of equations (4) in $ 162 ; f'a and

d'a being the same functions of u',

Thus the function

pre

II ( 7)

ov + 21M)

is an elliptic function of v provided that the sum of the values

- Uy of v which make the function vanish is equal to the sum

of the values -u', which make the function infinite ; in other

words , briefly expressed , provided the sum of the zeroes u is

equal to the sum of the infinities u'.

In particular, with the u ','s all zero, Eu , = 0) ; and in equation

(6 ) , S 162, we can put

ya = (fa )2 – (pa)? A = II(90 — pour) ;

so that Elog o (Un, v ) = log(fa + pa.A) + constant.

Thus II (W7, v) , or
o (v + U )o (v + un) ... o(vtun)

... (8 )
(ov) "

when utu , + uz + ... + uu = 0),.... : (9)

is a rational integral function of pu and 'v, which may be

written, as in $ 198,

C = C + C18v + cagout ... tousblu - 1)v. ...... (10)
G.E. Р
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So also, since ($ 201 )

(-U, v )$ ( U , v ) = PU - pov,

therefore, writing U for – UM,

7 U - 1

q= 1

3 log (Un, y )= log (U , v)+ log 12 + a constant, ...... (11)

where
Q = C /( U -- pov).

In particular, when Urla, P ( U, v ) = / (pv - ) (S202), and

r= M - 1

II 0 ( W ;, v ) = CW / (ov - ea), .. (12)........

7 = 1

:
when

264 + U2 + Uz + ...tUm - 1+ WM - 1 = wa

By an interchange of amplitude and parameter,

Σlog φ(u, υ ,) –Σ Iog φ (u, υ' ) = log Ω - ρυ,.. ...(13)

provided that Συ, = Συ' .

(2 being a function of pu, pu, pu, pv; and

p = E ( U;. — C0m).

216. A further application of Abel's Theorem of $ 162 shows

that р is expressible as a function of you and g'v ; this is the

generalization of the Addition Theorem for the Second Elliptic

Integral , given in § 186 .

xy.da, 2.O. ,
For

7x, Yo'x ,

and this case can be determined as a degenerate case of the

preceding result ; since, making a = 0 ,

x,dar a2 doc , a2

Σ = 1t Σ 16 Σ

JX, X2 X , Xn _X,

= the coefficient of 1 /a2 in the expansion in ascending powers

1 fa- pa.JJA
of 1 /a of log ..... (14)

NA fa + pa . NA

Thus, with X = 403c3 – — 92, and x = pov ,

then (v = Jzda CX ;

Ej 르

0 )

u2
tanh -16C0

A
and p or (S0r - Um) = – 21t

-1
1фа

A fa 1A, (a = ). ( 15 )

Jacobi calls A the factor of the Third Elliptic Integral.

( Werke, II . , p. 494.)



AND THEIR APPLICATIONS, 227

so that

or

217. Similar results hold when, as in $ 167, X is supposed

resolved into two factors, X, and X,.

Denoting P2X, - Q2X, by Yox ,

and varying the arbitrary coefficients in P and Q, and conse

quently the roots of fræ = 0, as in $ 162 , then

Y’x dx, + 2P8P.X2-2Q8Q.X, = 0 ,

while P/X2+ Q X = 0) ;

y cdx ;.– 2 (QOP- P8Q)/(X,X,) = 0,

dx , QƏP - P8Q _ OXr.2

JX, Yo'xtar Yo'x ,

and
Edx,/dX , = 0, or Ew ; = Eu'r.

Again, as in § 215,

da , θα φαδ fα -- fα δφα
Σ 2

a —xx / X , Ya = -( fa )PA , – (pa )? A,

1 dfu.N/ A - pa./A, 1 sfa.A, + opa . / A ,

JA fa . JA, - pa.JA, JA fa.JA, + pa . JA,

fa.Az-pa.VA,

JA
s log fa . JA, + pa.JA

,

Thus
, as an application

to the formulas
of SS 174, 176, 186 ,

and 189 , take , as in 8 38 (Durège
, Elliptische

Functionen

, S 36 ) ,

X = X X.,, where X, = X, X, = ( 1 - x)(1 – kx).

Then, with x = snºu ,

dac radac 2

-
AXT

1

1

2u,

0

Sede

so

0

a

a

and = 2II(n, k, ),
& JX

in Legendre's notation, with = am u, and n = -1 /a .

Now, if, as in SS 164, 165 , we take

Por fx =p+®, and or p = 9,

and denote by X7, X2, Xg, the roots of the equation (7 ) , S 167,

Yox , or P2X, -Q2X2, or ( p + ® )28-921 x )(1 - kx) = 0 ;

then = 92,

1 - X.1 - x2.1 – 2z = (1 + p )?,

x + , + X -- & K ,& z = -2p ;

so that, as in $ 164 ,

(2 - xy— Xz — X3 + kx_XzX ;)2 = 4( 1 -27.1 - X, .1 –X3),

where u , +1 , + Ug = 0 .

3
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a dxzdx, +

Samoa +Lua 3Son

MA

0 0

Again ,

dam
+

A - Xe X a — X2 X ů - X, ZX

fa . N/ A , - φα . Α,
2a

(16)

fa . JA, + pa .JA , fa JA

since X1,X , X , vanish when p and q are made zero ; and this is

equivalent to the result of equation (9) , $ 189 , with a -1/n,

А 1 -a1- ka k

+ n )( 1+.

log or tanl -1ba / 4,

NA 1

.) -Q ;
a2 a Nт .

and
pa /A2_90/(1-0.1-ka ) nq/( - a)

fa JA (p + a ) ja 1 — пр

n / l - a )XX9X3

1 + n - n (1–27.1 - X,. 1 - x )

Similarly, for the Second Elliptic Integral ,

X_dxy
+ *xşdxz + /xdx

JX

2a2

-It

tanh -17 / (1-0.1 -la)
(a = 0 )

va.l - a.l-ku ) ( p + ada

21t + } (1 - a.l - ka)

pta (p + a):

= -2q = -2 / (x ,x ,x ); .. ( 17 )

as before, in $S 174, 176 , and 186 .

JX1 X ,2

0

I aq 98

ot ... )

or

218. Abel's pseudo -elliptic integrals are derived by making

the u's equal in equations (7 ) , (12 ) ; or the v's equal in equation

(13) ; also by making their sum equal to a period wa, or the

sum of multiples of periods, such as pon+ qw3.

Now je log o(u, v) is of the form log 2 - pu,

Q(u, v ) is of the form e -puse,

where is a rational integral function of pu and ou of the

form of C in (8) , sometimes qualified by a divisor / (pu - ba).

We begin with the simplest case of an algebraical herpolhode

by taking v = w1+ 1wz ; and then , from equations (39) and (40),

$ 54, we can infer that the value of 8,
between e and which

makes ey - bg.by - b3_1- ly.la - bg

lys

is
s or goureztez-eg.cz -- ez) .

la

s - l2
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To

Denoting pu by s, g'u by JS, and you by a, we infer that

ds

( 8 - a ) / S

is pseudo-elliptic , that is , can be expressed in terms of

ſds/ JS and of tan - Q / S / P ).

In fact, by differentiation of

A = icos
Vls-07.8- ey)= ?sin -1{\ le --ez )-1(09- es)} (s-es)1

a - S a - S

Or

de = } { [(ez –eg) – (ez – ez))(3a).Vš

- 2e3

- Je, -eg) – (ez –es)_ Jigov
2JS (s - a ) / S

since ip'v = -2/(ez - @g.cz – ez) {[( , -ez) -1(ez - ez) } .

In the herpolhode, therefore, of $ 113, p.108
rio'u du

Ø - ut = 6 - } { / ((, -es) - (ez - es) }nt,
pupu

O = P ~ ut + {vez - ég)- (ez - es)}nt,

and therefore, relatively to axes revolving with constant

angular velocity,

l - { - (ez – ez)-1(ez- (x)} n ,

the herpolhode will be the algebraical curve , given by

0 = } cos-10 (8–27.8— es),

(a - s) cos 20 = / (8-64.8-- ea) ,

( a - s)? cos220 = ( a - s)2 – (@g + 2a)(a - s) + (a -ea- ex),

(a - s)’sin220 + { (en - € )+1(en - € 3)} ? a - s)

(ez - eg. 6 , -- ez ) / (en - €3)-1 (ez – ez))2 = 0) ;

where, as in $ 113 , a - s, or pov - ou :
722 h2

Referred to Cartesian coordinates, in which

p2 = x2 + y2, pisin 20 = 2xy,

this equation becomes

4x2 – 2

x | 4y2 + (en - €3)-1 (ez - e,)}2n ?
- e

of the form (x2 +62)(y2 +62) = a4. (18)

aS

2 2

مہ
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2

C- 1B
D\?

na, n23

B / n

le A

The relation pov- ég = 1/ (en - €3.0 , -eg),

combined with the equations of $$ 110, 113, leads to the relation

A - D.D -CA- B.B - C .

D2 B2

and either B = D ,which gives the separating polhode ; or

1 1 1 1

D =ĀBtc

the relation for this algebraical herpolhode.

Now, from SS 108-110,

M D D\? u?
ecco la - bo

B. B d

while, with A > B > D > C , and @ = @j, la = 62, (j = @ g,

D D
IM D M

(
1

B'A.

D D Du

en - la la - la
c B)n2

To determine the confocal surface which will describe this

algebraical herpolhode by rolling on a fixed tangent plane, we

must equate the angular velocity of the axes to uła/ha ; and

D

h22 B

The squares of the semi-axes of the confocal are therefore

Dh2 D 1 1D 1 /D D

12 22 22

А 2 2 B 21c

Dh2 D 1 11 D 1 D

172 1 1h2 ,
B B22B B

D2 D1 1D 1 /D D

h2

c C 2 2 B 2\c

while the square of the distance from the centre of the tangent

plane on which this confocal rolls is given by

1 D

h-እ = 1 h2.

2 B

The confocal is therefore a hyperboloid of two sheets, of the

22 y 2 , 22form

12

(1+B)
now

EG B)

12 =

= CB

Co

22

( -3)

-

2

-1 ;

a27
27 a2

and in rolling on a fixed tangent plane at a distance b from

the centre, it will trace out the algebraical herpolhode (18),

being the preceding herpolhode, changed in scale in the ratio

of h to b (Halphen, F. E., II . , p. 285).
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92 = 15,

219. A more complicated case can be constructed by taking

v = w : + 3wg; but now we must choose particular numerical

values for g , and 93:

If we select the modular angle of 15°, then 2kk' = ), and in

(C ),S53, J = 53-4, J- 1 = 112-4 ; so that, by choosing A = 108 ,

then 93 = 11 ;

and
€ = 1 + / 3, e,= - 1 , ez = 1 - /3.

It is easily verified that, with the above value of v , pov = ;

for p2v = - = p4v ; also this value of you or s makes, in equa

tions (39) and (40) , S 54 ,

e1 - e2.62 - 63 C1 - e ,.-es

; 92-93 = ; 92-93
S - l2 ei

The corresponding elliptic integral of the third kind in the

herpolhode will now be pseudo - elliptic ; we find, in fact, that,

32/ (432 - 48-11)
if

28-7
0 = sin

(2s – 118 (28- 1 )!

do 1 2s +5 1ds 72 28-118 = / 2 "u_lig'u du

dspu - pv ds

since ig'v = -3/2 ; so that, in the herpolhode,

p=1493 3)= 20-18 જી93).- S

Biøv du

Ø-ut=

S ou –you
-1/2 nt + e ;

QV - ou

and therefore, relatively to axes revolving with constant

angular velocity u - 1/2n, the herpolhode will be the alge

braic curve

0 = şsin -131(452 — 48–11)3

2

or

n2 h2

3
8
2

c2

and now 4c6 ..

(28 - 1)

(1 – 2s)3sin 30 + 9 ( 1 - 2s)2 – 108 = 0,

in which 1-28= 2(pv - pu) =2 = 242p suppose ;

p@sin230 + 3c-84 – 4c8 = 0, .. ( 19)

a curve, consisting of six equal waves, arranged on a circle .

With (i . ) A > B > D > C , and

€ . = } + 1/3, la= -1, er = 1- / 3, pu = ;

then (8 113 ) pu - en =

u? A - D.D - C

3 =
n2 AC

u? A -D.B -D

fov - = - 3 =
n2 AB

A-D.D-CA-
D.BD

AC AB
so that
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Then, either A - D= 0, which would give a stable rotation

about the axis A ; or

2 1 1

D=B+q ;
. (20)

so that D is the harinonic mean between B and C.

3

Again, pu— la

u? B-D.D- C

BC2 22
2

so that

or

6

--- w )(2 + 13) (1-1);...
or

A -DB

11/3
B - DA

1 1 13/1 1 1 1 2 13/1 1

+

D A D B. BTU A 2 CB )

1 1 1

C A
.. (21 )

Β Α

which is impossible, with A > B > C .

But (ii . ) , with A > D > B > C , we find that D is the har

monic mean between A and B ; also

1 1 1

C A
... (22)

Β Α .

so that 2 + 1/ 3 is the ratio of the semi-axes of the focal ellipse

of the momental ellipsoid , and 9 / 30 /3-1) is the excentricity .

Another algebraic herpolhode can be constructed by taking

v = w1+ jwg ; and, with 9, = 15 , 93 = 11 , we find that

pu = - + 3, ipv = -3/2(2-/3) .

Now , if

A = {sin - 6\ / 3-1) / (8–62.8-4
(28-10 + 7 / 3 ) / ( 28–2e )

(28-2 / 3 + 5 ) (28-2, / 3 + 5)*

do 20 /3-1) 3/2(2-13 )

ds 2 / S (28 – 2 / 3 + 5 ) / S

= (2+ 3)( - A).

= {cos -z
2

so that

/
r biş'v du

=S

=1 / 26 / 3-1)/ ds + }sin - 1

1s

3/2(2-3)ds

pupu (28 — 2 / 3 + 5 ) / S

ds
6\ / 3-1) / (s-eg.8-63) .

=N2( / 3-1) ;

(28-2 / 3 + 5 )

and now the algebraic herpolhode , with respect to revolving

axes, is given by

( 28-2 / 3 + 5 )*sin 30 = 6 (1/ 3-1) / (8-62.8 - eg),

reducing to an equation of the form

posin 30 + Pp4 + QpP + R = 0........ (23)
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n2

>

ON

ÄTD2 (1-3)

-Or

D - A )

Or

136 1

With (i .) A > B > D > C , and

Ce = 1 + / 3 , ea = -1 , 6 = 1-3; pu = - + /3,

h - C

pov -la 曼+ 13
ВС

M2 A - D . D - C

qov - @ = -3+ 2/3 =
722 AC

u? A - D.B - D

SOV-le = -3
n2 AB

A - D.D - C B - D.D - C
Therefore 2

AC BC

and rejecting the factor D - C ,

D 1 1 2
1 ......(24 )

А. B B

D-CAA_2-/3-3 1 1 2.1 : – 3/1 1

Also

A -DC 6 6

1 1 2 ( 1 1 1 1 1 1

1 )
© B13 B A ( В

( 25 )

so that the excentricity of the focal ellipse of the momental

ellipsoid is 13-1 .

With (ii . ) A > D > B > C, weare led to an impossible result.

Points of Inflexion on the Herpolhodes.

220. The original herpolhodes drawn by Poinsot (Théorie

nouvelle de la rotation des corps) were represented with points

of inflexion, as curves undulating between two concentric

circles on the invariable plane.

But it was pointed out by Hess, in 1880, and de Sparre

(Comptes Rendus, Nov. , 1884), that such points of inflexion can

not exist on Poinsot's original herpolhodes , which are curves

always concave to the centre, as drawn in Routh's Rigid

Dynamics,Chap.IX.; like the horizontal projection of the path

of the bob of a conical pendulum , or like the path of the Moon

relative to the Sun , a good figure of which is given in the

English Mechanic, p . 337, June, 1891 , by Mr. H. P. Slade.

The herpolhodes described on planes parallel to the invari

able plane in Sylvester's representation are capable, however,

of possessing points of inflexion , when the confocal of the

momental ellipsoid attains a certain shape. (Hess, Das Rollen

einer Fläche zweiten Grades auf einer invariabeln Ebene,

Munich, 1880 ; de Sparre , Comptes Rendus, Aug., 1885.)
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y2 , 22
1x2

+

62
+ >

2
2

C2
6
2

X
0
2

,

+ so that
ر
س

1

> + ;

c2 62
x

c2

> +

Denoting by h the constant distance from the centre of the

plane upon which a quadric surface rolls, de Sparre shows that

the herpolhode on the plane has points of inflexion, when the

quadric is

(i . ) an ellipsoid

1 1

= 1 , <a? < 62 < cº, if h2 > b?, and
a2

1 1 11

(in a momental ellipsoid, A < B + C , or <
a2 72

points of inflexion cannot exist on the herpolhode);

(ii . ) a hyperboloid of one sheet

22_ya_22 1 1

= l, al < b , if h ? < a ?, and
a2 ' 62 a2

( iii . ) a hyperboloid of two sheets

x² y² 22 1 1 1

whatever the value of h.

a2
= 1 , 2,2 < c>, if

62 c2 62 a2c2

These herpolhodes being similar to the original herpolhode

of the momental ellipsoid , when referred to axes rotating with

constant angular velocity uła /h ?, can be considered as defined

by the polar coordinates p, 0 ,given in terms of the time t, by

the equations of $ 113 ,

př = k2( pov -- you ), ...... ( 1 )

do žipv
mt

dt
( 2 )

POV — gou

with
nt + wz, v = wittwz, m /u = 1-12/h2.

Denoting the velocity in the curve by V, and its radius of

curvature by R, then , resolving normally,

V3_dp1d do de/dap d Ꮎ 2

R dt p dt dt Pät dt2
P
dt2 )

which will be found to reduce to an equation of the form

Ꮴ3

= PpP + Qka; ..... (3)
R

where P = m3 + 3mn-gv + nºiţ'v,

Q = imanigo'v—mn go " v - inºisə""'v ;

and the corresponding herpolhodes will have points of inflexion

when , is chosen so that Pp + Q can vanish .

Thus Halphen points out that the algebraical herpolhode

of $ 218 will have points of inflexion ,if 62 < jaº.

n ...

U

(6
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+ + 2 + = 1

D.B - D.C - A12

221. The polhode being given by the intersection of the two

quadric surfaces Ax2 +By2 + Cz2 = Dh?,,

A%2+ B272 + C2,2 = D ,

we may in consequence write

B- C 0- A A -B
loca (a2 + 1 ), ly2 = (12+ ), lz = (c2 + 2),

A ВB. C

where (B- C)a + ( C-A) 2+ (A - B )c2 = lDha,

A ( B - C )a ? + B (C-A )62 + C(A - B )e- = 1D21,2 ;

22 y2
and then + + 1 ,

α2 + λ'62 +λο2 + λ

the equation of a system of confocal quadrics, on choosing /

B -CC - A AB

such that 1 + +
А. B c

Then

D.A - D.B - C
62_C2 = h2, c - a - =

ABC ABC

D.C - D.A -B2012-12 .
ABC

By varying X along the polhode, we find

2 da 1 da dx 1 da

& dt a2 + 1 dt ' dt 2 cº + A tº

so that the polhode is an orthogonal trajectory of the confocal

surfaces, for any one of which is constant ; and two ellipsoids

can be drawn on which the curve is a polhode, of which the

generating lines of the confocal hyperboloid through the points

are normals.

When these confocals are hyperboloids of one sheet, the

generating lines may be made of material rods or wires,

jointed at the points of crossing ; and now any such a system

of rods forming a hyperboloid is capable of deformation , and

assumes in succession the shape of the confocal hyperboloids ;

the trajectory of any fixed point on a rod being orthogonal to

the hyperboloids,and therefore capable of being a polhode, if

the hyperboloids are coaxial with the momental ellipsoid of

the body. (Messenger of Mathematics, 1878 ; Senate House

Solutions for 1878 ; Larmor, Proceedings Cam. Phil.Society,

1884, Jointed Wickerwork ; Darboux and Mannheim , Comptes

Rendus, 1885 and 1886. )

C

Or
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Darboux has shown (Despeyrous, Cours de mécanique, t. II.,

Notes XVII., XVIII. ) that if we hold a given generator fixed,

then any point fixed in any other generator will describe a

sphere ; thus, if a rod moves with three points P, Q , R on it

connected by means of bars to three fixed centres A , B, C in

a straight line, any other point S of the rod will describe a

sphere about a centre D in the line ABC, such that the A. R.

(ABCD) is equal to the A. R. (PQRS) .

The point where the line PQR meets the generator parallel

to ABC will describe a plane, the corresponding centre being

at an infinite distance; and generally , if one generator is held

fixed, any point on the parallel generator will describe a plane,

The herpolhode can now be described by taking a jointed

hyperboloid , similar and similarly situated , and of half the size

of the former one used for describing the polhode, with one

generator fixed along the invariable line OC, and with the par

allel generator along the normal PQ at P ; and now , if P is

moved in a direction perpendicular to the hyperboloid at P,

it will describe a plane curve , which is the herpolhode.

222. Any point fixed in a body moving under no forces,

whose co-ordinates with respect to the principal axes are

represented by a, b , c, will have component velocities

cq - br , ar - cp, bp - aq, parallel to the principal axes ;

and will describe a curve whose projection on the invariable

plane will be given ,in polar co -ordinates p and o ,by ($S 104-113)

aAp + bBq + cCr ?
pära? +62 + 62

Du

(60 ° – cBq + (cap - cuC )2+ ( Bq - bAq)

D2u

{ ( bº + c )p- abq - card
„dф
p at

Du

Bq

+ {(c2 + a ?)q- bcr – abp }Du

Cr

+ {(a? + B2) " — cap — bcq }Du

the moment of the velocity about the invariable line OC ; and

p, 9 , 1 are given as functions of t in SS 32, 106 , and 108 .
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dh , – kąp+ hqr = 0 , dhz –14q +hap = 0 ,

The equations are much simplified when the point is fixed on

one of the principal axes , when two of the three quantities

a, b , c vanish ; and it will be a useful exercise for the student

to prove that, in these cases, the curve of projection on the

invariable plane with respect to axes rotating with angular

velocity G|A , G /B , G|C respectively , is given by an equation

of the form

& tiy = ko ( u, wa- v) , or ko(u , Wi - v) , or ko(u, wc - v) .

Another useful exercise is to deduce Poinsot's relations when

the co-ordinate axes fixed in the body are not principal axes.

Now, if the equation of the momental ellipsoid is

Ax2+ By2 + C22 – 2 A'yz— 2B zx – 2C'xy = Dh ;

and if p ,q, r denote as before the component angular velocities ,

and hy, h2 , h, the components of angular momentum about the

axes, the three equations of motion under no forces are

dh,

-h.r + h ;q = 0 , -19 =
dt dt dt

where

hy = Ap - c'q - B'r, hq = Bq - A'r - C'p, hz = Cr-- B'p - A'q;

and these equations are solvable by elliptic functions.

(Dissertation Ueber die Integration eines Differentialgleich

ungssystems; Paul Hoyer, Berlin, 1879.)

223. The numerical results obtained in the preceding alge

braical herpolhodes can be utilized in the corresponding

problems of the revolving chain ( SS 205-206) and of the

Tortuous Elastica ( 207) .

Putting ť = 1, or v = jw, in $ 206 ,

then purez- Vley-eg.cz - 63),

ipv = 2 / ( , -6z .62 - es){ [ (e - es)+7(ez - es)} ;

jig'v du

Кои — Коу

-11/ (pu - en - Jou - e,)
= i cos { / (01-03)+7( ez -ez)} (u -wa),

pu - pu)

(8 - sov )cos [24 + { / let - eg)+1(ez-(z)}ww /a ) = 1/ (s - C7.8 -em ),

where 8 - yu = p2/12.

In the corresponding problem of the Tortuous Elastica of

$ 207, it is merely requisite to replace x by the arc s.

and y =
y = f

2

Or
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COS - 1

U

Or biso
du sin - 1 jou

The working out of the analogies for the other algebraical

herpolhodes is left as an exercise ; merely mentioning that

$ ( wg; 15, 11 ) = - ,

and that, if

) 68 +7

}

(28 + 3 ) (28+3)+'

do 1 28 +1 1 1 1 igorv 1

ds1228 + 3 VS / 2 JS 28 + 3 JS

figoʻvdu 1

Su — Jov 2 3 (pu - pu)

224. The analytical expressions in SS 208 , 210 for the motion

of the Spherical Pendulum and of the Top or Gyrostat show,

by comparison with the equations of the herpolhode in 8 200,

that this motion may be considered as compounded of two

Poinsot representations of the motion of a body under no forces,

as given in Ss 104, 214 (Jacobi, Werke, II. , p. 477 ).

The relations connecting these two component Poinsot

motions have engaged the attention of Darboux (Despeyrous,

Cours de mécanique, II . , Note XIX.) , of Halphen ( F. E. , II. ,

Chap. III. ), and of Routh ( Q. J. M. , XXIII. ) .

We may put the conclusions arrived at by these mathema

ticians in the following condensed form, depending on funda

mental dynamical and geometrical considerations.

(i . ) If the vector OH represents the axis of resultant angular

momentum , then H lies in a horizontal plane through the point

G, where the vertical vector OG represents G, the constant

component of angular momentum about the vertical.

(ii . ) If the plane drawn through H , perpendicular to the axis

of the Top, cuts this axis in C , then OC = Cr, the constant com

ponent of angular momentum about OC, the axis of the Top.

(iii . ) These two planes, one horizontal and through G, which

we shall call the invariable plane of G, and the other through

C and perpendicular to OC, which we shall call the invariable

plane of C , intersect in a line HK perpendicular to the vertical

plane GOC ; and if HK meets the plane GOC in K , then

CH2 - GH2 = CK2_ GK2 = OG2_0C2 = G2 - C2012.

(iv. ) The instantaneous axis of rotation OI lies in the plane

HOC ; and if I meets CH in I, the resultant angular velocity
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so that

J (2AW ghk)= 1kgol,

about OI is 01/ C ; also CI/ CH = CA

and the velocity of C is r.ci.

( v .) By equation (i. ) of $ 210, the square of the velocity of C

is
( 2C2,12Wg/ A )( c - h cos 0) ;

CI2 = (2C2Wg/ A )( c - h cos O),

CH2 = 2 A Wg(c - h cos O)

= 2A Wght ($ w- yu ), suppose.

Then, by equation ( 3) of g 210, with u = nt + wz,

Ilnºk goʻ22 = gk®(ou — Þa)($u_ $b)(pu- pw)- (a+ Bou ) ;

and therefore, when ura,b, w, we have three equations of the

form iç'a = ut ßpa, - ip'b == a + Bob, ip'w = a + Bow ;

so that, according to $ 165 , we may put w= b - a.

(vi. ) Now GH2 = 2AWghk {p (b - a ) -su }- G ? + C272

2A Wghk (fw'— pu), suppose,

where pow ' — 9(a+ b) = - (G2 — C27,2)/2 A Wghk ;

and since

G + Cr G - Cr

i - 3kg'a, į 3kgoʻb
(2A W ghle)

and
2 = k (føb - ga),

go'agol
therefore pow ' – 8 (b - a ) =

($ b --- pa)2

and therefore (S 151 ) we may put w = b + a.

(vii . ) The point H moves in the invariable plane of G with

velocity equal to the impressed couple of gravity, and parallel

to the axis of the couple ; so that the velocity of H is in the

direction HK, and equal to Wgh sin 0 ; and the moment of this

velocity about G is Wgh sin 8. GK .

But GK sin = 00- OG cos ,

p (do/dt) = Wgh (Cr - G cos 6),

if pe o denote the polar coordinates of H in the invariable

plane of G

Now pa = 2A Wghk {8 (6 + a ) -pus,

and k (pu- ipa - ipb ) ;

so that finally we shall find, after reduction ,

do G jig'(bta)

+

dt 2A * (6 + a ) -pu

and therefore H describes in the invariable plane of Ga her

polhode with parameter b + a .

so that

cOS O =

n ;
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( viii . ) Similar considerations will show that the curve de

scribed by H in the invariable plane of C is also a herpolhode ,

with parameter b - A.

If in equation (2) of g 210 we replace Cr by Ar ', the motion

of OC is unaltered, but now the momental ellipsoid at O becomes

a sphere,and OH is the instantaneous axis of rotation ; so that

the motion of OC is produced by rolling the cone, whose base

is the herpolhode described by H in the invariable plane of C ,

on the cone whose base is the herpolhode in the invariable

plane of G, the angular velocity being proportional to OH.

(ix. ) But in the general case, where 01 is the instantaneous

axis, the curve described by I in the invariable plane of C is

similar to the curve described by H , and is therefore a herpol

hode .

Now from (v. ) , drawing CM , IN perpendicular to OG,

012 = 0C2 + C12

= C 27.2+ (2C2Wg/ A )(C - OG + GM )

A

= C2,2 + GN

A C - A .

so that 012 varies as the height of I above a certain horizontal

plane ; and the locus of 1 is therefore a sphere, to which the

point 0 and this plane are related as limiting point and radical

-

202W9(c - 0c - OG + CCA

plane.

The motion of the Top can therefore be produced by rolling

the herpolhode described by I in the invariable plane of C on

this sphere, with angular velocity proportional to 01.

(x. ) It still remains to be shown that the cone described by

01 in space round OG is a herpolhode cone ; this is left as an

exercise.

Darboux showsthat two such hyperboloids as those described

in $ 221 , with a pair of generating lines, PQ ,PQ' in coincidence ,

and the opposite generators OG, OC of the same system inter

secting in a fixed point 0, may be used to represent the

motion of OC, the axis of a Top, when OG is held vertical ;

the point P of intersection of the coincident generators being

made to describe herpolhodes in the invariable planes of G

and C, by being moved in the direction of the common normal

of the hyperboloids .
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225. The numerical results of the pseudo-elliptic integrals

of S$ 218, 219, and 223 can be utilised for the construction of

similar degenerate cases of the motion of the Top.

Thus, if a = iwg, b = w1 + 303,

then b + d = wy + wg, b - a = W1 ;

and we shall find cos a = 0, cos ß = , d= sec B, and

C22 = 2A Wgh sec B , GP = 2A Wgh cos ß.

The spherical curve described by C is now given by

sin 0 sin (nt cos ß - 4 ) = N/ { cos O(cos ß - cos O) } ,

sin cos(ntcos B - 7 ) = 1/ ( 1 - сos ß cos O).

With a = ! 3, b = w1-3wg, and b + a = w1

we find that cos a, cos B, and d are unaltered , but Cr and G

are interchanged ; and C now describes the spherical curve

sin 0 sin (nt - 4 ) = \ {cos ( sec ß - cos ()} ,

sin cos (nt - = / ( 1 - secß cos () .

Again , with a = fwg, b = wi - jwz, 92 = 15 , 93 = 11 ;

so that ya = -, pb = 1 , we find that

k = 1, cos a =- 13+ 1 , cos B = -1 , d = /3+ 1 , C272 = 4A Wgh ;

and the spherical curve described by C is given by

sin3A sin 34 = ( - 1- 2 cos 0 )*,

sin30 cos 34 = (1 + cos 0 + cos20 ) / ( 2 + 2 cos 0 - cos20) .

To realise this motion practically, place a homogeneous sphere ,

of radius c, inside a fixed spherical bowl of radius a, in contact

at an angular distance of 60° from the lowest point, and spin

the sphere about the common normal with angular velocity

gla
35

The sphere if released will roll on the interior in this curve .

As another numerical illustration we may take

9, = 48, 9 , = 44 ;

when
$ (w7 + ) = 2, $50,= – 4 ;

po'(wy + }wg)= -5w7 = 6ix / 3.

Also, with 92 = 30, 93 = 28, w3w = i 2,

@}w, = -5- / 6, piw = 1- / 6, etc.
G.E.F.
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dýri

d42

с

226. It is convenient to represent the two parts of Yo by

Vi and V, such that

.
1 G + Cr 1 dựu tiga

;

dt 2 А. 1 + cos ' cu Кои -- Коа

dy . 1 G - Cr 1 defra fip6
;

dt 2 A 1- cos du pb - pu

also to put x = 41-42, whence Euler's angle ø = x+ (A-C)rt/A ,

dy Cr - G cos e
and

dt A sin20

an expression obtained by interchanging G and Cr in ys.

With a= pwg, b = wi + qwg,a change of q into -q interchanges

G and Cr, while a change of p into -p interchanges G and

- Cr: both changes of sign change G and -G and Cr into

- Cr, and thus reverse the motion.

The following degenerate cases of the motion of the Top will

afford an exercise on the preceding results of $ 210, 224 :

A. With b - a = w , or q - p = 0,

G 1 + cos a cos B
d =

Cr h cos a + cos B

C272 /2 A Wgh = cos a + cos B ;

and by $ 215, x is now pseudo -elliptic ; and

x = (cos a + cos B ) / (žg/l)t-

(cos -cos O)(cos 0 - cos a)
where

1 + cos a cosß- (cos a+ cos B)cos o

sin - 1 _ {(cos ß - cos )(cos 6- cos a) }

sin 0

{ 1 + cos a cos B - (cos a + cos B) cos A }

sin e

The angular velocity of H round G in the invariable plane

or G is now constant and equal to 1G/A .

B. With b - a = wi+ wz, or q -p = 1,

G 1 + d cos a

cos B =
Cr h cos atd

C927-2/ 2 A Wgh = cos a td,

and the spherical curve described by C has cusps on the circle

given by O = B ; and now

x= /(cos a + d ) / (2g /l)t- ,

(d- cos cos0 -- cos a)
where etc.

1 + d cos a- (cos a + d) cos '

¿= tan - 1
✓

- 1
COS

с

Ŝ ' = tan - 1
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a

now

The angular velocity of H round G is again equal to {G/A .

C. With b + a = wy, or 9+ p = 0,

Cr 1 + cos a cos B
d =

G cos a t cos ß

and now yr is pseudo- elliptic, and given by

Yo = / (cos a + cos B)/(19/1)t- $ ;

while the angular velocity of H round C in the invariable

plane of C is constant and equal to Cr/A.

D. With b + a = wytwz, or q+p = 1 ,

Cr 1 + d cos a
cos B =

G cos at d

Yr=/(cos a+ d)/(1g/l )t- Š',

and the angular velocity of H round C in the invariable plane

of C is again { Cr/ A .

E. With q = 1, b = wytwa, G - Cr = (), and y disappears ; and

cos B = c/h= 1, the Top being spun originally in the

upright position.

Now if the Top falls ultimately to the extreme inclination a,

we find that C272/2 A Wgh = 1 + cosa ;

and subsequently, after a time t,

sin j0 = sin ja sech ( sin jad (g /l)t},

Crt cos O - COS a .

WE
2A V 1 + cos

so that the integrals for t and yr are pseudo-elliptic.

F. With q = 0,b = wı,G - Cr = 0, and y , again disappears ; but

now d = 1, and the Top does not rise to the vertical position.

For numerical illustrations of this motion, take

a = fwg, and 92 = 15, 93 = 11 , when ga= -3 ;

92= 48, 93 = 44, when pa = -4.

G. With p = 1 , a = wg, G + Cr = 0, and y1 disappears ; now

cos a = -1, and the Top passes through its lowest position.

For numerical examples of pseudo-elliptic cases, employ the

results pwr + }wg; 15 , 11) = , and (wy + 5w3; 48 , 44) = 2 .

H. With p = l and q = 1 , G = () and Cr = 0 ; and the motion

reduces to plane revolutions, as in $ 18.

I. With p = 1 and q = 0, G = 0 and Cr = 0); and the motion

reduces to plane oscillations, as in $ 3.

K. With p = 1,9 = 0, d = 1 , cos B = -1, cos a = -1, the

dulum is at rest in its lowest position .

-sin - 1 >

or

-1, the pen
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The Trajectory of a Projectile, for the Cubic Law of Re

sistance.

227. An immediate application of the function d (u , v) of

8 201 occurs in the solution of the motion of a body under

gravity in a resisting medium, in which it is assumed that the

resistance of the medium is in the direction opposite to motion,

and that it varies as the cube of the velocity.

Refer the motion to oblique coordinate axes, one Ox in the

direction of projection at the point of infinite velocity, and the

other Oy drawn vertically downwards.

Denote by w the terminal velocity of the projectile in

the medium ; so that if W denotes the weight in pounds, the

resistance of the air at a velocity v is a force of W (v /w )

pounds, and the retardation produced is g(v/w) .

The equations of motion are then

3

g ( ds) 3 dad2x

dt2 (as)de ...... (1 )
wildt) ds'

3 dygday

dt2

ds) 3

w3ldt) de +9..
...... (2)

Eliminating the term due to the resistance,

dx dły dạx dy
doc

dt at dt2 dt = 9at

dp du
01 (3)>

or, writing p for dy/dx,

dp dt

= g.

dt = Ida dt at

It Os makes an angle a with the horizon , then

dsa _dy? _ dy du
do ?

dt2dt dt at

sin at at

dx2

diz (p2 – 2p sin a +1),

and now equation (1) becomes

dax g ( ds )2 dæ

dt2 W3 \dt) dt

gdx3

( 1) (p* –2p sin a + 1)woldt

o
r

də ) -4 dax

W3

(
dp

dt

11 1 (p2 - 2p sin a +1 ) , . .. . . . ... (4 )
dt dt)



AND THEIR APPLICATIONS. 245

Integrating, noticing that da /dt = , when p = 0,

(01) * = }p* –p?sin a +p = }P,\ dt )

suppose, where p3 – 3p?sin a + 3p is denoted by P ;

dx

dt

or = wp .. (5 )

dp -gadThen , from (3) ,

do\ -2

dt

9 p .

W2

so that

dx

g
dx

w2 dp

g dy

p -3

22 dp
=pP3,

and
goc

w2

P -3dp, : ( 6)

= P

*+/prtup
(7)

0

dp_9p3,while

wdt

gt

--
pdp.... .... (8)

0

228. The integration required in (6) is similar to that of

ex. 8, p . 65 , discussed also in $ 157 ; we substitute

z = m2P3/P,

where m is some arbitrary constant factor ; and then

4.73 – 93 = { (4m6 -93)p2 – 12m®p sin a + 12mo} /pa,

which is a perfect square, when

4mo— gʻ = 3m @sin ? a, or 93 = m®(4 -- 3 sinʼa) ;

J (423-93 ) = mº -J3( 2 - p sin a )/P,

622d2 2m²/ 3dp
and

(473 – 93) p?

dz mº / 3dp dp

(473 – 93) 3p z2

on choosing mạ = } ; so that

gx
dz

W2 (423 – 93)

so that

>

gdc

or

-

11

1

mx/ 3P3 U2

=f )

ga
2. = pol 0 , 93

3). ( 9)
102
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so goc

w2

ga
a

ga_1

Then

2

Зр

and supposing x= d at the vertical asymptote, where p = 00 ,

sin

3 W23

so that
ga

2
siga

8

223p

2

КО?
w
a

202

dy 3

69
29
0

U2

or po do
.....( 10 )

gaso ga ga

w2
8

gx

W2и2 w2

65
29
a

W2

dx ,

0 W2

and now Sipov du >

0

and, integrating y =

ga 9X

8
W2

the equation of the trajectory.

It is convenient to write u and v for goc /w2 and ga /wa;

gy

. ( 11 )
w2 pʻv - pu

to be integrated by the preceding rules of g 198.

Rationalizing the denominator g'v —pu, it becomes

80*200 --- $ 22 or 4 (8931 po'ui ),

since ge = 0) ; and resolved into linear factors, it becomes

4 (90 - yu )(w @ u - pu )(w2you - gou ),

where w, wº denote the imaginary cube roots of unity, viz.,

w = - * + // 3i,wa = - 1-1 / 3i.

Now, resolved into partial fractions,

60 v 60 v ( fo'vtsu)

so'v - pu 4(88v — pºu )

1 pov + soʻr , 1 pov + sou 1 , pv + péu
十
+

( ege ) - ดู บน

1 pov + so'r , 1 po'wv + s'u , 1 , p'w2v + so'r
+

2 800-800
( 12)

* ( 0 ) - $0 น 8w2v- ou

on making use of the results of $ 196 , when gn = 0.

Then

gy '1 d'vtpu 1 go'wv + s'u 1 go'w2v +pu

W2 pupu 2
80 WV-80U 280w2v - 89U

11

2 ου fouT
2

% 202 w -fou - gou

+20 23
62

dutoof du tw² du ,
2

0

which is prepared for integration as required in $ 198 ; and since
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s s'utpuI go'v + soéu

du =Jis(v —u)$ (v— U ) + fu - Šv }du
2 80-800

= -log o(v - u) +log ou - ufv + constant

- 0 )qušo = -log ®( -u, v) ;

therefore the result of the integration may be expressed by

o ( - u ) quiso- log (v - u

OVOU

gy

= -log o( -u, v ) – w log ( -u, wv) - wʻlog ( - , wʻv )....(13)
W2

The conditions of Homogeneity of § 196 also show that the

last equation (13) may be written

gy 0

W2 σωλυ

or simply

gy

22
- 3ufu - log o(v – u ) - w log o(WV - U )-wlog o(w2v – u ), (14)

συ σω )

= -31 &v – log "(v – u ) wlog Ow - u) -wlog (w2v - u )

subject to the condition that y = 0, when u or x = 0.

The equation is left in the complex imaginary form , as there

exists no theorem for the expression of

log o(ww - u ) in the form P + iQ ;

unless we introduce a new function º(a, a), defined by

(Halphen , F. E. , I. , p. 151 )

bla,a)= /if(a + ia)+ Š(a –ia)}da.(a 0

w = f

-
1 g'v+fo'u dutwa

dutw*) 2 gwv -

UU

1 tof2 four
-Bwv-su dute

229. For the expression of the time t in the trajectory,

equation (8) leads to

gt ** Opupu
du

so'v - p'u

po'v po'wv +b'u 1 p'w'v +p'u
du , ( 15)

2 90 -- you -pu

when resolved,as before for y, into partial fractions; so that

gt

= -log o( -u, v) - w2log (-u, wv) -wlog O (-u,w²v) ,

olwV — u ) olweru)

-w’log w log
σωλη:

or simply

= -log o(v - u) - w’log o(wv- u) – w log o (w2v - u), (16)

subject to the condition that t = 0, when x or u = 0.

W

or
= -log

o
(v - u)

ση: COV
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22
2
X at

20

-log (9 – )
eur

o

}'+ logOVOU

gt

20
2

X
w

By addition,

gy , gt

- 3 log (-u,v)+ log øl - u , v )$ ( - u, w ) ( -U, w ?v );

olv - u ) (wV - U ) - (W - U )

συ σωυ σω? υ σBu

and this last term , when expressed in a real form , is equal to

log 3(sv - soʻu ).

( Halphen, F.E., I., p .232. )

This can be proved independently ; for

++3 log 01 - U, V)

6ov(pvtpu )
-dut3

1
-du

so'v - p'u

-69 - u du

= log ( 80-2) --- poʻu) + a constant. .. ( 17)

pív - sp'uน

230. For the purpose of the expression of y and t in ascend

ing powers of x or u, it is useful to employ the function

(V

eušo, which we may denote by V - u, v) or vi

so that y(-u, v) = JU P( -- U , v ),and ys = 1 ,when u = 0.

We may now write

gy /w2 = -log \( - U, V) -w log \ ( - u ,wv) – w’log \ ( - u , w ? v ),

gt/w - log y ( -U, V ) - w²log 4 - U ,WV) —w log \( - 1, wʻv) .

Differentiating logarithmically,

pu + po'udu

2ου Хо и+3 )

s

OV

1 ays

11 - $(v- u) + ŠV

2 .

& au

U2 23

ugout 3:5
0
"vt ...

on exp
and

ing

the sec
ond

sid
e
by Tay

lor
's

Th
eo
re
m

; so tha
t
,

int
egr

ati
ng

aga
in

,

log \ ( - u , v ) =

u2 u3 24

2!Putosipu 418 "0+po " v t ... , ..... (18)

Then, with 92 = ( ), and ywv = wpv, etc. ,

23

log \ ( - U ,w v)= govwgo"v + ...,!

u2

2?Wavtodo'
v

44

4
( 19 )

U2 U3

log Y - U ,w2v) =- 2wou + asov

u4

wlo" v t ... ;
41

.... ( 20)
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( u4

3
80"

U?

7 ! +

fol
uri

t
U10

W2 4 ! 10:9'étio -...)........(21)

............(22)
gt u8

3/
4

Vfolu
r
)

w

51pun
t

gy
so that

u5

8P ?? +
21 8 !

and here U = g2 /wº, j , = 0,93 = 1 (4-3 sin’a), pu = } ,

po'v = { sina, pu” = 3,90" = sin a,pliv) = 4 - sina,garam = 4 °sina ,...

231. When P1, P2, P3 denote the values of p corresponding to

three points defined by the values X1, X2, X, of X, or U7, U2, Uz

of U, such that

* + x2 + x3 = 0, or u+ uz+ Ug = 0 ) ,

then, according to $ 145 ,

(P , P,Pg)} = P1P2P3- (P2P3 + P3/ 2 + P1P2)sina + P1+ P2 + P3.(23)

This Theorem follows also as a corollary of Abel's Theorem,

as applied in § 166 ; and it is interesting to proceed to the

determination , in a similar manner, of the corresponding values

of
Yu + Ya + Yz, and ti + tz + tz.

Changing, in $ 166 , æ into p and y into P3,then from (7) $ 166,,

g

202 dy(dy. + dya + dy3) = P ,P4-3dp + p2P ,- dp + p P3-%dp

3 P , p ,
3δα

+

a3-123 -P1.P. - P2 P1 - P2 P2 - P : ' P2 - P3-P3 - P1 93-1

(dt, + dtg + dtz) = P - $dp, + P , - dp + P3 -5dp,

3 [(api + ß )(pda + 88) + ..
3αδα

as - 11 (P3 - P1)( P1 - P2) al - 1

Therefore

g
3da

a - 1

- log( a - 1 ) - w log(a - w )-w-log (a - 62),...(24)

9
3αδα

(to + tz + tz )
a

- log(a - 1) - wʻlog(a - w) - w log(a -6 %); ..(25)

P3- P,$ _ P, P,}_P,} - P,}
where (26)

P2-P3 P3 -P1 P1 -P2

and a = 00 , when Pi =P2 =P3 = 0 .

As a corollary from the preceding expressions for y and t in

terms of x or u, it follows that

o(0- U )o(v - Uz)0 (v Uz)

}

se(81+ % +4 )=Sºzda

3 -1
w

a =

1

σου συσσια a - 1
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-log (pu — pou)
log pou —1030

1/3 tan -1

w

ll -

4 18-20
2/3 tan -1

W 4 102,
+3/3 tan -1 3901

4

232. By taking X = 0 and P3= 0, then

Pi + p2 - P2P,sin a = 1), or 1/22 +1/pe =sin a,

when
2 + x ,= 0 , or untu, = 0.

Now, from equations (13) and (16),

2.(4.+ y2 - log (pu - pu )-w log(spu -69V)-w log(fou - w4fov )

1
3 /3pv

- 28u + pu

g

(t. + tz ) = -log(pu - You ) - w?log (pu - wwv) – w log(su – wyv )

1 (pou - Yv) / 3gov
log +3 tan -1

2 pu - 88v) 2pu+ pv

In particular, when u = wn , then

Øl U , w ,) = 1/ (ou–a),

1
gy

and
J3pv

- 3w,fu log
(pv - e,)} _ 1 /

W2 2e + pv

gt 1 (pou - e ,)3 , 1
log + 3

2c2 + pu

so that the expressions for y and t are pseudo-elliptic ; and, at

this point, p= 2 sin a .

233. We may now investigate the properties of certain points

on the trajectory.

When
U = 2w ,-V,

then pu = }, pur - sin a, and p = cosec a,

so that the tangent is perpendicular to Ox.

The velocity in the trajectory is given by

W( 22– 2p sin a + 1) (23– 3p ? sin a + 3p) ,

and this is a minimum, by logarithmic differentiation, when

p-sina p2-2p sin a +1
0 ,

p2 - 2p sin a+ 1 p3— 3p sin a + 3p

p ? cos'a + p sin a - 1 = 0. ..... (27 )

If the tangent AB makes an angle ß with Ox at the point A ,

sin 8
then ps

cos (a - 3 )

so that the relation becomes

2 cot 2B = tan ß- cot ß. ......... (28)

Then (4+ tanʼa)= tan B+ cot B = 2 cosec 2B,

J (393) = 1/ ( 4 — 3 sinʼa ) = } cos a cosec 2B.

or

tan a =

or
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لیک-1)هل(4-1) Tood
e

The relation (28) is equivalent to a number of other re

lations, such as

tan(2B - a) = tan a- tan 2ß = tan a + 2 cot a ,

tan (a - 3 ) = cot ß,

tan a = {cot(a - )}} - {tan (a - B )} },

3 tan a+ tan?a = 2 cot 2 (a - B ) = cot(a - B ) - tan (a -- B ),

tan a = {cotla - B )} - {tan \a - B)}$,etc.
2

Also, since p =

sin a - 30'u

therefore, at these points of minimum velocity,

po ”?u = } ( 4 — 3 sinʼa) = 393, and foxy = 93,

and therefore p24 = you , or u = śwn, as in § 166 .

The integrals for y and t at these points of minimum velocity

are therefore pseudo- elliptic, and depend on

ds sds

and |
( 82 - 1 ) / (458— 1 ) (sø - 1 ) / (493 — 1 )

integrals first considered by Euler (Legendre, F. E., I. , Chap.

XXVI.).

We find , by differentiation , that

d 28 + 1 1

(29)
ds (493 — 1 ) S - 1 (450 - 1)

1 d (453–1 )+ /3

2 dslog (4653 – 1)+3(28–1)

3

/(458– 1) 7 (483–1)+23 /(483– 1) ... (30)

313 tan -1 /3V/(488 – 1) –13(28 + 1)
(458— 1 ) - 1/3(28 – 1)

1/3

(4.93 — 1) * (493 — 1) + 1/ 3 / (493 — 1)

by means of which the results can be constructed ; and

noticing that, if s = pv, / (453 – 1 ) = g'v, 92= 0,93 = 1,then

(493 — 1) + / 3
= ® (V - 30 ),

- (453-1)+13(28- 1 )

23 /(483– 1) – „ 3(28 + 1
= '( 0 - 02),

V (453 – 1) + _/ 3(28-1)

we find finally, when u = {w,,

gy /wº = 3628W2-20250 + 1 log p ( x -309)-11/3tan - 750 (0-3w2), (32)

gt/w = 2v6wą - fwfw , + 1 log ® (v - 30 ) + } / 3 tan - 15 '(2-3wn). (33)

1

>
tanh-1N3( 28 -1) = -11/ 3

8-1

3 S .1

十 ... (31 )
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234. Denoting by the angle which the tangent at any

point makes with Ox, the tangent at 0), the point of infinite

velocity, and by the angle which it makes with the tangent

at A, the point of minimum velocity , then ( = B - Ø , and

sin e sin(B - )

cos( a - 0 ) cos(a - B + )

sin a - 3pu 1 cos(a - B + )

2
P sin (B - 0 )

sin a sin(6-0) - 2 cos( a - B + )
and

3goʻu
sin (3-0)

cos(B - 0 ) + 1 tan a sin(2-0)

sin (ß - 0 )

- (8-0) - cot 2ß sin (8-0)

sin ( - )

sin (B + 8) .

so that

- 2 cos a11
os

2 cos a

2 cos a cosec 2ß sin (8-0)

or

and since

so'£w , = -_(393) = - } / (4—3 sinʼa ) = – cos a cosec2ß,

sin (B + ° ) pou
therefore

sin(ß - 0) p3w2

tan o _fu — p ' w ,

tan pou + pow2
..... (34)

Therefore, at points defined by Wy, U2, where the tangents

make equal angles with the tangent at A ,

powy : 8'Un = p ?2?w2

Thus, if uy = 0), then uz= w ,; and the tangent where u = w,

makes an angle 28 with O..

By the principle of Homogeneity of $ 196, we can select any

arbitrary value of 93,and it is convenient to take 93 = 1 ; and

gæc

then gogo = m -gu , p o = mp'u ,
w2

where m = (4–3 sinʼa )+/-/ 3.

With g2 = 0,93 = 1 , we have found, in $ 166 ,

pozw , = 1, $ '£ w , = - /3, $ '$0 , = / 3.

ga

Again, if

pov = (4—3 sin?a)-), go'v = 1/3 sin a (4 — 3 sinʼa ) 3 = 3 cos 2B ;

so that, as a increases from 0 to 17, p'v increases from 0 to /3,

and v increases from w, to $wg.

U

now , if

m w2 W2

mo = 93

V

mт w2'
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Denoting the analytical expression for tan p/tan 8 in (34)

by X, then X is independent of a or B, and therefore a Table

of numerical values of X, with u or mg /202 for argument, will

serve for all trajectories.

It will be a useful numerical exercise for the student to

prove that corresponding values of u and X are

wa
1/ 31 / 3 + 1) -- 2.

2/2

1

;3w2,
/ 3 + 1-2/ 3

2

30.2, 0 ;

_3-1- /23/ 3

2 ,

W21
-1 ;

zw2
* /30 / 3 + 1)+22

22

W22 .

EXAMPLES

Prove that, with 92 = 0, 93 = 1 ,

1. 8 (u- w ,) =

+ / 3

soʻu + 13(294–1)

2. $'(u – $w ,) = 2_3 'u— V3(2pu + 1)

po'u+3(29u - 1)

3. ( u - wa) ? ( u + w .) =

po $ u - 1

(pou – 1)

du

4. = -šu—6/3tanh -2 /32pu - 1
po'u

du

1 / 3u - 1 log p (u - w2)-15/3 tan -lg '(u - w .).
g'u+3

you -1

ö.

South

Soc

pou du

6. -1. log plu- w ,) + 15/3 tan - 19 '(u - 3w ,).
gout/3

7. Integrate (gu) -1, (pu) -2, (pu ) - 3.



CHAPTER VIII.

THE DOUBLE PERIODICITY OF THE ELLIPTIC

FUNCTIONS.

235. Besides pointing out the advantage of the direct Ellip

tic Functions obtained by the inversion of the Elliptic Integrals

(8 5), Abel made an equally important step (Crelle, II. , 1827)

in showing that the Elliptic Functions are doubly -periodic

functions, having a real period , 4K or 2K , as already defined

in $ 11 , and an imaginary period, 4K'i or 2K'i, where, as

before in § 11 ,

. '

0

W =

=Ft

Doubly -periodic functions make their appearance when we

consider functions of a complex argument w = u + vi.

Denoting x + yi by %, we have already discussed in $ 179 the

system of confocal conics given by

= csin w , or c cos w, when u or v is constant.

dz

In this case

N ( C2—72)

and the poles of this integral,as defined in $ 54,are given by

z = c, the foci of the confocal system of conics.

Changing the origin to a focus, then

dz

(2.2c - z )'

and z= 2c sin21w ,

2c - z = 2c coslw ,

dz/dw = csin w .

Denoting by r, no the focal distances of a point, then

po2 = (x + yi) (x – yi) = 4c sin ](u tvi)sin’1( - vi) ,
254
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ON

so that

J or

w =Svie. Idz.1–

p = 2c sin } (u+ vi) sin (u - vi),

q ' = 2c cos } (utvi )cos } (u - vi) ;

qo' + 7 = 20 cos vi = 2c cosh v,

por= 2c cos W,

giving the confocal ellipses and hyperbolas, for which v and 2

are constants .

It is convenient to denote x- yi by - and u - vi by w' ;

and now the Jacobian

2 (x , y )= c2sin w sin w ' = {rr'.

a(u, v)

236. Now, if we consider the integral ( 11) of $ 38,

dz

(2.1-2.1-kz)'

then
2 = sn ?! W ,

1 - z = cnlw ,

1 - kz = dnºw,

dz/dw = sn tw cn I w dn jw ;

and the poles of the integral are given by z= 0, 1 , and 1/k.

Denoting by r, r' , you the distances of a point from these

poles or foci 0 , 0 , 0" in fig. 26 , then

go == sn kwsn įw ', r = cn 12 cn lw , kr" = dn jw dn jw' ;

or by means of formulas (2) , (3 ),(5 ) , (28), (29) of $ 137 , with jw

and fw' for u and v, and therefore u and iv for utvand u-V,

cn vi- cnu 1 dn vi- dnu

y

dn vit dnu cn vi + onu

cn vi dnuten u dn vi dn vidnu

dn vi + dnu K2 cn vidni cn u dn vi

cn vidnu + cnu dn vi cn vi- cnu
kr "

cn vitcnu cn vidnu - cn udn vi

From these relations, by the alternate elimination of u and v,

r + r'dn vi = cn vi

po - p’dnu = cnuſ

koro " + kr'cn vi = dn vi

kr " -- kr'cn u = dnu ſ

kr " dn vi -- kr cn vi = 1 - K)

kr "dnu - krcnu = 1 - kſ

the vectorial equations of one and the same system of confocal

orthogonal Cartesian Ovals ( fig. 26) ; also J = krrr ". (Darboux ,

Annales scientifiques de l'école normale supérieure, IV ., 1867.)

2

K

12

K

12

or

or
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As we travel round one of these curves and make complete

circuits, each enclosing a pair of poles of the integral w , defined

either by 0 and 1 , or 1 and 1 /k, the integral increases by

constant quantities 4K or 4K’i,the corresponding periods of

the elliptic function sn21w, as in $ 55 .

y

K

R

H ' Ң О ?

Fig. 26.

By making k = 0, we obtain the degenerate case of the

confocal conics, and now Krit, while K ' = 0 ; so that the

circular functions have a real period 27 and an infinite

imaginary period ; on the other hand, the hyperbolic functions,

as illustrated by the confocal ellipses , have an infinite real

period and an imaginary period 272.

Mr. J. Hammond has shown, in the American Journal of

Mathematics, vol. I., how these Cartesian Ovals may be de

scribed mechanically, by means of reels of thread, as in the

case of the confocal conics of $ 173.

He takes two reels of thread, of different diameters, fastened

together, and pivoted on the same axis at C. Now , if the

threads are led through a pair of the foci, 0 and 0 ', the curves

pur' = C

will be described , if the diameters are in the ratio of 1 to 1 .

By leading the threads round an oval,as in fig. 26 , theorems

can be obtained, connecting arcs of confocal Cartesian Ovals,

analogous to those of Graves and Chasles for elliptic arcs.
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a

β- δη,

-dra

237. By inversion of this system of confocal Cartesian Ovals,

we shall obtain another system of orthogonal quartic curves ,

with four concyclic foci A , B, C , D , defined by the vectors

z = a ,ß, y, d, suppose ; and now

= [dz] ] (z – a.z - 1.2-4.2-8);

or, writing w for w / /(a-y.ß-o), then , from $ 66 ,

B - 8.z - a a -2.2-8 -
snalw, cn 10,

a - 0.2-8 -0.7-8 a -7.2-6

Denoting by r1, P2, 13, re the distances of a point from the

foci A , B, C , D, then , from these equations,

a - Brymod. = sn w sn ìw ', mod . = cn įw cn lw
a a - or

a- Brz
mod. = dn t w dn }w ';

α - γY2

so that we obtain the vectorial equations of these orthogonal

quartic curves on replacing m, r, roll in the equations of the

Cartesian Ovals by these expressions.

(Proc. Cam .Phil. Society, vol . IV.; Holzmuller, Einführung

in die Theorie der isogonalen Verwandtschaften, 1882.)

238. We now proceed to express the elliptic functions of the

imaginary argument vi by functions of a real argument v.

We know that cos vi = cosh v, sin vi = i sinh v , tanvi = i tanhv ;

and that the function o or amh u ,and its inverse function

u or amh- ?p = log(sec p + tan p) = cosh - Iseco, etc. ,

connects the circular functions of p, for which k = 0, with the

hyperbolic functions of u in $ 16 , for which k= 1 ; and then

cosh a = sec ở, sinh v = tan 6, tanh u = sin ý, tanh Justan Ag .

Now, if o = amh yri,

then cos cosh yirl , or cos o cos Y = l,

a symmetrical relation , so that

Y=amh pli;

and
sin p = tanh yiri tany,

cos o = sech yi= secy

tan p = sinh yi = i sin y, etc.

Also dori sech yidy= i sec ydy,

A(0, k ) = 1/ ( 1 + katany ) = sec YAY, K ),

do idy

Δ(φ , κ) Δ(ψ, κ )

so that

G.E.F. R
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If v=am(v, k '),

then
o = am (vi, k ) ;

and
sn(v, k')

sn (vi, k) = i or i sc(v ,k') , or i tn(v, k ');
cn ( v, KY

1

cn(vi, k) = or nc(v, k ') ;
cn (V , k ')

dn ( v, k')

dn(vi, k ) = or dcv, k'),

cn(v, k') '

connecting the elliptic functions of imaginary argument vi and

modulus k with the elliptic functions of real argument v and

complementary modulus k '.

Putting v = K ', we notice that sn K'i , cn K'i, and dn K'i are

infinite; and putting v = 2K ', then

sn 2K'i = 0, cn 2K'i = -1 , dn 2K'i = -1 ;

also sn 4K'i = 0, cn 4K'i = 1 , dn 4K'i = 1 .

239. The Addition Theorems of $ 116 may now be written

cn(u+ vi) = ( cn u cn v- isn u dnu sn v dn v )-D,

sn (utvi) = ( sn u dnvticnu dnu sn v cn v ) : D ,

dn(u+ vi) = (dnu cnvdnv— ik sn u cn u sn v ) - D,

D = cn2v + kasn´u snav ;

remembering that the modulus of the elliptic functions of v

is k', while that of the functions of u is k .

Thus, putting v =K” ,

1

cn(u + K'i) = - 1 sn (u + K’i) = dn (u + K'i) = - 1
u snu

so that, putting u =K,

cn ( K + K’i ) = - 1K'/K , sn ( K + K’i ) = 1 /K, dn ( K + K'i) = 0.

Writing C, S, D for cn 2u, sn 2u, dn 2u, then (8 123)

1 - cn 2u + K'i ) 1 KS+ Di
sn´(u + 1K'i)

1 + dn (2u + K’i) * S - Ci'

Generally, when m and n denote any integers, we find that

cn ( u + 2mK + 2nK'i) = ( - 1)m +nen u,

sn ( u + 2mK + 2n K'i) = ( - 1) snu,

dn(u+ 2mK+2nK’i) = ( - 1 )" dnu ;

4K and 2K'i are the periods of sn u,

2K and 4K'i are the periods of dn u ;

the periods of cn u being 2 ( K + K'i) and 2 ( K - K'i ).

dn u .cnu

k snu konu

etc.

so that
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In g 164, we may now write

U + uz + Ug = 4mK + 4nK'i ;

or in the notation of the Theory of Numbers,

u+ un+Ug= 0 (mod. 4K , 4K'i).

240. A combination of the transformations of ss 29 and 238 ,

to the reciprocal and to the complementary modulus, gives

1 1 cn(K'vi,ikk').
cn (vi,k) =

cn(v, K )– dn ( KĽV, 1 /«') dn(x'vi, ik /k')

i sn (u , k ') isn (K'v, 1 /K') sn (K'vi , ikk')

sn (vi, k) =

cn (v , k ') K'dn (K'v , 1/K ) K'dn (k'vi, ikk )

dn(v, k') cn( k'v, 1 /K) 1

dn (vi, k ) =
cn (v , k ') dn (K'v,1 /K ) - dn (k'vi, ix/k ')

Thus
cn(k'ı, ikk') = cd (u , k ) = sn ( K — U , K) ,

am (k'u , ik/K ) = 37 - am ( K — U , k) ;

as is otherwise evident, when we notice that, if

K2

(1 – xºcos ) (1 + sin ) * dy ,

or

0

so that = am (K'u , iK /K'),

then K-U=
u = f (i– xºcos?/ ) *dy = *(1 - késinép ) do ,

0

or
0
sa

d- CoS a

d - cos a

COS a

Ų

= am ( K –U, K),

provided V = -0.

241. As an application, take the values of v ; and v, in $ 210 ;

1 + cos B d + 1

dnév , = snév, = cn²v1=
1 + cos a 1 + cos a l + cos a

1 - cos ß d - 1

dnév, =
;

snav, cnév,
1- COS aa ' 1- cos a 1

so that, with v = pK'i, vz = K + qK'i, where p and q are real

proper fractions (856), then

1- cos a snav1 snapK'i dn’qK'i

1 + cos a snév

1 - cos = an 02 k ’?sn pK'i

1 + cos 8 snév, dnav, dnapK’icnºqK'i

d snav, cnév, K ’ snapK’i sn’qK'i

d + 1 snév, cn2v1 cnapK'i cnºqK'i

cnéqK'i
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3

a =

so that

Thence, expressed in a real form ,

1 - cosa_snapK'dn gK '

1 + cos a cn-pK

or ($ 135) tanja = tanj[am { (p + 9 ) K ”,k '} + am {( p - 9 ) K ',k" } ],

am { (p + q) K ”,k '} + am {(p - 9 ) K ', k '}.

Also ($ 29)
1 -cos B_K"?snapK'cnpqK

1 + cos B dnapK

su ? ( pk'K', 1 /«')dn ? (qk'K', 1 /K')

cnº(PK'K', 1 /K )

Bram { ( p + q)k'K ', 1 /K '} +am { (p - q)k'K ', 1/K' } .

d- 1

And = K'? sn pK'sn’qK
d + 1

sn (̀ipK”,k)dn {(1 – 9)iK” – K ,« },
cnº( ipK ', k)

or d = cos[am { (p + q - 1)iK ' + K , k } + am {( p - q + 1)iK ' - K , k } ]

In the Spherical Pendulum, Cr = 0); and therefore (S 210)

1 - cos a 1 - cos B d- 1
: 1 ;

1 + cos a 1 + cos ß d+ 1

d - 1 sn qK'cn pK'dn pK '
and

d + 1
= k "2 snapK'snºq K '

sn pK'cn qK'dn qK "

sn ( p - 9 ) K ' = sn pK'cn qK'dn qK '.

Thence

' cn (q +p)K' dn(q + p ) K
cos B =

sn (9 -pK " cn (q - p ) K " dn (q - p)K

242. With Jacobi's notation of $ 189 , the expression for iy

in $ 210 becomes

cn v dn V1+ cn v,dn va

92)u + II(u, vz ) + II(u, v )

Or

d = _sn (q + p) K
COS a =

iy = cn sn V1 sn V2

en v,dn Vi + Z0,+

) , u +
SN V1 sn V2

O ) ,)

+
+

O . )?

and now, if we divide y into its secular and periodic part,

in the form Y = yu / K + % ,

then y is called the apsidal angle, in the motion of the Top or

of the Spherical Pendulum, as seen illustrated for instance in a

Giant Stride ; and

cn v,dn'v9 O(K-V2)O(K-V2)
iy =

Sn V1 O )

which must now be expressed in a real form .

cn v,dn V1+ Zve+
+ Zv,)K +£108 @(K +0,)6(K +03)sn V2
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From $ 172,

iZ ( vi, x)=iſänºvi– E | K )dvi
0

dn (v, k ')doE

V

K

en v

en v

TV

en v

dv

cnº(v, k')

E

=
v = v + Eam ( v, k ”) – sn vdn v

K
($ 185 )

E E " sn v dn v

= CE+ 1)- + Z(v,K )KK

sn v dno

2KK
+ Z ( v , k') -

by means of Legendre's relation of § 171 .

Thus, with vi = pK'i,

' пр cn pK'dn pK '
' , '

2K
sn pk

Again, by (2)* , $ 186 , since ZK = 0 ,

Z ( K + 4 ) = Zu - k’sn u sn ( K + 2 );

therefore, with v , = K + qK'i,

cn v dn vz

+ Zv,) = + Z(qK”, K ).

sn V1

Sn V2

K

Also, if p and q are proper fractions, the logarithmic term

of i vanishes (S 264) ; so that, finally,

cnpK'dnpK '

2K (P + q) + Z (pK ”, k') + Z(qK”,k”) + sn pK'

In the Spherical Pendulum,

cn pK'dn PK"/sn pK' = k'lsn pK'sn qK'sn ( p - 9 ) K '

= ZqK ' + Z (p - 1) K ' – ZpK ”;

K = 2 ( p + q ) + 2'Z (qK”, k') + Z {( p - 9) K ', k '}.

With the Weierstrass notation, taking u in equation (8)

of 8 208 between the limits w, and w, twg,we find (S 278)

¿Y = (a+ b)w - ( fa + Eb )W ,

where a = pwg, b = w , + 9wz.

In small oscillations near the lowest position , p and k' are

very nearly unity, while q and k are small.

OT

so that
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NG

cn u

30=VG
sn u SNV

COS =

The Geometry of the Cartesian Oval.

243. Denote the angles P00', PO'O, PO " O in fig. 26 by

0, 0%, 0“ respectively ; then with O as origin,

x + yi = cnalw , - yi = cnºlw ';

i tan ]0 = ( + yi) – V (x -yi)

V ( x + yi) + (x - yi)

cn tw- cn jw -cn u 1 - cn vi

en zw + cn jw Vi+ cnu 1 + cn vi)

or, in a real form , with modulus k' for the functions of v,

1 - cn

tan 30 = 10 )
sn }u dn ļu sn }v dnļu ;

1 + cnu 1+ on vi cn ju cn v

cnuten v
sin 0 =

1 + cn ucn v' 1 + cnu cnv

With 0" as origin ,

kº(x + yi ) = dn2 } w ;

and, similarly,

dn zw - dn įw 11 - dnu 1 - dn vi

i tan 10"

dn ļw + dnjw - Vli + dn u 1 + dn vi)'

1 - dnu dnv - cny k’sn lucntu sn lv
tan

V 1 + dnu dnv + en v cn jvdnļu :

cnvtdnu dn v kasn u snu
sin 0"

dnv+dnu cn v' dn vtdn ucn v

With O as origin , and

x+ yi = snaLW,

then
sn jw - sn w '

i tan 30
sn Jw + sn jw

To reduce this to a real form , similar to the above, we require

two new formulas, not included in Jacobi's list ($ 137) , but easily

derivable from it, namely,

{dn(u+ v) † cn( u tv) } {dn (u - v ) cn (u -- v )} = (c,d , c, d )? / D ,

{dn (u + v) cn (u tv)} {dn (u - v ) # cn (u - v )} = K ?(81 F $ ) / D.

Now, with tw and Lw' for u and v, and u and vi for uto

VG

dniu

cos Ꮎ"

and u- V,

i tan 0 =
dnu спа ,va

va

dnu tonu dn vi- cn vi

dn vi + cn vi

dnu tonu 1 - dnu cn lu dn lu sn tv en v

1 + dn v/ sn ju dntv

cnu+ dn u dn v

dn vi:7 en vi)

dnu)tan jo' و
dn u cnu

K2sn u snu

sin Ꮎ .

dn u - cn u dn v' dnu- cnu dno
cos Ꮎ .O' =



OF THE ELLIPTIC FUNCTIONS. 263

cn и

244. Again, denoting the angles which P subtends at 0'O",

0 " O , 00' by 0,8', $" respectively, so that

p = 7-0–0", o= 0–0 ", $ " ==-6-0' ;

then we shall find

sn judniu cn lv 1 + cn vi

cnu sn įv dn lv Itonu

k'snu K'sn lv en v cnu 1 - dn vi

tan 1 $ =

cn iu dniu
dnu + cnu 1 + dn v );

snyu cn tu cn įv dn lv 1 - dnu dnv + en v

sniu 1 + dnu

tan 10 = VG 1 - Nu

dnu

dnju v
o

tan 10" NG14 dn u dn enu)dn zu dno

cn U--cn v SE U SNV

sin 0=

sn ucn V sn u

tan w =

sn v cn u snu

cos =
1 cn u cn v' 1 - cnu cn v '

cn utdnu dn v Ksn u snu

cos Ó' = sing
dnuten u dn v dnuton u dn v

- cnvtdnu dn v kasn u sn v

cos " sinº"
dnv - dnu cn vi dnv - dnu cn v

Similarly , denoting by w, w', w" the angles which the normal

at P to the oval along which v is constant makes with PO,

PO', PO”, we shall find

snu dn v

tan w ' = tan w "
dnu sn v

Drawing the three circles through O'PO", O"PO, OPO' , and

denoting the points in which the normal at P meets them

again by Q, Q , Q”, we shall obtain similar simple expressions

for PQ, OQ, ... (Williamson, Diff. and Int. Calculus ).

245. The two ovals defined by vand 2K ' - v form a complete

curve ; and so also the ovals defined by u and 2K– U.

Denoting by P, P , Q, Q the four corresponding points

defined by (u, v), (U , 2K' –v) , (2K –U, v), (2K –U, 2K ” – V) ;

and denoting by p, p , q, q' their consecutive positions when

u receives a small increment du , then

Pp = Jdu = k / ( roy'p ')du

cnri dnuten u dnvi cn vi- cnu

dn vi+ dnu vi

dnuten u dnv cn u cn v

du

dnv + dnu cnv Vltcn u cn v /

and changing u into 2K - U ,v into 2K ' - V,

- onu dn v - cn u en v

Qd =
du .

dny - dnu en v 1 + cnucno

ll

din u= an u dn• 16.-.cnu enu)du.



264 THE DOUBLE PERIODICITY

2 dn v

-cn u en u

+

2 dnu dn v -cn u cn vi

Then Pp + Q'q Idu

K2 1 + cnu cd UVG
1 + cnu cn v

K?sn? / (1– 2 cn v cos 6+ cn²v)do ;

so that the sum of the arcs described by P and Q is expressible

as an elliptic arc.

2 k cn U - K2cn v

Again Pp - Q4
K2 1 +cu cn v

Nl1+ cnu cnwdu

which
is expressible

in the form

2 cnv

kºsn_2 / (1 – 2 dn v cos O’ + dnềv)do

2

kisn22 / (dn²v + 2 cn v dn v cos " + ch ? v )dd " ;

so that the difference of the arcs described by P and Q is

expressible by the sum of two elliptic arcs ; and thus the arc

of the Cartesian Oval described by P is given by means of

three elliptic arcs, which is Genocchi's Theorem (Annali di

Matematica, VI., 1864 ; Mr. S. Roberts, Proc. L. M. S. , III.,V.).

246. Let us examine the analytical properties and physical

applications of the functions

log cn , log sn tw, log dn w .

Denoting log en įw by pitit 1,when resolved into its real

and imaginary part, then

pitiya= 1 log cn ļw cn lw' +1 log cn jw /cn qw'

cn tw dn jw cn lw'dn zw'

= i log
dn żw dn Zw 'cn w ' + en w

cn iv dn utdn vi cnu 1 - cnu 1 - cnvi

= 1 log
ti tan - li

dn vi + dnu 1 + cnu 1 + cnvi)

as in $ 236, by means of formulas (3), (20), (28) of 8 137 ; and

now expressing the elliptic functions of vi, to modulus in

terms of functions of v, to modulus k ' understood ; then

douton u dn v cnu 1 - cnu

P1 =
logan

v + dnu on v Vi = tan - 1 .

11 + cnu 1 + cnv/

Denoting log sn Jw by $2+ i42, then

02 + 142 = 1 log sn įw sn ļw'+ { log sn w /sn fw '

sn fw dn įw sn fw'dn lw' sn w ' - sn w
= log +i tan - 12

dn w dn tw' sn Zw ' + sn zw

cn vi- cnu dn uylcnu dn vi- cn vi

titan - li
dn

titan -1;cn {w'— en }w

tan-bin/G( 617enu 17 en vri)

K,

GE eno)

= 1 log In vi + dnu Von cnu dn vi ton vilanu
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ve nu)

+ itan - bin/ 61 - duu 1-dn vi

cno

ti tan - 1

1- cnucno dnutonucnu 1 - dn

= log titan

dnv + dnucnu dn u - cnu 1 + duv

Similarly, denoting log dn įw by 03+ iysz, it

cn vidnu + onudnvi dnu

= { log
cn vi tonu 1 + dnu 1 + dnvi,

dnuten u dnu 1 - dnu dnv

= { log
1 + cnucn v 1 + dnu dnv+ en v

By (20), (21 ), ( 22) , (23) of $ 137, we prove, in a similar

manner,

ton w cn vi tonu i sn vidnu

= } log ti tan - 1
1 - on w cn vi- cnu dn vi snu

= tanh- (cn u cn v) + i tan - 1 (dnu sn v/sn u dn v) ,

1 + dn w

log = tanh - 1( dn u cn v/dn v) -i tan- (cn u sn v /snu ),
1 - dnw

dnwton w
= etc.

VA

log.Jadi wa
en W

+
ava

247. These conjugate functions 0 and Ys of the complex

utvi are capable of representing the solution of various physi

cal problems concerning a plane in which u and v are taken as

rectangular co-ordinates, since they satisfy the conditions

дф дүг дф : ay ,

ди av au au

д ° ф , д ° ф 2²4 azy
:().

2 au2

Here u and v are not restricted to be rectangular co-ordinates,

but they may represent the conjugate functions of confocal

conics or Cartesian Ovals, as in SS 179, 236, or of any orthogonal

system , which divides up a plane into elementary squares or

rectangles, as on a map or chart.

As in $ 54, we take a period rectangle O ABC, bounded by

U= 0, x = 2K , v = 0 , v = 2K' ; and now, as the end of the vector

w or wtvi,drawn from 0, travels round the boundary OABC

of this period rectangle, the vector w assumes the values

2tK(0 < t < 1 ) ; 2K + 2t'K'i(0 < t < 1 ) ;

21K + 2K'i ( 1 > t > 0 ) ; 2t'K'i ( 1 >' > 0).

When the sides of the period rectangle are a and b, we

replace u and v by 2Kx / a and 2K'y /b, where K "] K = b /a.
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Taking the function log on iw or pitiy1, then from 0 to A ,

yi= 0 ; from A to B, V1 = n ; from B to C, V1 = t ; and from

C to 0, y1= 0.

At A , where u = 2K , v = 0, then pi = -00 ; and at C , where

U = 0, v = 2K , $i = ..

The functions 01 and 41 therefore satisfy the conditions

required of the potential and stream function, due to electrodes

at A and C , of the plane motion of electricity or fluid, when

bounded by the rectangle OABC.

The function yı will also represent the stationary tempera

ture at any point of the rectangle, when the sides 0A, OC are

maintained at temperature zero , and the sides AB, BC at

temperature .

When the period rectangle is a square, or K = K ', then

Vu = 4T when utv = 2K , or along the diagonal AC ; we thus

obtain the permanent temperature inside an isosceles rect

angular prism , when the base is maintained at one constant

temperature, and the sides at another.

Similar considerations will show that the function log snjw

or 02+iv will give the streaming motion in the same period

rectangle, due to a source at 0 , and an equal sink at C.

The function y, is now zero along OA, AB, BC, and it along

OC ; and y, will therefore represent the stationary temperature

when OC is maintained at temperature t , while the other

sides are maintained at zero temperature.

A superposition of four such cases will give the permanent

temperature when the sides of the period rectangle are main

tained at any four arbitrary constant temperatures. (F. Purser,

Messenger of Mathematics, VI.,p. 137.)

EXAMPLES

1. Solve the equation

k'sn4u - 2k'snºu + 1 = 0).

2. Investigate the curves given by

dz/dw = (1-23)

3. Prove that the system of orthogonal curves given by

Etin = sn(u+ vi)

are the stereographic projections of a system of confocal sphero

conics (W. Burnside, Messenger of Mathematics, XX .) .
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Prove that the stereographic projection of the points

x =R snu dnv, y = R dnu sn v , z = Rcnu cn v,

on the sphere 202 + y2 + 22 = R ?

whose latitude and longitude are 0, $ ,are given by

1 - cn(utvi).

Štni= 2R tan (17-10)(cos oti sin o ) = R+ 1 + cn(u+ vi)

Prove also that

(3y
+ +

ди, ди. ди , G ). av av/

= R4(1 --k’snºu — k snav ).

4. Discuss the physical interpretation of

2 2

(Oะ
2

Əx \ 2 əx\ 2 ( az )2

C ) +

+

0+ iy= tan -1KK'sn u sn v
;

tita
n

- 1k'ch v

к спи,

titan -ik sn U sn v

cn v

dnu dn v

and determine the single function from which it is derived ;

also of otip = tanh - 1 k en u 1
dn n dno

Interpret these expressions when

x+ yi = c sin ( u + vi).

5. Prove that, if X+ yi = Sn W ,

then
" Zw +

2KK '.

gives the plane motion of liquid streaming past two obstacles

given byx= 1 and 1 /K, x= -1 and -1/K ( W. Burnside,

Messenger, XX.) .

πω

20 =

or

T'he Double Periodicity of Weierstrass's Functions.

248. A procedure similar to that of 5 236 will show that the

Cartesian Ovals of fig. 26 are also the representation of the

conjugate functions of the system z = pw , obtained from the

definition of $ 50,

de

(423 - 922-93)

dz|dw = g'w = -- (473 – 922—93),

where
423-922-93 = 4 ( 2 - ) (z - es)(2 - es ) ;

and z= y, , ez define the three foci.

According to $ 51 ,

gow – Cz = ( 1 - ez)ns? / (ez - @g)w = (ez - @g) sn { / (en- €3)w+K'l } ,

$ow – 6, = ( - eg)ds> [ (ez- ez)w = (@z – ez)cn { 1 (ez- @g )w + K ”i},

w- y = (61 – ez) cs’ J (en– ez)w = - (04 - eg) dna { wley - ez)w + K'i },

by $ 239 ; thus identifying these results with those of $236.
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With the notation of $ 202,

2

σουστο 2

σω/

5

σω
ου -- , φυ – = (σ .), ow-63

and denoting the focal distances by ru, ru, rz, and u - vi by w',

σχυσης σου σου σουσω'

σω σω' ' σ σω '
:

γ .
1

Y,
2

σωσω

249. To express these focal distances in a real form , as in $ 236,

we employ the Addition Theorem (Κ) of 8 200, written

συ + υ)σι–υ) =σουσυ { ζου – ea) -( οι – ea)}

= σουσαυ – σα2u σου. .... (M)

Again, from $ 154, 8 ( u + v) – ea is a perfect square; and we

a = ou, = ου, 8 = ( n + υ),

N=8u- la, D=ou- eg- ou- eγκαι

W { ( x + υ) - θα}

Wou - eα - ου – eg . ου – ey) - ( ou - eg - ou-θη ου–βα)
(Ν )

ου - ou

may write

and now

σα( u + υ)σ ( u - υ ) ={ ( u + υ) - ea}σου σου( ου - ou)

= συ σαισρυ συ - σρασα σουσυ,...( Ο)

and changing the sign of v,

σ( a +-0)σα( u υ)= συ σαι σου συ+ σρασα σανσυ....(P)

Again, by multiplication with (N ) and reduction ,

σα( u + ) σ ( u –υ)

συ + υ) στα – υ)

Vou - βα . ou - eg • ου - βα . ου - ) - ( ea - eg) ( ou- έγ . ρυ - ey)

ου - You

ΟΥ'

σα( + )σ ( u - υ) = συσρι σου σου - (ea- egσύσφι συσγν, (Q)

σα( α – )σρ( u + ) = σου σρι σουσρυ +(ea - eρσα σ , συσυ. (Β)

Similarly ,,

σα( + )σα( u - υ) _ (ou - eatoυ- ea) - (e - eg)(ea - e ),
συ + υ ) σίu - υ) ου - ou

or

σα( + υ )σα( u - υ) = σου σου- (es - epea-e ,)σου σου . (S )

( Schwarz, Elliptische Functionen, p . 51.)
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or (0, –en)Czuogvi + ogu o vi

q

q9

Now, from these equations (O), (P) , (Q) , (R) , with

w or } (utvi) for u, and w' or } (u - vi ) for v,

σω σου συσ,ου'

11
-( ez - e,) quoqvi + ogu Oqvi

σω σου συσω σου συν - συσχυή

σου σου συσχυ'' ozvi + σ
11 =

OW OzW O2U0320' Q1U oyvi -0,4 oyvi

with similar equations for r , and rz ; and thence the vectorial

equations of the Cartesian Ovals analogous to those of $ 236

7203U - 12024 ( 2 - es)014 )
etc.

120 ;vi - rgqvi = - (ez - es )ovil'?

These vectorial equations again are the geometrical inter

pretation of the formula, immediately deducible from (N),

Ogw oge'o (w + w ') — „Woqoo(w + w ')

(eg - em )ow ow'ra(w + w '),......... (T)

Making ma = -1 in the homogeneity equations of $ 196, gives

p ( vi ; 92, 93) = - ® (v ; 92, -93) ,

the equivalent of the equations of $ 238 , by which a change is

made to a real argument and complementary modulus ; while

$(vi ; 92, 93) =-- if( v ; 92 , -93) ,

o(vi ; 92, 93) = io(v ; 92 -93),

oa(vi; 92,93) = Calv ; 92, -93).

250. When a point has made a complete circuit of one of the

ovals, enclosing a pair of foci, defined by e, and ez, or eor e, and en

z will have regained its original value, but w will have increased

or diminished by 2w, or 2wg, defined as in SS 51 , 52 by the

rectilinear integrals

W1 ds/ S

- "

- = " '/"S “ds/JS = S “ ds/Js;

eg

-

so that 2w1, 2wg are the periods of the function pu, and

plu + 2mw + 2nwz) = pu.

To fix the ideas we have supposed the circuit of two poles

of the integral made on the enclosing branch of a Cartesian

Oval, but the result will be the same whatever be the curve,

provided it makes the same number and nature of circuits.

Now, in $ 165, we can have

utu + w = 2mw + 2nwz = 0 (mod . 2w1, 2w3).
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251. In 8 54 it has been shown how, as the vector of the

argument w traces out the contour of the period rectangle, pow

assumes all real values ; and pow may be made to assume any

arbitrary complex value at a point in the interior of the

rectangle, given by a determinate vector twy + t'wz.

It is convenient to put wi+ w, = - W ,, so that

wytw, twg = 0, with e + en + eg = 0) ;

and now
fow1 = ly pow2 = la pw; = ég ;

while
pw, = p'w , = g'wg = 0).

The equations of $ 54 show that

eu - la . l1 - 63,
( U + 0 ) -e =

pue

plu w.) -e, =
e , -eg . C ,-e ,

Sou l2

pu + ) - eg =
@z — @q • Cz - C1

you – ez

equations analogous to those of $ 57, in Jacobi's notation .

Thus, from ex . 9, p . 174,

48ə 2u = pou +8(u + w ) + $ (u + wy) + (u + wg).

With negative discriminant, as in $ 62 , we take e, as real,

and en , e , imaginary ; also wn = }(w , + w ' ), wg = }(w2- w' ) ; and

pon = € pwg = l3, pw , = pwa = lg.

252. A great advantage of the Weierstrassian notation (at

first rather baffling to one accustomed to the methods of

Legendre and Jacobi) is that the dimensions of the elliptic

integral are left arbitrary, and can be changed by an applica

tion of the Principle of Homogeneity of $ 196 .

When the canonical elliptic integral of 50 is normalized

in Klein's manner (S 196) by multiplying by Atb, then

A12ds do

|(493 -- 928—93) (403 — 720-73)

where s = AO, 92 = A \y, 9x=Ay ;

and now
728 - 27722 = 1,

so that the new discriminant is unity, and

J= ye, J- 1 = 27732.

If w1, W, denote the real and imaginary half periods of the

normalized integral, then

Un = w ,47', WE = ,413.

Star 1988–93=T 16H00 20 -Y )

72
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W1

W3

and we

The general elliptic integral, written with homogeneous

variables as in Ⓡ 155, is also normalized by Klein by multiply

ing by the twelfth root of the discriminant of the corresponding

quartic, and its half periods are now , and z.

If we normalize, for instance, the canonical integral ( 11 ) of

838, written with homogeneous variables X1, X2, in the form

(24202.2, —24.0, –kx4)-1(x,dx4 —X_dx,),

then the invariants 92, 93,and the discriminant A of the quartic

X782.22 - X7.22 – kxq,

being the expressions given in $ 68, therefore

At's = { isk (1-1)} = (Ikk').

Now the half periods of integral (11) , $ 38, being 2K, 2K'i,

0 = 2K (Ikk'), Wg = 2K'i V (1KK').

We are thereby enabled to change from Weierstrass's and

to Jacobi's K and K ', and to utilize the numerical results of

Legendre's Tables. (Klein , Math. Ann. , XIV., p . 118. )

When the discriminant A is negative, we normalize by

multiplying by (-A)t , and replace wi and W , by w

($ 62) ; but now the new discriminant 723 - 2773 - = - 1, and

wy(-A )1 = 2K / {kk'), w ( - A7's ) = 2K'iM(ikk') (S$ 47, 58) .

For instance, if 92 = 0 in 850, (-A)T? = 1399;; and in 8 58,

J= 0, or 2kk ' = 1 , 2 / (1KK ') = 3/2; and now

w21/399; = K / 2, W2 13 % 93 = iK' }/ 2 ;

while ($ 47) w.w, = K'i / K = i / 3.

Confocal Quadric Surfaces.

253. The symmetry and elegance of the Weierstrass notation

is well exhibited in the physical applications relating to con

focal surfaces of the second degree.

The equation of any one of a system of confocal quadrics

22 22

being + + = 1 ,
α2 + λ'62 +λο2+ λ

we put

ar + 1 = m_(pou —ez), 62 + 1 = m2(pu—ez), ( + 1 = mº(pu - eg);

and now the integral

dλ 2u,

( a +1.62 + 1.02 + )

With ez > @g > @g, we must take u² < 12 < 02.

Strata m
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Three confocals can be drawn through any point X, Y, 2 ,

an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two

sheets.

Supposing the ellipsoid to be defined by 1 or u, and the

hyperboloid of one sheet in a similar manner by u or v, and

the hyperboloid of two sheets by v or w ; then in going round

the period rectangle of $ 54,

(i . ) u =pw, co > pu > ey, for the ellipsoids ; starting with p = 0

for the infinite sphere, and ending with p = 1 for the inside

of focal ellipse ;

(ii . ) v = W1+ qwg, ez > you > ey, for the hyperboloids of one sheet ;

starting with q = 0 from the focal ellipse, and ending with

q = 1 for the focal hyperbola ;

(iii .) w = rwitwz, b, > pow > @g, for the hyperboloids of two

sheets ; starting with q = 1 from the focal hyperbola, and ending

with q = 0 for the outside of the focal ellipse ;

(iv .) the fourth side of the period rectangle gives imaginary

surfaces.

2

254. Replacing b2 - a2 and c - a2 by ß2 and y , so that

( y /B )2 + (= / v)a = 1, x = 0,

are the equations of the focal ellipse of the confocal system, we

should have to put, with Jacobi's notation ,

a² + 1 = y ^cs (U , K ), 12 + 1 = y ds (U ,K ), (2+ 1 = yềnsº(U, K ) ;

ap + u = -Bºsn’(V,k') , b2 + x = Bạcnº(v, k '), c< + u = y2dnº(v,k ');

aż + v = -y ?dn?(W ,k ), 62 + v = -y%cn ?(W ,k ), c? + v = ”y ?sn ?(W ,« ) ;

c262 62 - a2

where K'2

c2 - a2 c2-02

and now u, v, w will be Lamé's parameters, as given in Max

well's Electricity and Magnetism , I., chap. X.

By solution of the three equations of the confocal quadrics,

a + 1.a tu.al + v 62 + 2.62+ u.b2+ v
y2

a2-62.a2 - cc2 62-0.64 - a ?

02 + 2.04 + u.c + v

02- a2.c2-62

and thus x ,y, z can be expressed as functions of U , V ,W.

Employing the function sa of $ 203,

m ? s? mas, m2832
y2 =

ly - én.bi - es 62- lg . by - en egen . Czy

22 ,>

2. >

22 = 22
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+

+ '

= 0);

= y?

When 62 = c', the ellipsoids are oblate spheroids, and the

hyperboloids of two sheets degenerate into planes through Ox ;

and now the orthogonal system is given by

22
y2+22

= 7 , ... . ( i . )
cotau сесу

22
y2+22

: , (ii.)
tanhav ' sech?v

y? 22

......(iii.)
cosaw sinºw

intersecting in the point

=y cot u tanh v,

y = y cecu sech v cos w ,

x = y cecu sech v sin w.

When 62 = a?, the ellipsoids are prolate spheroids, and the

hyperboloids of one sheet are planes through Oz ; now the

orthogonal system is given by

22+ y2
+ ... (iv. )

cechau coth2u

#2
y?

+ -0 , .
sino

. (v .)
cos

a 2 +y2

sech27tanh
= 72; (vi.)

intersecting in the point

&= y cech u sincech u sin v sech w ,

y = y cech u cos vcech u cos v sech w,

z= y coth u tanh w.

The degenerate case of confocal paraboloids, where the centre

is at an infinite distance, may be written

y? 22

+ 8a (a= a cosh u — «),
coshºgu sinh?4u

. (vii . )

y?
22

cos21v
= 8a(a cos V - 2 ),

sinalv
.. (viii. )

22

+ = Sala cosh wt.),

sinh2jwcoshaw
( ix .)

intersecting in the point

x = a(cosh u+ cos v - cosh w) ,

y = 4a cosh ju cos ju sinh 120,

2 = 4a sinh lu sin lv cosh W.

(Proc. Lond .Math. Society, XIX.)

y2

G.E.F. S
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д° ф

du
ta - u ) W dw2 = 0 ;

= guth, W dw2 = 9v + h ;

255. We may take u, v, w as Lamé's thermometric para

meters, and now Laplace's equation becomes (Maxwell, Elec

tricity, I. , chap. X.)

u - v Det+ mit= 0

Thus = Au + Bv + Cw + D ( u +22+22)

+ 2Evw + 2Fwu + 2Guv + Huvw

is a particular solution of this equation ; for instance, the

electric potential between two confocal ellipsoids, defined by

Uy and U .,, maintained at potentials U , and U ,, is given by

U = {U( u – U2) + U ,( U – u) } / (wy — U2).

When the solution p is equal to UVW , the product of three

functions, U a function of u only , V of v, and W of w only,

then Laplace's equation becomes

1 02V 1 d2W

(u , v)]I2 +(v - 1)ų dva

so that we may put

1 d2U 1 d2 V 1 d2W

h
du V dv2

three equations of Lamé's form ($ 204) , when g = n ( n + 1).

256. The complete solution of Lamé's equation was first

obtained by Hermite, in the form

U = C F (u ) + C'F (-u).

Denoting by Y the product U , U , of U , and U ,, or F (u ) and

F ( -u ), two particular solutions of the general linear differential

equation of the second order, in its canonical form

1 02U

= 1,
U du ?

where I is some function of U, and denoting differentiation

with respect to u by accents, then

Y ' = U / U2 + U ,U2",

Y " = U ," U , + 2U / U + U , U

= 210, U , + 2UU ,

Y " – 21Y= 20, UZ ;

and Y "" — 21Y' – 2I'Y = 2U ," U + 2U , U

= 2 / ( U ,U2 + U'U ,) = 21Y',

Y '' - 41Y' - 21'Y= 0,

the general solution of which linear differential equation is

AU + 2BU , U , + CU22.

or

2

or
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A first integral of this differential equation is

2YY " – Y'2 – 47Y2 + C2 = 0,

where C is a constant, given by

U , U , -U/' U , = C ,

the integral of U , U ” – UPU = 0.

In Lamé's differential equation

I= n(n+ 1)puth ;

and now, changing to x = pu as independent variable,

d3Y 22 Y

(4x33 – 932 – 93) 423 +3(6x2 – 392)dx2

dY

– 4{ (na +n- 3)*+ h} - 2n(n+ 1) Y= 0,
dx

and this equation for Y has, as a particular solution, a rational

integral function of x or pu ,of the nth order, which we may

write Y = II (pu - pu),

and h = (2n - 1 ) ga.

Now, by logarithmic differentiation ,

U, U , Y f'u

U , ' UL ☺ = Epu pa

U , U , C C

while = II

U UY (pu - pa)

Brioschi shows (Comptes Rendus, XCII.) that,when resolved

into partial fractions, we may put

o poſa

II(pu -pa )-Σ
provided that

Eg'a = 0, Epag'a = 0, E(pa) s'a = 0 , ... , (pa)n - 29'a = 0,

and (pa )» - 1go'a = C .

1 g'u – p'a UM 1 put'a
Then

U , 2 pu -pa' U 2 Кои — о а

and, integrating,

Fu, or U,= 11°(u + a)exp( -uſa) = IIp (u, a);

while U , or F ( -u) is obtained by changing the sign of u or a.

Epu-you

U ,

Σ Σ
;

U2

odlou
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257. Hermite shows ( Comptes Rendus, 1877) that the func

tion F (u ) may be otherwise expressed by

dn- 5

φυ - .
.

2 du .

1 26 U3

U

4, n
un- ' +42 ип– 44

Az

F
Ildu

and pu, called the simple element, is of the form edup (u , w ),

P ( u ,w) being a solution for n = 1 and h = \w (S 204).

To obtain the coefficients A1, A2, in F ( u ), we suppose

ou or edup (u, w ), Fu , pu expanded in the neighbourhood of

U= 0 ($ 195), in the form (Halphen, F.E. I., chap. VII. )

elvd (u, w ) +1+ (12 – )2+(18 – 310w-$wg: + ... ,

(n- 1 ) ! (n - 3 ) ! ( n - 5 )!

(-1)n -1Fu =
un

Substituting in Lamé's differential equation

F " v = {n (n + 1 )pu + h } F'u ,

we obtain, by equating coefficients,

( n - 1 )(n - 2)
An = n ,

2( 2n - 1 )

(n - 1 )(n − 2 )(n - 3)(n - 4 ) n(n+ 1 )(2n - 1)
h2

92

8(2n - 1)(2n- 3) 10

On comparing the two forms of the solution Fu, we find that

ω= Σα, and λ = ζω- Σζα.

Thus, for instance , when n = 2, we find , as in $ 209,

o o b )
exp( -8a-bu

ou ob ore

d o(u+ a+ b)

du o a+ b)ou
exp( - (- Ebu.

When n= 3,

Fu = $ (u , az) ( U, A2)Ø (u , ag)

22

duz
du

,wen
u

- (881 + 50az + goaz) (u ,w
enue

,

whe
re

dy+ dg +ag = W,

foay + 'ag + s'ag = 0 ,

goa gazt goazoaz + gazg'az = 0,

{w- $ - , - (az = \.

This fails when 92= 0, and dy = v, Aq = wv, Az = w2v ; but now

($ 229) Fu = }(dov – po'u ).

F (u ) = r(u + a)o(u + b)



CHAPTER IX.

THE RESOLUTION OF THE ELLIPTIC FUNCTIONS

INTO FACTORS AND SERIES.

258. The well-known expressions for the circular and hyper

bolic functions in the form of finite and infinite products

( Chrystal, Algebra, II. , p . 322 ; Hobson, Trigonometry, chap.

XVII.) have their analogues for the Elliptic Functions, as laid

down by Abel in Crelle, 2 and 3.

Granting the possibility of the resolution into linear factors,

the individual factors are readily inferred from a consideration

of the zeroes and infinities of the function.

Denote 2mK+ 2nK'i by 12,

where m and n denote any integers , positive or negative,

denote also 12 +K or (2m +1) K + 2nK’i by 121,

12 + K + K'i or (2m +1) K + (2n + 1 )K'i by 122,

and 12 + K'i or 2mK + (2n + 1 )K’i by 123.

Then considering the function

snu,

the zeroes are given by u = 1, and the infinities by u =

(S 239 ) ; and thus we infer that, if sn u can be resolved into

a convergent product of an infinite number of linear factors,

the form is

3

Uи

U II II

SNU= A

12

( 1)

II TT 1-2
172

the accents in the numerator denoting that the simultaneous

zero values of m and n are excluded.

277
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Similarly,
% )/D...

...... (2)enu = BII TI(1- % )/D....

dn u = CIIII(1- )/D
D.... (3)

the zeroes of cnu being given by u = 17, and the zeroes of

dnu by u = 122, while the infinities are given as before by

U = 123; D denoting the denominator in ( 1 ).

259. But now, in demonstrating the analytical equivalence

of the expressions on the two sides of equations (1), ( 2 ) , (3 ), it

will fix the ideas if we employ a physical interpretation, such

as that given in $ 247.

It was shown there that the real and imaginary part (norm

and amplitude) of

log sn w ,

where w = u + vi, will represent in the rectangle OABC the

potential and current function of the flow of electricity (or of

liquid, following the laws of electrical flow ) from a positive

electrode at 0 to a negative electrode at C , in ampères being

the strength of the current; but here we take OA =K, OC= K' ;

and u, v are the coordinates of any point in the rectangle.

The infinite series of electrodes, which are the optical images

by reflexion of these two electrodes at O and C, will form a

system on an infinite conducting plane, such that, if the

strength of the current at each electrode is 27 ampères, the

resultant effect in the rectangle OABC will be the same as

before.

(Jochmann, Zeitschrift für Mathematik, 1865 ;

0. J. Lodge, Phil.Mag. 1876 ; Q. J. M., XVII.)

Starting with a single electrode at 0, of current 2m ampères,

the potential and current function at any point whose vector

is w or u tvi are the norm and amplitude of log w ; and log w

may be called the vector function of the electrode at 0.

For an electrode at a point whose vector is c = a+ bi, the

vector function at z = x + yi is log(2 - c) ,

which may be written

log(1-210) ,

disregarding the complex constant log( -c).
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The vector of any optical image of 0 in the sides of the

rectangle OABC being given by 12, the vector potential of the

corresponding electrode is log ( 1 - w /12); and the vector function

of the system of images of the positive electrode at O will be

logWII'TI (1 )

Similarly the vector function of the system of images of the

negative electrode at C will be

log II II ( 1
123

But these functions, considered separately, represent a

physical impossibility, and are analytically meaningless ; their

difference, however,

II II 1

123

will represent the vector function of the whole system of posi

tive and negative electrodes ; and since this function satisfies

the requisite conditions inside the rectangle OABC as the

function log sn w ,we are led to infer equation (1 ) , with suitable

restrictions explained hereafter.

For log on w, the positive electrode is placed at A , the

negative electrode being still at C ; the vectors of the positive

electrode images are given by 12,; and now equation (2) is

inferred ; while for log dn w , the positive electrode is placed

at B , and the vectors of its images are given by 122, the

negative electrode being at C ; and we infer equation (3) .

When in the rectangle OABC we have 0A = a, OC = b ,

we take K " K = b/a, and write K (x /a ) + K'i (y /b ) for utvi,

2, y now denoting the coordinates of a point.

260. We now proceed to express these doubly infinite pro

ducts of factors, corresponding to the different integral values

of m and n, by means of singly infinite factors for different

values of n ; that is, we combine all the factors for one value

of n and the infinite series of values of m into a single ex

pression ; and here we employ the formulas for the trigono

metrical functions expressed as infinite products.

Interpreted physically, we determine the vector function of

an infinite series of electrodes, equispaced on a straight line

parallel to 0 A.



280 THE RESOLUTION OF THE ELLIPTIC FUNCTIONS

Denoting the vectors of such a series of positive electrodes

by 2ma + nbi, the vector function is

m = 0

log II (8–2ma– nbi), or log(x-— nbi)II(1
z— nbi

2mra
;;

and provided that (2 - nbi)/2ma is ultimately zero when m is

infinite, or that sma and nm tend to the limit zero, we can

write this vector function (Cayley, Elliptic Functions,p . 300)

log sin 37(2 - nbi) /a, .... (4)

Resolved into its norm and amplitude, this vector function is

1 log ž [ cosh { y - nb )/a } - Cos 7/a]

+ i tan = 1[tanh {17 (y- nb)/a }cot( tola )]. ... (5)

The amplitude or current function is therefore constant when

x = (2m+ 1)a ; and there is no flow across these lines, provided

however, as is physically evident, we do not recede to such a

large distance from the origin that we are not justified in

taking Itz/2ma as zero.

.

261. We suppose that Oy passes through the centre of this

infinite series of electrodes, or that m reaches to equal infinite

positive and negative values; but now, at a very large dis

tance from 0, the electrodes on one side of a line , given by

x = (2m + 1)a, where m is a large number , will preponderate

over the electrodes on the other side, and the resultant effect

will be a uniform normal flow a across this line, to counteract

which a term of the form az or log e - am must be added to the

vector function,

The analytical equivalent of this physical effect is illustrated

by the theorem proved in Hobson's Trigonometry, p. 328,that,

when the integers p and q are made infinite in any given

ratio, then pz, the limit of the product

(1+y )...(1+ x )(1+ 9)=(1-3)(1-2)...(1-,-)

-(3)sin = ......(6)

The infinite product II (1 + cm ) is convergent for all finite

values of ., if the series Ecn is convergent ; as is evident on

expanding the logarithm of.the product.
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But Weierstrass shows (Berlin Sitz ., 1876) that the divergent

product (1-3)(1-2 )a )(1-3 )3 ).

can be made convergent if the exponential factor ezma is

attached to the linear factor 1-2/ma ; or, interpreted electri

cally, if to the motion due to the electrode at ma, whose

vector function is log( 1 –z/ma), we add a uniform streaming

motion parallel to the vector ma, given by log ez]ma or z /ma.

Now, denoting the harmonic series

1-1 + 2-1 + 3-1 + ... + p - 1 by Sp,

$ z = els, – 8qdaļa sin (mz/a ) = (P /2) /( sin(T2/a),

since the limit of sp - log p or sq- log q is Euler's constant.

262. In a similar manner it is inferred that the vector

function of an infinite series of positive electrodes, whose

vectors are (2m +1)a + nbi,

m reaching to equal positive and negative infinite values, is

log cos (z-nbi)/a = { log ][cosh {- ( y -nb))a } + cos( x /a )]

ti tan - '[tanh {17 ( y - nb )/a }tan (Ita /a )], (7 )

having lines of equal amplitude given by x = 2ma.

Therefore the vector function of a pair of lines of electrodes,

whose vectors are amatnbi, is

log sin {17 (z— nbi))a }sin { 17(2 + nbi) /a }

= log ] { cosh(n+b/a) - cos (mz /a )} ;

or, corrected by the addition of a constant, which makes the

function vanish when z = 0, the vector function is

cosh (n b)a ) - cos (az )a ) 1 - 2qºcos (7zla) + q2n
log . (8)

cosh (n + b /a )-1 (1-9 )

where .

For a pair of linesof lines of electrodes whose vectors are

(2m+ 1 )a=nbi, the vector function is

log cos{ 17(3 - nbi)/a}cos { 37( + nbi)/a } ,

which may be replaced by

cosh (n7b/a) + cos (72/a ) 1 + 2q cos (772 /a ) + qan
log = log (9)

cosh (n27b /a ) +1 (1 + q»)2

For the line of electrodes along 0A , whose vectors are 2ma

or (2m +1)а, the vector function will be

log sin(172/a) or log cos( izza) . ....( 10 )

= log
2

q = e - abla

:

....
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ኃn= 1

4n - 2

dn u =

263. Under Cayley's restrictions, that m reaches to equal

positive and negative infinite values, and n also ; but that the

infinite values of n are infinitely small compared with the

infinite values of m (equivalent to taking the infinite array of

the images of the electrodes as contained in an infinite rect

angle, of which the length in the direction OA is infinitely

greater than the breadth in the direction OB) , we can now

replace the doubly infinite products in ( 1 ), (2 ), (3 ) by singly

infinite products, in the form

n = “ 1-2921 cos(mu / K ) + qen

snu =A sin (ITU / K ) II • D , (11 )

( 1 - q2n)2

1 + 2q2n cos (TU/K)+ qin
cnu =B cos( TU / K ) II D, (12)

( 1 + 92n)?

1 + 2q2n - icos(TU/ K ) + qın
CII -D, (13)

(1 + q2n - 1)2

where

1 - 292n - Icos(Tu /K ) +941 –2
DE II ... ( 14)

( 1 - q2n - 1) 2

By putting u = 0 , the values of A , B , C are seen to be

K / 17 , 1 , 1 ; while q = exp (-K'/K ).

The common denominator D of the three elliptic functions,

which represents physically a function whose logarithm is the

vector function of the negative electrodes at points whose

vectors are of the form 123, is the equivalent of Jacobi's Theta

Function of $ 187 ; and we write

1 - 2q2n -1cos(TU / K ) + 4n -2
Ou=00 II

( 1 - q2n - 1)2

= O0 II {1+
sin?(ŽTU/K)

... ( 15 )
sinh (2n - 1) # K "/ K

The numerator of sn u will now be the equivalent of the

Eta Function , defined in $ 192 ; and thus

Hu = N/ κ snu θα

K

dk
O0 sin(jmu/K )111 – 2q2ncos(mu /K ) + qin

( 1 - g2ny ?

sin ( TU / K ) 1

O0 sin(žmu/K )II{1+ .. (16)
sinh?(07K7K27K'/K ) S

The numerator of cn u is represented by the Eta Function

of u + K , and the numerator of dnu by the Theta Function of

u+K ; and the factors are so chosen that

.

K

T



INTO FACTORS AND SERIES. 283

1 Hu

SNU= cnu dn u=NKO( + K )

...

no

n= 1

K' H U
( 17 )

Jk Ou JK Өи Ou

Equation (6) of $ 188 may now be written

V( a + b) ( – )00 = 6ºu wºu - HºaH20 ; ......... ( 18)

while, by means of (7), S 137,

Hu + v ) H (u - V )040 = H u02-02 H2v. . (19 )

264. It is convenient to replace žtu/K by a single letter x ;

and we shall now find that the constant factors are so adjusted

as to give the expansions in a Fourier series in the form

Ou = 1 - 2q cos 2x + 2q+cos 4x - 2qºcos 6x+ ... , ...... (20)

Hu = 2q+ sin 2 – 2qesin 3x + 2q** sin 5x - .... ...... ( 21)

It is easily shown algebraically that

II ( 1 - q2n – 12 )( 1 - q2n –1, -1)

= Q {1-9(2 + z - 1) +9* (-2 + 2-2) - °(23 + 2-3) + ...} (20)*

by changing z into qaz and multiplying by qz, when the pro

duct on the left hand side merely changes sign ; whence equa

tion (20) is inferred from (15) by putting > = e2xi ; and equation

(21) is obtained from ( 20)* by writing qz for %, and multi

plying by gło .

Written in the exponential form ,

Ou = Ez2n qu*e2nxi, Hu = -X121-1917– )*e( 2n – 1)ci, ..... (22)

or with q = e - a, a = + K '/ K , and b = xi,

Ou = Xiane -n2a + 2nb, Hu = -3 2n - le-(1 - 1)20+( 2n - 1).....(23)

Then O (u + K) = Eqneznxi e-02a -1200

H(u+ K ) = Eq(n =1} e(2n --1)xi= Ee- (n - 3)Pa + (20 – 1 )) ; ...... (24)

and O(u+ 2K) = Ou,

H(u+2K)= -Hu , .(25)

Changing u into u + K'i, or w into x + ji log q, we find

e (u + K'i) = iq -te- xiHu,

H (u + K'i) = iq - ke - xiou, . ( 26)

agreeing in giving kan u sn (u + K'i) = 1, (27)

and leading by differentiation to the formula

Z (u + K'i) = Zu + (cn u dn u/sn u ) - (17i/ K ), ......... (28)

which, with ($ 176),

Zu + K ) = Zu – (k sn u cn u/dn u),. ( 29)

leads to

Z (u + K + K’i ) = Zu – (sn u dn u/cn u) - (37i/K) .......... (30)

nec

ne

)
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265. Jacobi writes ( Werke, I. , p . 499) x for U / K , and

Axc for Ou, 0 « for Hu, 0zx for H(u +K), and 03. for O(u +K) ;

and now

... (31)

Ox = Xiangn e2nci

= 1 - 2q cos 2x + 2q+cos 4x — 2qºcos 6x + ...

0,2 = Ej2n - 1q(n − ) e(21 – 1)ei

= 2q+sin x -- 2qisin 3.c + 2q** sin 5x ..(32)

0 , X = Eq(n -3)?e(2n –1)xi

= 2qtcos x+ 2q*cos 3x + 2q ** cos 5x + ... ...... (33)

Oz2 = Eqn2e2nxi

= 1+ 2q cos 2.c + 2q+cos 4x + 2qºcos 6x + ... ...... (34)

or, with q = e - a, b = xi,

Ox = {i2n exp( - n’a + 2nb),

θα = Σ exp( -naa + 2nb) ,

0,2 = E221 - lexp { - (n- 1) a+ (2n- 1)b } ,

θ, = Σ exp { - (n - 3 )4a + (2n - 1 )6 } . .. (35)

Conversely, starting with these O functions as defined by

these exponential series, it is possible to rewrite the whole

theory of Elliptic Functions ab initio in the reverse order, and

to deduce all the preceding results.

( Jacobi, Werke, I., p . 499 ; Clifford, Math. Papers, p . 443.)

For instance , we find that

0 (x + 1 ) = 0,3 %,OzX , 8 (x + ji log q) = - iqtext 0,20,

0 ,( + 7 ) = 0 iOqx, 04(x + ji log q) = -iq-łexibx,

02(0 + 1 )= -0,X, 09(2+ ]i log 9) = q + exi@gx,

03( +17) Ox, 03(x + }i log q) = q #exi0,2. .....(36)

The quotient of two o functions is thus a doubly periodic

function ,of real period 27 or 7, and imaginary period i log q.

The form of the and function series shows that they

satisfy partial differential equations of the form

020 da

4

d log ada?
: (37)

and the functions are therefore suitable for the solution of

problems in the Conduction of Heat.

Thus, if (ac cos a ty sin a, q) represents at any instant, t = 0,

the temperature at the point ( oc, y) of an infinite planè, of

:
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which
♡

denotes the thermometric conductivity, then at any

subsequent time t,the temperature will be given by

0(x cos a ty sin a , qe--4928). .. (38)

266. Similar considerations to those of $ 258 enable us to

resolve other expressions into factors ; for instance,

dnu tücnu

or its reciprocal

dn u-K en di

к K

dn u K cn 2

so that

K

or

dnu-к сn ,

к

2n - 1

dn u- к сn и K'

dn utk cnu V dn utk cnu

Now dou, or sn(K- U) = 1 /k, when

U = (4m+ 1 ) K+( 2n+1 ) K”i,

cos } U /K = cosh (2n - 1)} # K '/ K ;

while de u = -1/K ,

when cos įTU / K = -cosh (2n - 1)37K" / K ;

and therefore we may put

= cnicosh (2n – 1))+ K "]K – cosjau / K

cosh(2n - 1 ) # K '/ K + cos TU / K

1–2qN- \cos (įTU / K ) + q2n
CII (39)

1 + 2qn- icos(2TU/ K ) +221 - ]'

where the letter C is used to denote some constant factor.

Now, writing x for U / K , and supposing x and u real,

log(1 - 2c cos x + c2 ) = log (1 - cevi) + log( 1 - ce-xi)

= -2(c cos x + $c cos 2x + { cºcos 3x + ...),

log(1 + 2c cos x + 2) = 2( c cos x -- {cʻcos 2x + {cºcos 3x –...),

1-2c cosa + c

log -- 4(c cos x+{cºcos 3x+ {cócos 5x+ ... ) .
1 + 2c cosa +

Therefore, expanding the logarithm of (39) ,

k

log

= log C - 43(q" - cos x+ }q8n- cos 3x + 295n-&cos5x+ ... )

q
1 92 qe

COS X+

+
cos 3x + cos 5x + .F ...)

9
5 1

1 cos(2m - 1 )371 / K
= log C - 22 (40 )

2m - 1 sinh (2m – 1)27K ]K ”

and, differentiating,

sin (2m - 1 ) TU/ K
Σ ......(41)

K - sinh (2m – ] ) K K '

the expression of sn u in a Fourier Series .

dnu к сn и

к

= logC -4(14,
1

31-03 1-98

T

Ksn UE
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...(42)

is .. (43)

267. By forming the similar factorial expressions for

k snuti dnu and snuti cnu,

and taking logarithms, we shall find

log(k snutidau )

1 sin(2m - 1 ) UK
= constant -21

2m - 1 cosh (2m - 1 ) ]1K'| K

1 sin mau / K
log( snuti cn u) = constant

m cosh myK"] K

and, differentiating,

cos(2m – 1 ) TU / K
Σ

K “ cosh (2m - 1) + K K

cos mau / K
Σ

2K + K - cosh maK"]K '

and therefore, integrating,

sin mau/K

2K m coshmK'K

We have now found that, in $ 78,

7T

Kcn аl - .... (44)>

7T

dnu .. (45 )

7C

am u + Σ (46 )

1

Bn
n cosh n7K'/ K

T

268. From $ 263 , we find, in a similar manner, that

log Ou = constant+log II {1– 2021 – 1cos(FU/K ) + 4n- 2

1 cos(mau / K )
constant .... (47)

m sinh (m K'K )

and, differentiating,

sinmUK )
Zu Σ .... (48)

Kºsinh (maK '/ K )

Ε . π2 m cos(MTU/K)
dn ? u = +

KTK “ sinh( TKK)
.....(49)

K

k ?sn ? u = 1 Σ
m cos(MTU/ K )

K K - sinh (maK'/K )
..... (50)

Now, referring back to $ 78 , we can put

1 2qn

K sinh nak "/KK1 - q2n

Putting u= 0 in (49) or (50) gives what is called " a q series,”

2mqm K ( K – E)
Σ ..... (51)
sinh (maK | K ) 1-9211

E 7T

or

TT

Cn

т x 2mg

7
2
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}

As an exercise, the student may form the similar factorial

expressions for

1 - cnu 11 - snu 1 - dnu

etc.,
K'sn u

dnu en u

snu cn u K snu

and their reciprocals

1 + cnu 1 + snu 1 + dnu dnu+snu

K'snu

etc.;
snu en u K snu

and thence determine, by logarithmic differentiation , the Fourier

Series for ns u, cs u, ds u , etc. (Glaisher, Q. J. M., XVII.).

The applications of these expansions will be found in papers

in the Q. J. M., XVIII., XIX ., XX.

ار•

269. As an application of these q series, consider the problem

of the electrification of two insulated spheres, in presence of

each other, of radii a and b, and at a distance c from centre

to centre, when maintained at potentials Va and V, with

charges of Ea and E ; (Maxwell, Electricity and Magnetism ,

I. , chap. XI. ) .

Then Eq = 9aa Va + qab V , Ev = 9ab Va + 200V b.........
E V (52 )

where qaa, quö are called the coefficients of capacity, and qaь
the

coefficient of induction.

We take w and vas coordinates, given by the dipolar system

x+ yi = k tan 3 (u + vi),. ....... (53)

so that u = constant represents a circle through the poles

(0, Ik) , and v = constant represents an orthogonal circle, with

the poles as limiting points.

Now, if we revolve this system about the axis Oy, which

may be supposed vertical, the two spheres, if outside each

other, may be supposed defined by

v = a and v = -B,

so that a = k cosecha , b = k cosech B, c = k (coth a + coth );

and putting a + b =w, Maxwell shows, by Sir W. Thomson's

method of successive images, that

Taa = le cosech (no - B ), 9av = – ka cosech no,

900 = kE cosech(nu - a), .. ... ( 54)

the summations extending for all positive integral values of n

from 1 to do

is called Lambert's Series ; it is considered in the

Fundamenta Nova, S 66 .

Here ab
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Again, with a -B = X,

qaa = k cosech } {( 2n - 1) + x },

qv = le cosech } { (2n - 1) --- } ;

and by the preceding formulas it can be shown that

K

900 - Taa = kK tan am K '- 22
..... ( 55)

ದ

When the two spheres are equal, x = 0, and

Jaa = qv = k & cosech } (2n - 1) = kl. 29" -}
1 - q2n - 1

When B = 0, the sphere ß becomes a plane ; and now

qaa - qab = ke cosech nara sinh a cosech na ;

which shows that the capacity of a sphere of radius a is raised

from a to a sinh a cosech na by the presence of an uninsulated

plane at a distance a cosh a from its centre.

Similar functions occur in the determination of the motion

of two cylinders or spheres, defined by vra and -B, when

the interspace is filled with homogeneous frictionless liquid.

(W. M. Hicks,Phil. Trans., 1880 ; Q. J. M., XVII., XVIII.;

Basset, Hydrodynamics, I. , Chaps. X. , XI. ; C. Neumann,

Hydrodynamische Untersuchungen .)

270. To illustrate geometrically the singly infinite product

forms in $ 263 of the elliptic functions,consider the analogous

problems of electrodes at the corners of curvilinear rectangular

plates, bounded by arcs of concentric circles and their radii.

The vectors from the centre as origin of a series of p

electrodes, equally spaced round a circle of radius a, will be

a exp 2 raip, where r = 1 , 2, 3, ... , P ;

and with polar coordinates r , 0, the vector of the point will be

rexp id ; so that for the p electrodes, each conducting a current

of 27 ampères, the vector function is

log II {r exp ( io ) - a exp(2rmip)} = log (?-Peipo -- AP) , ..... (56)

by De Moivre's Theorem (Hobson, Trigonometry, Chap. XIII. ) .

Interpreted geometrically, the norm is the logarithm of the

product of the distances of any point P from the electrodes,

while the amplitude is the sum of the angles the lines joining

the electrodes to P make with the vector = 0.

rap

r-
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tan - 1

We thus prove incidentally one of Cotes's theorems, namely,

that the square of the product of these distances is

(rpeipd – AP)(rpe- ipo – CP) = p2p --- 2a Precos peta2P, ... (57 )

and, in addition, the theorem that the sum of the angles the

vectors from the electrodes to P make with the vector 0 = 0 is

Psin pe

...... (58)
yopcos po - AP

and when the sum of these angles is constant, the locus of P is

an oblique trajectory of the curves

pop cospo or ppsin po = constant.

With a single negative electrode at the centre, of current

na ampères, half the total current from the n electrodes on the

circle will flow to 0 , the other half flowing off to infinity.

Now the vector potential is, on writing ep for rfa,

log(ringino — u ") } log pengine

qolsin ne

= i log(cosh np - cos no) + i tan - 1 - lino....(59)
goncos no - AN

We can isolate a sector, bounded by 6 = 0, 6 = 7 /n , and

p = a ; and the preceding expression will represent the vector

function of the electrical flow of it ampères, with electrodes

at the end of the vectors r = a, and at r = 0.

The amplitude of this expression will also represent the

temperature in this sector, if the radius 0 = 0 is maintained at

temperature 0 , while the radius 0 = / n and the arc r = a are

inaintained at temperature .

271. Now suppose that on the same circle r = a, an equal

lumber
р of negative electrodes are placed, equally spaced be

tween the positive electrodes ; the vectors of these electrodes

being a exp (2r - 1)mi/ p, the vector function is

-- log ( Peipo + a ”) ;

or, if moved out radially on to a circle of radius b,

- log ( Peipo + bP). ... (60;

The vector function of p equal electrodes at a exp 2r7i/P,

and of p equal negative electrodes at a exp (2r— 1 )7i p will

therefore be log (rpeipt — ap)/(rpeipo + ar) ;

which, when resolved into its norm and amplitude, is

9: 2p -- 2ap7p cos po+ u2p 2aPqPsin po

1 log ti tan - 1

2P + 20 27.Pcos potu2p gp2p – a2p2

G.E.F. T
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–
cos po

tanh - 1 ti tan - 1
sin po

sinh PP
.. ( 61 )

cosh PP

with p = log (r /a ); this function will represent the state of

electrical motion in a wedge bounded by 6= 0 and A = 7 /P.

272. The substitution in the preceding expressions in $ 247

of the conjugate functions pe and log (r /a )P or pp for u and v,

leads to the solution of corresponding problems for curvilinear

rectangles bounded by arcs of concentric circles and their radii ;

and now q = (b)a)”, where a and b are the radii of the curved

sides, while 7 / p is the angle between the straight radial sides ;

so that in the rectangle O ABC,

0A = amp,an /P, BC = br /P, OC = AB = a - 6.

The vectors of the images of an electrode at 0 are now

aq2n /Pexp 2r7i/p,

where n denotes any integer, positive or negative , and

p = 1, 2 , 3, ... , n.

For electrodes at A , B, C , the vectors of the images are

aq2n/pexp (2r - 1)in /P,

aq( 2n - 1)/Pexp 2rin /p,

aq(2n - 1)/Pexp(2r - 1)i |p .

For a given value of n , the vector potential of the electrodes,

whose vectors on a circle of radius aqn/p are

aqu/pexp 2rin / p or aquipexp (21 — 1 )7i/ p

will be log II(rreiro - apq”) or log II(rPeipo + apq )..........(62)

Now, suppose a positive electrode is placed at 0 and a

negative electrode at C , with the corresponding system of

images; the vector function is

log II (ppeiro - a ?q?n)/(rpeipo — a pqen – 1)

120

= logMelay (1–7" }( c )"}{1 -qian (ro)"}

(resto)is 1 -gºn-r("'* )"}{1 -gen- .)
a

n = 1

reid

on introducing a negative electrode, of current 7 ampères, at

the origin ; and, writing 7W/K for po + i log (ar ) , this becomes

1-2q2n cos(TW/K) + q4n
log sin (1mW / K ) II .. (63 )

1-2921 – Icos(TW /K ) + 24n
-2 )
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equivalent, as in § 263, on omitting constant terms, to

log sn w.

A similar procedure with electrodes at A, C , and B, C , will

lead to the singly infinite factorial expressions for cnu and dnu.

Projecting these equipotential and stream lines stereographi

cally on a sphere which touches the plane, we shall obtain the

corresponding solutions for the flow of electricity on the surface

of the sphere.

(Robertson Smith, Proc. R. S. of Edinburgh, vol . VII.;

M. J. M. Hill and A. J. C. Allen , Q. J. M., XVI. , XVII. )

273. When these electrodes are replaced by straight parallel

vortices , perpendicular to the plane, which is taken as hori

zontal, the potential and stream functions are interchanged.

Suppose a vortex is placed at a point P in the rectangle

OABC ; to introduce the restriction that there is no flow across

the sides of the rectangle, we must suppose the motion due to

vortices which are the optical reflexions of the point P in the

sides of the rectangle ; the sign of the vortex being positive or

negative according as the corresponding image has been formed

by an even or odd number of reflexions.

The vectors of the positive images will therefore be

2m + 2ubi + ,

and of the negative images

2n + 2nbi ' ;

where 2 = x + yi, = x - yi.

The resultant current and velocity function at Ś= f+ ni will

therefore be the norm and amplitude of

(2ma + 2nbi + $ -- )(2ma + 2nbi + $ + )
log IIII ... (64)

(22ma + 2nbi + 6-1)(2ma + 2nbi + 8 + )

At the point P, this vector function , due to all the other

images, is therefore

(2ma + 2nbi) (2ma + 2nbi + 2 )

log IIII
(2ma + 2nbi + 3-2)(2ma + mbu + z + 2 )

Kb

and writing
Ka

this may, according to $ 263 , be replaced by

H(utvi)
log ........ (65)

Hu:Hvi

;

and 2K * + 2K *i; = u + vi = w
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= } log HuHĽvi9 )

The stream function at P is therefore, disregarding constants ,

H(u+ vi)H(u- vi ) O2, H2vi - Hu Olvi

1 log = } log (S 263)
H’u Havi Hau Havi

Ou O2vi

)

= 1 log(ns4u- ns2vi)

= } log {ns?(u, k ) + ns (v,k') - 1 } ; ... (66)

so that the curve described by the vortex is given by

ns4(2Kx /a, k ) + ns?(2K'y /b, k') = constant, ......... (67)

and all the other image vortices keep up a symmetrical dance ,

by describing similar curves.

274. The vortex is stationary when at the centre of the

rectangle ; and now , changing to the centre as origin , the

vectors of the images are ma+nbi, where m+n is even for

the positive, and odd for the negative images ; so that the

vector function of the motion is given by

(2ma + 2nbi — 2 ) {(2m + 1)a + (2n + 1 )bi – z }
log II II

{2ma + (2n + 1 )bi - z } {(2m +1)a + 2nbi - x }

snudn ! 1 - cn w

log = } log ....(68)
cn 12 1 + cnw

Expressed as norm and amplitude, as in § 247 , this function

1 - on w 1 - cn w 1 - cn w 1 + cnw

= 4 log' 1 + cn w 1 + cnw + log
1 + cnw 1 - cn w

cn vi- cnu sn u dn vi- dnu sn vi

= } log +1 log
on vitonu sn u dn vit dnu sn vi

snudn vi

– tanh - 1

dnu sn vi

snu dn v

tanh - cn u cn v) + i tan -1 (69 )
dnu snu

with u == 2Kx /a, v = 2K'y/b ; the modulus of the elliptic func

tions of v being k'.

The equation of a stream line of liquid is therefore given by

cn u cnv = constant, or

cn (2Kx /a, k)cn(2K'y/6 , k') = constant. (70)

Close up to a vortex the velocity according to these ex

pressions would become infinitely great, which is physically

impossible ; but a solid core may be substituted for this central

portion, and the shape of this core has been investigated by

J. H. Michell, Phil. Trans. , 1890 .

1

4

en u

tanh - 1

cn VU
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275. When a point is placed inside an equilateral triangle,

the Kaleidoscopic series of positive images is given by the

vectors z, wz, wʻz, where z = x + yi, and w is an imaginary cube

root of unity ; the negative images being given by z', wz', w z',

where : = -x+yi ; the origin being at a corner of the triangle,

and the axis of æ perpendicular to the opposite side (Fig. 27, i.).

A.

B

(i . ) Fig . 27. ( ii . )

In addition, similar groups of six images must be added,

ranged round the centre of hexagons forming a tesselated pave

ment, the vectors of the centres of the hexagons being

2mh+ 2nhi3 and (2m + 15h + (2n + 1 )hi 13,

where h denotes the altitude of the equilateral triangle.

In the corresponding doubly infinite products, the elliptic func

tions will have K '/ K = / 3, so that (s 47) , k = sin 15°, 2KK' = 1.

Then, in Weierstrass's notation , the vector potential at

= + ni

for a single source or electrode inside the triangle will , neglect

ing constant terms and factors, be expressed by ( 278)

log o ( 8— % ) (8- wz ) ( 8 - w22 )

01( 8 — % ) 0 (8-2) (8 - w22 )

o (8- %') (S- wi'lo ( 8 - w ??:)

01 (8-2 ) = ( S - W2')01 ($ - w22'); ...... (71 )

while for a vortex or electrified wire, the vector potential is

log (8-2 ):(8-w2),(3-00-2 ) :(8-3) ;(8 -w2)0;(8-w *2 ) (72)
O (S - 2 ) ( $- w %')o ( $ - w ":')01( 8-3 )01 (8 -w7') ($ - w ??")"

The nature of the resolution of these functions into their

norm and amplitude is illustrated in SS 227 to 231 .

(O. J. Lodge, Phil. Mag., 1876 ; 0. Zimmermann ,Das logar

ithmische Potential einer gleichseitig dreieckigen Platte, Diss.

Jena, 1880 ; A. E. H. Love, Vortex Motion in Certain Triangles,

Am . J. M., XI. )

9
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q

So also for a rectangular boundary OACB, if we write

a for 8- x+ (n - yli, or 3-2,

B for $ + & + (n - yli, or $+ z',

y for ŝ+x + (n + y)i, or $+ ,

8 for &- & + (1 + y) i , or S -- >';

2, -2, -2, z' being the vectors of the point P and its images

by reflexion in the coordinate axes Ox, Oy, taken in order in

the four quadrants ; then the vectors of all the other images

by reflexion in the sides of the rectangle OABC being ranged

in a similar manner round points whose vectors are 2ma + 2nbi,

it follows from what has gone before that we may express the

vector function at g of all their images,taken as positive, by

log σα σβ σγ σο, . (73)

with W1 = U, Wg = bi ;

disregarding constant factors , and exponential factors of the

form exp (Au + Bu ).

But when we represent the vector potential of a vortex or

electrified wire at P, the vector potential becomes

σασί

log .. ( 74 )
σβ σό

276. As another illustration of the connexion of a regular

Kaleidoscopic figure with Elliptic Functions , consider the solu

tion of the reciprocant

( t2 +1)c— 10abt + 15a3 = 0 , (75 )

dy dly døy dy
where t b =

dx ' dx2) doc

(Sylvester, Lectures on the Theory of Reciprocants, VI. , 1888.)

Mr. J. Hammond has shown (Nature, Jan. 7, 1886, p. 231 ;

Proc. L. M. S., XVII.,p. 128) that the integral of this equa

tion (75) may be written

( 1 + ti )dt

. (76 )

k

By turning the axes through an angle i tan -10 /K ), we can

make , vanish ; and now, replacing Ik by unity,

(1 + ti)dt

x + yi = ...... (77)
[ { ( 1 + ti)* + (1 - ti)6} '

, - P(x- yi ; 0,4) , ...(78)
1 - tid 1 + ti

and p (x + y ) (x - yi) = 1. .... (79 )

CI = с

das

æ + yi=) 71}(x - Ni)(1 +ti)* + }(x + Ni)(1 – ti)"}

( ++) p 1703
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Since ( 196 ) powz = w4 , pw2z = w202,,

where w is an imagivary cube root of unity, therefore

pw(x + yi) pow ?(x - yi) = 1 , ... (80)

which shows that the curve is unchanged if turned through an

angle of 60° about the origin (Fig. 27 , ii. ) .

Captain MacMahon has shown that the intrinsic equation of

this curve may be written

cos 3y = dn(s/c), with k = 1 / 2. . (81 )

The student may also show that the equation of the curve

may be written in one of the forms

am(a +K, K) = am(y =K', K ),

kʼatn ?(«, k) = k” tn?(y, k '),

K ?sn («, k) = k ”?sn ?( y, k') ,

dnec, k )dn ( y, k ') = K , . (82)

with k = sin 15° , K ' = sin 75°.

As a similar exercise, the student may solve the reciprocant

tc - 5ab = 0 (83)

in the form
fox wy = + 1, ..(84 )

and determine its intrinsic equation, drawing the correspond

ing curves (Proc. London Math. Soc ., XVII. , p . 360).

277. When we expand, in ascending powers of U , the

logarithm of a doubly infinite product, such as that in the

numerator of sn u in equation (1 ), $ 258, we find

Uи

1 = - 2 -3

Now, when the origin is taken at the centre of all the

points whose vectors are .2 , the coefficients of u, u , u5,

vanish ; but the value of the series is still indeterminate, until

the infinite curve containing all these points has been defined.

For if P denotes this infinite product, and P' its value when

the boundary has changed into a similar curve, then

log P ' – log P = 1U2812-2 + 14 +212-4 + .

where the summation now extends over the region lying be

tween the two boundaries ; and now the limit of 222-2 is a

definite number, A suppose, while the limit of 42-4,

Therefore

log P ' -logP = 1Au ?, or P' = Peļau ... ; ... (86 )

so that the value of the infinite product depends on the shape

of the infinite boundary (Clifford , Math. Papers, p . 463).

is zero .
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But, as in $ 261 , Weierstrass removes this ambiguity by

attaching to each linear factor of the product, such as

20

an exponential factor exp ( +

... (87)

1

02

1 u ?

2 .222

and ,in the physical analogue, the corresponding electrode at 82 ,

whose vector function is log( l - u/2), must have associated

with it a uniform flow in the direction of the vector 2, repre

sented by u / 2; and a streaming motion in rectangular hyper

bolas, whose asymptotes are parallel and perpendicular to the

vector 2, represented by } (u / 2)2

Now in the expansion of the logarithm of the doubly infinite

product P, when these exponential factors are introduced,

log P = log U - 144E2-4--10EQ - 6

an absolutely convergent series ; that is, a series the value of

which is independent of the order of the terms.

278. Making a new start ab initio with the sigma func

tion ( 195) , as defined now by the equation

1 u2

OU = U II II 1 exp + ..
2 122

where 1 = 2mw + 2nw ', and owi is a real positive quantity, so

that w, w' correspond to wj, w, or W2, W , according as A is posi

tive or negative, then ou is the analogue of Jacobi's Eta Func

tion ; in fact,

ou = CeAv H / (C1 - )u = CeAu?O, (ŽTU /W ),....... (88)

(S 263), where C , A are certain constants ; also log ou is the

same as log P in equation (87) .

Now denoting, as in $ 195 ,

d log ou d2log ou dcu
by fu , and

du du 2
by - pu ,

1 1 1

+ Σ +

12'12'922.

71-0 ns

(U)
m . con

Or

du

tu =
U

x
+

U SU

1

U

u3222 - + - U5202-6_ . ( V )

by differentiation of ( U ) and (58) ; so that, on reference to $ 195 ,

we may put

92 = 60312-4, Jg = 140222-6, ...( W )

also 9,2 = 24.3.52. 7 212-8, 9,93 = 24.3.5.7.11 212-10, etc.
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+

$ { u - Q3-u2 22

p'u
C

us

Differentiating (60) again ,

1 1 11

pour ( X )
( U - 12 )

2 2

Σ (Y)
(u - 12 )3

Then (ou)/u, uğu, užpu ,užg'u , utp " U, ... , are unaffected by

the considerations ofhomogeneity of $ 196 ; as for instance in

the expansions in equations (21 ) and (22) on p. 249 .

A change in (X) and (Y) ofu into u + 2pwt2qw',where p and

q are integers , merely leads to a rearrangement of terms ; so

that, as in $ 250,

pu + 2pw + 2qw ') = pu.

Also, since in N = 2mw + 2nw', the arrangements ( m , n) and

(-m , -n) exist in pairs , therefore

pw = 0, pw + 6 ) = 0, pw = 0 ;

and po ?̒u = 4.pu - pow.gu -pw + w ') .yu - po

= 493u - 92 pu - 93) .. (AA)

as originally defined otherwise in $ 50.

A change of u into u + 2w in (V ) shows that, by a rearrange

ment of terms,

f(u +26 ) = fu + 2n, (89)

where n is a certain constant, determined by putting u = -W,

(90)

Similarly f( u + 2w ') = fu + 2n',... ( 91)

where ņ = fw '; ( 92)

and, generally,

f( x + 2pw + 2qw') = fu + 2pn + 2qn'. ... ... (BB)

Integrating (89) and (90),

ou + 2w ) = Cengu , (u + 2w ') = C'e2uqu ;

where C and C' are determined by putting u = -wand -w ';

so that n = fw. .....

so that

o (u +20 ) = -29(u +wou, o (1 + 2w ) = -629(0,+Wou, (93)

and therefore

o (u + 2pw ) = - ( - 1)2 + 1e2p7(u + pw ) o U , ........ (94)

G ( u + 2qw ') = - ( - 1)9 + 1,299'(u + qw')ou, : (95)

and, generally,

o (u + 2pw + 200 ) = - ( - 1)(2 + 1)(2+ 1)e(209 + 299"}(u + pw +qw')ou ,... (CC)

obtained also by integration of (BB).

o + +
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σω:

7T 20

U ,

IIII(1 a La
ta Da2

The doubly infinite products in ( U ) may be converted into

singly infinite products ; and now

2w

einu2lw sin TUT1 TU1-2q2n cos(itu /w ) + q4n
... (BB)

(1-2)

where q = emriww,and

4921
2ηω = έπ2 – π?Σ = 7 ° -7°* cosech?(nw /wi),....(97)

(1 -q2n )2

etc.; for the proof of these and other similar formulas merely

stated here, the reader is referred to Schwarz and Halphen .

Also, denoting 12 + w , 12 + w + w , 12 + w by 21, 22, 23 ,

then the function all of $ 202 may be otherwise defined ab.

initio by the relation

1 u2

Cal = ebeau2 IIII ( 1 exp ...(EE )

which will be found to lead to the preceding results.

02

Denoting duz log oqu by – SąU ,we shall find that

Lau = P (u + wa), a = 1 , 2 , 3. . ..... (98 )

(A. R. Forsyth , Q. J. M., XXII.)

279. Returning to the function C of equations (8 ) and (10) ,

$ 215 , and changing the sign of the u's, we may also write it

C = 0
c (v + un + ug + ... tuulo (v - U ,)o ( v - u ,) ... (V—Wu)

(ov)

= 60 +678 + 629v ... + Cugalke – 1))) (99 )

and since we may suppose the u's and v to be all increased by

equal amounts, the condition (9 ) of $ 215 is no longer required .

Now, since C vanishes when v = Uy, where r = 1, 2 , 3, ... , NišMi

therefore the coefficients Co, C1 , C2, ... , Cul are determined by

a series of equations of the form

0 = 0,+ cpur + cpu , t ... + cuplu - 1)ur; ......... ( 100)

and therefore the determinant

1 , pu, pv,, polu - 1) =MC= MC,.........(101)(

+1

ز

1 , pur, poʻun, pole - 1)W .,

where M is a factor independent of v ; and now this theorem ,

as a corollary of Abel's theorem, shows that the determinant

also vanishes when y = -W - U , —... - UM .
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The symmetry of the determinant shows that M must be a

symmetric function of the u's ; or writing u, for v ,and denot

ing the determinant by ( , Uy, Un, Uu ), then ø is a

symmetric function of the u's, such that

Ø(Up, Uy, ... , Up) = A
... , UM) = A (U + 4 , + ... + wu)II.p.90 (Un — Ug)

(ouolu+Hou,) +1...(oup) +1 S...(FF)

(p < q, p , q = 0, 1 , 2 , ... , M ),

and it will be found (Schwarz, § 14) that

A = ( - 1 )žulu – 1) 1 !2 ! 3 ! ... j !.

Thus, for instance, with u = 2,

1 , pu, pu 1 = 20(u + v + w )o(0 - )o(w – u ) (u –v ).

1 , pu, po σBuσυ σBu

1 , pw, p'w

By forming a similar function of the u ” s, subject to the

condition (6) of $ 215 , we see that (7 ) is an elliptic function of

V , which can be expressed by C / C', where C and Care given

by determinants , as above.

Equation (CC) is also sufficient to prove that the function

in (7) S 215 is doubly periodic.

As an application of the principles of this article and of

SS 209 , 215 , 216, 257 , the student may prove that 1 of $ 215 is ,

writing a for Un, b for U2 , and u for v, given by the equations

_o (u + a )o ( u + b )o (a + b)

σιι + α + β )σισα σε

1 , pu, poļu = 1 , you, poʻu

1 , pa, pa 1 , pa, sou

1 , pb, pub 1 , pb, so'b

= $( + a + b ) – Šu - ca-- Sb .

We thus verify the equations of SS 209 , 257 ,

u ou +au + b )
e e - u (ša +56 )

du ou o (a + b )
ou od ob

= P(u, a ) (4 , 6 ) .

When condition ( 6) of $ 215 is not satisfied , then (7) reappears

qualified by an exponential factor of the form epo when v is

increased by 2pw+ 2qw' ; the function is then called by Hermite

a doubly periodic function of the second kind ; the function

Q(u, v) defined in § 201 being the simplest instance of this

kind of function.

11
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280. Making the u's all equal, as in $ 218, and interchanging

u and v, the function

o ( u tuv){o ( u - v) }"
Хи -

(ou )u + 1(ov)m ( +1)

is a doubly periodic function which can be expressed in the

form of C ; but now the coefficients c must be determined by

a series of equations of the form

() = Co + Cyou + cav t ... ,

0 Cygo'v + cago" v t ... ,

0 : cp " v +c8v + ...,

Expressed as a determinant we may now put

1 you — Jov , poʻr poʻv, plu - 1) -- ( - 1)
Xu =

n! poſv,, pov," galuru - golur

po" , 80,

sple - 1) v, pluu,

Finally, making u = v , and dividing both sides by (u - v)',

we find, in the limit,

olutlu pu, pu, pului ...(GG )

pu, pu, 1)
( u)(u + 1 = M

solut

4

fomu, polu + 1)u, 80 (24-1)

((-1) "
where M ( Schwarz, $ 15) ;

( 1 ! 2! 3 ! ... !)

Halphen denotes this function of u by Vu + 1)U.

Thus for instance , as in $ 200, with u = 1 ,

c2u

Vu = -pʻu.
(ou )

Again , with u = 2

σ3ι

You = # ($o'u go!"'x --8 "2u ) = p2u (pou – $ 2u ).
(ou )

By logarithmic differentiation,

02 02

log = n '(pu - pnu), ....(HH)duz log Coutradu

whence gonu can be expressed rationally in terms of pu, pu,

onu

When U= V,

It
ҳи olu + 1 )

{ o ( u - v )} " (ov)(v + 1)2
- u = P(A+1).
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lt(ou du +1yu = ( - 1) OMU
(ov)uz3

Also, when u = 0,

( -1)4 V

= lt(oulu + 1{ a , + aipu + ... + augolu --1)u) }

= aul - 1 )u + 1.j !; .. ( 102)

and therefore au = 0, when uv = 2pw .+290 ..

281. In the pseudo-elliptic integrals (S 218)

Mv = 0 (mod. w1 , wg) ;

and now, knowing the number u, the coefficients Co, C1 , C2, ... in

C or xu are readily calculated from a knowledge of the values

of pv, pov, pov, ... ; in this way the results employed in $S 218,

219, 223, 225 , 233 were inferred .

Thus, for instance, in $ 219 , we know that

u= 3, uv = 3w , + wg;

pu = } , pv = 31/2, pv = -6, 8 " v = 181 / 2 , 8o "v = –252, ... ;

so that the ratios of Co, C4, C2, can be calculated from the

equations 0 = co + 4, + 3i / 2c2

0 = 31 / 20,- 6c2 + 18i / 2c3

( = -6c,+ 18i / 20, – 252c3.

Taking an arbitrary value of Cz, say ș, we find, by solution ,

Co = -9, C = -10 , Cz = -3i / 2 ;

xu = $c;($ p " u -- 31,-/ 2 g'u - 10 pu - 9)

= c {( 2 pu + 2 )( 2.gou - 7) - 31/2 g'u } .

o ( u + 3w1 + wz)-3(U - V )
Now

otu 12v

o - V )

6C3,,

хи . =

so that, in the algebraical herpolhode referred to axes rotating

with a certain angular velocity, we may put

(c + iy )} = A xu(pu - en)-5,

thus leading to the results of $ 219 .

As other numerical examples the student may investigate

the results of ss 218 , 223, 225, 233 ; also the example due to

Abel ( Euvres, I. , p . 142 ), where u = 5, 92 = 12 , 93 = 19, and

v =w, or w.', when pv = -2 or 1 ; we then find that the

values of Co,C1, C2,C3, C4, C5 are proportional to

--288, -36, –481/3, 12, 1/3, 0 ;

-- 396 , -252, -121/3, -24 , 1/3, 0.or
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cos -123(252—8-1
0)

= cos- 17/ 3(452 +78 + 7

S28+

s

Writing s for you , then we may put

xu= -288-36pu– 48i / 38'u + 128 " u tin / 380 "'

36 (232—8-10)+121/3(s— 4) / (453 – 128-19) ,

xu= – 396 -- 252904 – 124 / 3gpʻu - 248ə" u + in/ 380'"' U

36(482 + 78+ 7) +121/3(8-1)/(493—128-19) .

We thence infer that the corresponding pseudo-elliptic inte

grals involve

(s — 4 ) / (483 – 128-19)
tan

J3 (282-8-10) 2 (8-1)

or tan -1(8-1) / (458 – 128 – 19)
)

1/3(452 + 78 + 7) 2( 8 +2)

and now by differentiation we infer that

2s +13 ds 2

J
tan -:(8-4) / (453 – 128–19)

$-1 (493— 12s - 1973 J3 (252-8-10 )

48-7 ds 2

tan -1(8-1) / (438 — 128–19)
s+ ? (483 – 12s – 19) 1/3 13(452 + 75+ 7)

Thus , in the Weierstrassian notation,

Lip'vdu (ou - 4 ) ' u
- } / 3u,

su - su _3( 2p2u - pu - 10)

(pu -- 1 )$ u

J3(49% u + 7pu + 7 )
+ 3u ,

with 92 = 12 , 93 = 19 , according as purl or -2.

These results may be employed in the construction of

degenerate cases of the catenaries discussed in SS 80 , 205 , 206.

Thus, for instance , the curve given by

ge = 2 (pu + 2),

pocos(2-/ 3u.– 50 ) = / 3k (474 — 9k2po2 +964),

is a plane catenary for a central attraction n wr per unit of

length, in which (S 80)

t = \ n -wp2 – 312), tp = 1 / 3n -wke3.

So also a tortuous catenary is given by the equations

po2 = k {$ (32/k )— 1 } ,

quốcos(50+3/3x/k) = / 3k( 274 + 3k2p2 — 9X +),

under an attraction nawr to the axis Ox.

lipóvdu tan - 1

ΟΥ i tan - 1
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27

282. Other pseudo-elliptic integrals are formed by the sum

of two or more elliptic integrals of the third kind , when the

sum of the parameters is of the form pw + qu ', as in $ 226, for

the expressions of Ę and f'.

We shall denote the integral of the third kind in the form

(B.) , $ 199 , by ( u ,v), as this we have found is the form of

most frequent occurrence in the dynamical applications ; and

now (B2) shows that

$ (u, a) +$(u, b) - $(u, a+ b)

= {$a + Eb - f(a + b)}u + 1 log (a + uDo(b + u )o(a + b - u )
{ ša + 86-5(a + b ) }u + } log (a – u )o(b - u )o(a + b + u )

po'a - pob- 1 u + } log pla + u ) –$ (b + u ) .Şu –pla + b - u )
Soa — ob pla - u ) -plb - u) pu - pla + b + u )'

by reason of (y) , $ 197 , and (K) , $ 200.

When a + b = wa, b'(a+ b) = 0, $(u, a + b ) = 0); and now

Φ(u , α ) + Φ( u, b ) =
ip'a

Pa— la pla - u ) , la

By equation (N) , $ 249, we may write

Sou - lagoa eß . god - by

1
( a - u - ea SU -- lagoa - eß.gou - es

s'a pucea i so'a pou — ere
or i tan - 1

pa - la p'u Қоа — ea o'u,

the latter form to be employed in dynamical problems, where

po'a is always imaginary ; thence the expressions given for

and in § 226 can be inferred.

As an application we can put a+ b = wi + w or wg in $ 209,and

thence deduce a degenerate case of the Spherical Pendulum .

u + 1 log 8 (a + u )—ea

Ko (a + ) -ea _tanh -1

tanh- V

tanh -1

EXAMPLES

1. Prove the following q series :

(i . ) 1 + 20 + 204 + 2q8 + ... = OK = N ( K /17 ) ;

2q + 2q '+29** + ...
HK

(ii .) Vk ;
1+ 2q +224 + ..

OK

1-2q + 2q4- .. 00

( iii .)
1 + 29 + 20++ ... OK

= K';

(iv . ) ( 1–2q+ 2q4 –... )4+ (2q++ 298 + ...)+ = (1 + 2q + 204 + ... )* ;

(v. ) _(KK)297, que l'eK?K??, J 1/17289 ,or -1 /1728q, accord

ing as A is positive or negative, when q and k or k' is small.
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2. With the notation of $ 265 , prove the theorem

03(w )03(« )03(y )03(2) - 0 ,( W )0 ,(2 )0, (y)0 ,( )

- ( w ) (w ) (3 ) (x ) +0, (W )0 ,( )0 ,( y ) ,( )

= 20 ,(s) 0,( s - y - 2 )O (s 2-2 ) 0,(s —.— Y ),

where 28 = w + x + y + .

Deduce the formulas

(i .) KⓇK”?sn u sn v sn r sns

-k?cn u cn von r сn s + dnu dn vdn r dns- k2= 0 ,

provided ututpts = 0).

( ii.) késn (utv + r + s)sn (utv - 7-8)

X sn : (u - vtp - s)sn (U V- r+ s)

( dnudnvdnrdns -k’onucnvcnrcns+ k %k’’snusnvsnrsns-ka)

(dnudnudnrdns - k’cnu cnvcnrcns -kºk"?snusnvsnrsns+ k+2 )

3. Show that

(Cz - eg)07( )0 (3u ) + (03-01) ,(U ) (3u ) + (ez- @go (U )o (3 )

= 2( ez – )(ez - ez) (C1 -- embo_(u)o?(24).

4. Show that Weierstrass' function o(u) satisfies the partial

differential equations

do

+
0930g

:

to - u = 0,
си,

22

+ 129,4 = 0.

до доA
g
g?

2 .

1293892
до ,00

2 2

duz ag:

Show that the second of these equations is also satisfied by

the function

Ca ( u )/ { ( la – ep)(ea —ex)}+;

and write down the differential equation satisfied by pau .

5. Prove that the projection of a geodesic on a quadric of

revolution on a plane perpendicular to the axis is analytically

similar to a herpolhode (Halphen, II. , Chap. VI.).

6. Evaluate the surface of an ellipsoid.

7. Construct some degenerate cases of trajectories or caten

aries on a sphere, or on a vertical paraboloid or cone, employing

the numerical results of the pseudo elliptic integrals.



CHAPTER X.

THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

283. By the Theory of Transformation is meant the ex

pression, in terms of the elliptic functions of modulus k and

argument u , of an elliptic function with respect to a new

modulus , and of a proportional argument u/M ; and then M is

called the multiplier, and the relation connecting the moduli

X and is called the modular equation .

A particular case of Transformation has already been intro

duced in Landen's Transformation (SS 28, 67, 71 , 123, 181 , 182)

in its application to Pendulum Motion, and to the Rectification

of the Hyperbola.

In accordance with the plan of this treatise, we begin with

a physical application of the Theory of Transformation, before

proceeding to the analytical treatment of the subject.

Suppose then in $ 259 that an odd number, n, of such

rectangles as OABC are placed in contact, side by side, so as

to form a single rectangle 0AnB, C , of length 0 An = na,land

height OC= b ; and now put

0An/OC = na /b = K / K ”,

OA 10C= a/b = 1/A',

A / A = nK '/ K ; ...... ( 1 )

where K , K ' denote the quarter periods with respect to the

modulus K ($ 11 ), and A, A' with respect to the modulus 1.

Let us begin by placing a positive electrode at 0, and an

equal negative electrode at C'; then, inside the rectangle . OB,

the vector function will be

log sn Az/a= log sn(Ax/a+ Aiy/b),

with z = x+ yi.

so that

G.E.F. U
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But, inside the rectangle OBn, the vector function of these

electrodes and their images will be that due to positive elec

trodes at 2sa and negative electrodes at 2sa+ bi, where s

assumes all integral values from 0 to n - 1 ; and the vector

function of this system is (SS 259, 275)

S= n - 1

log II sn K (2– 2sa )/na = log II sn (Koc /na + K'iy /b- 25K /n ).
S = 0

The physical equivalence of these two forms of the vector

function, as seen from two different points of view, shows that
s=n - 1

sn (Az/a ) = A II sn (Kz/na - 28K /n ),
S= 0

or

so that

<

sn (u / M , ^ ) = A II sn(u— 28K /n ), ( 2)

where u / M = Azla, U = Kz /na ;

M = K /nA = K '/ A '; ....... (3)

this is the formula for the first real transformation of the sn

function, of the nth order.

Similar considerations will show that

cn (w / M , X) = B II cn (u— 25K /n ), ........ (4)

dn (u / M , ) = C IIdn (u—28K /n ).. ( 5 )

If, as in $ 263, we put

q = exp (-7K '/ K ), and p = exp (-4/ A );

then r = 9 ", .....(6 )

and X is less than k.

It simplifies matters to place the rectangle OB in the

middle of n such rectangles placed side by side, and now s

ranges from – } (n - 1) to j (n+ 1) ; and combining equal posi

tive and negative values of s, we find ,according to (7) $ 137,

s = }(n - 1) snar - sna 2sw

sn ( u / M , X ) = A snu II .. (7)
1 - k?sn? 2sw snar '

where
w = K / n ;

1-2-/a

Y =
II .....( 8 )

M 1 - k - a -wc2

connecting y = sn (u /M , X ) and x = sn ( u, k), a = sn (28K /n ).

284. Next suppose that n equal rectangles, such as OABC,

are piled on each other , so as to form a single rectangle

OABņCn, where 0 A = a , OCn = nb ; and now put

S= 1

2

BC

or
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so that

so that

04 /0cn = a /nb = K /K ',

0A/00 a /b = N / A ';

K '/ K = nA / A. ....... (9)

The physical equivalence of a positive electrode at 0 and an

equal negative electrode at C ,and of their images in the rect

angle OABC, with the positive electrodes at 2sK'iy /b and the

negative electrodes at (28 + 1 )K'iy/b in the rectangle OAB Cn

and their images, shows in a similar manner that

sn (Azla , X ) = A II sn (Kx /a + K'iy /nb- 28K’i/n ),

where s may assume all integral values from 0 to n- 1 , but

preferably, from – } (n - 1) to } (n+ 1) ; or

sn (u / M , ) = A II sn (u— 28 K’i /n , k ), ..... (10 )

where u / M = Azla , U = Kzla ;

M = K / A = K '/nA'; (11)

and now, with

q = exp ( -7K '/ K ), p = exp( - + 1 / A ),

we have r= glin ...... ( 12)

and now , is greater than k.

Similar considerations show that, by placing positive and

negative electrodes at A and C, or B and C, we shall obtain

the formulas

cn (u / M , X) = B II cn (u— 28K'i/ n ) ; (13 )

dn (u/M, X) = C II dn(u – 28K'i/n ); ........ ( 14)

these are the formulas for the second real transformation of

the elliptic functions, of the nth order.

A similar physical interpretation of Transformation may be

given in connexion with the curvilinear rectangles bounded by

concentric circular arcs and their radii , as discussed in $ 270.

285. Besides the first and second real transformations in

which q is changed into q ” and qin, now denoted by ro and

Yo, there are in addition n - 1 imaginary transformations,

when n is a prime number, in which q is changed into wpql/n,

denoted by rm, where p = 1, 2, 3 , ... , n - 1, and w is an

imaginary nth root of unity ; so that, corresponding to a given

value of k , the modular equation of the nth order, if prime

will be of the (n+ 1 )th degree in 1, having the roots

λα, λα, λα, λα, ... , λη- 1,

of which two only, and X ,will be real; 1o < K < lo.
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We need only consider the Transformations of prime order,

as a Transformation of composite order, mn,can be made to

depend on the transformations of the mth and nth order.

The different transformations of the mnth order are formed

by changing g into qmin ; so that the number of transformations

for any number in general is the number of divisors of mn ;

reducing to n+ 1 , as before, for a prime number n.

For a transformation of order na there is one real transforma

tion for which q remains unaltered, and we thus obtain the

formulas for Multiplication of the argument u by n .

286. After this physical introduction, we can proceed to the

general algebraical theory of Transformation, as developed by

Jacobi in his Fundamenta nova theoric functionum ellipti

carum , 1829 .

The theory in its generality consists in the determination of

y as a rational algebraical function of a, of the form

y = UV, ....... (15)

where U and V are rational integral functions of X ,

U = Ana " + Clin -12N - 1 + ... tarac + do,

( 16 )
V= bnoon + bn - 10cn - 1 + ... + 672 + boy ,

so as to satisfy a differential relation of the form

Mdy
dx

......(17 )
JYJX

where X ax4 + 4bxc3 + 6cx2 + 4dxte,

(18 )

Y=Ay+ + 4By: + 6Cy + 4Dy + E ,

Making the substitution of (15), we find that we must have

dU V

M

da doc da

J (AU4 + 4 BU3V + 6CU2V2 + 4DU V3 + EV4) JX

and the first condition requisite is that

AU4 + 4BU3V + 6CU2 V2 + 4DUV3 + EV4 = XT , ...(19)

where T is a rational integral function of x, of the (2n- 2)th

degree ; and now, if we can make

AV

T = M (QUV- ud
\ dx dx

. (20)

where M is a constant multiplier, the Transformation is

effected.

Uv -uvarten
V - udV

)
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But if U and V are both of the nth degree, or if one of the

nth and the other of the ( n - 1)th degree, so that either on or

bn (not both) is zero, this is necessarily the case ; for any

square factor in ( U , V) 4 will appear as a linear factor of

duy- Udy
dac dx

which is also of the 2n - 2 )th degree, and can therefore only

differ from T by a constant factor M.

The Transformation is now said to be of the 12th order.

By taking X of the sixth, instead of the fourth degree , Mr.

W. Burnside has derived hyperelliptic integrals ( Proc. L. M. S. ,

XXIII.) from the elliptic element dy/Y, similar to the hyper

elliptic integrals of SS 159 , 160, by means of substitutions of

the second, third, and higher orders.

Now denoting by a, ß, y, 8 the roots of the quartic X = 0,

and by á ', ß', y, d' those of Y= 0 ; so that, resolved into factors,

X = a(x- a )(x - 8 )(x - 7 )(x - 8 ),

Y = A (y - a')( y - B ) (y - 7 )(y - 8');

then A ( U - a'V )( U - BV )( U - ' V ) (U- & V )

= aTº(x - a)(x - B )(x - y)(x - 8 ) ;

and now a factor, such as U - á'V , must be composed of linear

factors, such as x - a, and of the squares of factors of T.

In the expression y = U / V there are at most 2n+ 1 arbitrary

constants; and in determining U and V so as to satisfy relation

(19) we determine 2n - 2 of these arbitrary constants ; thus

there remain at disposal three arbitrary constants, correspond

ing to the three constants involved in an arbitrary linear

transformation, such as that obtained by writing ($ 139)

(lxc + m )/ (l'« +m') for x ,

as exemplified in SS 153 , 160, where the constants l, m, l' , ma

are chosen so as to make X and Y quadratic functions of x2

and y ?

: When X and Y reduce to quadratic functions of x and y,

the elliptic functions degenerate into circular and hyperbolic

functions: and now there is no Theory of Transformation,

except for the change from circular to hyperbolic functions, as

in & 16.

i
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287. Jacobi, in his Fundamenta nova , works throughout

with the differential relation for the sn function ($ 35)

Mdy
dac

= du ; ..... (21 )
1 – K )

connecting x = sn (u, k) and y = sn ( u / M , X ).

Now , if y = U / V,

then , since u = 0 makes x = 0 and y = 0, y and therefore U

must be an odd function of X, the other, V , being an even

function ; so that for an odd order of the transformation

U = a7x + azx3 + ... + anach, V = be + b x2 + ...+ bn-1.000-1.

Since x = 1, y = 1 ; c = 1/K, Y = 1/2 ; etc., are simultaneous

values of x and y, the relation connecting ~ and y may be

written in any one of the following forms,

1+ y = (1+ x)AP / V , or V+ U= (1+ 2)A ;

1- y = (1 – 2 ) A 2 / V, V - U = (1- )A2;

1 + Xy = (1 + x )C2 / V, V + U = ( 1 +kC2;

1- \y = (1 – Kw )C 2/ V , V - U = (1 - x )C %2; ..... (22)

where A and C are rational integral functions of x , of the

1 ( n - 1 )th degree, which become changed into A ' and C' when

x is changed into — x ; so that we may put

A =P + Q , A' = P - Qac,

C = P ' + Qx, C ' = P ' – Q'x ,

where P, Q, P', Q' are even functions of ; and therefore

1 - P - Qoc 1- \y_1 - k / P ' - Q ' \2

1 + 1 + x \ P + Qx ) ' 1 + ly 1 + kx \ P ' - Qx

P2 + 2PQ + Q222_X KP2+ 2P'Q' + kQ222
giving y = *

P2 + 2PQoc? + Q2x2 , P2 + 2KP'Q 202 + Q202*

When the order n of transformation is even, we put

U = a7dc + azx3 + ... + An -12n - 1, V = bo+ b3X2 + ... + bmen ;

and now V + U = (1 + x )(1 + kX) B2, V+XU = D2,

V – U= (1 — 2 )( 1 – KX ) B " , V - XU = D2;x .........(24)

where B, D are rational integral functions of x, of the (in - 1)th

degree, changing into B ' and D' when x is changed into - x ;

so that we may put

B = R +Sx, B' = R – Sx ;

D = R ' + Sx, D ' = R - Sc ;

where R, S, R, S are even functions of x .

1 - Y
2

و

... (23)
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ac =

288. The number of independent constants represented by

the a's and b's in U and V can be immediately halved by

noticing that a change of u into u + K'i has the effect of

changing ~ into 1 /6x and y into 1/1y (S 239) ; and therefore of

interchanging U and V.

An algebraical simplification is thus introduced by writing

20/ VK for u and y / / ^ for y, as in § 143 ; the differential rela

tion now becomes of the form (Cayley, American Journal of

Mathematics, vol. 9 )

dy pdx
.. (25 )

/ (1-23y2 + y4) / ( 1 – 2ax2 + 20+)’

and 2a = k+ 1/K, 28 =1+ 1 /1, ( 26 )

sn ( u, k) sn(pu, 1)
connecting Y =

dk m

and now, if y = U / V

U = Bn - 12C + ... B xn - 2 + Box " , V = B. + Byx2 + ...Br -10 -1;

for an odd order n of transformation, involving only n co

efficients B , BLE Bn - 1, and therefore n - 1 arbitrary

constants in y ; also

It follows then that, in the original relation y = U / V , con

necting x= sn(u, k) and y = sn ( u / M , 1), if af – x2 is a factor

of U , then 1 - k %a202 must be a corresponding factor of V ; and

we thus obtain the expression of y as a function of a given in

equation (8) , and in addition the relation

= Mk" Ila ... (27 )

so that we may write

22 - a ?

y = M *X II (28)

202 – 1 /K% a2

Professor Cayley writes equation (25 ) in the form

(1 + $742 + Szy4 + ... )dy = p{1+ R722 + RzQ4 + ... )d ,

y + } Sny : + } Szy5 + ... = p ( + } R4203 + R2005 + ... ) ,

where the R's and S's are the zonal harmonics of a and B.

n - 1 = pBo

2

289. Writing this equation (28) in the form

1

X II (902 — a ) XII 22 = 0 ,
KM M

which is an equation of the nth degree in ə, the roots of which

X = snu,W, Ssn ( u + 2w) , . sn { u + (n - 1 )w ),are
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U

sn

na 1) =
San

Uиш,

sn

or

æ ++ Σ

where w = 2K / n or 2 K’i/n for the two real transformations, we

find that the sum of the roots

λ = (1-1)

Σ sn(u + 25w ), ...... ....... (29)
KM M'

-3(n - 1)

or combining the equal positive and negative values of s,

λ 2 sn u cn 2sw dn 280

λ = snut

KM M 1 - kºsn22sw snļu

λα 2/(1 - a'.1 -kºa)
.. (30)

KM 1- K % 20C2

the expression for y when the product in equation (8) is resolved

into its partial fractions ; and similar expressions hold for the

cn and dn functions (Jacobi, Werke, I. , p . 429 ; Cayley, Elliptic

Functions, p . 256) .

290. We need not therefore confine ourselves, with Jacobi,

to the Transformations of the sn function ; but we may some

times find it preferable to seek the relations connecting

& = cn(u, k) and y = cn (u / M , X),

when (§ 35 .; Abel, Euvres, I. , p. 363)

Mdy da

= du ; ....(31)

(1 - y2.12 + 1242) J ( 1 — «2.K2+ < ?x2)

or the relations connecting

x = dn (u, k) and y = dn (u / M , 1),

Mdy dac

when =du ; ...... (32)

(1-42.42-12) J (1–22.x2 — ”2)

relations already given in (4) , (5) , ( 13), (14) of $ 282 , 284.

But Prof. Klein points out (Math .Ann. , XIV.,p. 116) that

it is the differential form of $ 38 (really Riemann's form ),

connecting % = snº(u, k) and t = snº(u / M , X ),

and leading to the relation, on writing k for k and l for 12,

Mdt dz

= du , ...... (33)

(47.1-1.1 - lt) 1 (47.1-2.1 - kz)

which is the most fundamental in the theory of the elliptic

functions sn, cn ,and dn ; the periods now being 2K and 2K'i,

instead of 4K and 2K'i, etc. (8 239) ; the quadric transforma

tions (of the second order)

2 = 2, 1- ?, or 1 - k %22,

t = y?, 1 - y , or 1-12y?, ...(34)

leading immediately to the preceding transformations of the

sn, cn, and dn functions.
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be

291. The Theory of Transformation may be developed en

tirely from the algebraical point of view ; but Abel has shown

how the form of the transformation of the nth order may

inferred from the elliptic functions of the nth parts of the

periods, called by Klein , modular functions.

Thus taking the first real transformation connecting

z = snº(w , k ) and t = snº(u / M , X)

in relation (33), then

2

t II ( 1 D

M2

1- t = (1–2) II (1-3)
:D,

1 - lt = ( 1 - kz ) II (1 - kBz)2 =D ,

D= II ( 1 - kaz)?, ...(35)

where
a = sn²28K/n, B = sn (28 - 1 ) K /n ,

and the products extend for all integral values of s from 1 to

i (n - 1 ).

The form of the factors is inferred by Abel from the con

sideration that

(i. ) when t = 0, u/M=25A+2s'A'i,

where s and s' are integers ; and, from equation (3),

U = 28K /n + 2s'K'i,

z = sn22sK/n= 0, or a ;

(ii . ) when t= 1 , U / M = (28-11A + 2s'X'i,

u = (28- 1 ) K /n + 28'K'i,

z = snº(2s — 1)K/n = ß or 1 ;

(iii. ) when t = 111, u / M = (28-1)2+(2s' — 1 )A’i,

U = (2s- 1 ) K /n + (2s' — 1 ) K'i,

z = snº { (28-1) K /n - K'i } = 1 /kß or 1/K.

( iv .) when t = 00 , U / M = 28A + (2s' — 1) A'i,

U = 28K / n + (2s' — 1 )K'i,

z = sn (́28K /n - K'i) = 1/ka, or 0 .

Similarly the relations can be inferred connecting

z = cn?(u, k) and t = cnº(u / M , X),

z = dné(U, K) and t = cnº( u / M , X),

not only for the first real transformation , depending on equa

tion (3 ), but also for the second real transformation, depending

on equation (11 ) , and also for any one of the imaginary

transformations of the nth order.

or
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292. In Weierstrass's form the relation is

du,
Mdy da

(443-72-73) (4.03 – 9,0 – 93)

connecting x = P(u ; 92,93) and y = p ( u / M ; 722 72),

by a relation of the form

y = U / V ;

and this must be equivalent to relations of the form

Y - Ea (cc - ea ) A ?/ V , or (oc --eß) B2/ V, or (a .:— @y )C2/ V, (36)

for a transformation of odd order ; giving

47: _Y2Y - 73 = ( 4x3 — 92 - 93 )(ABC )2/13; .....(37)

so that V must be a perfect square ; thus leading to the

requisite number of equations for the determination of the

arbitrary coefficients in U and V , and an equation over, which

relation may be made to connect the absolute invariants J

and J ', and corresponds to the modular equation .

For a transformation of even order, we shall have

U

y=

(c - a ) 2

equivalent to relations of the form

A2 2 - 48 B2 x - by

y - Ea
( -e )T2

and therefore

48c3 — 72 - 73 (ABC )3
4ys - 72-73 = .. (39)

( oc - @a )4 76

293. In the Weierstrassian form we determine the relation

connecting x = (u, J) and y = $ (u / M ,J').

But without altering J' we may write ($ 196)

$(u/M, J' ) = M2+(U, J') ;

and now, if w , w' denote the real and imaginary half periods of

80 (U , J ) or pu, we may take w /n , w'as the periods of p(x, J') in

the first real transformation of the nth order ; and w, w'In as

the periods in the second real transformation ( Felix Muller, De

transformatione functionum ellipticarum ; Berlin, 1867 ) .

The first real transformation, of odd order n, may now be

written

2sw 280

pl ..... (40)

en C2

or Or

2C -- la ["2 & -ea T 2) .....( 38 )

3

po
N

similar to equation ( 30 ) for the sn function, and obtained in a

similar manner.
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By integration of this equation (§ 195)

$ (u, J') = 2G4u + fu + 3 $ (2— 2swin ) + Š(u + 28w /n ), (41)

s= }(n - 1 )

S = 1

s %3Dn - 1 s = {(n - 1)

S= 1 S= 1

where G = 1 E ® (28w /n )- È $(28w/n) ; ....... (42)

and integrating again,

log o(u, J') = G_u2 + log ou II 0(u— 2sw/n)o(u+ 2sw/n),

o(U, J') = CeGiu ou II ( uou II (u – 2sw /n )o (u + 2sw /n ).............(43)

The constant C is determined by putting w = 0, when

' II

( U - 2s0 /no(u + 280 / n )

1C= lt e -Gyu20 ( U, J !)

OU

1

= II ܪ

o (-28w /n )o(28w /n )
and now

S= 1

or

s= }(n -- ) (28w / n - u )o (28w /n + u )
ou, J ') = eGuru II

o?(2sw/n)

eGiu?(ou )" II (pou - p2sw/n), .. (44)

by formula (K) of $ 200 .

Thus, for instance, with n= 3,

o (U , J') = eGu (ou ) (pu - G ), (45)

where Gy = p?w = ®*w,

and therefore satisfies the equation of g 149

(G,2 + 292)2 + 293G1 .
G4

4G - 9 ,G1-93

G4— 1926,2—93G1-4592 = 0 .2 0 ... ... (46)

Denoting by G, and G2 the transformed values of 92 and 93,

they are found by a comparison of coefficients in the expansion

of both sides of equation (44) in ascending powers of u (s 195).

Thus, if J= 0, or 92 = (), then G1= 0 or 393; and taking the

value G = 0, then I' = 0, G, = 0, G; = – 2793 ; and

o(u ; 0, --2793) = (ou )syou . ...... (47)

Employing the principle of Homogeneity of $ 196 , this

equation may be written

o (ui / 3 ) = i / 3 (ou )sou , . (48)

leading by differentiation to

in/ 38(ui / 3) = 3 &u tř'u /pu, ..(49)

и o'zu
and 3pui / 3 ) = -3put 十 . (50)

su garu pu,

since gn = 0, as in $ 47.

fo" u 9
3
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Thus, if gz is positive, and wą, w , the real and imaginary

half periods (8 62) , then wz'/we = i/3 ; and if we take u= gwa ,

then g'u =93 (SS 166 , 233) ; so that pzw = 0.

Again , putting u = w , in equation (49 ) gives

η, ή / 3 = 3ης ... ( 51 )

Making use of the last equation of $ 202, we find

1202 = 3n2'w ,' = 3.

As a numerical exercise the student may construct the

following table, and also fill in the values for U = w2, W2, 102 ,

Iwa, fwg, fw,, ... ; taking 92 = 0,93 = 1 ; these numerical results

are useful in the problem of the Trajectory for the Cubic Law

of Resistance , discussed in SS 227-234.

20 Su So'r at σω

TV3

1w2 H 3/ 2 + 1 )3 - } / 31 3/2 + 1)*4 3193 ( 3/ 2 + 1)%e108
3

+
3 7332

37 - Mi 3/4

TV3

c
o
n

- 32 - 31 -e3
6

i

$ 3

1 TV3

w2 1 - 13 12+3 se27

93 €

fws' 0 - i ietys

W2

3/2 TV3

e 12

3

The Linear Transformation .

294. In Chapter II. the general elliptic differential dx/ JX

has been reduced to Legendre's standard form

( 1 – K?sinạp )-do

and to Jacobi's,or rather Riemann's standard form (11) of 8 38 ,

da (42.1-2.1- kz)

by various substitutions, in SS 39, 40, 41 , 42, 43, etc., which are

practical illustrations of the Linear Transformation .

In $ 160, the six linear transformations are given which ,

according to Mr. R. Russell, reduce

dx / X to the form dal 1 (Ag4 +6Cz2 + E ).

In determining the linear transformations, of the form

y = U / V = (ax + B )/( + 8 ), .......(52)

which satisfy Riemann's differential relation

Mdy da

= du,

J (47.1 - y.l - ly) V (4x . 1-2.1 - ka)

connecting c = sn?(U, K) and y = sn {( u / M , X ),
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we notice, by $ 139 , that the absolute invariant J is unchanged ;

so that, according to $ 68, there are six values of l, given by

k 1 1 1

l = k, 1 - k, 1
lc - 1'

1- .....(53)
kl 1 - k K

and six corresponding linear transformations,in which

A'i aK + K'i
and bc - ad = 1 ; ......(54)

A cK + dK'Ü

a , b 0 1 1 1 0 1 1 01110 1 1

|
mod. 2.

c , d 1 0 1 0 1 1 1 1 0 1 0 1

937

J- (1 + 14k + k2)3
4

295. But if we change to Jacobi's form by the quadric

transformation, which changes « into x ?, and y into y ?, then

Mdy dac

= du ,......(55 )

J ( 1 - y2.1–1²y2) 1 (1 – 22. 1 – x2x2)

and now, forming according to 8 75 the invariants 92, 93, A, and

J of the quartic 1-2.1 - K22

1 + 14k + 102 1-33k - 33k2_33k3 4
92 Δ ;

12 216 16

(
and

... (56 )
108k( 1 - k )

Professor Klein writes ne for kor k", and calls n the Octa

hedron Irrationality ; and now the absolute invariant being

unaltered by a linear transformation,

J = (1 + 147 + 12)$ _ (1 + 14n4 + 18)3
... (57)

1081(1-1) 108n4( 1 - n4)4

and the roots of this equation in l are found to be

1 † +
in

... (58)
NA 1Fn

giving the six corresponding linear transformations of Abel

( Euvres, I.,pp. 459, 568).

In the reductions of Chapter II, that linear transformation

has been chosen which makes k or l positive and less than

unity, and also gives a real value to the multiplier M.

The corresponding values of the multiplier are given by

1 /M2 = 1, ?, -3(1 = n ) ", - (1 + in),

the linear transformations being, as may be verified.

14η 14 η 1 + in 1 + inoc

y = + x , nx,
+ +

14η 1 + ου' 17 in 1 Finoc

J=
414 )

4

l = nt,

(17 %): 1 I en
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K K=

Landen's Transformation of the Second Order.

296. The point L (S 28) in figs. 2 and 3 has been called

Landen's point, because of the use made of it by Landen

( Phil. Trans., 1771, 1775) for his transformation, important

historically as the first case investigated of the Transforma

tion of Elliptic Functions, being the Quadric Transformation,

or of the second degree .

The ratio AD/AE being sinaja or k ”, while EL/EA = cos a

or k' ; therefore, if C is the middle point of AD,

LC AL -AC AE - EL - JAD

CA AC AD

1- cos a- 1 sin’a _ (l - costa)2_1- cos ja
= tanºla.

1 sin?a sina a 1 + cos ja

The ratio LC]CA is denoted by ^ ; so that

1 - K 1 2/ 2 di
λ λ' ( 1 + x ) (1 + x ) = 2,

1 + k 1 + X 1 + X' 1 + K "

= (1-K')/K, NK' = (1-1)/X ', and kl’ = 21/ (K'N ), ... (59)

different forms of the modular equation of the second order.

Still denoting the angle ADQ in fig. 2 by 0, we denote the

angle ALQ by y ; and now ($ 28) since the velocity of Q

is n(1 + k')LQ, perpendicular to CQ, therefore the component

velocity of Q, perpendicular to LQ,

LQ dy/dt = n(1 + k')LQ cos LQC,

dyldt = n (1 + k')cos LQC.

sin LQC LC
But since =X, therefore

CQ

sin LQC=, sin y, cos LQC=/(1-, sin?/) = A(V, 1) ;

and dy dt = n ( 1 + k ') A (4,1),

V=am { ( 1 + k')nt, 1} . .....(60)

Now, since the angle LQC= 20-4, therefore

sin(20 -y) = , sin ys; ......(61)

1-1_sin (20-4) --siny_tan (9-4 )
and ....( 62)

1 + sin (29-7) + sin y

( 1 + k'tan o
tan y=

1 - K'tan'o'
.. (63)

sin y = (1 +k)sin o cos p/Ag,

as in equation ( 92 ) , S 67.

Putting nt = u, ( 1 + k')nt = v, then sin p = snu, sin Y = sn v ;

and we obtain the formulas (90) to (98) of $ 67.

or

sin ys

or

K

tan •

or
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or

or

297. Landen starts with the relation (61) ; so that, differen

tiating logarithmically,

cot(20-7) (2dp -dy) = cotydy,

2 cot (20 -y)do = { cot (20-7) + cot y}dy

sin 20dys

sin y, sin (20-4)

2do dy

sin 20 cosec y cos(20-4)=

Now cos (20-4 ) = ( 1 - \ sin’y ) = A (4,1);

while sin 20 coty - cos 20 = X,

coty = cot 20+ cosec 20,

cosec y = 1 + (cot 20+ cosec 20)”,

sin 20 cosec’ys = sin ?20+ (cos 29+1)?

= 1 + 2, cos 20+1?

= (1 + 1 )2 — 41 sind,

sin 20 cosec y = ( 1 + x ) / (1 - késin’d ) = (1 + 1 ) ^ ( 0 ,K ),

where k = 21 / 1 / (1 + ); so that, finally,

do 1(1 +x)dy dy ( 1 + k ')do
; ... (64)

Δ(φ, κ) A (4,1) Δ(ψ, λ) A (0, K)

so that, if p = am(nt, k) , then yram{(1 + k'Int, 1 } , and the

angle y may be made to represent pendulum motion on the

circle CRL, on CL as diameter, LQ meeting this circle in R.

The velocity of R will then be due to the level of L', a point

on CE produced, such that CL' = CL /^ ?; and now we find that

EL' = CL - CE = EL,

after reduction, so that I and L' are the limiting points of the

circle AQD with respect to the horizontal line through E ; but

now the value of g in the motion of R on the circle CRL must,

in accordance with $ 20, be reduced to žg(1 – K')4.

L'Q L'D EL + ED K ' + k2 1 +k'

Again,
LQLD EL - ED 1 - K

so that (s 28) the velocity of Q is

n(1 + k')LQ, or n(1 - k')L'Q. .. (65 )

The period of R in the circle CRL is half the period of Q in

the circle AQD ; so that, if A denotes the real quarter period

of the elliptic functions of modulus ,

A= ](1 + x')K, or (1 +x)A =K. .............. (66)

12

K K
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2 -JK

1 + k

>

298. Conversely, as in $ 123 , we can express the elliptic

functions of modulus k and argument (1 +1)v in terms of the

elliptic functions of modulus 1 and argument v ; or starting

with the motion of R , we can deduce the motion of Q.

But considering the motion of Q as defining in a similar way

the motion on a larger circle,to a larger modulus y, we change

a into k and k into
y

where

1
1 - K

k =itý' v =17* ya ( 1 + y ) (1 + x ) = 2,

Jx= (1-7)ly, Jy' = (1 - < ) /K ', and k'y = 2 /ky') ; (67)

and now, from $ 123,

1 - k sn (U, K)

dn(1 +k.u, y) =
1 + k sn (uk)

( 1 + ksn (u, k)

sn ( 1 +x.x ,y) = ......(68)
1 + k snºw, k )

cn(1 + k . u, y )
cn(u, k)dn(u , k )

1 + ksnề(U, K)

called Landen's Second Transformation.

With x = sn( u , k ), y = sn( 1 + k.u , v ), where y = 2 / « /(1 + r ),

(1 +
then

Y
1+ka

1+ y = (1 + x )(1 + x ) = V,

1- y = (1-2 )( 1 - x ) = V ,

1 + yy = (1 + x / k ) : V

1 - yy = (1 - X/K)? V

V = 1 + koca, ...(69)

dy (1 + k)da
and

7 (1 - y2.1 - y y?) (1 -22.1 – K2x2)

Or, with x = dnu,k ), y = dn(1 + k.uk),

-1 + k + 02

Y =
1+k-2'

1+ y = 2 • V ,

1 - Y = 2(1 - ) V ,

• V(1tk),

Y - = 2 ( 22 - K2) = V ( 1 + x ),

V = 1 + k - 02 ; ...
: (70)

leading to the differential relation, (3) of $ 35 ,

dy ( 1 + x )doc

/(1-72.ya-72)7 (1 x2.22-K?)

K

2

y + y ' = 2x2
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299. Denoting by T the real quarter-period of the elliptic

functions to modulus
ni then x = 1 makes y = 1 , or u = K makes

( 1 + x ) . u = ; so that

( 1 + k ) K = 1,

or (66) (1 + 1)A = K = {(1 + y )T... ......( 71 )

Also, A ', K', I' denoting the corresponding quarter periods to

modulus X', k', y', the imaginary transformations of 8 238 show

that, with iu = v,

( 1 + k ')sn ( v, k')
sn(1 + k' . 2, ) =

1 +k'sn (v, k') '

( 1 + k) sn(v, k')cn(v , k')
sn ( 1 + k .v,

dn(V, K )

cn(V, k ')dn ( v, k')
cn ( 1 + k'.v, X')

1 + k'sn ’( V , k ')

1- (1 + k)snº(v, k')

cn (1 +k.v, ')
dn(v, k')

1 - K'sn (v, k' )

dn (1 + k '. v , X') =
1 + k'sn’ (V, k') '

1- ( 1 - K )snºv, k')
dn( 1 + k .v, 7' ) = ; ..(72)

dn(v, k')

so that A' = (1 +k')K ' , I' = 1 (1 + x)K' ,

1 (1 +XA' = K ' = ( 1 + y ) r '; : (73)

11' K'
and therefore 2 (74)

2 AK T

An inspection of Landen's formulas shows that the dn func

tion has always a rational Quadric Transformation.

Mr. R. Russell shows ( Proc. L. M. S. , XVIII.) that the

general rational quadric transformations which reduce

dx / X to the form dz/ / (A24 + 6Cz2 + E)

are always of the form

m Pz + n P ,
etc.... ... (75)

m'P + n'P,

P1, P2, P3 denoting the quadratic factors of G, the sextic

covariant of X (8 160) .

Thus if X= 1-2.1 - K??,

the sextic covariant may be written

G =( 1 - Kx2)(1 + kx2),

leading to Landen's transformations, given above.

or

2

G.E.F X
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300. Landen's Transformation is useful, as employed by

Gauss, for the numerical calculation of K ; for if we put ( fig. 2 )

LA = A, LD = b ; and CA = Q7, CL = / ( a,2-6,2) = 3a - 6);

then ay = (a+ b), b = 1/ (ab ); and k' = b /a , X' = bz/az. ... (76)

Now, denoting y by pi , and I by Kı , equation (64) becomes

2do do1

Vlaºcos?cp+ bºsinºp) J(a,?cospi+ bz?sin?$3); . (77 )

while 0. = , when p = 17 ;

so that

do ido1

J (aʼcos p + b?sin ) Ja,? cos p1 + b sin 01)

do1

(a , cos?p1 + b, sin 01)

K= K a /az = K(1 + ki). ....... (78 )

Continuing this process with P1 , 01,and by, so as to obtain a

continuous series, given by (S 296 , equation 62) .

Sheepcoolest to, sinºs

=
0

or

bn
tan φη»

an

B
T

tan (on-- Pn+1 ) =

An + 1 = } (an + bn ), bm + 1 = / (anbu ); (79)

then an and bn tend to equality ; so that, putting

ao = b = , and 0 =%,

do don

(a cos- p + b +sin o ) Jan cos on + 62, sin -on)

dy Вт

D (uụcos? 4 + ?sin241)

K Kn 7

܊

M

0

71

or

al An MІ

in 7 =

K = Kn II (1 + k ) = II ( 1 + kr). (80)
7 = 1 n = 1

Denoting the modular angle of kn by On, then

Kn+ 1 = sin On +1 = tan jon ;

cos On +1 = seca jon / (cos On),

cos On+ 1
and 1 + Ku+ 1 = secuen

;

J(cos )

so that

K = ìm sec /(cos o cos 0, cos , cos Oz ...), .......(84 )

a formula suitable for the logarithmic calculation of K.
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1 – «(1 – ac)

2

so that

3

>

Nº= ala + 2 )1

12

к
)

The Transformation of the Third Order, and of higher

Orders.

301. According to Jacobi's method, the transformation may

be written

1 - Y 1-2 / 1
...... (82)

1 +y1+ x \1 + ax /

connecting x = sn (U ,k) and y = sn (u / M , X ) ; and then

2a + 1 + a 22 x 1-4/a?

Y = " 1+ (a” + 2a )u2m 1 kļa?u:23
...... (83)

1 / M = 2a +1,

and
1 - λ) 1 - κα/α- κα

17** ) .. (84)

1+ y 1 + kxla tkx )

leading to the differential relation

dy (2a + 1)da

-( 85 )

( 1 - y2.1 - 12y?) / ( 1 - x2.1 – K2002)

We shall find that, expressed in terms of a,

at + 2a3

K2

2a + 1 2a +1

(1 - a) ( 1 + a )3
and 12- (1 + a)(1 – a)3

1+ 2a 1 + 2a

2ata 1 - a ?

so that (« X ) = [ ( x ) =
1 + 2a 1 + 2a

leading to the Modular Equation of the Third Order.

N(KX) + /(kW' ) = 1 . .... ....... (86)

We shall also find that this transformation may be written

1 - cn ( / M , X) 1-en u (a + l + a en u
...... (87)

1+ n(u/M, ) 1 + cn ula + l - a onu
wi

1 –dn(n /M , 1 )_1-dn uſa + 1 + dn u ... (88)
1 + dn ( u / M , 21+ dn ula + 1 - dnu

As a numerical exercise the student may work out the case

of a = ( 3-1).

In Legendre's notation, with x = sin p , y = sin y , he finds

that these relations are equivalent to

tan 3 (0 +4) = (a+ 1 )tan 0. ... (89)

The Transformation of the Third Order was the highest to

which Legendre attained, until it was pointed out by Jacobi

in the Astronomische Nachrichten , No. 123, 1827, that Trans

formations exist of the fourth, fifth, or any other higher order,

as already explained.

>

2

.

2
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2

y

2

.

Thus the transformation of the fifth order may be written

1 - y = 1 --(1 – ax + B27) ... (90)

1 + 1 + x\1 + ax + Boca

and of the seventh order

1 - y_1_X/1 - ax + Bx2 - y 3)
....( 91 )

1 + y 1 + 211+ ax + Box2+yos

and so on.

302. When the transformation of the third order in S 157 is

employed for the reduction of the integral in equation (6), s 227,

then 93 = -K3/ P2, . (92 )

where
P=p3 – 3pasin’a + 3p, .. (93)

and
K = p - cos²a + p sin a - 1 , ..(94)

as in equation (27) , $ 233 ; so that K = 0 and s = 0 at the points

of minimum velocity.

Now, with this substitution of $ 157,

s = (g /202 ; 0, - A ), ( 95 )

where A = 4-3 sin ? a = 2793, .... (96)

($ 228) ; and denoting

fasi J(48 + A) by 22, $ N , by H ,
- 3/(10 )

then p}12 =0, $ 322 = - JA, and H ,1 , = 17/3 ($ 293).

Again ($ 157) , po'( gx /W2) = J/ P ,

where J=p3(3 sin a -- 2 sinºa) — 3p ?(2 - sin ?a ) + 3p sin a – 2,

and
J+PJA= 2{}(sin a + Ap - 1}},

J-PJA= 2{ } (sin a- JA)p - 1 }3 . .....(97)

Now from $ 233,

JA = cos altan + cot B) ,

{(sin a + / A ) = 1 cos altan attan B+ cot B) = cos a tan ,

3(sin a - NA) = 1 cos altan a- tan ß- cot B) cos a cot ß,

sin Ꮎ

while
P =

cos(a -- 0)

Therefore

{$ '(u ; 0, - A ) - $ 3121- (J + JAP)*_ } (sin a+ JA )p - 1

18 "(w ; 0 , -A) + $ 512, J - NAP } (sin a- JA ) p - 1

cos a tan sin e - cos(a- ) tan ( -0) tano

cos a cot ß sin 6 - cos(a - 0)

'(w ; 0, 93) - ' W
or X.........(98)

$ '(u ; 0, 93) + 83w2

(8 234) a curious result of this transformation .

=

1)

tan tan 3
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Again, since pfw . = - ' $w.y, we may put

pofw, tpore
X :

po'fw , - por

and then, making use of relation (17) of g 229,

ofw , tu) (fww7 + u ) o ($w’w , + u )
X=

o (fw2 - U )o ( ww2 - U )0 ( * w *w , - u)

ofw , tu)o ( 02 - uplwn - u )

ofw ,-U)o ( w , + uflwetu )

by means of (K) $ 200, and the relation pw = 0); and this

again, by equation (CC) $ 279 and by $ 293, reduces to

X= 0%($w , -u) $ (3w , —u)
e4n24

03({ w , tu) ( watu)

olžw -ui / 3)esna'viv3

o(zwa' tui / 3 )

0 (322 - U ; 0 , -- A ),#Hgu
( 99)

0 (312 , ; 0 , - A )

The Transformation of the Theta Functions.

303. Taking the function, as defined in SS 263, 265 in the

factorial form,

0(0, q) = P (9) II (1 – 2q2r -Icos 2x + q4-2), ...... (100)

where p(q) is a certain function of q which $ 264 shows can be

written p(q) = II( 1 -q2r), .. (101 )

then changing s into nx, and q into q”,

O(nx, qn ) = $ ( 99 ) II (1 – 2q2nr –ncos 2nx + g4nr–2n )

II
ll

n - 1

p = 00SN - 1

= °(qn) II II {1–2q2r - icos( 2x + 287 / n ) + 244-2 }

(by Cotes's Theorem of the Circle of $ 270)

7 = 1 S = 0

$ (99) s = n - 1

plo ) 8 = n - 1

S = 0

{ $ (9) }" s= 0

II 0 ( 2C + st /n, q ). .. (102)

Similarly, with u = 1 , 2 , 3 ,

Ou (nx, q” ) II Ou(x + 87/n, 9). .. ( 103)

{$(9) } "

Forming the quotients,and writing x for jtU/K, then (S 263)

1 0,0 K 028
dk (104)

JK OX ' Jk Ox Ꮎ r '

and thence we obtain the formulas for the Transformation of

the Elliptic Functions of $ 283.

,0.90
snu= cn U —

dnu =
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Similar considerations will show that , when q is changed to

q ?/n or ezparilnq?/n,

p /n
, II Oul acts (105)

{ $ (9 ) } "

where u = 0, 1 , 2 , 3 ; this is left as an exercise ( Enneper,

Elliptische Functionen, $ 38).

s = - (n - 1)

EXAMPLES.

1. Prove that a transformation of the fourth order is

2

1 - Y к

4

к

1-30 1 - kX /1 Vi

1 + y 1+ x 1 +kk1 + k)

and prove that the relation between 1 and k is then

1- JA
1 -12 =

1 + AK

and M = (1 + x/ k )

2. Prove that, by means of the substitutions

eosh Ju sinh 6
tan 10 =

✓(cosh u + sinh u cosh p)

cosh Juu sinh ở
sin 10=

sinhļu + cosh lucosho

or

do

SKO

- SA

scose

/ (cosh u+ sinh u cosh )

1 do

= sech juF (sech tu) .

12J( cosh u+cos )

cosh mo do

(cosh u + sinh u cosh g )* + !

1.3.5... 2n - 1 1 (sinh ucos no de

2n - 1.2n- 3 ... 2n -- 2m - 1 / 2 (cosh u + cos )* +125 " *n}

3. Prove that, with the homogeneous variables X1,X , of $ 155,

and writing X, for ƏX/2X1, X , for ƏX /2x2, the general cubic

transformation which reduces dø / X to the form

dz/ / (Az4 + 6Cz2+E)

is of the form z = ([ X , +mX2)/(l'X4 + m'X ) (ex. 8, p . 174).

Prove also that the general quartic transformation may be

written z = (1X+mH)/(l'X+m'H),

where H denotes the Hessian of the quartic X ($ 75 ).

(R. Russell, Proc. L. M. S., vol . XVIII.)
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Y =

寸。

4. Prove that ( Cayley)

px+ 7x + 2p2c5+ x?

1 + 2px2 + 70c4 + px6

satisfies the relation

dy pdx

7 ( 1 - ipya + y +) / ( 1 + ipa2 +24)

anN or or
>

n K

Modular Equations.

304. In the Transformations of the nth order, which con

nect the Elliptic Functions of modulus , with those of

modulus K, and make r = q ", or 71/1, or wPq1/n ($ 285),

N'T K'i 1 K'i 2pK + K'i aK + K'i

or generally CKEdKi" (106 )
)

A nK

where bc - ad= n,

the Modular Equation, which determines , in terms of k, is of

the (n+ 1)th order, as already stated, when n is prime, and

has two real and n - 1 imaginary roots.

We shall content ourselves with merely stating the Modular

Equations of simple order, connecting k , 1 and k' , X', adopting

the form and classification employed by Mr. R. Russell in the

Proc. London Math . Society , Vol . XXT .

CLASS I. n = 15, mod. 16 ;

P= V(k)+VkX') + 1,

Q = 3 (k ) + $ (k )+1 (K ),

R = 44/(κλ κλ ) .

n = 15 , P3 --4PQ + R = 0 .

n = 31, ( P2-4Q) - PR = 0 .

n= 47, P2-4Q-P(R)} – 2(R)3 = 0.

CLASS II. n = 7 , mod. 16 ;

P = 1/ ( X )+7(KX ') - 1,

Q = / (KAKA ) - / ( X ) - / (kW'),

- 44/ (κλ κλ ).

n= 7, P= 0, or VkX) + V (KX ') = 1, (Guetzlaff ).

n= 23, P - R } = 0, or ^(kx) +(kW ) + (256K1KX) = 1 .

n = 71 , P3 –4R}(P2 - Q ) + 2PRI - R = 0.

n= 119, P6 - R $(7P5 — 28P3Q+ 16PQ2) + R $ (...)...= 0) .



328
THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

CLASS III . n = 3 , mod. 8 ;

P = 1/ (k ) + / xX') –1,

Q = / (KA K'X ') - > ( X )– » (K'N'),

R = -16.J (KAKX).

n = 3, P= 0, or (km )+1(k ) = 1, (Legendre).

n = 11, P - R } = 0, or 1 (kx)+1(62 ) + (256KXKX ) = 1.

n = 19, P5 - 7P2R + 16QR = 0 .

n = 35 , P4- R $(5P3 – 16PQ ) + 2R $P2 - RP - Rř = 0.

n = 43 , plit ... = 0.

n = 59 , P5 + ... = ( ) .

n = 83, P7 + ... = (.

CLASS IV. n = 1, mod. 4 ;

P = κλ+ κλ' -1 ,

Q = κλ κλ' - κλ - κλ',

R = -32kk .

n= 1, P= 0.

n = 9, P6 - 14P3R + 64PQR - 3R2 = 0.

n= 17, P3 - R $( 10P2– 64Q ) +26 R $ P + 12R = 0.

n = 41,

n = 5 , P - R = 0 , or κλ + κλ' + (32κλκλ) = 1 .

n = 13, P }( P3 + 8R) + R $(11P2 - 64Q) = 0.

n = 29 , P !(P2 + 17RP- 9R3)

+ R $(9P2 – 640–13R3P + 15R3) = 0.

n = 37,

n = 53 , p $ { P4+R$(413P3 – 216 PQ ) + ...} $ R$ { 35P4 ... } = 0.

305. According to Professor Klein (Proc. L. M. S., X.; Math.

Ann ., XIV.) these Modular Equations are replaced by relations

between the absolute invariant J and its transformed value J '.

by the intermediate of quantities 7 and 7' , such that J is a

certain function of T, and J' the same function of t' ; and now,

n = 2 ; J : J- 1 : 1 = (47-1) :(1-1)(87 + 1)2: 27T,

it' = 1 (S 60).

n = 3 ; J : J- 1 : 1 = (1-1)(97-1)3 : (2772-187-1)2 :-647,

TT ' = 1.

n = 4 ; J : J- 1 : 1 = ( + 2 + 147 + 1 )3 :

(73-3372 -- 337 + 1 ) : 108 (1-7),

个 十 r = 1 .
.
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n = 5 ; J : J - 1 : 1 = ( ? -107 + 5 )3

: ( - 227 +125 )(72-47-1)2 :-17287,

To' = 125 .

n = 7 ; J : J- 1 : 1 = (72 + 137 + 49 )( ? + 57 + 1)3

: ( 74 +1473 + 637 ° + 707-7) :17287,

TT' = 49 .

n = 13 ; J : J- 1 : 1 = (-2 + 57 + 13X4 + 7 + 3 + 207 + 19 + 1 )3

: ( + 2 + 67 + 13 )(7® + 10 + 5 + 4674 + 10873 + 122 = 2 + 387-1) 2 : 17287,

TT' = 13 .

The Multiplication of Elliptic Functions.

306. If we perform the second real transformation upon the

first real transformation , we obtain a transformation of the

order nº,leading back again to the original modulus k ; because

the first real transformation changes q into q”, and the second

real transformation changes q ” back again to q .

We then obtain the elliptic functions of argument

U /MM ' = nu, since M = K /n - A , M ' = N / K ,

in terms of the elliptic functions of argument u, by a trans

formation of the order n?, and thus obtain the formulas for

Multiplication of the argument.

Thus multiplication by 2 or 3 can be obtained by two suc

cessive transformations of the second or third order ; and so on.

Knowing that the order of the transformation is n ?, we

infer in Abel's manner the factors of the numerator and

denominator of the transformation, involving the modular

functions, the elliptic functions of the nth part of the periods.

Thus we infer , with the notation of $ 258, that, for an odd

value of n,

sn nu

12% ).

)
V=

ru = U / V, .... .. (107 )

snºu

where U=n snu II'TI' 1

sn²2/n

snu

II'II' 1

sn'123/

II'TI' ( 1 - K ?snºu snº2/n ),

where m, m ' = 0, +1 , +2, +3, ... , + 3(n - 1 ) ;

the simultaneous zero values of m and m' being excluded,

as denoted by the accents, so that the number of factors is

1 (n2-1).
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Combining the factors by formula (7) of $ 137,

sn nu = A sn u II'II'sn (u + 12/n )sn(u - 12/n ), ( 108)

where A is a constant factor ; and this may be written

sn nu=A IIII sn (u + 12 /n ); .. (109 )

where m , m ' = 0, +1, +2, ... , + }(n - 1) ;

the simultaneous zero values of m and m' being now admissible .

Similar considerations will show that

cn nu = BIIII cn (u + 12 /n ), .... ( 110 )

dn nu = C IIII dn(u+ 12/n). (111)

To determine the constant factors, change u into u+K or

U + K'i, when we shall find (Cayley, Elliptic Functions, $ 368)

A = ( - 1)}(n − 1)k2(12-1), B = (k /k ')}(n2-1), C = ( 1/K )](n2– 1).

By taking in $ 259 a rectangle 0 A , B , Cn,in which 0An = na ,

OBn = nb, and therefore containing 12 elementary rectangles,

we obtain a physical representation of the formulas (109),

( 110) , ( 111 ) for Multiplication of the argument by n .

Writing u/n for U , and making n indefinitely great, we

deduce in a rigorous manner the doubly factorial expressions

for snu, cn u , dnu in (1 ) , (2) , (3) of $ 258.

Again, by putting k = 0 or k = 1 , the student may deduce as

an exercise the trigonometrical formulas for the resolution of

the circular and hyperbolic functions into factors.

( Hobson, Trigonometry, Chap. XVII.)

The Complex Multiplication of Elliptic Functions.

307. When K '/ K = N/ D, and D is an integer, we may sup

pose the multiplier n resolved , by the solution of the Pellian

equation, into two complementary imaginary factors, so that

n = (a + ib // D )(a - ib / D ) = a2 + 62D ;

and now the multiplication by n can be effected by two suc

cessive multiplications by the complex multipliers a+ ib/D

and a- ib/D, each leading to an imaginary transformation of

the nth order, not changing q or the modulus K.

(Abel, Euvres, I. , p . 377 ; Jacobi, Werke, I. , p. 489.)

The first requirement then in Complex Multiplication is a

knowledge of the value of k for which K '/ K = JD ; and this

is found by putting k = k', k ' = in the corresponding Modular

Equation of the order D ($ 304 ).

The equation is now, according to Abel, always solvable

algebraically by radicals ; so that, returning to the question of
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or

the pendulum in § 15 , it is possible to determine by a geometri

cal construction the position of two horizontal BB ', bb', as in

fig. 1 , cutting off arcs below them , such that the period of swing

from B to B' is D times the period from b to b'.

Thus the Modular Equation of the second order being

written
X = ( 1 – K ')/( 1 + k '),

we find ,on putting k' = ,

12 + 21 = 1, or \ = / 2-1, when AJA = / 2.

Putting k = X', K ' = 1 in the Modular Equation of the third

order ($ 304),

2/(KK') = 1 , or 2kk' = 1 = sin } , when K '/ K = / 3 ;

so that the modular angle is 17 or 15º.

When K'/K= 2, = W/2-1)2 (S 71) ;

obtained by putting I'/T = 1 , y = y= 1_/2 in $S 298, 299.

When K'/K = J5, 2KK ' = 1/5 -2, (2KK') = }( /5-1),

( 2KK')-5- (2KK')} = 1 .

When K '/ K = / 7, 23(KK' ) = 1 , 2KK' = },2kk' = } , 7(2KK' ) = 1 .

Collections of these singular moduli required in Complex

Multiplication are given by Kronecker in the Berlin Sitz .,

1857,1862, in the Proc. L. M. S. , XIX. , p . 301 ; also by Kiepert

in the Math. Ann. , XXVI., XXXIX. , and by H. Weber in his

Elliptische Functionen, 1891 .

308. In the expression of y = sn(a + ib / D )u as a rational

function of x = snu, leading to the differential relation

Mdy dx

where 1 / M = a + ib / D ,
(1-72.1 - kºy?) / ( 1 - x2.1-k%202)

Jacobi finds (Werke, t. I.; de multiplicatione functionum

ellipticarum per quantitatem imaginariam pro certo quodam

modulorum systemate) that we must restrict a to be an odd

integer, and b to be an even integer ; but these restrictions

disappear if we work with the cn functions ; and we can

even suppose that 2a and 26 are odd integers.

Let us determine then the relations connecting

x = cnu and y = cn :( - 1 + i /Du,

1 / M = - * + iJD,

leading to the differential relation

dy ( - } + { i D dx

(1 - y2.42 + c2) (1 - 22.x2 + ( 2)

where c = k'/k, the cotangent of the modular angle .

so that
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If D = 4n - 1 , and we denote ( K + K'l)/ n by w, we shall

then find that, when n is odd,

1 - Y
1 p = }(n - 1)

II

Y x + cn 2rw )
1

ic

1) (0
V (ic)

cn 2rw ) 2

1+. r %3D1

20

It ic
1 + y х

vic) II
x - cn (2r - 1 ) 2

a + cn ( 2r - 1 )
; .... (112)

C

1 + y 1

ic ic

but, when n is even,

20

1+

1 - X1 - Y

1 + 2 C
ge = 1

1 + y

1+ 3

y = 1 ,

icr = {n - 1 /50 cn 2rw12

Vic)
II

Y + en 29/
1 1

ic ic

fa - cn (2r - 1012
J(ic) II .... ( 113)

Y ( + cn (21-10 )

ic

The arithmetical verification for the simple cases of D = 3,

7 , or 15 is left as an exercise for the student (Proc . Cam .

Phil. Society, Vol. V. ).

Formulas (112) and (113) are inferred by putting

(1)

when : ( - 1 +iDu = 2mK + 2m'K'i ( m + m ' even) ;

and then u = 4m'K - ( m +mw, c = cn 210.

(2) y = -1 ,

(-1 +iDu= 2mK + 2m'K'i (m+m' odd) ;

and then c = cn (21-1) .

(3) y = ic,

1 ( -1 + in Du = ( 2m + 1) K + (2m '+1)K’i ( m + m ' odd );

U = (4m '+2)K --(m + m ' + 1)w ,x = -cn 2rw.

(4)

( -1 + i / Du = (2m + 1) K + (2m ' + 1 )K'i (m+m' even) ;

and then a = -cn (2r - 1 ) .

309. When D= 4n+ 1 or 1 , mod. 4, the relation connecting

x = cn u and y = cn ( -1 +iDu cannot be rational ; but Mr.

G.H. Stuart has shown (Q.J. M., Vol. XX.) that it may be

written in the irrational form

y = -ic,

y = (ic) /(1 + 2) Ten(2r –1)w –x
>

vic xir = 1 cn (2r - 1). +
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2

)

where w = ( K + K'i )/ (2n + 1),

a transformation of the order n + 1 ; and this is equivalent to

1 - y2 = (1 –ic)(1 — «) II( 1. V

cn 2rw

xх

( 1 + x ) II ( 1+
c2 cn 2ro

V=
12

1 ; ...... ( 114)

)

this is inferred in the same manner as formulas (111 ) and (112) .

For instance, with n = 0, D = 1 , and k = 1/2, c = 1 ;

i tonu

i )u

equivalent to, with U = (1 + i)v,

.1 - i cnav

cn(1 - i)v = i 1 + i cnav

With n = 1 , D = 5, 2kk' = 15 – 2 , c = 15 + 2 + 2 / 6 / 5 + 2 ),

15 + 1
;

2

- cn u

Ve= V5 + 11 + 1/

111
C

1+

2C a

)

3C

1+

a

1

and
cn : ( - 1 + i/5)u = /(ic)

1

ic

where a = cn } ( K + K'i).

310. Generally in the expression of y = pou / M as a function

of x = pu , where

olw or K'i/K=( -D),

and the multiplier 1 /M is complex, of the form

1 /M = a+ b^( -D),

it is convenient to consider four classes of D.

Class A, D = 3, mod. 8

Class B , D = 7, mod. 8 ;

Class C, D = l , mod. 4 :

Class D, D = 2, mod. 4 ;

the class for D = 0), mod. 4, not requiring separate consideration.

It is convenient also to consider the discriminant D (8 53) as

negative ; a change to a positive discriminant being effected by

the method of g 59 ; now w2/w =iD.

We can also normalize the integrals (SS 196, 252 ) by taking

9,3— 279,2 = -1, so that 92 = /(-J).
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1 = p

7 = 1

CLASS A. D = 3 , mod. 8 = 8p + 3 or 4n - 1 , if n = 2p + 1.

1 / M = i (-1 + iJA ).

The relation connecting x and y can be written in one of

the three equivalent forms

y - ey = M?( — ez) II {x ^ $ (wz + 2rwg/n ) }2 = V ,

y - by = M ?( — @g) II {x- (63- 2rws/n) } 2 V ,

y -- = M ?( x -- ez) II { X - (W2 + 2rwg/n )}2 ; V,

V=
II {x — ( 2rwg/n) } ;

leading to the differential relation

Mdy dx

(443-929-93) / (4x2 – 9,8 - 93)

This verifies in the particular case of p = 0, when

D= 3, J= 0, 92 = 0, 1 / M = 3 ( -1 + i / 3) = m ;

and then
eq = mea, ez = mpe,

This is the simplest case of Complex Multiplication ,

mentioned in $ 196 , and employed in $ 227 in the determina

tion of the Trajectory for the cubic law of resistance.

The form of the general transformation is inferred from the

consideration of the series of values of u which make

y or $ {u / M ) = C1, C2 , Cz,and c .

( i .) When y = eng

U / M = (22 + 1 )w + 2rWz

(9 + 1)(W2 - w7) + r (w tw. )

(q+r+ *)w - (q - r+ 1)W.' ;

U = { ( q + r + 1 )w , - ( q - r + 1 )w , } /( - 1 + inD)

{(q + r + }) – (9- ~ + });JD }( - 1-31D)
an

-9-1-1-(9–9 + })(4n-1)0,9+r+1-9+r-7.
2n

- 2qw + 2rw ,-W2–7w, twa) /n

- 2qw , + 2rwn- W2–2rwg/n ,

so that or pure, orpw. + 2rwg/n ).

( ii.) When y = l2

U/M =(29 +1)w7 +(21 + 1 )wg

= ( q + r + 1)w , - (9 - r )wa',

u = -2qwx + 2rw , -- (2r + 1)wg/n,

Pu = lg, or p (2r + 1)wz/n = $ (w3— 2rw , n ).

W2

Wz
2n
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Y = M2

(iii.) When y = éz,

u/M= 2qw + ( 21 + 1)w ,

= ( q + * + 1 )w , - (q - r - 1W ',

u= -2qw , + 2rw , -W , - (2r - 1)wg/n,

pou = @y, or {wą + (2r - 1)w /n } or pwy + 2rwg/n).

(iv. ) When y = 0 ,

U/M= 2qw + 2rw ,

= (q + r)w , - (q - r)w ,',

U= - 2qw , + 2rw , + 2rws/n ,

and pu = (2rwg/ n ).

Hence the form of the Transformation is inferred.

By addition, we find

an – Aqwn -1 + A221 – 2

(XP - G 2CP -1 + G %2P- 2 ...)??

where n = 2p + 1 ; and we shall find that An= 2G4 ; and the

A's and G’s are symmetrical functions of By, C2, C3, and there

fore functions of 92,93 or J ; while G, has the same significa

tion as in $ 293.

By employing the Modular Equations given above, or

employing Hermite's results ( Theorie des equations modu

laires), we find

J= 0, 92 = 0, 192 + 1) = 1, 93 = \/3.

29 8 7/11 ..
D = 11 , J=

33 92 = 3 93 27

11 + 70/11
Aq = 2G, = - }(/11 + i) , A, =

18 27

D = 19 , J= –29, 9 = 8, 1(92 + 1) = 3 , 93 = / 19 ;

A , = 2G , = -_19 - i, A = }(25 + 5i / 19),A , = - ( 19 + 6i),

Aq= (21 + 91/19) , A5 = - ( 19 + 11i) ;

these values of A2, A3, A4 A were calculated by Rev. J.

Chevallier , Fellow of New College, Oxford, who has also

verified the case of D = 11 .

D = 27 , J= -29 x 53 :- 34, etc.

D = 35, 92 = / 5 { } ( 5 + 1 )}4, 92 + 1 = 3 { }( 4 / 5 + 1) } .

D = 43, J= -212 X 53 , 92 = 80, 192 + 1 ) = 3 ,

93 = 3x7X /43 (Hermite ).

A1 = 2G = -6(2/43 + i) , G , = 3(279 + 111 / 43 ),

A , = 1051 + 731 / 43, etc.

D = 51 , J= -64(5 + 17) (__ 17 + 4 )2 (Kiepert) .

D = 3,

Az = -V
11+ 141
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D =67, J= -29 x 53 x 113, 92 = 440, 7 (92 + 1) = 3 x 7 ,

93 = 7 x 31 x 1/67 (Hermite) .

D = 163, J= -212 x 53 x 233 x 293, (92 + 1 ) = 3x7x11,

93 = 7x11x 19 x 127 x 1/163 (Hermite) .

Class B. D = 7, mod. 8 = 8p + 7 = 4n - 1 , if n = 2p + 2 .

The relations connecting y = P(u/M) and x = pu, where

1/ M = -1 + i JD,

are found, in a manner similar to that employed in Class A ;

y- @y =M?(o —__) ( - en) II {2—86 + 2rwg/n ) }2 = V ,

1 = p

7 = 1

q = P

Y- e,= M² II {x — (wz – 2rwg/n )} 2 = V ,
70.0

p = P

y - eg = M2 IT {w — W + 2rwg/n )}2 ; V ,
1 = 0

r =p

r %3D1

27

V=
(a - €3) II {x— (2rwg/n ) }2.

As simple numerical applications,

1 53 5

D= 7, 2KK' = J=

8' 269
925

4'
92

0, = 3( - /7 + i) , 0, = 1/7, ég = }( - 77 -i).

D = 15, KK' = sin 18° (Joubert).

In these cases the Jacobian notation is almost more simple,

as given in $ 308.

CLASS C. D = 1 , mod. 4 = 4n+ 1 .

The relations connecting < = pu and y = P (UM ), where

1 / M = - } + iJD,

cannot now be rational; but, according to Mr. G. H. Stuart ,

we can express the relations in the irrational form

4r +1

y - 81w , x - e
II

y - 86, 4r +1

X

-$ (w .-2n 710žr = n

1.

>

XC — biz %3D1

- ( 2n +13

2

a relation which may be said to be of the order n+} ; and

this is equivalent to

42

(y - e )(y – @3)=
M ~(~ —e,)"TI

y - e, 4r +1

อ

2n +1

XC W3

2n +1

n= 1

C
W3%
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CLASS D. Dan even number.

In this class the simplest function to employ is the sn func

tion ; for instance, with

K '/ K = / 2, then k = 12-1 ;

sn'u

1 -

and sn ( 1 + i ( 2 )u = ( 1 + i / 2 )sn u
1 - kºsnº2w sn’u

where w = } (K-iK ') ;

leading to the equations

sn2
226

2

X

1

sno
1 - y 1 + kx

1 + y 1 KX

1+
sno

2

X = SN U

1 - ky 1 - X / 1 + kx snw

1 + ky 1 + x\1 – KX sn w.

connecting and y = sn ( 1 + i / 2)u .

Also snw = N/ ( - 2), snº2w =
12

12-1

These transformatio
ns

show that it is not possible to express

cn(1 + i/2)u in terms of cn u , or dn( 1 + i/2)u in terms of Us

by a rational transformatio
n
.

With K "] K = 2 , then k = (1/2-1)2 ($ 71),

and the relation connecting x = snu and y = sn(1 + 2i )u may

be written

22 Q2

(1- )(1sn22w sn240

y = (1 + 20)3 71 – xPx sn22w )(1 – K?r?sn´4w )

where w = f( K – iK ') ;

equivalent to the relations

1

C 2 2

1+

1. - Y 1- KX
sno sn 30

1 + y 1 + k X

1+

sno

1

sn 3w /

х
2

XC
2

1 - 1+

1 - X sn 20 SN 4W1 -ку

ку
C

1+ 1

sn 2wi sn tw

so that cn( 1 + 2i)u has a factor dnu, and dn( 1 + 21)ừ has a

factor cnu .

G.E.F. Y
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When K "/ K = / 6, then x = ( / 3-1/ 2 )(2- / 3 );

and the corresponding relation between sn u and sn ( 1 + 1 / 6 )

to be written down is left as an exercise .

( Proc. Cam . Phil. Soc . , Vols. IV. , V.)

It can also be shown, in the preceding manner, that the

relation connecting x = pu and y = $(W/M) where

1 /M= -1+iJD,

and D is an even number 2m , can be expressed by the relations

27 - 1

y - ey = M4(2-- ez)II { x 8 : V
2m + 1

21

M (
+

2m +12

2r- 1

y - = x : V ,

2m +1

و
2

V,

2

:)}

( )}

W2

)
2

1 {o-elem +1
V = II

2m +1

As numerical exercises, we may take

(i . ) D = 2, when 92 = 30, 93 = 28, G , = - 1+ } in / 2 ;

(ii. ) D = 4 , when 92 = 11, 93= 7 , Gi = -2 + i.

311. In conclusion we may quote from Schwarz some

general remarks on doubly periodic functions.

Every analytic function ou of a single variable u for which

an algebraical relation connects $(w + v) with ou and pv is

said to have an Algebraical Addition Theorem ; and then f'u

must be an algebraical function of pu (Chap. V.).

Every such function is then an algebraical function , or an

exponential function (circular or hyperbolic function ), or an

elliptic function, which can be expressed rationally by pu and

po’r (Chap. VII.).

Elliptic functions are doubly periodic. A function of a

single variable cannot have more than two distinct periods ,

one real and one imaginary, or both complex. For if a third

period was possible, the three sets of period parallelograms

obtained by taking the periods in pairs would reach every

point of the plane, so that the function would have the same

value at all points of the plane, and would therefore reduce to

a constant (Bertrand, Calcul intégral, p. 602 ).
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Abel, in generalising these theorems, was led to the discovery

of the hyperelliptic and Abelian functions.

Thus if X in § 169 is of the fifth or sixth degree, we obtain

functions of 2 variables and 4 periods ; if of the 7th or 8th

degree, of 3 variables and 6 periods; and generally, if X

is of the degree 2p + 1 or 2p + 2, there are p variables and

2p periods; but this would lead us beyond the scope of the

present treatise, and the reader who wishes to follow up
this

development is recommended to study Professor Klein's articles

“ Hyperelliptische Sigmafunctionen ,” Math. Ann. , XXVII . ,

XXXIII. , etc.



APPENDIX.

I. The Apsidal Angle in the small oscillations of a Top.

The expression given by Bravais in Note VII. of Lagrange's

Mécanique analytique, t. II., p. 352 , for the apsidal angle in

the small oscillations of a Spherical Pendulum about its lowest

sition is readily extended to the more general case of the

Top or Gyrostat,if we employ the expression on p. 261, $ 242,

as the basis of our approximation.

We divide the apsidal angle y into two parts, y, and ¥ 2,

such that
iYn= -anı - wiša,

if = b = 078b ;

and now put a = Wg -863, b = w , + qwz,

where q andand s are small numbers; so that, expanding by

Taylor's Theorem as far as the first powers of q and s, we may

put Can ng+8w3wg = 13 + 8wglz,

be na qwz w = 11- qwzlı ;

and now, by means of Legendre's relation of p. 209,

Y (wg - swz)nı -w (13+ swzlz) = jin- sw3(nı tegwa),

¿ Y (wi + qwg)11-07(91 - qwzex) = qw3(9 +2,0 ).

But, from equation (B), $ 51 ,

poul2

dn J (ez - ez) = -1
е, —ез

pou - biz pu - eg

+ 1_8(u +w3) — @z_47 - (u +63);
ei - ez €1-23

so that, integrating between the limits ( and

6W7+ Š (witwy) - wz = (C1 - ex) / dn? J (ez- (x)udu ,

1 ww

=

W12

(لا

or

so that

na + ew , = Jle - e ) E (Schwarz , $ 29).

Also ($ 51) (0, -eg)w = (e- ey)K ;

na + € 96 = - Je - ez )( K - E');

and therefore ¿Y1 = jim tswz / ( 1-3)(K - E ),

i4= quz / ( , - ez) E.,
340
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12
K

22 m ez k?

;

pb - la
'2

K

12

K
2

-4

K

y
2

SK

2

But, from $ 210, when a and B are very nearly 7, their

approximate values are given by

ез — Коа

cot?? a =
pb - eg

ég - ég- 15-0,280 *ws

ey ~ lz + 9 wg?80" w

A — 5°03? (ez – ez) – K ?s?03 (0, – (3) ;
since

po"wg = 2 (ez - es)(02- € 3),

and K2
la 63 e - C2

(8 52) ;

4 - es lumez

ez - poa w Pszes
cot21B =

€162

and therefore ( e - eg)sus cota la cot 2.B.

Also (S210 )

G - Cr 'b po'(c + qws)

G + Cr -pa -pw - sw )

qwg8 "W_94 - e,_9 K"?

8039 " 8 e, -es

G - Cr \2 1

(ez- @gqw cota la cota 28.
G + Cr

K-E

Therefore I 1 K'cot ja cot iß,
K?

G E

cot la cotiß .
G + Cr) K

But, ultimately, when k = 0 and k' = 1 ,

then E = , and lt(K-E)/K2 = 4T ($ 11 , 170) ;

Va yeye + 17 cot ja cot iß,

G- Cri

¥ -*(G + Cr)3T cot ja cotiß .

This reduces for the Spherical Pendulum , in which Cr = 0, to

y 3+ ( i+ cot ja cot 1 B ) 3 (1+ sin a sin ß ),

when a and B are nearly 7, thus agreeing with Bravais's result.

When a = r and G + Cr = 0, this approximation fails ; but

the student may now prove that the apsidal angle is

C ^272

4A Wg!

This will be the apsidal angle when the Top is spinning in

the vertical position with small angular velocity r, and is then

struck with a slight horizontal blow.

so that

1 7+

2

GFC )2

so that Im1

T。

7T

$}={1-11AW06)}
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II. The Motion of a Solid of Revolution in infinite friction

less liquid.

The reductions of the Elliptic Integral of the Third Kind

in $ 282 in consequence of the relation

a + b= wa?

in connexion with the Top and Spherical Pendulum , are useful

also in constructing degenerate cases of the motion of a Solid

of Revolution in infinite liquid , as mentioned in $ 211 .

We refer to Basset's Hydrodynamics, Vol. I., Chapters

VIII., IX., and Appendix III. , also to Halphen's Fonctions

elliptiques, II. , Chap. IV. , for an explanation of the notation ;

and now ? the kinetic energy of the system due to the

component velocities u , v, w of the centre 0 of the body along

rectangular axes 0A, OB, OC, fixed in the body, OC being the

axis of figure, and to component angular velocities p, q, r about

0A , OB,OC is given by

T= {P (u² + v2) + Rwa+ ]Apa + q ) + Cp2 .....( A )

(to which the terms

P '(up + vq ) + P'wr

may be added in the case of a body like a four-bladed screw

propeller, or like a rifled projectile provided with studs or

spiral convolutions on the exterior).

Then the Hamiltonian equations of motion are

daT at ƏT

X , ... . ( 1 )
at au av) aw !

d 27 ОТ әТ

tr Y , ..... .....( 2)
dt av aw ди

daT AT at

= Z , ...... (3)
di aw O

da ƏT ƏT ОТ ƏT

+9 tv L, .......... (4 )
aq av aw

d ƏT ƏT ƏT ОТ ƏT

tr tw

at aq
M , ......

д ar aw

dar ƏT ƏT at ат

q tu
dt ar

== N . ......... (6 )
др ди. av)

When no forces act, so that X, Y , Z , L, M , N vanish, then

equation (6) shows that Cr or r is constant.

Multiplying equations (1 ) to (6) by U, V, W, p, q , 9 in order,

adding and integrating, shows that T in (A) is constant.

ta

Paw

q du
Ρου

no W =
at op ar

•
Pôr U

др
.. (5)

au

+Paq -V



APPENDIX. 343

ƏT ƏT ƏT

Multiplying (1 ) , (2), (3) by ən əvi əw adding and in

tegrating, proves that

2)+7) + ( %* is constant ;or

P2(u2 + v2) + R²w2 = F "2, ......(B)

F being a constant, representing the resultant linear momentum

of the system .

Similarly, it is shown that

ƏT ƏT ƏT ƏTƏT ƏT ƏTOTOT

+ + is constant ; or

ди др ду даau əq ' ow av

AP (up + vq ) + CRwr = G , ......(C )

where G is a constant, representing the resultant angular

momentum of the system .

From equations (A) and (B) ,

Apa + 9 °) = 2T – C12 - Rua_P(u ? + v2)

F2

= 21 - C2

D )(FP-Rw )R

and , from equation (3) ,

1

+72

FzCR

Redw
a

-1 )(r2- Rºvº )

(G - CRwr) ...( D)

Pł(uq - up )a = P²(u² + v2)( p +94)– P2(up + vq)"
dt?

F2 / 1

A RP

F2 F2- Rawa ( G - CRwr)?
Co2

R А. A

so that w or Rw is an elliptic function of t.

Taking the axis Oz in the direction of the resultant impulse

F , and denoting by 71 , 72, 7g the cosines of the angles between

Oz and OA, OB, OC, so that

Pu = F'yu Pv = F72, Rw = F'ys;

then , with Euler's coordinate angles 0 , $ ,V,

Yı = --sin 0 cos , = sin o sing, 73 = cos O,

P (up + vq) = F'sin 0( -p cos 6+q sin ) = Fsinºody ,
dt

so that

dy G - CFr cos

dt AF sine
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dt

do
ody

G + CFT 1 G - CFT 1 dy dya,
+

2AF 1 + cos 2 AF 1 - cos dt

suppose ; and then

CFr- G cos e

= p - cos 1 pt
dt dt A AFsin20

dy , dla
rt

dt dt

The equations given by Kirchhoff ( Vorlesungen über mathe

matische Physik, p. 240) for a, b, y, the coordinates of 0 with

respect to fixed axes O'a, O'B, O'y ( О'y parallel to Oz) are

at at ar

...(7)Fa = Bigp +Bzaq + Baar'

ОТ ƏT ОТ

FB
- arap

dza dzar* .. (8)

Andy U

ди

da

аз

ОТ ОТ ОТ

to tw ....(9 )
dt du aw

where az , az, az denote the cosines of the angles between O'a

and 0A , OB, OC ; and Bu, B2, B3, the cosines of the angles

between O'ß and OA , OB, OC.

Expressed by Euler's coordinate angles,

ai cos o cos o cos Ys--sin o sinys,

cos O sin o cos Yo - cos o siny,

sin 0 cosys;

BA cos o cos o sin Ys + sin o cos y,

B2 cos O sin o sin ys + cos o cos y,

B. = sin siny ;

while p = sin p0 -- sin 0 cos oy,

q = cos 0 0 + sin o sin 4,

8 + cos@j ;

so that, after reduction ,

Fa =A cos y 6+ (Cr-A cos @ 1. sin siny y ,

FB = A sin y0-(Cr- A cos O V)sin cos y,

F2

sin 0+ cos 0.
dt P R

Writing Fx for F cos 0 or Rw, equation (D) becomes

da2 F2 \x2 - 1 CrFa - G

( 2x2 - 1 )2 2T - Cp2

pe

Fly_F2

aten

AR-B).

12 - X ,
dt2 R ) An2 AFп,

F2 / 1 1

n2suppose, where
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X - 21

e.

Denoting the roots of the quartic X = 0 by Xos X1, X2, Xgo

we may put, according to SS 151 , 152,

-go'c
X X0 =

80 -ọc

- goc pu - lj

pou - Joc goc - eu

-poc pou— lz
X -- 22

su - pc pc

— o'c кои — ез.
X - X3

pu -- 80C poc ez

and now, when x oscillates between 22
and

u= nt+ wg.

The letter u has been used here in two senses, to agree with

the ordinary notation ; this need not however lead to confusion .

Differentiating,

dx p'up'c

Izy

VX = du (pou -se)2 = 8 (U — c )—P(u + c);

U

x = $(u+ c) - $ (u - c) - 820

1 $ '(u - c) - 82c

2 y (u - c) -8 2c

1 % '(u -- c) + p '(u + c)

p ( u - c ) - (utc)

ca = p2c + $ ( u - c) + F ( u + c);

so that we must write v for 2c and u for u - c, to agree with

Halphen’s notation:

Now, to determine y,

F2 F2

+ cos20
dt P RP

F2

+ An- {$ 2c + $ (u - c) + $ (utc)} ,

gydy_F2

(

Р

Po
s

F2

Fy= G + Anºp2c )t - An { $( u —c) + Š(u+ c) }

o'uน.

= ( 3 +Anp2c)(u – wz) – 2Anğu–An
pu— sc

so that, in a complete period 2w, of the motion, the point 0

will have advanced parallel to O'y a distance

7 °2

+ Anp2c )20 , –4Anna;

also ($ 152) 602c = coefficient of - 22 in X.

np+An$2c)20,
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2 2 . .

We now suppose that u = a makes x = 1 , and u = b makes

-1 ; then

- pcpu- pa) - po'cpb - pu )
1 -X = 1 + 2 =

(pa - pc)(pu - pc) (ob - gc)(you - c)'

p'a g'c G -Cir p'b go'c G + CF

(pa - pc )2 Ain (pb - 9c)2 AFn

Then

divi_- p'a pu – gəc)
du (pa -- 8°c )(fou -pa )

- ipa
+

Pa - 8c pu - pa

= -1 &( a -c) - 3 ( a + c) + fa

- 38(2 - a) + (uta) - a ;

o(uta)
iy1 =-1{f(a - c) + (a + c) } u + } log

0 (U - a )

and similarly

o (b + u ).
iy2 = -- } { f(b - c) + $(b + c)} u + ) log

o (b - u )

and therefore

- g'a

II

;

- { Pu + } log (u + a )o(6 + u)

II

iyo = -
o ( U - a ) o (b - 2 )'

where

P = f(a - c) + f (a + c) + Š (b - c ) + F (b + c ).

Also

sin 0 = 1-32 = (1 + x )(1-2 )

poʻ ? c(qu - pa ) (ph - pu )

(84 -- fc )(80b - 8° c)($ u - pc)2

022co (U - a ) (uta )o (b - uo(b + u )

ca - cola + c)o (b - c)o (b + c)o (u - c)o (u + c)'
so that

sin Deių = Ce - Pu o (u + a )o (b + u )

ou - cou + c)'

giving the projection on a plane perpendicular to Oz of the

motion of a point on the axis OC, relatively to 0); also

P (u + vi) = - Fsin ( e - pi,

p + qi = ( --sinjti))e - di.

We find also, as in $ 224, that if the values ay and b, of u

correspond to

72 1

m2 = 1 +(2T -C12 R /An2

then az -b4 = Q - 6.
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la

Or

Å = tan - 1ve X

But now introduce the condition

a + b = wres

when, according to $ 282 , V becomes pseudo-elliptic

igu sou
Putting = tan - 1

Қоа — ea o'и.

1 +0.1+ x - x-a

1 +X.1 + xa XB.X Xmy

and, employing b instead of a , this may also be written

1 - XB . 1 -XX-- Xa

1 - X.1 - Xa XB.X – Xay

1 + x8.1 + xy_1-2.1 - xy

1 + x.1 + 1-0.1 - a

and therefore each is equal to -1, and

Xpela + XBX7 + 2 = 0 ,

since
Xo + wa + 28 + x = 0);

and, changing to the complementary angle ,

& = tan -116–1–28.1-
2

;

so that

XB.X xy

va
= tan - 1

N X
x
o Xa

✓
cos - 1

so that

= }n (xg + xa) -n:49 + 82-(1 +XqXa)ą

acp— X.X -- X OC - Yolla
= sin - 1

2- 2x2 2- 202

with Xa > > < > By > X

Differentiating,

dp_( B + C )( 1 + cº) - 2 ( 1 + 30 ) x:
dx

while =nx,
dx

( 2 — 232) _X dt

XB + Xy - ( 1 + xBxy)

dt
In ab xx

1 -22

-

1- 202

d & dy
Then +

dt
= n(Xo+ wa),

provided that n (xo txa) = G /AF, 9 ( 1 + XqXa ) = Cr/ A.

The quartic X must therefore break up into the two

Gæ Cr Gx Cr

quadratics 22 - + - 1 and 22+ -l ; and
AFn'An AFm Α.

GX - CrF2

c —

so that the requisite relation when a + b = wa, is

F2 G2- C2.p2 72
2T- C72 --

R AF2

dt*

X = (x2 – 1 )2– (GALIMACor ")
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sin cos =

V AntV {}(1

V[](1+

cosºc)}

}

so that

Now

e -
Cm G cos 0

Xoxa

2 AFn

C
X — X.X – X7

sin sin =

G cos e

cos²0

2 An AFN

G cos 6 - CIF

sin²0 sin 28 = 1X, sin²0 cos 2 = ;

AFN

and
È= mt - 4,

where
m = in (ao + Xa)= }G/AF.

Also, from (7) and (8),

F(a cos y+ ß sin y) = A.

= An / X /sin 0 = An sin é sin 29 ;

F (a sin y - ßcos y ) = (Cr- d cos Oy,)sin 0

CrF- G cos e

An sin 0 cos 2.
F sin 0

Therefore Fa = An sin ( sin 2 È cosy - cos 2ệ sin ys)

= An sin o sin (2-4 )

= An sin 0 sin (2mt - 34) ;

FB = An sin cos (2 - V )

= An sin 6 cos (2mt -- 34).

Now in the motion of a point on ( C , relative to 0 ,

sin eil = sin cos(mt- $) + i sin sin (mt- Š)

x - OCB - X.X -- Xy

2 2

where X = cos .

When b - a = wa, and 41-4, or is pseudo -elliptic, we

shall find that G and Cr are interchanged, and

n(xotxa) = Cr/A ,

n ( 1 + XqXa ) = G /AF ;

F2

and then 2T_C72 = ( F )
R

Pều + v2) = F2sin’e,

pP + qº = n’sin20.

As a numerical exercise , we may take, in addition to (F),

G = 4AFn , Cr = 2 / 7An ;

then X= X4 — 300c2 + 16/7x– 15

= (ac2 — 2 / 7.0 + 3 )(2c2 +2 / 70 - 5) ;

X = / 7 + 2, X = -77 + 2 / 3, 0 , = Jy -2, x = -17–2.73;

92 = 60, 93 = 88, e = 1 + 2 / 3, 6 , = -2 , ez = 1-2-/ 3 ;

C
xo • Xa

eimt

0 ;

80 that
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pa = -3, pb = l ; a = 3wg, b = w, - 1W, (S 225) ;

poc = 2 / 7 + 3, @ c = -8,17–20 , $20 = 5 , p'2c = 4. / 7.

Now we shall find that

nt - Y = icos -1300 —X.X — X ,)
1C

- etc.

2- 202

sinse cos 3 (nt - 4 ) = ( - + // 7 cos 0 - 1 cos20 ) ,

sin sin 3nt -

= (1/7 -- 2 cos 0+ 1/7 cos20)/( 1-7 cos 0 - 1 cog 0 ).

MISCELLANEOUS EXAMPLES.

1. Construct a Table exhibiting the connexion between the

twelve elliptic functions

SN U, ns U,
dcl ,

cnu, ds W, ncu,

cd w ;

sd w ;

nd w.dn we CS U, SCU,

2. Construct a Table of the values of the sn , cn , dn of

u +mK + nK'i in terms of sn u, cn u, dn u ; also of the elliptic

functions of } (mK + nK'i), for m, n= 0, 1 , 2, ....

3. Prove that, accents denoting differentiation,

(i . ) snu dn " u - sn " u dnu = snu dnu, etc.

( su u )?, sn u sn'u, ( sn'u)2

(ii .) ( cn u )?, cn u cn'u , ( cn'u)2 = k '? sn u cn u dnu.

(dnu)?, dnu dn'u , (dn'u)2

(G. B. Mathews.)

4. Denoting by (m, n) the function

snum - un )cn (Um+ un)

cn (Um - un)sn (Untun )'

prove that

(4, 1 ) (4, 2) (4 , 3)(2, 3) (3 , 1 ) (1, 2) + (4, 1 ) (2 , 3) + (4, 2)(3, 1 )

+ (4, 3) (1,2) = 0.

Denoting by A, B, C the functions

sn (t -x)sn (y - 2) sn ( t- y)sn (2—2) sn (t - 2) sn (x - y )

sn (t + x )sn (y + z)' sn (t + y )sn (z + x )' sn (t + )sn (2-3)

prove that ABC+A +B+C= 0 .
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5. Prove that

20

( i . ) k sn vdv = 2 tanh - ( k snau ).

(ii . )

/

« u

(ii.) Slogens udu = £#K’–}K log 1/k.

k sn ( 2u + a )du = tanh - 1 {k sn u sn (u + a )).

0

6. Determine the orbit in which

P = h '( U3 + a’u "), the apsidal distance being a.

7. Rectify på = ascosg0.

8. Prove that the perimeter of the Cassinian Oval of $ 161

482K 1
22 1

is either +

2V aa

1

tak , k =
2 32 32

and draw the corresponding curves.

к

a

or

+ e ( )

9. Prove that the length of the curve of intersection of two

circular cylinders, of radius a and b, whose axes intersect at

*T / 1 k’sino 1/를

right angles, is sa
1 - késino

dф, к a2/62 ;

0

and verify the result when a = b.

10. Prove that K and K ' satisfy the differential equation

dl dK

k (1-1)
dk

-K = 0.
dk

Deduce the relation

7T

KO
R

;

dK

-K' - K

al dk = 4.8(1 – 2:)

and thence deduce Legendre's relation (S 171).

11. Prove that w , and W, of $ 252 satisfy the differential

d270 4-75 do

equation JJ- 1 ) + = 0.

6 dJ 144dJ2

12. Deduce the Fourier series for snu, cn u, dnu of sS 266,

267 from the series for Zu of $ 268, making use of Landen's

Transformations and of equations (28) , (29), (30) of $ 264 .



MISCELLANEOUS EXAMPLES. 351

13. Prove that

= 0) ;

2

gru , p "(u + w ) , 80” (u + w .) , 8 " (u + w3)
( i.)

po'r ' go' (utw ) ' so'(u + wn) ' go' (u + wz)

po"
= p2u + 2qu ;

4 \8so u.

gou - p (uta + b ) you - 80(u - a - b ) Tou-sa )(sou -- gb) )pu -pa + b )

( ii .)
pu - a ) - ( u - ) pu + a ) -r (u + b)

14. Prove that, if a variable straight line meets the curve

Axº + By2 + Cx + D = 0

in ( X , Y1)(X2,Y.)(x3, Ys), then (S 166)

,
+ .

Y1 Ys

dan , dx,,dus= 0.
十

Y2

15. Denoting the integral

wyda

y - axS
by fx ,

where y is given as a function of x by the equation

23 + - 3axy = 1

prove that, for three collinear points,

fx , + fx , + fx = 3a.

16. Prove or verify that, with 92 = 0, the solution of Lamé's

differential equation

1 day
(i .) = 2you is y = {gʻu IN (-93)}} ;

du

(ii . )

1 dly

= 6pu + (393) is y = pu-(393 );
y

du²

1 day

is y = ( A + Bold)(x ^3a) 2.(iii . )
y
du² = {pu

(Halphen, Mémoire sur la réduction des équations différen

tielles, 1884.)

17. Determine, by means of elliptic functions, the motion of

liquid filling a rectangular box, due to component angular

velocities about axes through the centre parallel to the edges.

(Q. J. M., XV., p . 144 ; W. M. Hicks, Velocity and Electric

Potentials between parallel planes, p . 274.)
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OU=

18. Prove that, with x = imulw and A = inlw ($ 278),

9,0

п 0 Ꮎ
=

0,0

ози = eduг Өr
;

00

etua Oza 0,0 % 0 ,U = eduz@zx

and thence convert the formulas (M) to (T) of $ 249 into

Jacobi's notation .

19. Prove that ($ 264, 20*)

mo

1 /Q = II ( 1 - q2-) = Eq3m24-m
ጎ - 1 m= 0

2r - 114

11

;

(6n2 + 1)

qis /Q = Eq. 12

20. Prove that

1 + q2r
(i.) K

1 + q2r - 1

-921
(ii. ) K' II

1 + q2r - 1

K tanh2rK'/ K
( iii .) II

ŽT tanhº(9— 1)+ K"]K

21. Prove that, in Appendix II . , p .346,

G2

$20 - $(a+ b) =
4A272722

11

$ 20 -pa - b) = 4A2n21

C272

4A2n2

iG (G- C2,272 21 - C72 -FR

p (a + b ) =
4AFn A27272

- e/R);An²

pa - b) = AAN
iCr 2T - C2 - F2/ R

4 An An2

Work out the case of

2T- C72 - F2/R= 0,

G = 2AFn, Cr = 2 / 2An.
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Abel, 4, 18, 145, 223, 277

Abel's theorem, 166, 249

- pseudo -elliptic integrals, . 228

Abelian functions, 175

Addition theorem ,

of circular and hyperbolic

functions, 112

for elliptic functions, 113, 117

of second kind , 178, 180, 193 , 226

of third kind , 193 , 224

algebraical form of, 142

Theta function, 192

Allégret, - 147

Amplitude, 278, 289

- hyperbolic, 15

of elliptic integral, 4

Anharmonic ratio of fourpoints, 53 , 57

Anomaly, mean , of a planet, 14

Apsidal angle, 260, 340

Argand , 46

Argument, 191

PAQE

Burnside, W. , -

and Panton,

- 38 , 107, 172, 209

148, 150

Capacity , coefficients of electric, 287

Capillary attraction, 89

Cartesian ovals , 257 , 262

- confocal orthogonal , 255

Cassinian oval,

area of, 189

rectification of , 164

Catenaries, - 76, 92

of uniform strength, 92

Catenoid, 95, 98

Cauchy's residue , 206

Cayley,

56, 62, 139, 142, 160, 280, 311 , 327

Central orbits , 76

Chain, revolving, 67, 210

Chasles, 178

Chevallier, 335

Chrystal , - 66 , 277

Circular functions, trigono .

metrical, 6

Clifford, 17 , 30, 284, 295

Complementary modulus, 9

Conductivity, thermometric, 285

Confocal, ellipses and hyper

bolas, 184, 255

quadric surfaces, 271

paraboloids, 273

Cotes's spirals, 75, 190

theorems, 289, 325

Cubic substitution, 41

353

Ballistic pendulum, Navez,

Bartholomew Price,

Basset,

Basset’s Hydrodynamics,

Bertrand,

Biermann,

Binet,

Bjerknes,

Boys,

Bravais,

Brioschi, -

3, 12

3

288

219, 342

9

77, 151

213

22

97

340

275

G.E.F. z
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PAGE
PAGE

158

62

Cubicovariant,

Cubinvariant,

Cycloidal oscillation ,

Cycloids,

7

190

Darboux, 221 , 236, 255

Delambre, 137

De Moivre's theorem , 288

De Sparre, 233

Despeyrous, 236

Descriminant, 44, 48 , 158

Discriminating cubic , 154

Doubly periodic function ,

208, 254, 299

Duplication formulas , 120

Durége, 117, 227

Dynamical problem, 74

Elliptic integral---continued ,

inversion of, 30

modulus complementary ,
9

normalised,
203

quarter period of, 8, 321

quarter period , complemen

tary,
9

Tables of, 10 , 11 , 16, 177

Weierstrass's defined, - 42

Enneper, - , 61 , 326

Epitrochoid ,
190

Eta function, 194, 282

Euler, 142, 251

Euler's addition equation, 144, 166

constant,
281

equations of motion,

– pendulum , 198

18, 101

87, 190

C+

Elastica, Fagnano's theorems,
182

- tortuous, 213 Forsyth , 298

Electrification of two insulated Fourier, 66

spheres, 287 series, 285, 287

Electrode, 278 Fricke , 155

Ellipse, rolling, 71 Fundamenta Nova , - 310

first negative pedal of, 73 Fuss, 121

Elliptic functions ,

addition theorem, 142 Gauss, 137, 322

- complex multiplication of, Gebbia, 220

12, 203, 330 Genocchi's theorem, 264

double periodicity of , - 254 Geodesics, 95

geometrical applications to Glaisher, - 17 , 33 , 62 , 116 , 133, 194

spherical trigonometry, 131 Governor, Watt's, 78

- multiplication of, 329 Graphs of elliptic integrals,
66

reciprocal modulus, 24 | Graves, 178

-- resolution of, into factors Gudermann, 5, 32, 90

and series, 277 Gudermannian, 14

Elliptic integral ,

of first kind , 4, 22, 30 Half period, imaginary , . 44, 50

of second kind, 64, 175 , 209 – real, - 43, 50

of third kind, Halphen , 128, 130, 206 , 217, 276, 342

108, 175, 191 , 206, 302 Hammond, 256, 294

- complete, 8 Harmonic motion, 13

definition of, 5 Heat, conduction of, 284

degenerate, - 41 , 57 Helicoid , -
95

factor of third kind, 226 Helix , 20

general,
200 Hermite, 150, 158 , 208, 215, 276, 335

- graphs of, 66 Herpolhode, 101 , 107, 207 , 231

half period of, 13 --- algebraical, 228
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Herpolhode,

points of inflexion , 233

Hess, 233

Hessian, 62, 149, 156

Hicks, 288, 351

Hill, 291

Hobson, 277 , 280, 330

Holzmüller, 257

Homogeneity, · 203, 247, 270

Homogeneous variables , 155

Hooke's law , 94

Hoyer, 237

Huygens, 6

Hyperelliptic function , 175

- integral, 168, 309

Hyperbolic amplitude, 15

- functions, 15

Hypotrochoid, 190

Lamé's differential equations,

210, 216, 275

- parameters, 272, 274

Landen's point, 23, 117

transformation, - 55 , 60, 186 , 322

second transformation , 120, 320

Lecornu, 212

Legendre, 4, 18 , 64, 131 , 323

Legendre's relation , 164, 178

Lemniscate, 199

rectification of , 33

Limaçon , - 190

Linear substitution, 143

transformations , 163, 316

Lintearia, 87

Lodge, 15, 278, 293

Love, 293

Icosahedron form , 156

Imaginary period, 254

Induction, electric coefficient, 287

Inflexion , points of , on herpol

hodes, 233

Integrals,

circular and hyperbolic, 30

hyperelliptic, 160

- poles of, · 45, 53

Invariants, 43, 62, 143

- absolute, 45, 49, 143

Jacobi,

Jacobi's notation,

Jenkins,

Jochmann,

· 5, 139, 160, 284

· 18, 50

84, 131

278

MacCullogh, 179, 220

MacMahon, 147, 295

Mannheim, 221

Maxwell, - 79, 89 , 272, 287

Mean anomaly, 14

Mercator's chart, 17

Sumner lines, 89

Meridional part, 17

Michell, 292

Minding ,
121

Modular angle,
4

equations,
323, 327

equation of third order, 323

Modulus of elliptic integral , 4

-changefrom , and its reciprocal , 24

complementary, 9

- singular, 331

Morgan Jenkins, 84, 131

Motion,

- of a body in infinite liquid

under no forces, 219, 342

of a projectile , resisting

medium , 65

of electricity or fluid , 266

mean, of a planet, 14

- Poinsot's geometrical repre

sentation , - 101

– solutions of Euler's equa

tions of ,

Müller, 314

Kaleidoscope, 293

Kepler's problem, 14

Kiepert, 331

Kirchoff, - 87 , 344

Kirchoff's kinetic analogue, 214

Kleiber, 190

Klein , 35, 151 , 271

Kronecker, 146

Kummell, 136

131 , 340 28, 101Lagrange,

Lambert's series , 287
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PAGE PAGE

Napier,

Nodoid,

Norm,

137

- 95, 98

278

Quadric surfaces, confocal,

transformations, -

Quadrinvariant,

271

35, 321

62

3, 12

Octahedron form, 157 Radian, 1

irrationality, 317 Real half period , 43

Orbits , central , 76 Reciprocant, 294

Oscillations, Reduction, formula of, 63

cycloidal, 7 Reversion of series , - 202

- quadrantal, 103 Revolving chain , 67, 210

rectilinear, - 25 Richelot, - 121 , 164

of pendulums, bell , etc. , 3 Riemann , 312

vertical , of a carriage or ship, 82 differential relation , 316

Roberts, • 162 , 165, 199

Parameter, 191 , 207 Robertson Smith , 291

Pendulum , 1 Rocking stone, 198

Euler's , 198 Rolling and sliding cone, 108

Navez, ballistic, - Routh, 3, 28, 101 , 217, 238

performing complete revolu Russel , · 62, 149, 151 , 158, 327

tions , 18

period of, 8 Salmon , 149, 157 , 162, 178 , 222

reaction of axis of suspension, 82 Schwarz, 26, 46 , 157, 298

simple equivalent, 3 Sextic covariant, 150, 157 , 163 , 321

speed of, 3 Siacci , 220

spherical, 214 Sigma function, 201

Period, parallelogram , 46 Simple harmonic motion ,
13

- rectangle, 270 Simpson, -
9

Poinsot, 233 Slade, 233

Poinsot's geometrical repre Smith, 27, 222

sentation of motion, - 101 Spherical pendulum, 214

Poles of integral, 255 Spherical trigonometry , 169

Polhode, 101 - geometrical application of

separating, 230 elliptic functions to, - 131

Poristic polygons, Poncelet's , 121 Spinning top,
214

- heptagons, 130 Spiral , Cotes's , 75

- pentagons, 128 Steiner, 121

- quadrilaterals, 126 Substitution , linear, 143

triangles,
124 Sumner lines on Mercator's

Poundal, - 1 chart, 89

Price, Surface, special minimum, 26

Pringsheim , 160 Swingingbody, internal stresses

Projectile, trajectory of, for of , 84

cubic law of resistance, 244 Sylvester, 221 , 294

Pseudo -elliptic , 242, 347 Syzygy, 150, 156

- integrals, Abel's, 228, 300

Tables of elliptic functions,

Quadrantal oscillations, 103 10, 11 , 16, 177

Quadri -quadric function, 148 Tait, 87

3, 79

Q



INDEX. 357

PAGE PAGE

Unduloid, - 95 , 98

Vector function ,

Vortex ,

278

291

.

Talbot's curve, 73

Temperature, stationary, 266

Theta function, 192, 282

- addition theorem for trans

formation of, 325

Thomson, Sir W. , 3, 86 , 287
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