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INTRODUCTION.

“L’ETupE approfondie de la nature est la source la plus
féconde des découvertes mathématiques.

Non seulement cette étude, en offrant aux recherches un but
déterminé, a lavantage d’exclure les questions vagues et les
calculs sans issue; elle est encore un moyen assuré de former
PAnalyse elle-méme, et d’en découvrir les éléments qu’il nous
importe le plus de connaitre et que cette science doit toujours
conserver.

Ces éléments fondamentaux sont ceux qui se reproduisent
dans tous les effets naturels.” (Fourier.)

These words of Fourier are taken as the text of the present
treatise, which is addressed principally to the student of
Applied Mathematics, who will in general acquire his mathe-
matical equipment as he wants it for the solution of some
definite actual problem; and it is in the interest of such
students that the following Applications of Elliptic Functions
have been brought together, to enable them to see how the
purely analytical formulas may be considered to arise in the
discussion of definite physical questions.

The Theory of Elliptic Functions, as developed by Abel
and Jacobi, beginning about 1826, é,lthough now nearly
seventy years old, has scarcely yet made its way into the
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ordinary curriculum of mathematical study in this country ;
and is still considered too advanced to be introduced to the
student in elementary text-books.

In consequence of this omission, many of the most interest-
ing problems in Dynamics are left unfinished, because the
complete solution requires the use of the Elliptic Functions;
these could not be introduced without a long digression,
unless a considerable knowledge is presupposed of a course
of Pure Mathematics in this subject.

But by developing the Analysis as it is required for some
particular problem in hand, the student of Applied Mathe-
matics will obtain a working knowledge of the subject of
Elliptic Functions, such as he would probably never acquire
from a study of a treatise like Jacobi’s Fundamenta Nova,
where the formulas are established and the subject is
developed in strictly logical order as a branch of Pure
Mathematical Analysis, without any digression on the
application of the formulas, or on the manner in which
they originate independently, as the expression of some
physical law.

In introducing these applications we are following, to some
extent, the plan of Durége’s excellent treatise on Elliptic
Functions (Leipsic, Teubner); and also of Halphen’s Traité
des fonctions elliptiques et de leurs applications (Paris,

1886-1891).
- But while volume I. of Halphen’s treatise is devoted entirely
to the establishment of the formulas and analytical properties
of the functions, and the applications are not discussed till
volume IL ; in the following pages it is proposed to develop
the formulas immediately from some definite physical or
geometrical problem; and the reader who wishes to follow
up the purely analytical development of the subject is referred
to such treatises as Abel's Huwvres, Jacobi’s Fundamenta Nova,
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already mentioned, or the Treatises on Elliptic Functions of
Cayley, Enneper, Konigsberger, H. Weber, ete.

The following works also may be mentioned as having been
consulted in the preparation of this work :—

Legendre : Theorie des fonctions elliptiques; 1825.

Thomee: Abriss einer Theorie der complexen Fumctionen
und der Thetafunctionen einer Verdnderlichen ; 1873.

Schwarz: Formeln wnd Lehvrsitze zum Gebrauche der
elliptischen Functionen.

Klein (Morrice): Lectures on the Icosahedron ; 1888.

Klein und Fricke; Vorlesungen diber die Theorie der ellip-
tischen Modalfunctionen ; 1890.

Despeyrous et Darboux: Cours de mécanique; 1886.

R. A. Roberts: Integral Calcwlus; 1887.

Bjerknes: Niels Hendril Abel,; tableaw de sa vie et de son
action scientifique; 1885.

We shall begin by the discussion of the Problem of the
Simple Circular Pendulum,.as the problem best calculated to
define the Elliptic Functions, and to give the student an idea
of their nature and importance.

Previously to the introduction of the Elliptic Functions,
the Circular Pendulum could only be treated by means of the
circular functions, by considering the oscillations as indefinitely
small, and by assimilating its motion to that of Huygens’
Cycloidal Pendulum, of 1673.

But now the employment of the Elliptic Functions renders
the ordinary discussion of the Cycloidal Pendulum antiquated
and of mere historical interest, and banishes from our treatises
such expressions as “an integral which cannot be found,” or
“reducible to a matter of quadrature” in describing an elliptic

integral, expressions which aroused the indignation of .Clifford
(Mathematical Papers, p. 562).
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According to the new regulations for the Mathematical
Tripos at Cambridge, to come into force in the examination
in May 1893, the schedule II. of Part I. includes “ Elementary
Elliptic Funetions, excluding the Theta Functions and the
theory of Transformation”; so it is to be hoped that this
reintroduction of Elliptic Functions into the ordinary mathe-
matical curriculum will cause the subject to receive more
general  attention and study. These Applications have
been put together with the idea of covering this ground by
exhibiting their practical importance in Applied Mathematics,
and of securing the interest of the student, so that he may if
he wishes follow with interest the analytical treatises already
mentioned.

We begin with Abel’s idea of the inversion of Legendre’s
elliptic integral of the first kind, and employ Jacobi’s notation,
with Gudermann’s abbreviation, for a considerable extent at
the outset.

The more modern notation of Weierstrass is introduced
subsequently, and used in conjunction with the preceding
notation, and not to its exclusion; as it will be found that
sometimes one notation and sometimes the other is the more
suitable for the problem in hand.

At the same time explanation is given of the methods by
which a change from the one to the other notation can be
speedily carried out.

It has been considered sufficient in many places, for instance
in the reduction of the Integrals in Chapter IL, to write
down the results without introducing the intermediate analysis ;
as the trained mathematical student to whom this book is
addressed will have no difficulty in supplying the connecting
steps, and this work will at the same time provide instructive
exercises in the subject; and further, in the interest of such
students, many important problems have been introduced in
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the text, forming immediate applications of theorems already
developed previously. '
I have to thank Mry. A. G. Hadcock for his assistance in

preparing the diagrams, and in drawing them carefully to
scale.

ERRATA.

Page 6. Line 9 from hottom, read Huygens.
42, Line 6, read siu‘l\/a -z
vy
48, Line 5 from bottom, read - 4n*(9¢? + 4n*)".
64. Line 19, read Fonctions elliptiques.

99. The diagram must be replaced by the one given below.
The Nodoid in fig. 12, p. 99, was described by a point
which was not a focus of the rolling hyperbola.

107. Line 2 from bottom, delete minus sign hefore radical.

138. Equation (7), read (¢,® —*)/D.

158. Line 12, read 36K(x, ).

205. Line 6 from bottom, read @(u —v) - {(u +v).

213. Line 7 from bottom, read G+ La' - X(yz' - y'z) =0
with the corresponding subsequent corrections.

227. Line 7, read Py/X,+Q/X,=0.

282. Line 5 from top, for rectangle read ribbon.

328. Line 12 from bottom, read Proc. L. M. 5., IX.

L.
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CHAPTER 1.

THE ELLIPTIC 'FUNCTIONS.

1. The Pendulwm ; introducing Elliptic Functions into
Dynamics.

When a pendulum OP swings through a finite angle about
a horizontal axis O, the determination of the motion introduces
the Elliptic Functions in such an elementary and straight-
forward manner, that we may take the elliptic functions as
defined by pendulum motion, and begin the investigation of
their use and theory by their application to this problem.

Denote by W the weight in 1b. of the pendulum, and let
OG =P (feet), where G is the centre of gravity; let Wik? denote
the moment of inertia of the pendulum about the horizontal
axis through G, so that W(i*4%?) is the moment of inertia
about the parallel axis through O (fig. 1).

Then if OG makes with the vertical OA an angle 6 radians
at the time ¢ seconds, reckoned from an instant at which the
pendulum was vertical; and if we employ the absolute unit
of force, the poundal, and denote by ¢ (32 celoes, roughly)
the acceleration of gravity, the equation of motion obtained
by taking moments about O is

W(h2+7c2)%2= — Wghsin,

since the impressed force of gravity is Wy poundals, acting
. vertically through G; so that

2 ]2

<k+%>%%2= —gsinf;

or, on putting h+k2h=1,

oo

TE= —gsin O, (1)

G.E.F. A
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If the gravitation unit of force, the force of a pound, is
employed, then the equation of motion is written

W,oo, 100070 .
—g—(h "I"k )%ﬁ = — Wh sin 9,
reducing to (1) as before.

2. Producing OG to P, so that OP=I, GP=FL?*/h, the point
P is called the centre of oscillation (or of percussion); andl is
called the length of the simple equivalent pendulum, because
the point P oscillates on the circle AP in exactly the same
manner as a small plummet suspended by a fine thread from
O (fig. 2); as is seen immediately by resolving tangentially
along the arc- AP=s=106; when the equation of motion of

- d?s

the plummet is pE= 9 sin = —gsin %,
or UdPO/dt)= —g SInB;.ccviiiviiiiniinnnnen. 1)
and integrating, $U(dB/dt)?=C—gversf. .....ccooveivivinnennnn. (2)

These theorems are explained in treatises on Analytical
Mechanics, such as Routh’s Rigid Dynamics, or Bartholomew
Price’s Infinitesimal Calculus, vol. IV., and might have been
assumed here; but now we proceed further, to the complete
integration of equation (2). -

3. First suppose the pendulum to oscillate, the angle of
oscillation BOA + AOB’ being denoted by 2a (fig. 2); the angle
of oscillation is purposely made large, as in early clocks, in the
Navez Ballistic Pendulum, in a swing, or as in ringing a
church bell, so as to emphasize the difference from small
oscillations, the only case usually considered in the text-
books; in fig. 2 the angle of oscillation is made 300°.

Then d6/dt=0 when §=aqa, so that in equation (2)

O=gvers a;
and now denoting g/l by n?, so that n is what Sir W. Thomson
calls the speed (angular) of the pendulum,
3(dB/dt)>=n¥vers a—vers 0)
=20%(sin?fa —SIN2E0),.c.viniinnininii 3)
since  vers =2 sin?L0 ;
df/dt =2n,/(sin?} a —sin?10),

0 40
d t= 2 4
an " 0/;/ (sin®t o —sin®46) ®)
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and (4) is called by Legendre an elliptic integral of the first
kind ; it is not expressible by any of the algebraical, circular,
or hyperbolic functions of elementary mathematics.

4. To reduce this elliptic integral to the standard form con-
sidered by Legendre, we put
sin}0=sinka sin ¢,
equivalent geometrically to denoting the angle ADQ by ¢
(fig. 2), where AQD is the circle on AD as diameter, touching
BB’ in D, and cutting the horizontal line PN in .
For, in the circle 4P,

AN=Ivers 0=2lsin?10;
and, in the circle 4Q,

AN=}AD vers 2¢ = AD sin’p
=] vers a sin?¢ = 2 sin%}a sin’¢.

Now sin?fa—sin?40 =sin%4a cos?p,
and $0=sin"1(sin}a sin ¢),
ind
sinfa cos ¢pd
so that dio= z P

(1= sinzl, o sin2¢)’

nt
' _ﬂ/(l - smzéa sinZp)’

which is now an elliptic mtegral of the first kind, in the
standard form employed by Legendre.

(Fonctions Elliptiques, t. 1., chap V1)

5. In Legendre’s notation, sin}« is replaced by «; the quantity

(1 —k?sin’¢p) is denoted by A¢ or A(¢,«); and the integral

qub/A(p or / —?sin%p)~%dg is denoted by Fe or F(g,«),

and called the elliptic integral of the first kind, ¢ being called
the amplitude and « the modulus.
Thus, in the pendulum motion,

nt=Fe¢, or F(¢, sinka).
Legendre employs ¢ instead of x, and puts k=sin 6 (a different

0 to what we have just employed) and calls 6 the modular
angle ; and he has tabulated the numerical values of F(¢,«) for
every degree of ¢ and 0. (Fonctions Elliptiques, t. I1. Table IX.)

Legendre spent a long life in investigating the properties of
the function F¢, the elliptic integral of the first kind ; but the
subject was revolutionised by the single remark of Abel (in

and therefore




THE ELLIPTIC FUNCTIONS. 5

1823), that F'¢ is of the nature of an inverse function ; and that
if we put u=F¢, then we should study the properties of ¢,
the amplitude, as a function of u, and not of w as a function
of ¢, as carried out by Legendre in his Fonctions Llliptiques.

6. Jacobi proposed the notation ¢ =am u, or am(u, «) when
the modulus  is required to be put in evidence; and now,
considered as functions of u, we have Jacobi’s notation

€OS ¢p =COSs am w, sin ¢ =sin am w, A¢p =A am 1,
the three elliptic fumctions of w; and in Jacobi’s Fundamenta
Nova (1829) the properties of these functions,
cos am U, sinam a, A am u,
are developed, the elegance of Jacobi’s notation tending greatly
to the popularity of this treatise.

7. Definition of the Elliptic Functions.

Jacobi’s notation is rather lengthy, so that nowadays, in
aceordance with Gudermann’s suggestion (Zheorie der Modular
Fumnctionen, Crelle, t. 18), cosam w is abbreviated to cnuw,
sinamw to snu, and Aamw to dnw; and

cnw, snw, dnw
are the three elliptic functions (pronounced, according to Hal-
phen, with separate letters, as ¢, n, w; s, n,%; d,n,u); and they
are defined by
en u=cos ¢, sn w=sin ¢, dnw=A¢p = /(1 —x?sin’p);
where ¢ is a function of u, denoted by am u, and defined by
the relation

u:_/ ?(1— ¢ sin?p) ~¥dgp,

s0 that U= j?f—- K% sin’p) ~3dg ;
0
and d jlﬁ u.= ﬁll% = N/ (1 - K2 sin2¢) = dn .
, denu _dcosgp . dg )
Thence T = du = —sing o =— snu dnuw;

and similarly
dsnu_dsing de .
P cos¢cm—— enwdnw;
ddnu_ dA¢  (sinpcospdgp
= du =— A du=" 25N en w ;

and
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8. Returning now with these definitions and this notation
to the motion of the pendulum, we have, on comparison,
u=mnf, while x=sinla, so that the modular angle is }a;
and k=AD/AB=AB/AL, Q*=AD|AE (fig. 2);

also ¢=amu, cos p=cnu, sin ¢p=snw, dp/dt=ndnw;
dB/dt=2nk en w=2nk cn nt,
sin}0= «ksnu= ksnni,
cosif=  dnu= dnut;.

AP=ALsin }0=ABsnnt, PEi=AFcos {0 =AE dn nt;

AN=ADsn®*nt, ND=AD en’nt, NE=AE dn’nt;

NQ=,/(AN.ND)=ADsnntcnnt, NP=ABsnnt dnnt;
giving these quantities as elliptic functions of » or nt.

9. We notice that «=0 for infinitely small oscillations of
the pendulum, the only case usually treated in the text-books;
and now ¢ =u=nt, so that

cn % =¢cos U, snw=sinw, while dnu=1;
and the elliptic functions have degenerated into the ordinary
circular functions of Trigonometry.

But in finite oscillations of the pendulum, where x is not
zero, these new functions are required, which are called the
elliptic functions; and their geometrical definition is exhibited
in fig. 2, in a manner similar to that employed in Trigonometry
for the circular functions.

The name elliptic function is somewhat of a misnomer ;
but arose from the functions having been first approached by
mathematicians in their attempt at the rectification of the
ellipse (§ 77). :

For finite oscillations the circular functions are applicable
only to cycloidal oscillations, as discovered by Huyg\%ens, 1673,
whence the motion on the arc of a cycloid is generally investi-
gated at length in elementary treatises; but this discussion
may be considered as of mere antiquarian interest, now that we
are proceeding to discuss the finite oscillations of the pendulum
by the aid of the elliptic functions.

We may however make here a slight digression on cycloidal
oscillations, treated in the manner we have employed for
circular oscillations.
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10. Cycloidal Oscillations.

In the cycloid, fig. 4, the angle ADQ or ¢=nt (not am nf,
as in the circular pendulum) for all finite oscillations; for
as P oscillates on the arc BAB of the inverted cycloid
described by the rolling of the circle A%, @ follows P at the
same level on the circle AD with constant velocity.

9

%
I
)

e N

N\
g/rxx/ﬁ/
("

s

b

Fig. 4.

For if PQN meets the circle on A E as diameter in R, then,
from a well-known. property of the cycloid, the tangent T'P is
equal and parallel to A R, and half the arc AP ; and if n, p, ¢, r
denote simultaneous consecutive positions of N, P, @, R,

the velocity of Q=1th=It let@

the velocity of P~ " Pp  Nn Pp

=cosec QP sin pPQ=cosec AFQ sin AER
_LAD AR _}AD |[AN.AE _ }AD
T NQ AE AENAN.ND ,/(AE.NDy
Now the velocity of P=,/(2g. ND)
and therefore the velocity of Q=%4D,/(29/AE)
=A4AD./(g/l)=n.AD, a constant,
if AF=1}l; and therefore the angular velocity of @ about D
is m, and the angle 4 DQ= ¢ =mt.
Therefore the oscillations are isochronous, since the period
27[n=2w4/(l/g) is independent of the amplitude of oscillation.
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But in the circular pendulum the period increases with the
amplitude or angle of oscillation; because in the circle AP
(fig. 2) the versed sine AN varies as the square of the chord
AP, while in the cycloid AP (fig. 4) the versed sine AN varies
as the square of the arc AP,

The time from P to A on the cycloid is equal to the cm.
(circular measure) of the angle 4.DQ divided by » or \/(9/l);
and generally the time over any finite arc Pp of the cycloid
will be equal to the c.m. of the corresponding angle QDg divided
by m, supposing the body to start from the level of D.

This will be true even when the point D is above E, as at
I, so that the body enters the cycloid with given velocity;
as for instance in the case of a railway train entering with
given velocity V a cycloidal tunnel BAB under a river.

Making DD'=1V?/g, the impetus of the velocity V, then
the time occupied by the train in the tunnel from B to B’ is
twice the c.m. of AD'C divided by n.

Also if the length of the tunnel is 2s, then s=,/(2lh), if
AD, the depth or versed sine of the tunnel, is 2 ; so that the
time occupied is

2 l 2s h
A0 17[7‘2\/ 1)1)' Jaghy / (IV%>

11. The Period of the Pendulwm, and of the Elliptic
Functions.

The period of the pendulum is the name now given to
the time of a double swing, according to the report of a Com-
mittee at the Conference of IKléctricians im Paris, 1889;
thus, if the swing is small, the period is 27,/(I/g) seconds.

But if the angle of vibration 2« is finite, the period is in-
creased ; denoting the period by 7, and therefore the quarter-
period, or time of motion of P from 4 to B (fig. 2) by 1T
then as ¢ increases from 0 to 17, 0 increases from 0 to «, and q;
from 0 to 47, so that nt or « increases from 0 to K, where (§ 4)

K:ﬁfr— csin) ~idg ;
0

and K (or I in Legendre’s notation, and called by him the
complete elliptic integral of the first kind) is now called the
real quarter period of the elliptic functions, to the modulus .
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Now, expanding by the Binomial Theorem,

el 3B 2n—1)
A=sin’g) =142, o 6. 2 < Cng™

and, by Wallis’s Theorem,

i 1.3.5...2n—-1),
(sin p)Prdep = 2 4. 6... on
0
3.5 ... (2n—1)\2
sothat K= T},-m-[] +2{})-Z-g——(%>} Kn]

Thus the period of a pendulum of length /, oscillating through
an angle 2a, is

T=%f—(= ‘771-\/—5{1 + (%>2 (sin}a)?+ (;AEY (sinda)*

g
+ (532 Gimgar+. .

As a first approximation therefore in the correction for am-

plitude of swing, the period must be increased by the fraction
1(sin La)? of itself, or by 100(} chord of «) per cent.
" Thus a pendulum, which beats seconds when swinging
through an angle of 6° will lose 11 to 12 seconds a day
if made to swing through 8°, and 26 seconds a day if made to
swing through 10°. (Simpson’s Fluwxions, § 464.)

The value of K or £k has been tabulated by Legendre
for every degree and tenth of a degree in the modular angle
(Fonctions Liliptiques, t. 11, Table IL.).

We denote the modular angle by fa, and put «=sin}a;
while cosla is denoted by «" and called the complementary
modulus, so that

K24x?=1;
and then I’ is denoted by K, and called the complementary
‘quarter period.

The following table (from Bertrand’s Caleul Intégral, p. 714),
gives the logarithms of the quarter periods K and K’,correspond-
ingtoeveryhalf degree ina,the quarter angle of swing; and then

2kk’=sin a, k =sina, £ =cos}a,
and }a is the modular angle.

The modular angle in the Table is given from 0 to 45°; to
determine K for a modular angle greater than 45°, we look

out the value of K’ corresponding to the complementary modu-
lar angle. '
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12 THI ELLIPTIC FUNCTIONS.

12. We notice that when the modular angle is 15° then
log K'/K =2385606 =1} log 3, so that K'/K=,/3:

this will be proved subsequently; but it shows here that the
period of a pendulum oscillating through 300° is /3 times the
period when the pendulum oscillates through 60°.

Again we shall prove subsequently that,
if K'|K=,/7, then 2k’ =1}
so that equal parallel horizontal chords, BB the higher, and
bb’ the lower, each of length one-eighth the diameter, cut off
ares of the circle below them, which would be swung through
by the pendulum in times which are in the ratio of /7 to 1.

Many other similar numerical examples can be constructed
when the Theory of the Complex Multiplication of Elliptic
Functions is studied.

1% When a=4m, the pendulum drops from a horizontal
position and swings through two right angles, as in the Navez

Elektro-Ballistic Penduliim ; and now K=K’ and the modular
anglle is 1.

able II. from Legendre’s Fonctions Elliptiques, t. 11, gives
t¢ five decimals the value of w=UF¢ for every half degree in
the value of ¢, when the modular angle is 45°; and thence by
means of the preceding formulas which determine the motion
of the pendulum by elliptic functions, the pendulum can be
graduated so as to measure small intervals of time At=Au/n,
" as required for electro-ballistic experiments.

Then from Table IL, when K=K', and x=«"=L,/2,

en w=Cos ¢, sn u=sin ¢, dnu= /(1 -4 sin’p).
14. Generally in the pendulum, K =2nT, so that the period
T=4K|n=4K,/(l|g).

When «=0, K=}, and the period is 27,/(l/g), as proved
otherwise in the ordinary elementary treatises, for small
oscillations of the pendulum.

But in the finite oscillations of the pendulum, with
w=mnt=4Kt/T,

then (§ 8) d@/dt = 2nk cn 4K¢/T,
sinf0= xsn 4K1t/7T,
cosff=  dn4Kt/T, ete.

Putting t=0, u=0, we find

en0=1,sn0=0,dn0=1;
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and putting t=3T, u=K, ¢ =14m,
when the pendulum has swung to OB, ‘
en K=cos r=0,sn K=1, dn K =« V2

while putting t=3T, u=2K,
when the pendulum is swinging backwards through the verti-
cal 04, en2K=—1,sn2K=0,dn2K=1; -

analogous to the values of cos 6 and sin 6, for 0=0, ix, 7;
so that 2K is the half period of the elliptic functions, corre-
sponding to the Lalf period = of the circular functions.

Slnce/gl¢/A¢ /&¢/A¢ ﬁgb/A(/) 2K *u, if p=amu,

therefore am(ZK + %) = 7*¢p= sEamu;

and generally am(2mK xu)=mmrt=mzrEtam u;

so that en(2mK tu)=cos(mmrtam u)= (—1)"cn a,
sn(2mK xu)=sin(mrtamu)= £(—1)"sn u,

while dn(ZmK tw)=dn u;

analogous to  cos(mmt0)= (— 1)méos 6,

sin(mr+£0)=*(—1)"sin 0;
and representing the motion, m half periods, past or future.
15. The degenerate Circular and Hyperbolic Functions.
As ¢ Increases from 0 to =, « increases from O to 1, and A
from 7 to infinity; the pendulum has now, with k=1, just
sufficient velocity to carry it to the highest position, and this
will take an infinite time.
For with a =, equation (3), page 3, becomes
1(d0/dt)? =n¥1+cos 0) =2n2 cos?L0 ;

© 8
nt= [seciO d}6

- log tan}(x -+ 0) =log(sect0+ tanif),
which is infinite when 6 =.
In small oscillations the period is 27/n, and the motion of
M, the projection of P on the horizontal axis Aax, is then a
Simple Harmonic Motion (S.H.M.) given by the differential

dx 2
dt+ z=0,

the solution of which is

x =4 cosnt, or Bsinni, or 4 cosni+ Bsinnt, or ¢ cos(nt+e);
so that » is the constant angular velocity round D of the point
@ on the infinitesimal circle A@QD, as in the cycloid.

equation
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In Kepler’s Problem in Astronomy, m represents what is
called the mean motion of a planet or satellite, and nt or nt+e
the mean anomaly ; a satellite of Jupiter, when observed in
the plane of its orbit, supposed circular, will appear to move
with a s. H. M.

But with ~ x=1, putting 40 =¢= angle AEP (fig. 3)

nt -—_/éec pd¢=log(sec p+tan ¢),
so that sec ¢ ftan b= e,
sec ¢ —tan p=e"",
sec ¢ = 4(e™ 4 ¢~")=cosh nt,
tan ¢ = $(e™ —e~") =sinh nt,
sin ¢ =tanh nt, cos ¢ =sech nt,
tani ¢ =tanhint, and so on.

Also dB/dt=2mn costf=2n sech nt;
so that if the angular velocity of the pendulum in the lowest
position 04 is 2n, the pendulum will just reach the highest
position OE ; but the time occupied in reaching it will be in-
finite, since 6=, ¢ =4 makes nt and therefore ¢ infinite.

The velocity of P in any position is

U(dB/dt)=2nl cos}f=mn.EP,
and therefore varies as EP.

If EP in fig. 3 is produced to meet Az in M, then

AM = AE tan}0=2lsinh nt, EM' = KA sect0 =2l cosh nt;
so that, if AM’ or EM’ is denoted by w,

%’— n*r=0,
the general solution of which differential equation is
=4 cosh nt+ B sinh nt.

16. When the pendulum just reaches the highest position
OL, k=1; and w (or nt) and ¢, the cm. of the angle AEP,
are connected by the relations

u=/see ¢ dp=1log (sec ¢+ tan ¢)
=coshsec ¢ —sinh-ltan ¢ =tanh-Isin ¢ =2 tanh-‘tan}¢.
Conversely
¢ =cos~'sech w=sin"'tanh u= tan-Isinh 1 =2 tan-ltanh éu
and then ¢ is called by Professor Cayley the Gudermunnian
of u, and denoted by gd w; so that if ¢ =gd u, then
u=gd-1¢p=log (sec ¢+ tan ¢)=cosh~’sec ¢, ete.
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Hoiiel proposes for ¢ the name of hyperbolic amplitude of
w, with the notation ¢ =amh u, instead of gdw; so that

amh u
uw =-/s:ec odo ;

w
or g =amh u= /;ech udw = cos ~Isech u =sin~'tanh u, etc;
0
analogous in the general case of the elliptic functions, for any

modulus «, to (§ 7)
F-ly=amu =f dnudw= cos~enu= sin~'snu, etc.
0

As degenerate forms, when =1,
en w=sech u, sn u=tanh u, dn w=sech u ;
while, with x=0,
en ®=cosu, snuw=sinw, dn w=1.

Thus, when =1, the elliptic functions degenerate into the
hyperbolic functions; and, when k=0, into the circular func-
tions; but with any other value of the modulus «, the elliptic
functions must be considered as new functions, of a higher
order of complexity than the circular or hyperbolic functions.

The following Table, from Legendre, F. K., t. II, Table IV.,
gives the values of

w=1og (sec ¢ +tan ¢)=log tan(}r+L¢)
for every degree of ¢ radians; whence the numerical values of
the hyperbolic functions of 4 can be determined, by aid of a
table of circular functions, and by the relations
cosh u=sec ¢, sinh u =tan ¢, tanh u=sin ¢, ....
For values of w greater than about 4 the Table fails; but
then it is sufficient, to two decimals, to take
cosh u= sinh u = Jev;
log,,cosh u =log,sinh = Mu—log 2 ;
or, to a closer approximation,
log;,cosh w=Mu—log 2+ Me-2, ..
logyesinh w=Mu—log 2 — Me-%, ..
logtanhu = —2 Me-% .
M denoting the modulus log;e.

(Proposed Tables of Hyperbolic Functions, Report to the

British Association, 1888, by Prof. Alfred Lodge.)

*y

b

v
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TABLE III.
4 % ¢ % ¢ u
6 0+00000 | 0°00000 30 | 052360 0'5493_1 60 | 1:04720 | 1-31696
1 001745 | 0°01745 31 | 0°54105 | 0:56956 61 | 1-06465 | 135240
2 | 0°03491 | 003491 32 | 0°55851 | 0:59003 62 | 1-08210 | 1-38899
3 | 005236 | 00523 33 | 0°57596 | 0°61073 63 | 1:09956 | 142679
4 | 0°06981 | 0-06987 34 | 0'59341 | 063166 64 | 1-11701 | 1-46591
5 | 0°08727 | 6:08738 35 | 0°61087 | 0°65284 65 | 1'13446 | 150645
6 | 0°10472 | 0°10491 36 | 062832 | 067428 66 | 1°15192 | 154855
7 1 0°12217 | 0-12248 37 | 0°64577 | 069599 67 | 1-16937 | 1'59232
81 0°13963 | 0°14008 38 | 066323 | 071799 68 | 1-18682 | 163794
9 | 0°15708 | 0°15773 39 | 0°68068 | 0-74029 69 | 1-20428 | 1-68557
10 | 0°17453 | 0°17543 40 | 069813 | 0-76291 70 | 1:22173 | 173542
11 | 019199 | 0-19318 41 | 0°71558 | 0-78586 71| 123918 | 178771
12 | 020944 | 0-21099 42 | 0°73304 | 080917 72 1 1-25664 | 1-84273
13 | 0-22689 | 022886 43 | 0°75049 | 0-83284 73 | 1-27409 | 1-90079
14 | 0-24435 | 0-24681 | | 44 | 076794 | 085690 | | 74 | 1-29154 | 1-96226
15 | 026180 | 0-26454 | | 45 | 078510 | 088137 | | 75 | 1:30900 | 202759
16 | 0-27925 | 0-28205 | | 46 | 0-80285 | 000628 | | 76 | 132645 | 209732
17 | 0-29671 | 0-30116 47 | 0-82030 | 093163 77 | 1-34390 | 2°17212
18 | 0:31416 | 0-31946 48 | 0°83776 | 0°95747 78 | 1-36136 | 225280
19 | 033161 | 0-33786 49 | 0-85521 | 098381 79 | 1-37881 | 234040
20 | 0°34907 | 0°35638 50 | 0-87266 | 1'01068 80 | 139626 | 243625
21 | 0°36652 | 0-37501 51 | 0-89012 | 1-03812 81 | 1-41372 | 2:54209
22 | 0:38397 | 039377 52 | 0°90757 | 1°06616 82 | 143117 | 2-66031
23 | 0°40143 | 041266 53 | 0°92502 | 1-09483 83 | 1'44862 | 279422
24 | 0°41888 | 043169 54 | 0°94248 | 112418 84 | 1+46608 | 2-94870
25 | 0°43633 | 0°45088 55 | 0°95093 | 1°15423 85 | 148353 | 313130
26 | 0°45379 | 047021 56 | 0-97738 | 1'18505 86 | 1'50098 | 3-35467
27 | 0°47124 | 048972 57 | 0°99484 | 1-21667 87 | 1'51844 | 3-64253
28 | 0-48869 | 0-50939 58 | 101229 | 1-24916 88 | 153589 | 4-04813
29 | 0:50615 | 0-52925 59 | 1-02974 | 1-28257 89 | 153334 | 4:74135
30 | 0-52360 | 054931 60 | 1-74720 | 131696 90 | 1-57080 | infinite.
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Considered as a function of the latitude ¢, u was called the
meridional part by Edward Wright, 1599, who first employed
it for the accurate construction of the parallels of latitude on
the Mercator Chart, by making the ratio of the distance from
the equator of the parallel of latitude ¢ to the distance between
the meridians whose difference of longitude is ¢ equal to the
ratio of u/¢ (§ 98). '

17. Returning to the general elliptic functions, we notice
that cn’u+4 sn’u=1,

dn?u+k%sn®u =1,
dn®u —kPen’u=x'%;
or, in a tabular form,

cn sn dn
cn = en u (A =sn?u) | /(dndu—x?)/k
sn = /(1 —cn®u) snw &/ (1 —dn?w)/k
dnu= | J/(?+Zenu) | /(1 —rsn’u) dnw”

whence any one of the three elliptic functions en, sn, dn, can
be expressed in terms of any other; the three functions are
thus not absolutely necessary, but all three are retained and
utilized for simplicity of expression, as sometimes one and
sometimes another is most appropriate for the particular pro-
blem in hand ; in the same way, of the circular functions
cos 0, sin 0, tan 0, cot 0, sec 0, cec 0, vers 6,

one would be sufficient, but all are useful; and so also with
the hyperbolic functions cosh u, sinh u, tanh'u, ....

For the reciprocals and quotients of the elliptic functions
cn, sn, dn, a convenient notation has been invented by Dr.
Glaisher, according to which 1/enw is represented by ncwu,
1/snw by nsu, 1/dnw by nd v, enw/dnw by ed v, and so on.

In this manner snu/enw would be denoted by scw; but it
is more commonly denoted by tanam u, abbreviated to tnuw;
while enu/sn w or esw would be denoted by cotam u, or ctn u.

According to Clifford (Dynamic, p. 89) we might abbreviate
the designation of the hyperbolic cosine, sine, and tangent to
he, hs, and ht; or we may write them ch, sh, th; with cn, sn,
tn for the elliptic functions; and merely ¢, s, t for the circular

functions.
G.E.F, B
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18. Pendulum performing complete revolutions.

Secondly, suppose the pendulum performs complete revolu-
tions (fig. 3).

We have seen previously (§ 15) that if the pendulum has
an angular velocity 2n=2,/(g/l) in the lowest position, it
will just reach the highest position; and therefore if this
angular velocity is increased, the pendulum will perform com-
plete revolutions.

The integration of equation (1) in the form

112(dB|dt)>=C—gl vers 0
or 11?94+ AN=AD, a constant, denoted by 2R,
shows that the velocity of P is that which would be acquired
in falling freely from the level of a certain horizontal line
BDPB’, which now does not cut the circle, as in fig. 2 when the
pendulum oscillated, but lies entirely above the circle, as in
fig. 3, at a height 2R above the lowest point 4 ; and the im-
petus of the velocity of P is the depth of P below BB
Denoting the angle AEP by ¢, so that ¢ =40, then

20(dep/dt)?=g(2R—1 vers 2¢)=2g(R — sin¢),
$ ¢

2 2
or C%)) =%§<1 - %sinzqi)) = 2—2(1 —k? sin’¢),
on putting K?=l/[R=AE[AD; and n*=g]l, as before ;
so that ntfe=[{1—«® sin’p)~tdg = F(g, «),
0

in Legendre’s notation; and inverting the function according
to Abel’s suggestion, with Jacobi’s notation,
30=¢p=am(nt/x, «);

and now, with Gudermann’s abbreviated notation,

cos 10 =cn nt/x,

sin 0=sn nt/x,

%g = 2“;" dn ntfx,

AN =l vers =2l sin’p = A E sn’nt/x,
NE=AEcen®ntlx, ND=AD dn’nt/k,
AP=AFEsnnt/k, PE=AFE cnntfk,
NP=2lsin {0 cos 160 =4 E snnt/x cn nt/x.
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19. The time of moving from A to £ is obtained by putting
‘¢=1m, and is therefore Kx/n; and therefore the period, or
time of a complete revolution, is 2K«/n (not 4K«/n).

With the series for K as given in § 11, and with «*=I/R,
the period of the pendulum for a complete revolution is

R O G e G50 w4

The analogous expression for the period when the pendulum
oscillates, rising on each side to a height 2R, less than 2/, is,
as in § 11,

o[ (O (D (L2 57),

Putting k=1, and R=1I, makes K infinite, and brings us back
again to the separating case between oscillations and complete
revolutions of the pendulum; and we thus regain for this
case the original expressions involving hyperbolic functions,
previously investigated in § 15.

But as ¥ now diminishes again from 1 to 0, the pendulum
revolves faster and faster, until finally, when x=0, we must
suppose the pendulum to revolve with infinite angular velocity,
the fluctuations of which for different positions of P are in-
sensible ; and the period is now zero.

20. We notice that, in the circle AQ (fig. 2) the point @

moves according to the law

¢ =am nt, ;
so that @ moves round in a circle, centre C, in fig. 2 like the
point P making complete revolutions in fig. 8.

But now, in the motion of @, gravity must be supposed
diluted from ¢ to «*g; for if R or «* denotes the radius of the
circle AQ, ¢’ the diluted value of gravity, and n’'=,/(¢'/R) the
speed of the pendulum C@), then we must have

¢=am nt=am n't/k,
so that ' =xn,
g IR=xgll,
9 lg=k*RJl=x*

We may dilute gravity in the circle AQ by inclining the

plane of the circle to the vertical at an appropriate angle.
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21. Another way of diluting gravity would be to replace the
circle A(Q) by a tine tube in the form of a uniform helix with
horizontal axis through its centre C' perpendicular to the plane
of the circle AQ, and to suppose the particle ) to move in this
helix under gravity.

Then we shall find that if the length of one complete turn
of this helical tube is equal to the circumference of the circle
AP, the particle  moving with velocity due to the level of £
will follow the motion of the particle P moving on the circle
AP with velocity due to the level of D, so that PQ will always
be horizontal, if once it is horizontal, and P, @ will always be
at the same level during the motion.

For in this case the mechanical similitude is secured by in-
creasing the square of the velocity of @ in the ratio of 1 to
1/k%, instead of diluting gravity to «'g.

We may secure the same effect by supposing @ to be a point
on a pendulum O, of length greater than CQ; or else of length
0@, but of which the axis C is cut into a smooth screw of
appropriate pitch; or else engaging with teethed wheels, so as
to increase the angular inertia about C.

22. If we produce 0@ to any fixed distance CQ'=U’, then ¢
will also perform complete revolutions like a pendulum of
length I, with gravity changed in a certain fixed ratio depend-
ing on '; and we can keep gravity unchanged by choosing I/
so that n2=g/l' =*n’ =%/,
or U=1/k*=1 cosec*}a;
and now () revolves with velocity due to a level at a height
21/k* =2l cosect}a above its lowest position; so that the period of
revolution of a simple pendulum of length [ cosec?sa, when the
velocity is due to the level of a line at a height 2/ cosec*sa above
its lowest point is equal to the time of oscillation of a simple
pendulum of length I through an angle 2a from rest to rest.

These problems on the pendulum have been developed here
at some length, in accordance with the idea of this Treatise,
that it is simple pendulum motion which affords the best
concrete illustration of the Elliptic Functions.

Similar principles are involved in the following three
theorems, which the student can prove as an exercise in the
manner employed for the eycloid in §10.
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1. If two vertical circles, of diameters AD and AE, touch at
their lowest points 4, the time of oscillation from rest to rest
of a particle in the circle AF with velocity due to the level
of D will be to the time of revolution of a particle in the
circle 4D with velocity due to the level of E in the ratio of
AE to AD (fig. 2).

2. Two particles move, under gravity, in vertical circles.
The one oscillates; the other performs complete revolutions.
Prove that if the height to which the velocity of the first is due
bears to the diameter of the first circle the same ratio as the
diameter of the second circle bears to the height to which the
velocity in it is due (the heights being measured from the low-
est points of the circles) the ratio of the squares of the times
in corresponding small arcs—and therefore the squares of the
whole times of oscillation and revolution—will be that com-
pounded of either of the before-mentioned equal ratios and
the ratio of the diameters of the circles.

3. Two equal smooth circles are fixed so as to touch the same
horizontal plane, their planes being at different inclinations;
two small heavy beads are projected at the same instant along
these circles from their lowest points, the velocity of each bead
being that due to the height of the highest point of the other
circle above the horizontal plane, show that during the motion

the two beads will always be at equal heights above the hori-
zontal plane.

23. We have compared the motion of the pendulum in fig. 1
with that of the simple equivalent pendulum composed of
the particle P moving on a smooth circle, or at the end of a
fine thread or wire OP ; oscillating from B to B in fig. 2, and
performing complete revolutions in fig. 3, the velocity of P at
any point being that acquired in falling from the level of D.

Taking as coordinate axes the horizontal and vertical axes
Ax and Ay through 4, and referring the motion of P to the
coordinates « and vy, then since P describes the circle AP of

radius [, x?=2ly — 12
Denoting by v=ds/dt the velocity of P, then by the principle
of energy 1 g=2R—y,

2R denoting the height of D above 4.
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de l—y

dy~ @y -y
ds? da? 12

But since

ay =t ayp e =
while 1(dsjdty?>=g(2R—1);
so that HA(dy[dt2=gRR—y)(2ly —y?),
a1 1
@— V@9 J{CR=y)@ly—1P)Y

l Yy dy
Y 29/ NACR=y)Ely =y
called an elliptic integral in v, and of the first kind.

24. Firstly, if the pendulum oscillates, R is less than [, and
y oscillates between 0 and 2R; and the integral is reduced to
Legendre’s canonical form by putting y =2Rsin%p; when

nt=f(1—k?sin?p)~tdg = F(¢, x),

where K2=R[l, n?=g/l;

and therefore with Jacobi’s and Gudermann’s notation,
¢ =am(nt, k)

and y=2R sn’nt=2l® sn’nt, © =2k snnt dnnt;

or AN=ADsn*nt, ND=AD en’nit, NE=AE dn’nt,
as before, in §8.

25. When «=0, the oscillations are indefinitely small;
and now y=2R sin’nt,
where R is a very small quantity ;

bdy in-1, )Y
g s
an ordinary cu‘cular integral.

It was Abel who pointed out (about 1823) that in looking
only at the Elliptic Integrals, mathematicians had been taking
the same difficult point of view as if they had begun to deduce
the theorems of elementary Trigonometry from an examination
of the properties of the inwerse circular functions, as deduced
from the circular integrals.

(Niels-Henrik Abel. Tableauw de sa wvie et de son action
scientifigue. Par C. A. Bjerknes. 1885.)
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26. Secondly, if the pendulum performs complete revolu-
tions, as in fig. 3, R is greater than [, and y oscillates in value
between 0 and 2/; we now reduce the elliptic integral in §23
to Legendre’s standard form by putting y =20 sin¢,

when ntfic=f(1—«®sin%p)~*dp=F(¢, )
0
where K*=1/R,

the reciprocal of its former expression ; and now

p=am(ntfk, k), y=2lsn’*nt/x, =20 snnt/x cnntfk;
or AN=AEsn’nt/x, NE=AE cn’nt/k, ND=AD dnnt/x,
as proved before, in §18.

27. In the separating case between oscillations and complete
revolutions, R=1, and now k=1

and  y=20sin’p=10vers2¢p=1{ vers 0;
also (§23) nt= fsec pdep =log(sec ¢ +tan ¢)
=cosh~'sec¢ —sinh-ltan ¢=tanh-'sin¢ =2 tanh-'tani¢;
so that ¢ =gdnt, or amh nt,
and sec ¢p =cosh nt, tan ¢ =sinh nt, sin ¢ =tanh =i,
vy =20 tanh?nt, x =20 sech nt tanh nt,
as before, in § 15.

28. Lamden’s Point.

With centre £ in fig. 2 and radius ZB describe a circle
cutting the vertical A% in L; then L is an important point in
the theory of pendulum motion and elliptic functions, called
Landen’s point.

Since EB*=ED.EA=EC?*— (A2
therefore the circle, centre £ and radius B, will cut the circle
AQD, centre C, at right angles; and

L@PP=LC?+0Q*+2LC.CN=2LC. EN=2[(1— (' EN;
since LC?4+0Q*= L0+ EC*—EL?=2LC. EC,
and EL=EB=2l', EC=(1+4«"?), LC=Il(1-")
Now, by § 20, the velocity of @
=2y EN)=/(29c*. EN)=mn«2/(2l. EN)
=n.LR(1+«"). _

Similarly in fig. 3, where P makes complete revolutions, the
velocity of P=mn.LP(1+«')/k, where the Landen point L is
obtained by drawing a circle with centre D, cutting the circle
AE orthogonally, and the vertical 4D in L.
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We shall prove subsequently that any straight line through
L divides the circle APE in fig. 3 (or the circle AQD in fig. 2)
into two parts, each described in half the period.

29. Change from one modulus to its veciprocal.

It is important for the simplicity and for convenience of
tabulation of the elliptic functions that the modulus « should
not exceed unity; but the preceding reductions of the motion
of the pendulum to elliptic functions, in the two cases in which
the pendulum oscillates and performs complete revolutions,
show us how to make the elliptic functions to a modulus «,
which is greater than unity, depend on the elliptic functions
to the reciprocal modulus 1/k, which is less than unity.

For, on comparing the two expressions for y, according as
the pendulum oscillates or performs complete revolutions,

y=2R sn’(nt, k), or 20 sn¥knt, l/lc),

where K*=RJl;
so that kZssni(nt, k) =sn*(knt, 1/¢) ;
or, putting nt=u,

csn(w, k) =sn (ku, 1/«),
so that dn(w, k) =cn (ku, 1/kc),

en(u, k)=dn (xw, 1/x).
Independently, if we suppose ¢=am(u, x), and if we put
& sin ¢ =sin
then K €08 ¢ dp=cosJr drf,
and cos ¢=,/(1—«~3inn)) =AY, 1/k),
cos Yr=/(L—«3inp) =A(¢, x);

so that u=_/@ —k%sinp) ~¥dp = [fsec | dg ;

KW =ﬁec P d\// =‘/(‘1 —kKk~ 2.‘51102\[/)—%0&#,

or Y=am(ku, 1/c);
and since k sin ¢ =sin +, ete,
therefore & sn(u, k) =sn(ku, 1/x), ete.
When u=K, ¢=4m, and J=sin"; so that, if « is less
sin~ 1k

than unity, Kk=/ (1—k"%in®y) - tdy.
0
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30. Rectilinear Oscillations expressed by Llliptic Functions.
In simple pendulum motion, referred to horizontal and ver-
tical axes A, Ay, drawn through the lowest point 4, we have

shown in §§ 24, 26, that
y=2l%nnt, =2k sn nf dn nt;
or y =2lsn’nt/k, =21 sn nt/x cn nijx ;

according as the pendulum oscillates or performs complete
revolutions.

Treating the vertical motions separately, and differentiating
according to the rules established in § 7, we find, on taking
1y =2lk*sn’nt,
dy/dt=4lnk*sn nt cn nt dn nt
APy |dt? = dnAE(en’*nt dn?nt —sn’*nt dn?nt —k%sn?nt en?nt)

=4ln2/<2{(1-—%cz><1 gz) ‘)?lj,c (1 ?2/Z> gl( Wﬂ
G (s 2+4j! z> by § 17.

Taking y = 2lsn’nt/k, we find in a similar manner
dry  4ln? K2y | 3iPy?
= (=)
both immediately obtainable from the equation of § 23,
§A(dy/de)*=g(2R—y)(2ly —97)
whence P(dPy|de®) = 4g(Rl— Ry —ly +1y?).
We shall find similar expressions for clzy/dt2 when y varies
as en’nt or dn’nt, all of the form
d?y/dt?= A+ By+ Uy~
Let us determine then, as exercises in the differentiation of
the elliptic functions, the acceleration d?*v/d¢? and thence the
force at a distance x, which will make a body oscillate in a
straight line according to one of the laws

x=q cn nt, sn nt, dn ni, tn nt, ne nt, ns nt, ....
Taking x=q cn nt,
da/dt = —na sn nt dn nt
dPafdt? = —nPa(cn nt dn®nt —k %t en nt)
2
= — 'n290<1< 2—k2+ 2K2-2> s

[¢2
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so that d+2 222l 1 7,

2 e io-2)
reducing to zero when x=0.

It is often simpler to find dw/d¢, and then to express §(dw/dt)?
as a function of 2 ; and then a differentiation with respect to ¢
will give d%z/dt? immediately as a function of x.

Thus, if &= sn nt,

dajdt =na cn nt dn nt

(B beo(1-2)(1-)

3
so that z;: —n¥(1 +1c2)ac+2n L oc

illtgg+n2w- —n? 2(90—2—%—3),

s
reducing to zero, when x=0.

Similarly, if x=q dn nt,
dZx , 2003
det =1+~ a?
Generally, when « varies also as tn wt, nent, ..., we shall

find a relation of the form
AP/ dt? = ue + 2va3,
which, when multiplied by dw/dt and integrated, gives
da/dt) = O+ L uic® + fvact
or da/dt = /(20 + pax? + vat),
t= 20+ pa?+vat)-ide,

an elliptic integral, of which the different expressions are given
in Chapter II.

31. A Special Minimum Surfuce.

Another interesting exercise in the differentiation of elliptic
functions is to verify that the surface discovered by Schwarz
(Gesammelte Mathematische Abhandlungen, vol. L, p. 77),

enx+cny+enztenxeny enz=0,
with the modulus x=4%, is a minimum surface, having zero
curvature at every point, and therefore satisfying the condition
(L+¢%r—2pgs+ (1+p?)t=0,
», ¢, 7, 8, t having their usual meaning as partial differential
coefficients of z with respect to « and y.
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Schwarz shows that this condition is equivalent to

1,1 (A+g)r-2pgs+14+pHt °2X oY
LTS 1 2 0,
npe I+p*+¢ RARAE )<?>w y>

pv py denoting the principal radii of curvature of the surface
(C. Smith, Solid Geometry, § 255), where

=P oy 9
N+ T (PP +1)
Let us write ¢;, 8,, d;, for en®, snw, dna; and c,, 8, dy, 5, 85,
d, for the same functions of y and z.
Then eyt cgt-c10e5=0;
and differentiating with respect to x,
— 8,0l — 8540 — 8,0, Co05 — ,C,8,p =0,

e S d,(1+ Cols)
o 8ydla(1+ 0102>
_ Gt
But e N
62=]1—c2= (I4ei0p)—(0+0c)® _ 8785
3 : (140,05) — (I4ee) :
so that 8(14c¢,05) =845, ete. ;
p= S Cads__difs_ _sld,
815,003 Sld EADEEY A
By symmetry, q= dy/ %oy,
. 3/ Sg
so that we may write
—d, /s,
N/ {(duf8,1) +(dyf)* +(dyfsy)*}
—dy/s,

Y= T o T )
Now i(@) _ —lc281201— cd? ¢ d (d3> _ D,

dx 81 T 52 da\s, 82’
B_X_ dz2 d\ dyfd, e, dye \)

so that {_<sl + + 8,2 ) sl<s1 8 +§:,; s?p)}TDg’
where D=(d, /81)2+(d /8,24 (ds/35)*;
X (o d? | e dltcd® | s
or O <s 25,2 8,28, 3 ) + D

By symmetry

oY _ feyd® | cydlcgd® s
oy (515;2# et )=

2X oY .
so that o + 5?—/—= 0, provided that
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Cod2 0l | cod 2 4cd® | cd?+cody?

5,282 + 8575 5,28, =0,
or ¢ (822 482 d,) + ... =0
or, since 82=1—¢?2 d2=1(3+¢c?),

c{(1—=c)* B+ + (1 —c)(3+ e+ ... =0,
or (634 cyF C5+ 016565) (3 — oy — €50 — €464) =0,

and this is true, in consequence of the original relation
€1+ o+ 34,6465 =0.

The other relation 3 —c,c,—cye,—cic,=0
represents isolated conjugate points, where

C=Cp=0C3=1.
Another minimum surface is
tnytnz+tnztnet+tnetny+3=0,
with K=%,\/2, K'=1%.

32. Elliptic Function Solution of Euler's Equations of
Motion. '

Before leaving the mechanical interpretation of elliptic
functions, we may just mention here an important application,
the application to the solution of Fuler’s equations of motion,
for a body under no forces, moving about its centre of gravity,
or about any fixed point.

Euler’s equations for p, g, 7, the component angular velocities
about the principal axes, are (Routh, Rigid Dynamics)

Adp]dt=(B—O)gr,
Bdg/dt=(C— A)rp,
Odr|dt=(A—B)pg;
where 4, B, € denote the moments of inertia about the princi-
pal axes; and two first integrals of these equations are
Ap*+ B>+ Cr*=1T, a constant ;
A+ B2g* 4+ C%1? = G2, a constant,
obtained by multiplying Euler’s equations respectively by (i.)
0, ¢, 7, and adding, (ii.) by Ap, Bq, Cr, and adding ; and then
integrating.

Comparing these equations with the equations of § 7,

enu= —snudnw, snu=cnudnu, dn'u= —g%*nwcn u,
where accents denote differentiation with respect to w, we
notice that if 4> B> (, and the polhode includes the axis C,
so that AT> BT >G?> (01, we may put w=mnt, and
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p=Penu, g=—@snu, r=Rdnu;
and then, on substituting in Euler’s equations of motion,
B-C «aP A—-C nQ A-B «nR
A QR B " RP 0 T PQ
Putting ¢=0, and therefore p=P, ¢=0, r=R; then
AP CR*=T, A?P*+ (?R*= (7,

' G -0T AT— @2
2 __ 9. .
so that P_A(A—O)’R—C(A—O)’
— 2
and then Q2=P2A 4-0_G-CT,

B B=C " BB=0C)

. (A—CYB—0) (AT—G)B—-C)
— P2 —

while w=E AB = ABC ¢

and , PAA-B G—CT A—B

“TROB-0TAT-GF B=C

If the polhode encloses the axis of greatest moment 4, so
that AT > G2 > BT > CT, we must put
p=Pdnu,q=—@Qsnu, r=Renu;
and then determine P, @, R, n, ¢ as before; when
2 (0 =CTYA—-B) , AT-G* B-C
AB0 T =0T A-FB

In the separating case, when G?=BT, then k=1, and
p=P sech nt, g= — @ tanh nt, r=R sech nt;
so that, when ¢=0,
G B-C ., @AB
P=apa-c =" " "poa-o
and initially or finally, when t= ¥ w0, ‘
p=0,q9=*G/B, r=0;
and the body is spinning about its mean axis B.

But when the body is spinning about the axis of greatest or
least moment, G2=AT=A4%2 or >*=CT=0%?and x=0; and
the period of a small oscillation is 27/n, where

(A—=B)(4-0)p_(A—B)(4-0)
2. - )2
w=—dpc 1= B0 P

y (A=0)YB=0), (A-C)B=0),
or w=t—po L=—4p "

We shall return subsequently to these equations in Chap. ITI.

>




CHAPTER II

THE ELLIPTIC INTEGRALS (OF THE FIRST KIND).

33. In Chapter I. we have immediately made use of Abel’s
valuable idea of the Inversion of the Elliptic Integral, which
is the foundation of the modern theory of the Klliptic Func-
tions; and we have considered the functions which are inverse
to the elliptic integral, and treated them as the direct funda-
mental functions of our Theory.

Previously to Abel’s discovery (1823) it was the elliptic
integral which was studied, as in the writings of Euler and
Legendre ; and, in fact, in a physical and dynamical problem
it is the elliptic integral which arises in the course of the
work ; for instance in the form of the Equation of Energy,

W(da/dt) =X, so that /2 t=fda//X;
and now, when X is a cubic or quartic function of ®, so that
d?x/dt? is a quadratic or cubic, as in § 30, the integral is called
an elliptic integral of the first kind; and we have to follow
Abel and determine the elliptic function which expresses  as
a function of #.

To accomplish this, it will be useful to employ the notation
of the inverse functions, given by Clifford (Proc. London
Math. Society, vol. vil., p. 29; Mathematical Papers, p. 207)
analogous to those used in Trigonometry for the inverse

circular functions; and to make a collection of all the important
cases that can occur.

34. The Circular and Hyperbolic Integrals.
Starting with the circular functions, sin z, cos z, tan «, cot ,

..., we have, in the ordinary notation,
30
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~/(1di6_ =sin~lx=cos~1,/(1—a?),

bode 1 g ;
:/—(1—_—002—)=cos r=sin"1/(1—2a?),

z dw
1442

de 1
/932—]—1 =cot~lr=tan - ete.

We can employ a similar notation with the hyperbolic func-
tions, cosh @, sinh &, tanh , cothz, ..., and write

1
=tan-lx=cot- 15,

Wg%@;ij:cosh—lx:sinh‘lJ(#— 1) =log{z+ /(x*—1)},

J({ifﬁl- 2)-—smh Yz =cosh~1,/(1+a?)=log{ /(1 +2%) +},

de 1 1e L2 <
(,/.m =tanh-1x = logi_—x(ac 1),

% = coth- 1m=—§-log — (ac>1), ete. ;

xz
and the analogy with the circular functions is now complete,
and the results can be more easily remembered and written
down, than when the logarithmic function alone is employed.

To avoid complications due to the multiplicity of the
values of these and subsequent integrals, in consequence of the
variable o« assuming complex values and performing circuits of
contours round the poles of the integral, we suppose for the
present that « is real, and increases or diminishes continually,
0 as to assume all real values once only between the limits of
integration; also that the positive sign is taken with the
radical under the sign of integration; we thus obtain what is
called the principal value of the integral or inverse function.

35. The Elliptic Integrals.

With the elliptic functions, snu«, enw, dnu, we have (§ 7)
dsnw denw ddn

=cn o dn u, =—snudnw u=-——x2snucnu~
du duw ’ du ’
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and en?u =1—snu, dn’u=1—x%n’u ;
so that, if z=snwu, then cnu=,/(1—2?), dnu=,/(1—«%?);
dx
1—g2. 1 — 22
du =J/(1—-z «22%),

and ./;/(1 — 1 _szz)—@L:sn'lm, or sn=Xw, k),eevennns 1)

when the modulus « is required to be put in evidence.
Putting =1 makes the integral equal to K, the quarter
period correspondmg to the modulus « (§ 11).
Similarly, with
z=cnu, then snu= /(1 —a?), dnu= /(x4 %?),

g%: —snudnu=—,/(1—22. K2 %),

1 x
Y - -1 -1
and -/;/(1 L ) =T, or en (@, ©),0eenen . (2)
x
so that the integral is A when the lower limit is 0.
Again, with ,
x=dnu, then ksnu=,/(1—2a?), kenuw=,/(2?—«?);

and @—~x28nucnu—~—,\/(1 a?. x?— i),

—dn-1 -1
./;/(1__902 P =y =dn"z, or dn-Y(z, k).......... 3)

We may also put. x=tnu, using Gudermann’s abbreviation
of tnu for tanam v ; and now

__ 1 A +%?)
Cnu—m, Cln%—‘"m;

% = OB St T %),

dx o »
/;/(14-%2 1+ /zwz)—u—-tn x, or tn Y@, k)eereennn.. (4)

and the integral is A when the upper limit is .

~ Putting z=sin ¢, cos ¢, A¢, or tan ¢ in (1) (2), (3), or (4),
reduces the integral to

/1—- %sin%gp) ~tdp =u =F(¢, «)

=am~Y( ¢, k) =sn"Y(sin ¢, k) =cn~(cos ¢, k) =dn=YAg, x) ;
so that

¢p=amu, and cos p=cn u, sin p=snu, Ap =dnwu, tan p=tnu.
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36. Thus, with a>b>z,

1 x b
~/(0’2__502 bz_mg) Ebsn (b, *) ............... (5)

indicating that we must put x=>0sin ¢; and then the integral
is reduced to

1/ 1-~—s1n2</> d¢=};sn‘1(sin¢,§>=ésn <a£, é)

Slmllarly, with w0 >x>a,

_/;/(wz___az - 5% %}SH'I(%, g), ............... (6)

indicating the substitution x=a cosec¢ (or acece, as Dr.
Glaisher writes it).
Thus, for instance, with co>ax>1/,

==z

Again,
1 iz b .
~/<a2+w2 ) St {b’ J(a2+b‘2‘)}"""(7)

z dx _ 1 b o ‘
; ~/(a?+w*.x2—bz)_~/(a,2+b2)cn 1{5, J(a2+E§)}"""(8)

_/;;(az_izc'wz_bg): %’—/dn"l{g, ( —%:>},(9)
-/ J<w2+a2 ) %tn‘l{% x/(1—§§>}.---<10>

37. As numerical examples,

:/(;Z% x4)—2\/2 enYa, §4/2),

the integratlon required in the rectification of the lemmniscate
7?=q?c0s 20 ; so that r=acn(y/2 s/a, }5/2).
® dw
ST /2 (L 12) = 1/2ne e 12,

Wlth Dr. Glaisher’s notation (§ 17) of new for 1/en .
G.E.F.
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Consider also the vibrations given by the dynamical
equation dP/d? = —2n2x(c® —a?),
as in § 30 ; so that =0 gives the point of stable equilibrium,
and x= +¢ gives the points of unstable equilibrium.

Integrating, supposing the motion to start from rest where
z=b, L(dw/dt)? = C—nPc?x? - fnixt

= 1n?(b? — 2?)(2c2 — b2 —a?).

(1) When b2 <¢? the motion is at the outset towards the
origin, and da/dt = —n,/(a?—a? . b —a?),
writing a? for 2¢2—b%; so that

t/ _f e _ [rde
" ~/<a2—w2 v-a) S JX S JX

(K -—sn‘lb> with modulus b, by (5);

or x="bsn(K —ant).

(ii.) When b?=¢? du/dt= +n(b?—a?);
and, by § 34, the ultimate state of motion is given by

x=>b tanh bnt, or b coth bnt,

according as the motion falls away from the position of
unstable equilibrium, towards or away from the origin.

(iii.) When ¢2 < <2c?

das/dt = +71J(w2— a’. xt—b?),

nt / "z - w@--
J(m2~a2 =05 ) JX X

= 5<K ——sn’lg—) mod. & b by 6);

or x=>b/sn(K — bnt)=bns(K — bni).
(iv.) When 0?=2¢?

m
“ ./J( )~ = e

or x="0sec bnt.
(v.) When b% > 2¢%, we must write a? for 42— 2¢%; and now
da/dt= +n,/(a? +w2 L2 —b?),

t /:/ a2+x2 a?—b%)

"o o
= ™ e v
or x=0bfeny/ (a4 b*)nt =b ne /(a4 b2)nt.
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38. So far the function X has been treated as an even
quartic function of , or as a quadratic function of #?, resolved
into two real factors; but according to Prof. Felix Klein there
are certain advantages in considering the integrals obtained
by writing a?=¢, in (1), (2), (3); and then, writing & for «?

dz _ .
0_/;/(z.l—z.1—7cz)_28n N
or 2en~1,/(1—2), or 2dn~1, /(1 —k2)......c0n... (11)

Conversely, by writing for z the values 22, 1 —2? 1—Fka?, we
reproduce the integrals (1), (2), (3) from (11), by the simplest
quadric tramsformations; and it will not cause confusion if
we sometimes call k the modulus.

For these and various other reasons, Prof. Klein suggests
(Math. Ann. XIV., p. 116) that we should consider (11) as a
more canonical form of the elliptic integral than (1), the form
with which Legendre and Jacobi have worked.

39. Now, with X=2—a.2—B.2—v, and a>B>4y,
we have, if 0>a>q,

Tdw _ 2 a—
VX J<a P \/

_ r—a 2 O chd
~/(a—y) \/w—v ~/(a~v) o=y &
with =k=(B8—v)/(a—7);

indicating that we must put

x—y=(a—7y)cec?p, £—a=(a—y)cot?p,
and then x—B=(B—y)A% cec’¢p,
to reduce the integral to Legendre’s canonical form

F¢= f(l — ksin?gp) ~Edg.
0
Similarly, by putting 2 — a = (a - B)tan’p, z— B=(a— B)sec’p,

*Mdxe | |x—a
X T Nemg
o1 ja—8 o1 [a=B.x—y
cn \/ =dn P :3 ...... (13)

where M is used throughout to denote I (a—7).
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Thus, with oo > > 1/k, integral (11) becomes

® dx —9 _1«/1
/J(w.l—w.l-—kw)_ N o
=2cn'1\/kw—1=2dn‘1 w—ll;
®
z dx — 9sn-1 kx—1
{J(w.l—w.l—lcw)_“s k.x—1
1

=2cn“1\/, 70__2(1 1 1-—10.90.

x—1

40. When a>2z> 8, X is negative, and

aMClﬂ!} —sn a—a
J(=X) a—@
=cn‘1\/a_l’g=dn‘1\/§:—§:, ...................... (14)
» Mdx o a—y.w—lB
J=x)~%" 1\/ a—B.a—y
o1 [B=v.a—z_ . [B—y X
D —dn-1 e T - (15);

and now the modulus «" is given by «%?=k=(a—B)/(a—1),
and the modulus is therefore complementary to the modulus
in (12) and (13); and the form of the result in these and other
subsequent integrals indicates the substitution required to
reduce the integral to Legendre’s standard form (§ 4); while
the results can be verified by differentiation.

Thus, with 1/k>2>1, integral (11) is imaginary and may
be written

1k dae —9isn-1, [L—ke
@ 1=z 1—lx) 1-%

"y cn'l,\/k = 941/ (ka), mod F;

i dz —9 _1\/ z—1
_/;/(w.l—w.l—koc)_ NI
1

1k =2idn"1x/}~, mod. ¥ ;
1-k.x x

=2jcn-t

% denoting A/(—1).
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41. When 8>z >+, X is again positive, and

e iy
JX B—v.a—x

—cn'lx/ ~B.a— Y —dn-1 '8 .............

B—y.a—a a—w’
= Mdu \/ —y
VX TTNB=y

—-cn'l\/‘B —dn"lx/ ....................
a— ’Y

with k=(8~—+)/(a—1), as in (12) and (13).
Thus
l—w

-1
_/;/(w 1—-90 1—kx) =2 N T

=2cn-?! 2dn

while the result is as in (11) when the lower limit is 0.

42. When y>2>—ow, X is negative, and
Y Mdx L y—
=sn 1

(=) B—=
=cn'1\/g—:~%/=dn‘1 B=y.a=w

a—y.B—o
cMdow | la—vy
=5~ =

—en-1, /Y "% —dn-t B—w,

a— a—x’
with modulus &' = (a—8)/(a—1), as in (14) and (15).
Thus, With 0>a2>—ow, integral (11) becomes

-

_/;/(m 1—z. l—lcoc)_d?'sn 1—u

1-k.ox o [1=k
1—lx 1—la’

............

...................

37

=21 cn'lx/-«—-—-% dn'l\/——l@,n od.%';
l—2a l—x

* du e .
/*/(“'1"w~1~fcw)‘2”n \/1:1796

1-2

To.1—
-1
=2icn \/1 l—kw’mo

d.%.
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43. We notice that the substitution

a=y_Y=v r=a_B-y 2=B_a—y
o=y B—y oy B—y T a—y a—y

makes

® da /‘y dy
/J(w—a-w—ﬁ-w—w? Ny—a.y=B.y—vy)
or changes (12) into (17), or (13) into (16).
Thus

@ d _[B S dy _ 2K 3
:/;M*wkw—ﬁ‘w—ng(hy—a-y—ﬁ~y~v) Jia—yy GO
where K2=k=(8—1y)/(a—").
Again the substitution

a—& _a— yor —=B_ 7 y iy _B-y
a—B a— a—p" Ca—y a—y
changes (14) into (19) or (15) 1nto (18); and shows that

2K’
./@iwvﬁww/QayByvy)ﬂaw 21)

Where kK =k%=(a—B)/(a—7).

The substitution which changes any one integral into another
is obvious by inspection of the preceding results.

44. Thus the integral fdx/ /X can be written down, ex-
pressed by inverse elliptic functions, when X is a cubic form
in «, resolved into its three real linear factors.

For example, with «?>b2>¢?,

L )
_/:/(a2+>\ b2+N. 2+A) ,\/(a2 02) a4+ N \/aé——cé

an mtegral occurring in the mathematical theories of Electricity,
Magnetism, and Hydrodynamics, in connexion with ellipsoids.

As another example, the student may prove that

/ as _ Amabe —1<E \/az_ b2>
S @lay+ oy + e~ J@=&) P \a Nat-¢2)

when the integration is extended over the surface S of the
sphere a2yt 2t=12
(W. Burnside, Math. Tripos, 1881).
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45. When two of the roots, 3 and vy suppose, of the cubic
X=0 are complex, we combine (x—@)(x—y) into the real
quadratic (x—m)?+n? suppose ; so that X=a—a. (x—m)2+n

Now we substitute

_ y= (x—a)? z—a
a quadric substitution, the graph of which is a hyperbola, and
find the twrning values of ¥, say y, and ¥, the values of ¥
which make the quadratic in x,
(@—mP+n?—ylx—a)=0
have equal roots; so that y, and y, are the roots of
(Fy+m)2—(ay+m2+n?) =0, or y*+(m—a)y —n?=0.

— )2 9
Then Y—1; —( ml) , Y—Yg= (a;c_%) ,
and P e

x, and x, denoting the values of « corresponding to y; and y;,
and therefore denoting the roots of the quadratic equation
2aw+2am—-m2 nZ—O;

so that =m+ %3/1’ Py =
(m-—a Ydy
Then / ./(190 W)Y _/(;0 —z @ —25)n/Y
@ dy

AN O
—%_#g__ i (Y=Y \/_‘:’Z@A
N/(?il/ W < Y=y 3/1—?/3>
2 &
T (22)

by (12), with  K'=,/(41=¥a), k= —1s/(y1—¥s),
since ¥, is positive and y, negative, or , >y > 0>y,
Again, with the same substitution,

dx _ dy
_Z;/{a—m (w—my"+‘n2}_./:/(—y Y=Y - Y3—Y)

2 en-1,[937Y
~ V=) (y:/ Ys) Ny
= 2 g1 TGO
= :/—(w—l:%)cn oo (23)
by (19), to a modulus ¥’ the complementary modulus of (22),
namely ¥ =y./(4—y,)
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46. We denote (a—m)?+n? by H? and then
z,=a+H, v;=a—H;
and by means of the same substitution as in § 45,
da /2 =
Jig—a. (@—mp+nf J(wl_%)cn Oy
a

_ 1 kcn‘l{H (w—a)

‘JH H¥@—ay "
k=% —ta—m)/H,.......... (24);
a do ’ _ 1 . H— (a a:)
fJ{a—w.<w—m>2+n2}*¢ff°“ {H+<a @y ¢}
2= +3a—m)/H,.......... (25);

indicating that the substitutions z—a or a—ax=H (t’m%qsf

cob
reduce the integrals to Legendre’s standard form ; also that

2k’ = 'n/ H.
Thus, as numerical examples,

da __l_ a, 1-./3
./J(wa—l)—é/?’ o—=1+,/8 "/

% dx _1<J3+1 @ )
J@=1)" J? S3—1+a )’
Ldm (,JS 14z )
JA =)~ ¢3 J3F1—w )
¢ dw Lfl—x—a/3
A=) N/s"'n (1 x+~/.;”‘)
with 2mc=l—sm 30°, k=sin15°, ¥ =sin75°.

47. We notice that ¢ =} when @ = a+ H; so that
@

/ dx
a+H~/{$— a.(z—m)>+n?}

at+H da K
N J{w-a-(w—m)2+n2}'=JH; ............ (26)
’a @ dx
ZA‘J{a—x.(w—m)2+n2}

A da K’
r:/;/{a-w.(x—-m)2+n2}=~/ﬂ -------------- (27)

V341 doc _Fsin15°%)
Thus f~/(m3 . 1) ~/<x3 8;:}3 3
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1ode “Vildg  F(sin75%)
NU=A S Ja=sT
But, by the Cubic substltutlon x=(4—2%[32%

_a_(@=1)Z+8) dw _2#+8,
then 1—g? o g 3,7

and ~/(1 7~ 3/ NiCE

fo that f Ja=a"~ 3f¢<

or F(sin 75°) = ,J3F(s1n 15 )
that is, K'/K = /3, if x=sin 15°, as stated in § 12.
48. Degenerate Elliptic Integrals.

When the middle root 8 of the cubic X =0 approaches to
coincidence with either of the extreme roots, a or y, or when

the pair of imaginary roots become equal, the elliptic integrals
degenerate into circular or hyperbolic integrals.

We notice, from § 16, that when k=0, sn-x becomes sin~x,
en -1z becomes cos~z, ete.; and that, when k=1, sn~1x becomes

tanh-1z, en-z or dn-'z becomes sech~'x, and tn~'x becomes
sinh-1z.
Thus, when k= 1 the integral (11)

dw
fJ(w 1—2z. l—-kw) N
=2tanh-,/x=2sech~1, /(1 —x)

=2 cosh- JT——231nh \/“'——Smh 12~/z_

This supposes that @ <1; but with >z>1,
Fc—l—%ﬁ =2coth-1 /2 =2 cosech~1,/(z—1)
: y
=2 sinh‘K/—l =2 cosh"l\/ L - sinh"l“—i-x.
x—1 z—1 x—1
But when k=0, the integral (11) becomes

./;/(w =) =2sin-1/2
i =2cos" /(1 —2)=sin"12,/(%.1—2);
bodw

\/(T:&)—)= 2 COS_1~/Q§
o =2sin"1/(1—a)=7—sin"12,/(x. 1 —x).
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49. Making 8=+, or a, in the integrals (12) to (19), and
still denoting $5/(a—1) by M, then
(i) with co>a>gq,

e Mde Cog—l\/fi,‘?_sin—l\/f{_')’
;/(w—vk/(w—a)_ S Nao—y o=y
=1lgi —1\/( a—y.r— 0‘)
2SI Ho—y) O

¢ Mdx .1 [X—a -1 [eTY.
fz—*—“—”w W s Vm‘—“f r«/
©  Mdax
./(-w—ak/(w—v)_tanh ‘/“

V
- (30811"1\/0-0*—;‘— 1¢inh- 1M
X — g(w a\

this integral being infinite when z=a.
(ii.) With a>a >+,

z  Mde 1 \/w_—_ _ a=y
f (———h—a ) =sinh P cosh™? a’
v
which is infinite when ¢ =a;

/ ; 'jl)l‘\d/"?a i =sinh- \/ ~——cosh \/

which is infinite when x=1+.
(i) With y>2> — o0,

v Mdax ey fy—® _lJa— .
_/(-a—w)J('y-—-w)— st '\/a-—w‘_ cos a—x’
s Mde y—o_ ., fa=y,
—/‘—W— COS ,J Sln 21-——‘%
re Mde o \/a_—_w P LT
_.w/(‘v—w)J(a—-w)_COSh y—a y—o

this last integral being infinite when z=1.

The limits have been chosen so as to exclude these infinite
values.

50. Weierstrass's Elliptic Functions defined.
When the general cubic expression X is given, not resolved

into factors, then Weierstrass's notation becomes useful, and
may be defined here.
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Weierstrass writes s+ for «, and chooses f so as to make
s® disappear in the new value of X, which he denotes by 4S;
and thus- S=4s—g,8—¢s,
where g, and 93 are called the invariants ; so that the integral

f ds _/:lﬁm =u, suppose;
2~/X NS S N ES—g5—g5)
and now, inverting the function in Abel’s manner, s is an

-elliptic function of u, denoted by pu in Weierstrass’s notation,
so that

© _ds —-1 “1(g -
;/m_ga 8, O 7S gy Pa)s ervrvnrnnom (A)

when the invariants g, and g, are to be put in evidence.

51. In Weierstrass’s notation we are independent of the
particular resolution of S into factors; but by what precedes
in equation (12), if, when S is resolved into real factors,

S=4(s—e)(8—e,)(8—¢€;), with e, >¢,>e¢,,
then, with w>s>¢,

© ds 1 _1\/431—(»)3
U= - = sn
N (Es—e 8=, .5—e) (e,—¢) s —e,
38

1 s—e 1 S—e

= cn‘l\/ i ,,d1—1\/ 2

by (12) ﬁ(el—es) s—e W= Nime
v (12); so that

. e —¢ pu—
sn?y/(e; —eg)u= @%L-—-%’ en’y/(e;—ey)u= ﬁ—

U — €
dn?./(e, —ex)u = g:m — 623. ..................... (B)

The valte of w for s=e¢, is denoted by w,, and called the
real half period ; and by (20) we notice that

® ds % s K
i s N 28
/\/’S ~/’S ~/(61—°3)’ (28)
and by (18)and (B)f Qﬁiﬁ TP N (29)
s—e
With ¢,>s>e,, JS is again real, and by (16), (17), and (B),
& ds _1(61— 65 a6
NoRt = o S N (30)

s ds o C3.65— €4
= (m te ) ceveenen(81)



4.4 THE ELLIPTIC INTEGRALS.

52. For values of s between ¢, and e, or between e; and
—w, /8 is imaginary ; however, the value of /ds//S be-
tween the limits ¢, and — o is denoted by w,, and called the
imaginary half period ; so that, by (21),

% ds % ds iK'
T Ty e 32
~/S V8 e —e) (32)
and, from (12) and (14,
1= (eg—e3) /(61— €5), &= (e;—e,)/(e; —¢;).
Also, from (14) and (15), with e, >s>e,,

ads e,.e —e. '
7g=,bsa-1<,,,_6_2_13__3_@1,92, g3>,.........(33)

s ds . e, —€,.0,—e
:/_S=”9-1<_1__s_2___622___3_e2; g —Ga); ooren (34)

and, from (18) and (19), with ¢, >s> — 0,

ads .
i (A 1 )0
s d .
~/—2’=@?_1(_8; Gos —ga)eerenvnereninerianessiensns (36)

53. The quantity g,®—27¢,? is called the discriminant, and
is denoted by A; it is called the discriminant, because the
roots of S=0 are all three real, or one real and two imaginary,
according as A is positive or nega.tlve and A=0, when two
roots are equal.

Since S=48—g,8—y;= 4(8 —e)(s— ez)(s —e,),
therefore 6,46yt 6=
and  gy= —4(ets+ 50, +0,05) = 2(312+322+632)> 9= 4e,0,05,

A =16(e,— e5)*(e3— €)%(e, — )"
Therefore
=(e,—ey)(ey—¢5)/ (e, — 63)2 —K Klz_%%/("l"ea
4 (1—x x'2)3
7T kN
This quantity ¢,*/A is called by Klein the absolute invariant,
and denoted by J; and then, with & for «2
4 (1 —Fk+k2? A +k)*(2—Fk)2(1 — 2k)?
T=9r Tacw TV wmea=mr o ©

and
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54. For the present we reserve the difficulties of interpreta-
tion of the multiple values of the integral w= fols/ /8, due to s
being allowed to assume complex values, and to perform
circuits round the poles, branch points, or critical points, so
called, of the integral, given by the roots of S=0.

We suppose the variable s to pass once through all real
values from o to — o ; and now
() o>s>e,

ﬁs/JS= P75 o 05
or U=e, ﬁs/JS w—go‘1<el 22 Zl 63+> veen(8T)

which, employlng the direct functions, expresses the relation

Py —u)—e, =
(i) e,>8> e,

wm f05]S

- TSl T el S ). <
o+ ( P e 9 g3>, ............ (39)
o ueatog— fds//S

b
. €, —€y.0,—€
=wl+w3—150‘1(—1-§2tei——3—62; I -—g3>. veeeen(40)
2
(iii.) e,>s8>e,,

u=w1+w3't/‘;l2/~/s

=w1+w3+{p'1< Zfz es+62’92’93> ceen(41)

or u=2w1+w3-./c‘ls/~/Sb
2t — (AT TS ) 42
Wy T W3¢ ( s—e, 3> ( )

(iv.) >8> —

u=2wl+w3+/<?z?/w

€3-6

e
-2w1+w3+'bg0‘1<———63——_——3+63, 9o —g>, (4!3)
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or u=2w1+2w3—~/.df9/~/8

— 0

=20, F 20, =T 0 1 =8 Ggy — ) crerrrierrirniinannnn (44)
Thus ﬁs/ NS =204 205 v (45)

and 2w, is called the real period, and 2w, the imaginary
period, of Weierstrass’s elliptic function pu.

With Argand’s geometrical representation of a complex
quantity, such as 44y, the complex quantity
u=to,+tw, (0<t<1,0<t'<1)
represents all points lying inside a rectangle, called the period
parallelogram.
As s or pu diminishes continually from o to —w, the argu-
ment w describes the contour of this rectangle ; and for
u=(1) tw, (0<t<1), (il) o;+tw, (0<t'<1),
(iii.) to; +w, (1>t>0), (iv.) tw, (1>1>0),
the values of s or pu are real, and lie in the intervals
(i) w>s>e¢, (il) e, >8> ¢, (iil) ¢, >s>0,, (iv.) ;>8> — w0 ;
while the corresponding values of p’u are taken as

(i) negative, (il.) positive imaginary,

(iii.) positive, (iv.) negative imaginary.
For any point u inside the rectangle pu assumes a complex
value. (Schwarz, Elliptische Functionen, p. T4.)

55. In the same way, with the integral (11), denoting its
value between the limits o and z by w,

1) w0>2z>1/k (§ 39),

_ _ 1 o1 [Rz—=1
w=2sn 1\/Eé—‘f’K——2sn \/lc.z—l ................... (46)
(i) 1k>z>1 (§ 40),

w=2K+ zisn-l(\/ll%’;;, <)

e G ) @47)

(i) 1>2>0(§ 41),

u=2K+2K +2sn-1 1-2
1—/lz

=4K 420K =280 /2 coieiiiiiiiii (48)
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@iv.) 0>2z> —x (§42),
w=4K+2%K +2icn'1<\/l 1 p K’>

A I
— 4K 40K — 2 sn 1( . ) ................... (49)
° dz - .
Therefore /;/(z T gy = K AAE (50)

and 4K and 44K’ are called the real and imaginary periods of
the corresponding elliptic function, in this case sn?ju.

56. But if we take Legendre’s and Jacobi’s fundamental
integral fda/ /X, where X =1—a?.1—«%? and denote

ﬁx/ X by u, then, by the preceding article, with «* for z,
(i) wo>a>1/k,

.1 _ k2t —1
w=sn 1;9—C=K—sn 1\/;2?:1 ........................ (51)
(i) x>x>1,

. 1—%a?
u=K+ @sn‘1<\/ K,’;x,lc>

Ty . — w?_l ’
=K+%K —7 8N 1<\/ICTJ}2_’ IC) ........................ (52)
(i) 1>a>-1,
= K+iK +sn-?
=2K+iK +sn-1g
1—a?
=3K 41K’ —bn'l\/l_x%z .............................. (53)
(iv) —1>o2>~1/k, ‘
e 2 —1 ,
w=3K+ <K' +isn 1( S :c)
K

22
=3K+2iK’—isn‘1<J1 =S RN (54)
(m)—1M>w>~w

2.2
, o [ KEP—=1
=3K+2K 4+sn \/K T o1

_—_4fK+2iK’-—sn'1;1£ .................................... (55)

Therefore /(1 —a?.1—k%?) dde=4K+2iK';..............(56)
and 4K and 2K’ are called the periods of the elliptic func-
tion sn u.
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57. If, with 1>2>—1, and X=1—2a?.1—«%? we denote
A 1
the integral/;lx/ X by w; then da/J/X=K (§11); and (§41)
0

2
K—u ﬁw/JX sn~! 11 fxz;

or, employing the direct functions,

sn(K—u)=\/1~1:—K%=§%, or cdu;......... (57)
and then (§ 17)

cn(K——u)=\/1K_"2—§x2=%, or K’sdu; .........(58)

dn(K —w)= 1 _K:%2=a£%l—}, or kndwu; .ceeuen... (59)

relations analogous to equation (38); or to the relations
sin(47 —0)=rcos 0, cos(}7—0)=sin 6,
of the circular functions of Trigonometry.

58. When the diseriminant A of § is negative, and two of
the roots of the equation S=0 are imaginary, we take e, as
the real root, and combine the product s—e;.s—e; into
(s—m)*4n? as in § 45; and since

S =48>~ g8 —g, =4(s — ey){(s—m)*+n’},
therefore m= —1e, g,=3e,2—4n? g,=e3+4n?,;
while H?=(e,—m)*+nP=3e2+n?

4Pk = 3 H2 = 4| (9o, 2+ dm?),
1—16x%2 =8g,/(9e2 +4m?),
A=gp2—2Tg2= —4n2/(9e?+4n?),

Cgf_ _(1=16%P _ _(1—16k+16k)
so that J="A 1082 T08H1—F)
 (1—2k)(1 4+ 32%— 32K
R s A D)

59. Now, as in § 45, by means of the quadric substitution,
1S (s+1e, )2+%2

g— (8 62)2 S 62 ...............
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we find do_(8—e)—H?_(s—s)(s—8y)

ds (s—e,)* (8—ey? 7 SUppose ;
—8.)2 —
while a'—c-:1=(S 5) , T— 6= -(i——il
s—e, s§—e,

provided s =e,+H=14(e; —e;— ),
Sy=t,— H=1}(e;—e;—¢y).
Thence s;48;=2¢,=4(e;+e3) —€y— €= —5¢,—0y ;
or e,= —}e,; on the supposition that ¢, +e,+¢;=0
and e =0,1+2H, e= —2¢,, es=¢,—2H.

®ds (s—¢y)do
Then : f (s—sl)(s—;z)J (0—ey)
f~/(a'-€1 N ~/2’ .(61)

where Z=4(oc—e)(o—e)(o—e)=40%—y,0—y;,
suppose ; and the discriminant A" of X is now positive.

60. Now, ~v,= —4(ege5+ €56, +€169) =12¢,2+ 16 H?2,
V= 461"3263 = 32¢,H"— 86y},
A =3 — 27,2 =256 HA(4H?—9¢,2)2.

. o €—e 2H— 362 e—e, 2H43e
Also with N =T i A2 _—1_63__ R
4H%2—9¢,2 n? 3
272 2 2=V

Denoting by J’ the absolute invariant of Z, then (§ 53)
gt 4 Q=

27 W\
If we put 4A2\?=1 /-r’, then
(' —1)° (@=1)@Er+1)%
J'= 277 —l= =y

while, with 4«%% =+ in (D),
(4r—1)° (r=1)(Br+1)?
J= e J—1= SRR (E)
Now, if 2k’ =2)\\, then 77'=1, the relation which holds in
the transformation from a negative discriminant in S to a
positive discriminant in 2.
If we equate the values of J in (C) and (E), we find
(1—Fk)? k2 1
T4k T 41—k 4(1—Fk)
D

G.E.F.
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61. When A is negative, and when we know the real factor
s—e, of S; so that, with }e,2+n?=1g./e,,
S=4(s—ey){(s+ e, +n};
then, with H?%=1(9¢,2+4n?), and expressed as in § 46,
“ ds 1 s—e,—H
:/—S’=2~/ch 1s—eZ+H’ .............. (62)
with 2«’=n/H ; so that
en(2u/H )=§ZZ_ZZ J:%, or pu= 62+H1 (eczn@ M?g;“/ﬂ) (63)
by means of which we change from Weierstrass’s notation to
Jacobi’s and vice versa, when A is negative.
Thus, for example, if g, =0, then e, =(}g,)}, n*= $¢,%, H%=3e,?;
and, as in § 46,
= 0.9
ke [ )
2P ™ (W=D ’

S TGy = 0 =g
{3—(~/3 1)(1g,)* sin 75° }

=51s cn » 8
23/3(1gs)* s+ (/34 1)(1gs)*
62. Supposing s to range from « to —oo in the integral

'u,f/gls/ &/S, when A is negative, then

(i) 0> S>62;

w=p"%s; gy gs)
_ o H
Twy— s—e,

where w, denotesﬁs/ &S, the real half period of pu.

€

(i) e,>8>—0o0,

2
’Ll/=w2+igt)_1<e;H_‘

s % I “93)
=0yt @) =19 =8} Joy —Js)s cverrrrrrenn (65)
where ,’ denote%/‘dg/ /S, a pure imaginary quantity, called

the imaginary haifperiod of pu ; and the period parallelogram
(§ 55) is now bounded by w, and w,, as adjacent sides.
Also §47), wy=K/JH, w) =iK'|JH. ......coonvvvnnnin. (66)
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63. Treating in the same way the integral (2),

I da
Q=22 2 )
by replacing z by 1—a2 in §§ 38, 55 ;
i) w>z>1,

u:icn*(,\/K———*Z Rt /c'>
K’2x2+K2 ’
=K =3 en L2, K )i (67)
(i) 1>a>-1,
w=1K"+en-lz
=K 2K —en Y —&). ceeriviiiiiiiiiann, (68)
({ii) —1>w>—o),
w= iK' +2K+ien-}(—1/z, «)
=2i1{'+21{—¢cn—1<\/’ﬂ2—‘21, K').....‘....(69)

k2%«

64. By the substitution #?=1/y, the integral

dw -/ dy
b B 0 Dy S A DO D)
1 “d
o (70)

on putting y=s—5%B/A4; which can be expressed by Weier-
strass notation, or by the notation of Jacobi, when the factors
of the denominator are known, as in equations (12) to (19);
E+Fe du
~/ (4 + Bx?+ Cat+ Daf)
can thus be reduced to elliptic integrals, of the form considered
in §§ 39-61, the first term by the substitution #?=1/y, and the
second term by the substitution a?=z2.

catdr _1{(J3+1)r2—a2

Thus @8 24/3 o (W3=1Dr2+a”

the integration required in the rectification of 7%= a’cos 36.
But by substituting 1?/a®=1/y, we find

sin 15°},

a’dr “ ady )
s§= 6__ 0\ 4 3'__4‘ =ap- (?h 0, 4‘)~
S @ =10) S (P —4)

s0 that %—2:{@(2; 0, 4).
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65. Write X for a?—a?. 2®—02%. 2% —c?, where a2>02>¢2;
and write M for b./(a®—c?); then we find, on substituting

y for 1/a?% and taking o, B8, y for 1/, 1/b% 1/a?;
(i) w>a?>a? comparing with equation (18),

Mi“.’_sn—l 42— -2 L, P
JXT R e Ve ey
_ b2 a2 oy [a?2—=0b% . a?—c?
= 1\/602 F_p= 0 1\/602—02.902—1)_2"'
a?. b?—¢?
to modulus e
(i) a®>a?>b% comparing with (17) and (16),
@ Mdw b?. a?—a?

T " Ve—rEe

2 2 2 2 2 2

=°n-1'\/a 'mz bz—drl 'qlz;wz—-cz»

b2, a?—c?.x
“\Mda Sn_l\/a2_02 a?—b?
VT a?—b2. g2 —¢?

62—02 a?—g? _y [PP—ct.a?

—cpn-1 -
= = N e
2 2 b2
Z.a
to modulus i
(iil.) b®>a*>¢? on comparison with (15) and (14),
* Mda P a?—c?. b2 —q?
N[O b2—c?. a? —a?
o b a?—c® ., Ja?—b%. a?
TN E T N e
= Mdzx o, [PRat—c?

JE) T ANEZE 2

oy A DE—a® L [Pla?—a?
=cn bz &z wz n m? .......
2 2 2
a®. b?—c
to modulus T
(iv.) ¢2>2?>0, on comparison with (13) and (12),
¢ Mdax b?. 2 —a?
—_—_zsn‘l .
(—X) . b*—a?
—en-l b —c?. a? _q [PP=ctat—a?

— = (Il T o T 9 T e s
c2. b2 —g? a?—c?. b2 —u?

(71)

(72)

(73)

(74)

..(75)

.(76)
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« Mdaw I
et AP B L el A
J(=X) c2. a2 —u?
a2, c?—a? @ b*—a?
=cn—1\/m=dn'1 m...........(77)
to modulus i a'z bz
52

66. When X is a quartic function of x, and we know a factor,
2 —a, of X, then the substitution @ —a=1/y reduces
Jdz//X to the form Mfdy/,\/Y,

where Y is a cubic function of 4; and this form can be treated
by the preceding rules.

But, independently, if we can resolve X into four real linear
factors, x—a, x—08, z—y, -4,
so that X=0—a.2—B.c—y.x—4,
and we suppose that a > 3>y >4d; then with

1) o>x>aq,

@ dax
E/;/(x—’a.x—-,B.x—y.w—&

_ 2 4 [B—=8.2—a
T Ja—v. =0 Na=5.2=p
- 2 4 Ja—B.x=§
T la—v. p=0) " Na=d.a—R

_ 2 1 a—,@.w—'y
Sy =" Nazy.a=pg

indicating that we must put

,8 $.x—a _a—fB.x—§ _a—B.x—y
—d.x—f8 Cosz(ﬁ_a—-&.w—ﬂ A= a—vy.x a—vy.z—3

to reduce the integral to the standard form (§ 4)

sin¢p =

2 de .
Nia=y.B— 3)./;/(1 —lsin®g)’
and then Ki=lk —’8 PAL 6
a—y.B—6
the anharmonic ratio of the four pomts A, B, C, D, the poles of
the integral (§ 54), given by z=a,3 v, 4.
The verification by differentiation is a useful exercise for the
student.
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(ii.) With a>a2> (3, we change the sign of X to make the

integral real; and now, writing M for 4,/(a—y.3-8) throughout,
" Mo
N(=X)

1 [B=8.a~w_ 1\/(1 S.a-f \/a 8. m—y
st '\/a—,B.m—(?_cn a-B.2-8 =dn” a-y.x— 6’"”(79)
= Mdx

N(=4X)
=sn-! azy.-2=f_ _1,8yamd_1,8ym6 (80
«p-a=y “Bramy TN TSy 50
but now the modulus «” is the complementary modulus to «, so
that K _a=B.y

Ca—y. B
the different forms of the result 1ndlcate the appropriate substi-
tution required for reducing the integral to the Legendrian form.

(iii.) With 8>z >+, X is again positive, and
8 Mdx
X

—sn-1 a=y.B-2_ -1\/ -B.a—y_ —dn- \/2_18 )
ﬁ——‘y.a—x B-y.a-x B-0.a-x

,...(81)
“ Mo
X
v
. [B=8.x—y v=§. 8- a: 1 |y-6.a-2
_ 1 [PTO-47Y 1 (YTO.a—%
=sn 8=y -3 en- By am =dn a—y.w—a"'"(SQ)
with the same modulus « as in (78).
-(iv.) With y >z >, X is negative, and
-/"deoo
WAN/ESY
R B-ﬁ.y—w_: _1\/,8—‘)/.%—3: _1 [B-y.a—x
=sn \/my—é.ﬁ—w en V=5, B=w dn ma—y.ﬁ—w""'(sg)
© dx
JS J(=X)
g Ja=yw=S _1\/a~8.t~_og= —1\/(1_6‘3_%
=sn _._——y—B.a~m—cn v dn —_y—3.a—w’°"'(84)

with the modulus of (79) and (80).
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(v.) With § >2>—w, X is positive, and

o Mdu

X
o fa=y. 8-z |y=S.a-x . | ,8 ¢
=S \/a—a.‘y—w_cn a—-3.'y—-90—dn B 8. y- peero(83)

with the original modulus of (78), (81), and (82).

67. Landen’s Transformation.
When Legendre’s and Jacobi’s standard integral (1) is
treated as a particular case of these integrals (81) and (82), we

write a=1/A, 8=1, y=—1, 6--—1/)\ so that M=L1+N)/\;
and now, with v for variable,

A 4+Ndy
./;/ (I—g% 1=\

- 11—y 1-Nd+y \/1 A 140y

= 2.1-ay M N 2Iay T oy (0
v (14N dy
SA=yT 1=\

-1

- TN I+y 1-\1-y L-A.1-\y

= sy O N Ty O YT Ty ®D

where the modulus x is now given by «?=4A/(1+7)% so that

k=2/MQHN), K'=1=N)/(14+N), or (L+&)14+N)=2;
and we are thus introduced to Landen’s transformation, to be
discussed hereafter.

Changing, in § 41,  into 4% and k into A%, we find

./:/(1 :’/21 —NY)

y _ 1 >\2 y? -1 1_>\2
1 — )\22/2 =cn- 1= )\Q'y =dn 1_—>\2y—2, ......
with modulus A ; indicating, on comparison with (86), results
such as
of 1=y ) f LN I—g 2 N
1 /)~ =sn-!
H1+2)sn <\/1—7\2y2’ A)=sn ( 2 1-ny’ 1+>\>’
L L=Arpe > o [L=A.14y 2/
1 1 [2TAY SV epn -t
H(1+N)en < Ty N = ( 2. 1-ny 1+>\>’
1—)2 < 1=\ 14Ny 2,./A
1 -1 | rTA —dn-1
b(1+N)dn (\/1—7\‘@2’ \)=dn THFN. 1=ny 1+>\>’(89)
which ean be translated into the various forms of Landen’s
- quadric transformation.

=sn-!
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Denoting integrals (86) and (88) by u and v, then
w=J(1+N), v=(1+x)u;

1-A.14y I—-A. 14Ny
2 - 2 =R TAY
en*(u, k) ORES dn*(u, k) TFn oy (90)
1 2
sn?(v, A)= =iz )\@Q/yg,
12292 1—n2
2 —_ Tt d 2 _

en?(y, \) = =y dn?(v, )\)—1 g s (91)

whence sn(v, \) = (A+«) SO.ESZZ K’Z; n(u, k) cetCiiiiinnns (92)

We can easily prove, or verify by differentiation, that
Y $A+Ndy
S JA=g 137
= sn i/ (L+y . 1+AY) — I /A=y . 1=2y)}
=en /(A +y. 1= ) +i/ =y . 14+2y)}
1-N%2)40 /(12 1-A
dn—-l‘\/( 1?}-)\~/( ) —dn -1~/<1 T AT ,(93)
to the same modulus k=24/N\/(14+XN); so that, denoting this
integral by w, and denoting sn(u, ) by «, then
w=5/(1+y.-14+Ny) =1/ (1=y . 1=hy),
N(U=a) =3/ 14y - 1=Ay)+ i/ 1=y . 1+y),

, NN 2)+7\,~/(1~—Q/2) 11—\
N/(l —’sz ) 14n N/(l__)\Q 2) 7\/\/(1 yz) (94’)
or dn(u, k)= dn(v, Kii\ ;in(v,k)’ nd(u,x) = dn(w, >\)1 _)\ }(\m(v >\)’ (95)
since y=snv, \), where v=(1+4«")u;
and thence
dn(v, A) =31 +N)dn(w, )+ 41 —=N)nd(w, £),eeeeeniinn..n. (96)
Aen(v, A) =1 +N)dn(u, £) =31 =A)nd(w, £);..oveeeneennen. 97)

(Cayley, Elliptic Functions, p. 183).
The relation (92) between « and y, namely,
_keyA—af) (92)*
N =zt '
thus leads to the differential relation
A+Ndy do . (98)
JO—F 1N JA—aF.1—x%?)
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68. The six anharmonic ratios of a, 8, v, 4, arising by per-
mutation or substitution, give rise to six values of the modulus
k, given by

1 1 %k :
k, % 1-F, 1= /c = B 99)

or sin?, cec’d, cos?0, sec?d, -cot?h, -tan®f, if k=sin’0;
or tanh®u, coth?u, sech2u, cosh?u, —cech?u, —sinh?u, if k= tanh?u.

We may notice that the expression for J in (D) of § 53 is
unaltered if for £ we substitute any of these other five values;
and, on comparison with Weierstrass’s notation,

J=g3lA, J—1=27g2/A,
so that we may put
- 2 2

gl 1lc2+k e (1+k)(143§70)(2 —K) Ak (; bk) .(100)
and then e, =(2—k), e;=75(—142k), e3= %(—1—Fk);
sothat  k=(e;—ey)/(e;—¢;), as in § 51.

69. Degenerate Forms of the Elliptic Integral.

When two of the roots a, 3, v, § become equal, the corre-
sponding integrals degenerate into circular and hyperbolic
integrals, which can easily be written down, on noticing as
before (§ 48) that (i.) when k=0, sn~'2 becomes sin-'z, en~z
becomes cos~'z, ete; (il.) when k=1, sn~'z becomes tanh-lz,
en~ 2 or dn-z becomes sech-lz, and tn-!x becomes sinh~'z.

When two of them are equal, we may replace the four
quantities a, B, v, ¢ by the three distinet quantities a, b, ¢,
suppose, where a>b>c; and now the degenerate elliptic
integrals fall into three classes, I, IT, IIL.

I Writing M for {,/(a—b.a—c); then

1) o>z >a, 4

/ Mdx uh- \/a —b.x— <h- \/ —c.z—b
@—ay/(@—b.z—c) " b—c.x— a—co b ’

—c.x—a
(i) a>a>b,

Mdx — cosh- \/a b.x— oh- \/—cw b
fa )@ —b.x—0) b—c.a—x ,=sin b—c.a—a

(iii) b>x>¢,

b Mdzx — cos-l a—b.x—c sin-1 w—c.b—w
/ga—w)N/(b—w,w—c)_ b—ca—z b—c.a—a
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x Mdex — sin-1 [0 ba—c \/ a—c.b—x
_/(a—w)J(b—w.w—c)_ ' b—c.o—a b—c.o—a
(iv) c>ax>—o,

° Mdx lh\/abcm h\/cbw
ﬁa——w)J(b——m.c-—-m) - b—c =08 b—c.a—wx

II. Writing M for 4,/(a—b.b—c); then
1) w>z>a,

% Mdax _1\/1)—0{3 a_ COS_IJa—b.x—c

_/(.w-b)N/(oc—a w—0) R Gy a—c.z=b
(i) a>a>b,

“ Mde h- \/b C.o—m_ . \/cv b.x—c

_/(.w—b)N/(a——w.m =sin —caw—b_ a—c.x—0b
(i) b>ax>e¢,

“ Mdax — cosh- \/b c.a— inh- \/a b.x—c

(b—2) (e —x.2~C) co —c. b— —c.b—a

@iv) ¢>x>—00,

¢ Mdx _ 4 [b—ca—x .n_I\/ob—b.c—-w
/('b—m)J(a—w.c—w)— S NG b= :

III. Writing M for $,/(e—c.b—c); then
(i) wo>z>aq,

® Mdx osh- \/ —c.x— b_ o~ \/b——cm a
ﬂm—-c)Jm .0~ b——cs s a—b.x—c

(i) a>x>1b,

“ Mdax _ cos—lx/a—c'm—b _sin-t b—c.a—ua
_/(‘ac—c)N/(a—x.x—b)_ a—b.w—c a—b.x—c

* Mdx . _1\/60-—0.{)3-—6_ 4 [b—c.a—zx
_/(-x O/ (@—z.m—b) NG ba—e “® Na—b.a—c

(iil) b>w>e¢,

v Mda h- \/—cb z h- \/b—ca x
_/(.w——c)N/(a—x.b—w)_sm a—baw—c a—b.x—c

(iv) c>z>—w,

/' Mda _ Oh_lJa—c.b—x_ b1 b—c.a—w
(c—w)N/(a—cc.b-—w)_‘c s a—bo—m o0 a—b.c—a
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70. When all four roots of the quartic X =0 are imaginary,
so that
(@—a)(@—pB)=(@—mpP+n% (x—y)e—38)=(@=pP+g,
foloc/N/X=_/'{(ac—m)2—|-n2 (x—p)Y+q¢?%} -3z
is reduced by the substituti(on L
_(w—m)24-n
Y= o p)ipge (101)
Let us suppose that X is resolved into two quadratic factors,
so that X is of the form
X =(ax?+ 2bx+c)(Ax?>+2Bx+ 0),
where, by supposition, ac—b? and AC—B? are negative, so
that the roots of X =0 are all imaginary.
2
Let Y= :4%{—2% Jg, SUPPOSE, +vvvvrrnenns (101)*
then the maximum and minimum of ¥, the turning points of
y, being denoted by ¥, and v,,
—y=Ay,—a)(@,—2)*|D, y —y,= (a— Ay,)(x—x,)*/D,...(102)
a, and @, denoting the values of = corresponding to ¥, and ¥,
of 4; and-now
dy _2(Ab—aB)(x, —)(x—ux,)

do (At 9B O e (103)
For « is given in terms of y by the solution of
Ay—a)?+2(By—bye+C0y—c=0,............ (104)

and this equation has equal roots at the turning points of y,
which are therefore given by the quadratic equation
(dy—a)(0y—c)—(By —b)’=

or (AC—BYy2— (Ac+alC—2Bb)yy+ac—b%*=0,...... (105)
and then
_ By—b . ax+b  bate
*—Ay @Y= Am—{-B “Bat C
-/;/(ND> D~/3/
Ddy
2(4b—aB)(w, —x)w—z)n/Y
=~/(A?/1"“ a—Ay,) dy

2(4b—aB) GGy’
and  (dy,—a)a—Ay,)= —A%,y,+Aa(y, +y,)—a*
_(Ab—aB)y
TTAC—B
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da 1 dy
s0 that — = , ...(106
X N/(AO'—f}?) Yy =y Y —y) (106)
. o @ J(AC— B)de _
which, by (15), gives / RS G

- ?/1@/_1 Y =Y _\/@/
sn-t =——cen ! m—2=——dn-? 107
N/% ~Ys U Y1~ Y @/1 (107)
with e e
the last expression, by the inverse dn function, being the

simplest, as expressing a function of an argument oscillating
between two positive limits, ¥, and y,.

71. For example, if
X =a*+ 2a%x2cos 20+ at
= (a?+ 2ax sin a + a?)(2? — 2ax sin a+ a?),
and if y = (2?4 2ax sin a4 a?) /(x?—20x sin a + o?),
then z,=a, y,=tan’Gw+4a); v,= —a, y,=tan?Gr—1a);
so that K'~tan2(;£7r—%a)=(1 —sina)/(1+sina);

and /;/ (004 +2 co%Qcos 2a+at)

1—sin q.2?4 2ax sin o+ a2

m 1+sina.2?—2azsina+a? 7" (108)

2

But, by substituting 9.05 =1 + 2
o
° da /‘
—/N/ @+ 2a%a%cos 2a+ o) 2a) J1— zz cosia +2%inq)
L 2 — a2
= -1 B

5g 0 (z; sina)= 2@ N (109)

by (2), a reduction of the elliptic integral to a different
modulus, the modular angle being now «; affording another
illustration of Landen’s transformation of § 67.

Thus, with a= {7, equation (108) gives

) 1+4/2 w—}-mz}
1 — .
A/(l+w*) (2—,/2)dn {(J2 1)\/1_~/2——-—%+x2 .
where «'=(,/2—1)% (when K'/K=1); and by (109),
* daw
—1len-!
~/(w‘*+1) =zcCn < 2+1’ 2’\/2>
L de 1 N2 dex —len 1—a? ete
R R e B /| B ki Bl
For other numerical examples the student may take
X =at4-202 42, a4+ 322+ 3, a* +a?+1, 2t 422243, ete.
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72. When two roots only of the quartic X =0 are imaginary,
we may still make use of the substitution (§70)
y=N|D, where X=ND;
but now take ac—0b? negative, and 40— B? positive.
Proceeding as before we tind that the maximum 4, is positive,
but the minimum v, is negative; and y oscillates between 0
and ¥, for 1eal values of ~/X ; and
dy
~/X J(AC' BYS Ny yi—y -y —ys)
so that, by (14),
JAO=B), 1 -y
VX A (?/1 Ys) Y

Y _ -1 Y —Ys
~/(”/1 @/3) \/?/1 N/(yl_%)dn Y~ Y5 -+ (110)
with =Y/ (Y1 =Ys) 2= =93/ (y1—Ys).
73. By another method of reduction we shall find
(Enneper, Elliptische Functionen, p. 23)

/‘x de
y N{g—a.x—B. (x—m)+n?}

_ 1 {H(x B)— K(x—a) K}
J(HK) H(z—B)+ K(z—ay

_/;/{a —x.— B (. —m)?+n?}

L [H(a—2)—H(@—0) ,
—:/(—ER—)CD 1{K(a-—~w>+H(x'—lg>, K }, ...... (112)
ete.; where H%=(a—m)2+n? K2=(B—m)24+n?;
and <=1 = H(am B — = K}/ T,
<=1+ Hla— B = H= K HE
so that 2k’ =n(a—B)/HK.
Degenerate forms occur when « and 3 are equal; and now

-/'°° dex
(@—a)/{(@—m)*+n}

= ! cosh- wAla—mpP+n*}/{(w— m)2+fn2}
J{(a—m>;+nz} —a)
dw
Ja—ww{(w—m 2 +n2}
L cosh- W a=m) 02} /{ (@ —m) *+nt}

~ Sa—myErat) n(a—a)
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74. Replacing y by N/D in equations (102), then
Dy, — N =(Ay,—a)(@,—z),
N—Dyy=(a— Ay, (@ —x,)*;
so that we may write, according to Mr. R. Russell,
D=Aa?*+2Bx+ C=P(x, —x)*+ Q(x —x,)?,
N=ax?+ 2bx +c¢ = pla,— 2+ @ —2,)% .......... (118)
where  P=(Ady,—a)/(y;—y,), Q=(a—Ay)/(y;~5);
and p=Py,, ¢=Qy,.
Interesting numerical examples can be constructed by giving
arbitrary integral values to a, @, P, @, p, ¢; and now the

substitution g="""s
@, —w
will make, as in § 37,
da _ (2, — )z
;\/X— N/(p+qZZ-P+QZ2) ................ (114‘)

75. When the factors of the quartic X are unknown, we
employ Weierstrass’s function, and we shall show subsequently
in Chap. IV. that the elliptic integral _/oloc/JX is reduced to
Weierstrass’s canonical form § /ds/./5S (§ 50) by the substitution

s=—H/X,
H denoting the Hessian of the quartic X (Cayley, Elliptic
Functions, p. 346) ; we may thus write

de H
U‘X=2KJ—1<—“X; Jos g3>, ............... (115)
where g,, g, are the quadrinvariant and cubinvariant of the
quartic X or ax*+44bad 4 6ex?4-dda e,

so that  g,=ae—4bd+3c?,
g =ace+2bcd — ad?— eb? — ¢?,
H =(ac—b?)z*+ 2(ad —be)a® 4 (ae+ 2bd — 3¢?)x?
+2(be —cd)x+ce—d?;
and the general reduction of the elliptic integral of the first
kind fdx/ /X, where X is a cubic or quartic function of «,
_is now complete.
The application of this general method to the particular
cases already discussed is left as an exercise for the student.
76. Systematic Tables of the integrals of the elliptic functions
snu, cnaw, dnw, nsw, dsu, csu, dcw, neu, scu, ed u, sd w, nd u,
and of their powers have been given by Glaisher (Messenger of
Mathematics, 1581).
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Suppose fcn udw is required ; we may write it
0

/cnudnudu_ dsnw

1 1
= —tgin-1 = cos-1(d
nu L —sia) Ksm (ksna) Kcos (dnw),

0
ete.; so that

/::cn udw = cos ~Y(dn w) =sin ~(k sn w) = tan ~Y(x sn w/dn )
0

={sin~(2¢ sn w dn w) =am(ku, 1/x), ete.
Similarly,

K
//: snudu=cosh ~*(dnw/«")=sinh ~*(kenu/x")=tanh-(xcnw/dnw)

donuw+renw dnu-+kenw K
=%log—-+—=lo +, =log , ete.,
dnu—kcnu K dnu —kenu
while /cinudu:cos‘l(enu)zsin‘l(snu):a,m'u, .......... (116)
0

As an exercise the student may integrate nsw, dsw, ...; also

sndu, cnduw, dnu, ...; and obtain formulas of reduction for the
integrals of (snu)?, (enu)®, (dnw)?, ....

As a general method, for (snu)* for instance, we put
sn?u=s; and now

L §¥—Dls
ﬁsﬂ %)"du =7 m =Unp, SUPPOSE.
By means of the well known formule of reduction,
(p+1D)avyr, + 2p+1)bv,+pov, -, =22, /N,

for Up =_/53de/JN, where N = ax?+2bx+c,
we have, on comparison,

a=k b=—3A+k), c=1, p=Ln—-1);
so that Vp =2y, Vpy1=2Upyg Vp_y;=2Uy-,; and

(n =4 Dby g — (L4 E)uty 4 (n— 1)y y=sn""uenudnw,..(117)
the formula of reduction for w, = ﬂsn W) .
When the limits are 0 and K, we obtain the recurring formula
(4w g —n(L 4+ k) + (10—, g=0, ...... (118)
analogous to Wallis's formulas fOI‘-/(‘SQ{;l or cos 0)™d6.
The same formulas hold for un(_)—_(cd w)*du, since (§ 57)
cd u=sn(K —u).
Thus u, is made to depend ultimately on w,, already deter-
mined, or on u,; and a similar procedure will hold for the
integrals of (enw)® or (sd w)®, (dnw)® or (nd w)®, ete.
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77. The Elliptic Integral of the Second Kind.
We may mention here incidentally that the integrals of
snu, cnu, dnu, ns?u, ds’u, cs?u, ...
require for their expression new functions called elliptic in-
tegrals of the second kind, such as occur for instance in the
rectification of the ellipse.
For if, in the ellipse (z/a)*+(y/b)2=1,

we put x=qsin ¢, y=>0cos ¢;
ds? _da? | dy? . o s
then ig = dsz+ ch‘!ﬁ = a%cos’p 4 bsin’p = aX(1 — e*sin?g) ;
0 that 2:/,/(1 —exin’p)de =fA(¢, eyl =/Eln2uolu, (119)
0 0 0

on putting ¢=am(u, €); and e, the excentricity of the ellipse,
is now the modulus.

The integral f A/ (1 —%sin%¢p)d¢ or f A(g, k)d ¢ is denoted by
0
E(¢p, ) by Legendre, and called the elliptic integral of the

second kind ; and when the upper limit is s, the integral is

denoted by E'k, or by £ simply, and called the complete elliptic
integral of the second kind.

Examples—The following examples are collected chiefly
from Legendre’s Functions Elliptigues; the results, being
now expressed by the inverse elliptic functions, will serve as a
guide to the substitutions required to reduce the integrals to
the standard elliptic forms, and the correctness can be tested
by differentiation as an exercise.

l.aﬁl+m2)‘%dm=J2 cn‘l{(l+x2)‘%, %J2}

2.ﬁ1—m2)'%dm=J2 cn‘l{(l—oﬁ)"i, SZLN/Z}

e afl=/E@=1)
3.1 (@2=1)"3dz=  cn l{m’ 7,~/2}.

4, f(e—a.x—B)idx
=g e 2:53}5@}
v RN

5. (a—w.w—,B)"%dm::/—(g:F) cn‘l{
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2 -2y 2 - A
6.ﬁ(w—m)2+%} %dw—:ﬁbcn {{(w—m)2+n2}i’ %“/2}'

7. Prove that, if w=4a™(1 —2a"),
2-1/n

/1 am)t-Undg = [ (1 —am)t-Yndg =2~/ (1 —wm)-3dw ;
2-1in
and express the result when n=3, 4, or 6.
8. Prove that, if ¢ —q« is a factor of the cubic X, so that
X = (x—a)(ax?+2bx+c) ;

; 3 X3 ac—b?
—§ = -1 : 4‘ )
_/}( de ‘aa2+26a+080 (a;—a’ o 0&a2+2ba+0)

a
an integral occurring in the determination of the motion of a

projectile in a resisting medium.
Evaluate the integral when aa?+2ba+c¢=0, so that

X= (w — a)Q(w -
9. Prove that (i f ”lif;{”f > = i ;32 =

(i) Esnudu
f dnut+e k(1 +K)

(i) fuw sn%du =2K(K - E)/«%

@iv.) -/27’%(1;5, k)sin pdp = }—C sin~1k.

Kde | ,
). _/ e
10. Prove that
El?> K > E>2K«?[/(14?).
11. Denoting the integral _/(A¢)‘”d¢ by w,, establish the
b

formula of reduction
03— (1= (L4 2+ (e 2)ttp = — 50 b COS G(Ap) .

Evaluate u, for n=2, 3, 4, ....

G.E.F.



CHAPTER IIL

GEOMETRICAL AND MECHANICAL ILLUSTRATIONS
OF THE ELLIPTIC FUNCTIONS.

78. Graphs of the Elliptic Functions.

Now that the Elliptic Functions have been defined and a
few of their fundamental properties have been established in
Chapter I. in connexion with the pendulum; while in Chap-
ter II. the reductions of the elliptic integral to the standard
form have been tabulated, let us consider some further applica-
tions, and first in connexion with the graphs of am u, cnw,
snu, dnw, represented by curves whose equations are of the
form y=ama, cng, sz, or dn .

The graphs of these equations are given in fig. 5, in curves
(i), (ii), (iii.), (iv.); the modular angle employed is 45°, so that
the curves can be 'plotted from the numerical values given in
Table II., analogous to the graphs of the circular and hyper-
bolic functions, given in Chrystal's Algebra, Part II.; thus,
for instance, the curve y=ama is the graph of the relation
between ¢ and u in § 5.

We notice from the equations of § 57, Chap. 1L, that by
sliding the curves along Oz through a distance * K, the curve
9 =sna becomes changed into y=sn(K +x)=cna/dnx or cd,
and not into y =cnx; while the curve y=cn z becomes changed
into y=cn(x—K)=«snz/dnx or «'sd 2, and not into y=snx;
so that the curves y=snz and y=cnx are essentially distinct
curves, and cannot be superposed, like y=cos x and y=sin .

The curve (i), the graph of am x, consists of a regular un-
dulation, running along the straight line y=}Jmux/K ; so that

am ¢ = {7/ K + periodic terms = {7/ K + ZB,sin(nrw/K),
66 .
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in a Fourier series, where the B’s are to be determined sub-
sequently; and then by differentiation,
dnz=(7/K){1+4+2ZnB,cos(nrz/K)}.

So also the graph of E¢ or Eam wu, the elliptic integral of
the second kind (§ 77) consists, like (i.) the graph of amu,
of an undulation running along the straight line y=Fz/K;
so that we may write, in Jacobi’s notation,

Eamax=Ex|K+ Zx,
where Zz is a periodic function of @, which can be expressed in
a Fourier series
Zx=2C,sin nre/K ;
and then, by differentiation,
do?e = E/K + (7| K)EnC,, cos nrae/K ;
whence also the expreséion for sn%z and en?z in a Fourier series.

y
4
TC () )
: (ii) ,
o K EY:4 %4 £ 2K
(N
Fig. 5.

We proceed now to some mechanical and geometrical appli-
cations of these curves.

79. ProBLEM L. The curve assumed by a revolving chain
We shall prove that
y/b=sn Kx/a
(fig. b, iii) is the equation of the curve of a uniform chain,
rotating steadily with constant angular velocity n about an
axis Oz, to which the chain is fixed at two points, 2« feet
apart, gravity being left out of account, e.g. a skipping rope.
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Denote by ¢ the tension in poundals of the chain at any
point, and by w the weight in lb. per foot of the chain.

Then the equations to be satisfied are
d ( dx d(dy 2
ds tols) 0 ds( >+n wy=0.

Therefore tdm/ds=T, a constant, the thrust in poundals in
the axis due to the pull of the chain ; and therefore

d(dy\ , n*w Ay da | nPw
_(_Zl>+ Ty—-O or %Y +—7y=0,

ds\dz da? ds™ T
the differential equation of the curve of the chain.
dy?  ds?
But L e
so that dy d*y _ ds d’s

de da*— dw da?’

d?s 'nszdy -0
d2 T T Y g™

Integrating, supposing 4=>b when dy/dz=0 and ds/dz=1,

ds
El-_"l-‘- 2T(b2'—y2):

so that t="Tds/dx =T+ in>w(b?—y?).

dy* _(ds ds _nPw 2{ "W, 2}
then gts= (o )@+ 1) =7 G-+ g -0,
so that # is an elliptic integral of 7, of the form (5) in

Chap. II.; and y is an elliptic function of x, obtained by
inverting the function of the integral.

To obtain this function, let y="bsin ¢; then

and therefore

ley b2(3082¢d¢ w ’w(bz 2) {1 _I_/)%Lg(lﬂ — ?/2)}’
. d¢? _mPw(. | nPwb? n2wb?
or de2” T <1 T >(1 —xsin ¢)’ AT nPwb?’
Kr _nPwb
so that ¢p=am K— where SR o
and y/b=sn Kz/a,

the equation of the curve formed by the chain; and now 2a
denotes the distance betweep the ends of the chain.
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We may denote T'/}n?w by h?; and now
b? h? k2 _h? 2ab 20 .
S S @ g e K=5
whence the modulus « and quarter period K can be determined
when % and @ are given; and

ds b2—y? 2x200s2¢ A%
el =14t et R,
. dp_K, .
while %—a’Aqb,
so that ds 2a e 1 Kh? a 1 |

dg~ K PTR ApT 20 P TR Ry
and integrating, with the notation of § 5 and 77,
K2, a
=B, ©) = 3 F ()

If 2 denotes the length of the chain, then s=0 when ¢ =1,

and F(¢, k) =K, E(¢p, x)=F; and therefore
l+a= %EK}L2/CL bE|k =20 L|Kk?,

from which «, K, and E must be found by a tentative process,
from Legendre’s F.E., II., Table II., when a and [ are given.

For instance, if k=«"=},/2, as in Table II, page 11,

K=185407, £=1350064;

and bla=1'5255, I/a=19206.

80. When the chain is fixed at two points not in the axis,
nor in the same plane through the axis, the chain when re-
volving in relative equilibrium will form a tortuous curve,
which will sweep out a surface of revolution, of which the
preceding curve y/b=sn Kx/a is a particular case of the
meridian curve, while the general equation is of the form

y2+22=b%n}(Ka/a)+ clen(Ka/a).

For in this more general case the equations of relative
equilibrium are now

2ll3e) =0 ) =0, () +nwemo

Three first integrals of these equations are

dx

tag = .T PRI R R e R (1)
dz dy

t(y% - zj‘é) =H, a constant;.............oeenen. (2)

and t+3n*w(y®+2%) =X, a constant. .................. (3)
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Putting Y42t =1",
dy , dz _ di?
then R
and from (1) and (2), ygz—zflz g

therefore, squaring and adding,

#(a+ige) =40 T

dr?\? s? 4H?
or (%) =0 (1) "
9 2 2
= 9*‘1(% — 4> — %I,iz = %2(2)\ —nPwr?)? —4r? — 4"1{{2

dot
= nT’ng(rG —Art+ Br2— ()=

suppose ; and for 72 to lie between b2 and ¢? we must suppose
d?>b?>7r2>c? and as it is of the form (17), p. 37, we put
7%= b?sin%¢p 4 c*cos?¢h,
b2 — 12 = (b — ¢?)cos?¢p, 12— 2= (b? — c?)sin’¢,
BR=r2=d?—?— (D> — ?)sinp = (d* — ) A%,
where x?= (02— c?)/(d?—c¥.

Then (dw >~ = 4(b2 ¢*)2cos?¢p s1n2¢ ¢H

b= )% =,

— (2 cz)cosﬂqﬁ sin?¢p A,

de¢? _n*w?
or d%2 e (&= A,
so that ¢=am Kz/a,

where  K?%u?=mn*w?(d?— c?)/4T2=4(d2— c?)/I*;

and then ri=y2 42 =b*sn’Ka/a+c?en’Ka/a,

the equation of the surface swept out by the chain, the meridian
* curve being similar to curve (iv.) in fig. 5.

81. The chain will obviously take up the form which, with
given length between the two fixed ends, has the maximum
moment of inertia about the axis of revolution ; and we have

thus investigated the solution of an 1ntelest1ng problem in the
Calculus of Variations.
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The form of the chain for a minimum moment of inertia is
obtained by supposing that 72>d? as in (13), p. 835; and by
putting 72 —d?=(d?— b*)tan%¢p,

— b2 =(d?—b?) sec?q,
12— 2= (d?— ¢®)A%p sec?o,
k2= (b — &) /(d*— c?), as before.

2\ 2
Then (%) =4(d? —b*)*tan’¢p sec'e d¢2’

= 1%(cl2 — bY)2(d? —c?)tan?¢p sectp A%gp,
or e
so that ¢=am Kx/a,
and then Y2+ 2= d?sec’p — b*an’sp

_ dP=b*sn*Kafa

- cn’Kafa

=d*nc?Kz/a—b%sc?Kaja
is the equation of the surface of revolution upon which the
chain lies, when its moment of inertia about the axis of @ is
a minimum.
The projection of the chain upon a plane perpendicular to
the axis is to be investigated subsequently.

82. When the two points to which the ends of the chain are
fastened lie in the axis, or in a plane through the axis, the
chain takes the form of a plane curve, whose equation is

y/b=sn Kzfa
for a maximum moment of inertia, as already shown in §79;
and ; yen Kafa=d, or y=dne Kzfa

for a minimum moment of inertia; which can be proved as a

simple exercise in the Calculus of Variations, by considering
the variation of the integral

SN+ pAds.

83. ProBLEM II. “The curve on which an ellipse, of semi-
axes ¢ and b, must roll for its centre to describe a straight line
Oz is the curve whose equation is -

yla=dnax/b,
the modulus « being the excentricity of the ellipse.”
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For if the centre M of the ellipse describes the horizontal
straight line Oz (fig. 6), M must always lie vertically over P,
the point of contact with the fixed curve, so that the ellipse
rests in neutral equilibrium if its centre of gravity is at the
centre M; teeth being cut in the curves, if requisite, to prevent
slipping.

Therefore the pola,r subnormal

MG = _OZ—G in the elhpse 1 (%f§+81£229

must be equal to the subnonma,l

MG= -—ydy in the fixed curve 4P, where MP=r=y.
daw

2K
‘B
~—— -
4 A
Fig. 6.

Now in the ellipse, differentiating,

",,% %:(%‘2—232 sin 6 cos 0=2\/<7712~a/12 I')]‘:z—%é))

1 . ‘ 1
since %—- 1_ (E—z - l>s1n2t9, %2—— 1 <~1— 2)00329 ;

a? 2 \b2 o
or _dr_r/(@=1. P =1%),
do ab ’
so that in ’ohe fixed curve AP
~/(a2—y il )

fw“b . —=tan{ (1-5))

by (9), p. 33; or, by inversion of the function,
y/a=dn z/b.
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The arc of the rolling curve is obviously the same function
of r as the arc of the fixed curve is of y; and therefore the
arcs are expressible by elliptic integrals of the second kind.

The curve 4P can be described as a roulette, by a point P
fixed to a certain curve which rolls on Oz, and therefore
touches Ox at @, since @, the foot of the normal PG, is the
centre of instantaneous rotation.

Since PM is the perpendicular from a pole P on the tangent
of the rolling curve, and that the relative orbit of P and M is
the ellipse, therefore the pedal of the rolling curve with respect
to the pole P is an ellipse; or, in other words, the rolling
curve is the first negative pedul of an ellipse with respect to
its centre, that is, the envelope of lines drawn through each
point on the ellipse perpendicular to the line joining the point
to the centre of the ellipse.

The first negative pedal of an ellipse with respect to its
centre is called T'albot’s curve ; its (p, w) equation is

1 cos’w | sinw
P a T
and it is of the sixth degree (Cayley, Proc. R. S.,1857-9, p. 171).

84, For a rolling hyperbola, changing the sign of b2 the
fixed curve must be given by

abdy _ab en-1 {C_b b }
“T/;/(yz—wz- Y+ @+ v N @+03)
by (8), p. 33; so that, by inversion of the function,

a/y=cnx/ak, or y/a=ncx/ak,
is the equation of the fixed curve for the hyperbola.

85. When the fixed curves are of the form of curves (ii.) and
(iii.) in fig. 5, we shall find in a similar manner that the rolling
curves which will rest upon them in neutral equilibrium are
given by

1 _cosh?9  sinh?9 1 _cosh?0 sinh?9

I R R R
Taking the first of these two rolling curves,

1 1 /1  1\. 1,1 /1,1

o (c_[z+ b—2>smh29, o + R (a—2+ m)cosh%;

2dr /1 1 . 1 11,1
and = 0T9=<E2+ﬁ>281nh6003h0=2J<ﬁ_ + )
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or _raf(a?=72. bz—i-o")
dG ab
s0 that in the corresponding fixed curve

d@/ _Af(@—y2. b2+
ab ’

/ abdy __ab {y @
T Tl e
by (7), p. 33; so that by inversion,

k y/a=cnx/bk, with mod. k=a//(a?+b?).

Similarly it can be proved that the second rolling curve can
rest in neutral equilibrium on' the fixed curve (fig. 5, iii.)

y/a=snz/a, with mod. a/b.

86. ProBLEM IIL. Dynamical Problem. “The curve
renf@=c is the relative orbit of the centres of gravity of a
straight rod fitting into a smooth straight tube, resting on a
smooth horizontal table, when struck by an impulsive couple,
the centres of gravity of the rod and of the tube being initially
¢ feet apart.”

Suppose the rod to weigh m lb. and the tube to weigh
M 1b., and denote the moments of inertia about the centres
of gravity by mk? MK? (Ib. {t.2).

Then, if P is the c.¢. of the rod, @ of the tube (PQ=7), and
O the (stationary) c.c. of the system,

OP = Mr{(m-+M), 0Q=mr/(m+ M).
Denoting by « the initial angular velocity communicated to

the system by the impulsive couple, then from the Principle of
the Conservation of Angular Momentum,

(k2 + OP2) + MK >+ 0Q?)}(d6/dt),

. 5, mMr2\do 2 o, mMc? ,
or (mk + MK m+M>dt <m7 + ME?*+ +M>n. (1)
Again, from the Principle of the Conservation of Energy,

%m<m l—:—[M )23:: +im (m JEM > (;ll?g +Him kQOch%

m  \2dr? m 2A0% | | 2 d0?
+i <m+M> dgth <m+‘M> ™ g T
or, after reduction,

1 M (A e
2m+M<dt2+ 2dt2)+§( k2+MKZ)dt2’
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the kinetic energy in foot-poundals, is constant, and

= % ﬂm_}‘%uczﬁ + L(mk2+ MK ?)n?

Therefore, employing the value of d6/dt given by (1),

(m702 +MK? meh)

9, 9 mMc?

m+M<iZ)2+ >-|-m702+MK2—

or, finally, . , ‘
dr? (e 2\’!71](}2+]V[K2—|—’/}’LM’I’2/(WL+ M) 3)
a0 ‘ml? + MK +mMc[(m~+DMy
so that » is an elliptic function of 6, given by (8), p. 33.
We therefore put »=csec ¢; and then find

illgz =1—k%sin’p = A%g,
where - mk2+MK?
onch+MK2+mMcz/(m+M)
so that ¢p=am 6, cos ¢=cn 0; and therefore
en B=c.
87. When ¢=0, k=1, and this method fails; but now
1 dr? mMr? 72

P T R oy 3 10U e Sy
suppose, where a?=(m + M )(mk?+ MK?) /mM

and npw 0 /J(1+ )~ =sginh-?! o

or rsinh =,

the equation of one of Cotes’s spirals, the relative orbit of the
centres of gravity of the rod and tube, ultimately descrlbed
after leaving the unstable position of coincidence.

The system of the rod and tube may be supposed started
by any arbitrary impulse, not necessarily a couple, and the
essential character of the relative motion is unaltered; but now
the c.c. of the system is no longer at rest.

88. Other mechanical arrangements, leading to the same
equations of motion, will readily suggest themselves; thus the
tube may be supposed to be one of the hollow spokes of a
wheel of weight M 1b., moveable about a fixed vertical axis,
while the rod is one of a number of equal rods, or balls, of
collective weight m Ib., one in each tube, and initially placed
with the c.6. at a distance ¢ from the axis of the wheel.
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Now, if the wheel is started by an impulsive couple with
angular velocity 7, the path of the c.¢. of each rod or ball in
its spoke will be of the form

renf=c.

89. ProBLEM IV. Central Orbits and Catenaries expressed
by Elliptic Functions.

When a Central Orbit, expressed in the polar coordinates
(1/u, 6), is described under an attraction to the pole, of magni-
tude P (dynes per gramme), then, as is proved in treatises on
Dynamies, P is given by the equation

P=h2.u2<z%—;+u>, where h:oﬂz(%:ulz %),
and the constant & is twice the rate of area swept out by the
radius vector ; and v the velocity is given by
2 2
@2=%=h2<%+u2>_

Given the equation of the orbit as a relation between u and
0, the value of P as a function of « is thence easily determined
by differentiation, as in § 30 ; let us then determine P for the
orbits au =sn, cn, tn, or dnmo;
also for the inverse curves

aw=ds, nc, cs, or nd m#8,
in Glaisher’s notation ; the remaining orbits

aw=cd, sd, de, dsm8 ;
are not distinet curves, being merely formed by reflexion in the
line 8= LK /m, since cd mO=sn(K —m0) (§ 57), ete.

Asin §380, we shall find by differentiation that (d%uw/d6%) +w is
always of the form 4w+ Bu?, so that P is of the form pu®+vu?;
and conversely, given this form of P, we find by integration
that (du/dB)? is of the form C+Du?+ Eu*; so that 0 is an

elliptic integral of u, and w an elliptic function of 6, of which
the results are given in § 36.

When the orbit is given by
aw =sn?m@, ecn?mh, dn?mo, ...,
we find by differentiation, as in § 30, that P is of the form
A2+ pul+ vut; and conversely, when P is of this form,
(du/d0)? is a cubic form in w; and 0 is given as an elliptic
integral or inverse elliptic function of u, by the results of
equations (12) to (45), Chap. II.
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As an exercise the student may determine the value of P
and 72 as functions of w or 7, in the orbit
1 _cn?mf  sn®mf
” o b2
and its inverse curve, whose equation is of the form
r?= a?en?m O+ b2sn’*mo.

Similarly the central forces required to make a chain assume
the form of one of the preceding curves can also be determined
(Biermann, Problemata quaedam mechanica functionum
ellipticarum ope soluta, Berolini, 1865).

When a transverse force 7' is introduced into the field of
force, then % is no longer constant, but, as demonstrated in
treatises on Dynamics and the Lunar Theory,

dr? 2T T dlogh,
a6 " wd R T dp

. d* P T du
Whl].e W—l—u:h———zuz_m &_6_,
d*u dlog b dw
— h2y,2 o
so that P—hu<d62+'1l,+ a0 d9>'

If we assume P=Ah%u?; then

d du\  dlogh du
Eé—)(log _d—6> a0 = 0, or kEfé =(, a constant.

But. %:huz,' so that %%’ =Cu?, or %—E: —C, which shows

that the body approaches the centre with constant velocity C.
Suppose, for instance, we take an orbit given by

mb=am au,

then h=0%3=0% dn cm:O%J(l—Hsin%@@).;
2113
and P=r? = 02%(1 — k%sin’*mb),
2 2913
T= %u%% =— Oz%x%in m@ cos mo ;
so that V, the potential of the field of force, is given by
2 42
V=—;— 7%-2 %(1— %sin®m0) ;
oV oV
and then P=—5?, T= ~ 50
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90. ProBLEM V. The motion of Waitt's Governor.

“The oscillations of Watt’'s Governor between the inclina-
tions ¢ and 8 to the vertical, when constrained to revolve with
constant angular velocity w, are given by

tan}0 =tanfa dn(nt, k), with ' =tan}B/tanla,
where 6 denotes the inclination of an arm to the vertical axis
at the time ¢.”
_ Consider the motion of either rod and ball, as if unconstrained
by the other, and denote by C the moment of inertia of the
rod and ball about its axis of figure, and by A the moment of
inertia about the axis on which the rod turns at the upper

joint O (fig. 7).

Drawing the three principal axes 04, OB, OC at O, and
three moving coordinate axes Oz, Oy, Oz such that Ox
and OA4 are coincident, Oz is vertical, and 40Oz BOC in
the same vertical plane, then the components of angular
velocity about OA4, OB, OC are —(df/dt), —wsin 6, wcos 0 ;
and the corresponding components of angular momentum are
— A(d6/dt), — Awsin 0, Co cos 6.

The components of angular momentum about Oz, Oy, Oz
will therefore be
= —A(dB[dt), hy=(C— A)wsinHcosH, hy=(Ccos?0+ A sin?f)w;
while the component angular velocities of the coordinate axes
Ox, Oy, Oz are 6,=0, 0,=0, O,=0, with the notation of
Routh’s Rigid Dynamics.

Take the poundal as the unit of force, and denote by M the
weight in lb. of either arm and ball, by % the distance in feet
from O of the centre of gravity; the equation of motion
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obtained by taking moments about Oz or 04 is
%1 — o3+ 30, =L,

or —A(d*0/dt?)+ (A — )w’sin O cos O=Mghsinf;.......... (1)
so that, if 4 = C, the motion reduces to simple pendulum motion.

Integrating, on the supposition that « > 6> 3, and that
d6/dt=0 when 6=q and 3,
a2 _A-C v
=4 w*(cos @ —cos a)(cos B—cosB)............ (2)

The position of relative equilibrium is given by d?0/dt?=0
and then, if 0=+,
cos y=Mgh/{(A — O)w?} =}(cos at+cos B),.......... 3)
so that in these oscillations the point D, which controls the

valve, makes equal excursions above and below its position of
relative equilibrium,

The technical name for these oscillations is “ Hunting”; and
some kind of frictional constraint is required to prevent these
oscillations from becoming established. -

(Maxwell, Proc. R. S., 1868.)
Denoting tanga, tani@, tan}6 by a, b, x respectively, then
equation (2) may be written

4 c_lﬁ A-C (—aﬂ 1— a2><1—-b2 1—cc2>

Qa2 dez- A T+a? 14+a/\14+02 1422/
da? A-C
or E= w’cos?}a cos?L B(a? — x?)(a? —

-and this, by equation (9), p. 33, gives :
x=adn(nt, k), or tan {0 =tan}q dn nt,
where ' =b/a=tan}B/tan ta, and n=wsinfacos{B/(1—C/4).
* For a small oscillation, we put «=/; and then =1, k=0;
and now the period of an oscillation

71'

T wsina A A=

91. If we suppose the whole weight of a rod and ball con-
centrated at the centre of gravity, we have (=0, 4 =Mh?;
and now the motion may be assimilated to that of a particle
in a smooth circular tube, which is made to rotate about a
vertical diameter with constant angular velocity w.

(Prof. B. Price, Analytical Mechamnics, § 403).
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The equation of motion (1) now reduces to
2
h%g —hw?sin O cos = —gsin 6,

where h denotes the radius of the circle; and for oscillations
on one side of the vertical between o and 8, a >0> £,

(d6/dt)? = w*(cos O — cos a)(cos B —cos 0),
the solution of which is, as before,
tan {0 =tan}a dn nt,
where '=tan}B/tanta, n=wsiniacos}f.
If the particle in its oscillations just reaches the lowest
point of the circle, 3=0; and then «'=0, x=1; and now
dn n¢ degenerates into sech nt (§ 16) ; so that

tan 0 =tan ta sech n¢, where n=wsin}a;

the position of relative equilibrium being given by
cos v =g/wh=}(1+ cos a) =cos*}a.

If the particle passes through the lowest point, it will come
to rest again where = —a; and now

(d6/dt)* = w*(cos 0 —cos a)(2 cos y —cos a—cos §),
where 2 cosy—cos a>1; and the solution of this equation is
tan 0 =tanla cn nf, where n=w,/(cos y —cos a).

When a=m, we shall find the motion given by

. =sinh~/(w2+g/h)t .
so that, after an infinite time, the particle just reaches the highest
point of the circle, where it will be in unstable equilibrium.
A still greater velocity of the particle relative to the tube

will make the particle perform complete revolutions, which
will be expressed by
tan $0=C tn nt.

We have supposed the circular tube to be made to rotate
with constant angular velocity about a vertical diameter; but
the motion of the particle relatively to the tube will be found
to depend on similar equations when the tube is attached in
any other manner to the vertical axis.
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92. Such will be the motion of a pendulum swinging about
an axis fixed to the Earth, and now it is interesting to notice
other cases of motion of bodies which can be directly compared
and made to synchronize with the motion of an ordinary
pendulum, swinging through a finite angle.

Thus the pendulum, if moveable about a smooth vertical
axis, which 1is fixed to a wheel moveable about a fixed
vertical axis, the inertia of the wheel being sufficiently great
for the reaction of the pendulum to have no sensible effect on
its angular velocity, will perform pendulum oscillations, with
g replaced by aw? o being the angular velocity of the wheel
and a the distance between the axis of the wheel and of the
pendulum,

Again a cylinder of radius ¢ and radius of gyration %, rolling
inside a fixed horizontal cylinder of radius b, will synchronize
with a pendulum of length {=(b—a)(1+k*/a?).

If the fixed horizontal cylinder is free to rotate about its
axis, and has its centre of gravity in the axis, then the length
of the equivalent pendulum is

2 2 2
{=(b—a)(1+mn), where n:%/(l+g~2 %:Z),
mk?, MK? denoting the moments of inertia about the axes
of the rolling and fixed cylinders.

"~ The rolling cylinder may be replaced by a waggon on
wheels, and the motion can still be compared with that of
a pendulur.

A circular cone, whose €.. is in its axis of figure, and whose
axis is a principal axis, performs pendulum oscillations when
it rolls on an inclined plane, or inside or outside another fixed
cone, whose axis is sloping, the vertices of the cones being
coincident; the determination of /, the length of the equivalent
pendulum, in these cases is left as an exercise to the student.

In those cases where the finite oscillations are not of the
pendulum character, we suppose the motion indefinitely small ;
and now, in small oscillations under gravity, instead of giving
the formula for the period of a small oscillation, it is in general
simpler to give [, the length of the pendulum, whose small

oscillations have the same period.
G.E.F. F
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Thus for the vertical oscillation of a carriage on springs,
l is equal to the permanent average vertical deflection of the
springs, due to the weight of the body of the carriage.

For the small vertical oscillations of a ship, {=V/4, where
V denotes the displacement of the ship (in cubic feet), and 4
the water line area (in square feet) ; and if the ship is floating
in a dock of area B sq. feet, then it is easily proved that

1 1
=v(3-5)
93. The Reaction of the Awxis of Suspension of a Pendulum.
It is important to know the magnitude of this reaction in
the case of a large swinging body, like a bell in a church tower.
Denote by X and Y the horizontal and vertical components
of this reaction, considered as acting on the swinging body ;
and take the gravitation unit of force, the force of a pound.
Then X, Yand W, applied at the centre of gravity G (fig. 1),
will be the dynamical equivalents of the motion of the body,
collected as a particle at G; and since the component accelera-
tions of G are i(dO/dt)? in the direction GO,
and h(d?0/dt?) perpendicular to GO,
therefore, resolving horizontally and vertically,
Wh(d?6]dt?)cos 6 — Wh(df/dt)’sin 0 = X,
Wh(d?6/dt*)sin 6+ Wh(d6/dt)’cos 6= Yg— Wy
while, from the pendulum motion,
Ud?6/dt?) = —g sin O, HA(d0/dt)?=g(2R—1 vers 0).
From these equations we find '
IV;_ 1 —}zs n%0 +4Rhco 9— Acos 6(1 —cos 0),
or —ﬁ—,——l+%= (2{&_41;71) 08 0+—l—cos26;
R
and therefore the resultant of X and ¥'— W(1 —~/l) is a force
7= (=2 Bheos 0) = Wik 4 R—y)
in the direction GO; and T varies as the depth of P below
the line y=1il+4E,
whence X and Y are easily constructed.

—%Lsin 0 cos 0,
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94. In the simple pendulum, =/, and the tension T’ of the
thread PO is given by

TGl E—y)

At the end of a swing y=2R, and T/W=1-2R/l; so that,
if 2R is less than [, 7' is always positive.

But if 2R is greater than [, so that the plummet swings
through more than 180° 7' changes sign, and the thread will
become slack, unless replaced by a light stiff rod.

When 2R is greater than 2[, the pendulum makes complete
revolutions ; and now, at the top of a revolution, y =2, and
T/W=4R[l—5; and when 2R is greater than 3/, T'is again
always positive, and the plummet can be whirled round at
the end of a thread, without the thread becoming slack.

95. When the axis of suspension of the pendulum is hori-
zontal, and cut into a smooth serew of pitch p, the equation of
energy gives

LW+ k2 + p?)(d6/dt)2 = Wg(H — h vers 6),

if the centre of gravity descends from a height I above its
lowest position; so that
(B2 + 12+ p*)(d*0]dt?) = — gh sin 6,

and therefore l=h+(k*+p®)/h;
and now in addition to X and Y, the reaction of the axis exerts
a horizontal longitudinal component Z and a couple pZ, given by

Z_T/_V d*0 _ — Wphsin 6

=y P gE= R+t p?

Similarly the increase in ¢ due to the pendulum being sup-
ported on friction wheels may be investigated.

As an exercise the student may investigate the small oscil-
lations of a system of clockwork, in which the wheels are
unbalanced about the axes, and prove that for small oscilla-
tions the length of the simple equivalent pendulum is given by

I = (Zwhk?p?)|(Zwhp’cos a),
where w denotes the weight, wh the moment, and wk? the
moment of inertia of a wheel about its axis; a denoting the
angle which the plane through the axis and centre of gravity
makes with the vertical in the position of equilibrium; and
p denoting the velocity ratio of the wheel.
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96. The Internal Stresses of a Swinging Body.

These internal stresses are most forcibly realized on board a
ship rolling in the sea, not only in their effects as producing
sea-sickness, but also in causing the cargo to shift, if the cargo
is grain, coal, or petroleum, in bulk.

It is usual to consider the ship as acted upon by two forces,

(1) W tons, the weight or displacement of the ship, acting
vertically downwards through the centre of gravity G,

(ii.) W tons, the buoyancy of the water, acting vertically

upwards through M the metacentre (fig. 8).

Fig. 8.

These two forces form a couple of moment W.GM .sin 6
(foot tons), so that the ship will roll about a horizontal longi-
tudinal axis through @, like a pendulum of length GL=Fk*/GM
feet, Wk?* denoting the moment of inertia of the ship about
this axis of rotation.

Now to find the force which acts upon w, any infinitesimal
part at P of the ship, to give it its acceleration and to balance
its weight, we refer the point P to axes Gz and Gy, drawn
upwards through GM and perpendicular to GM.
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This force will balance the reversed effective force of w at P
and the effect of gravity on w; and therefore, in gravitation
measure, will have components

w d0 w o (cl6>
g Yap —§ gi) Tweos 0, parallel to Gz,

—%0 x %‘2—% Y (é?) +wsin 0, parallel to Gy.

If w is suspended as a plummet by a very short thread, the
thread will take the direction of this foree, and will therefore
make an angle with Gz

tan-17 sin 0 —a(d?0/dt*) — y(do)/dt)*
g cos B84 y(d?0/dt*) — w(d0/dt)?

Supposing the ship to roll like a pendulum of length I,

through an angle Za, then
Ud?6/dt?)= —g sin 6, and FU(dO/dt)? = g(cos @ —cos a) ;
and by § 8,

d*0[dt2 = —n?sin O = —2n’sin§0 cos §0 = — Zn’ snwl dnnt,

(dB/dt)? =2n*cos O —cos o) = 4m2(sm2 —sin?}0) = 4nilen’nit.

At any instant the lines of reversed resultant acceleration
will be equiangular spirals, of radial angle ¢, round the centre
of acceleration @ as pole, the resultant acceleration at P being

g; sin 0 cosec ¢, and the resultant effective force wq—é sin 6 cosec ¢,

when we put GP=r, and [(d0/d{)?=g sin 0 cot ¢ ; so that
tan ¢ = (sn nt dn nt)/(2« ecn’nt).

Superposing the effect of gravity, the resultant lines of forece
or internal stress will be equiangular spirals of the same radial
angle ¢, round a pole J, the position of which is obtained as
follows (fig. 8) :—Draw LK perpendicular to G.L to meet the
horizontal line GK in K ; describe the circle on GX as diameter,
and draw KJ making an angle GKJ=¢ with GK; this will
meet the circle in J.

For the resultant effective force of w at P, being
LG

GJ’
making an angle ¢ with GP, will, when compounded with w
upwards, and taking the triangle PGJ turned through an
angle ¢ as the triangle of forces, have a resultant

t=w.PJ|@J, making an angle ¢ with JP.

= qunsin 0 cosec p=
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This will be the tension and in the direction of a short thread,
from which w is suspended as a plummet at any point P; and
the deflection of this plumb line from its original mean direc-
tion in the ship will be a measure of the tendency of a body
to slide or of a grain cargo to shift; and to a certain extent of
the tendency to sea-sickness at this point of the ship and at
this instant of its motion.

The tendency will clearly have its maximum value at the
end of a roll, when df/d¢=0, and ¢ =L, and then J coincides
with K. (Prof. P. Jenkins, On the Shifting of Cargoes, Trans-
actions of the Institute of Naval Architects, 1887.)

The plumb line at P will now set itself at right angles to
KP, while the surface of water in a tumbler at P will pass
through K ; and a granular substance at P will begin to slip
if KP makes with its surface an angle greater than the angle
of repose of this grain.

Thus up the mast, at a distance a feet from @, water would
be spilt out of a tumbler, or sand in a box would shift, by the
rolling of the ship through an angle 2a, which would not spill
or shift, if the ship heeled over steadily, until an inclination 3
(the angle of repose of the sand) was reached, given by

tan 8= (1+4a/l)tan a.

At the centre of oscillation L, where a= —1, there is no
tendency for the water to spill, and this shows that the motion
of the ship is felt least by going down below as far as possible
in the middle of the ship.

In a swing the body is very near the centre of oscillation,
so that ordinary swinging is very little preparation for the
motion of a vessel.

A swing to act properly as a preparation for a sea voyage
should be constructed as in fig. 5, to imitate, in full size, the
cross section of the ship, suspended at M ; and now the varying
effect of the motion can be experienced by taking up different
positions on the deck, up the mast, and in the cabins, con-
structed in this swing.

Sir W. Thomson proposes to find the axis of rotation of a
ship and the angle through which the ship rolls by noting the
direction of the plumb lines of two such plummets, suspended
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at two given points across the ship ; planes through the plum-
mets perpendicular to the plumb lines at the extreme end of a
roll would intersect in K'; the horizontal plane through K would
meet the median longitudinal plane of the ship in the axis G;
while the plane through K perpendicular to the median plane
would meet it in I, whence G'L, the length of the equivalent
pendulum, and therefore the period of small oscillations could
be inferred, as a check on this construction.

Erxample. A rod AB, whose density varies in any manner,
is swung in a vertical plane about a horizontal axis through 4.
Prove that the bending moment of the rod is a maximum at a
point P, determined by the condition that the c.c. of the part
PB is the centre of oscillation of the pendulum.

97. ProBLEM VI. The Elastica or Lintearia.

The Elastica is the name given to the curve assumed by a
uniform elastic beam, wire, or spring, originally straight, when
bent into a plane curve (fig. 9) by a stress composed of two
equal opposite forces 7, on the assumption that at a point P
at a distance y from the line of the applied stress the bending
moment Ty is equilibrated by a moment of resistance B/p,
proportional to the curvature 1/p; and the constant B is called

the flexural rigidity of the spring (Thomson and Tait, Natural
Philosophy, § 611).

B' GO M B «

a2

Fig. S.

Then Ty=DB|p, or yp=B/T'=c? suppose;
and by Kirchhoff’s Kinetic Analogue, the normal of the Elas-
tica performs pendulum oscillations on each side of a perpen-
dicular to the line of stress, as the point on the curve moves
with a constant velocity.
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For, when the normal has turned through an angle 6, the

curvature ! = @ = @j R
p ds ¢
and by differentiation
d?0 1 dy 1.
W@ ds = e

which agrees with the equation of pendulum motion
d?0/dt? = —n’sin 6, if sjc=mnt.

Corresponding with the oscillating pendulum we have the
undulating Elastica, intersecting the line of stress at an angle
a; and thus, writing s/c for nt in § 8,

sin 0=« sn s/c, cos ;6 =dn g/c,
sin 0= — dy/ds =2« sn s/c dn s/c,
s0 that 1y =2cx cn s/e,
measuring s from the point 4, at a maximum distance from the
line of thrust; and a graduated bow might thus be employed
for giving mechanically the numerical values of the cn function.

In the nodal Elastica corresponding with the revolving

pendulum,
0=2am s/ck, sin =2 sn s/ck cn sfex = —dy/ds;
s0 that y=2(c/k) dn s/eck.
In the separating case, =1, and y=2csechs/c; and
10 =amh s/c, sin {0 =tauh s/c, tan §6 =sinh s/c, ete.
In the undulating Elastica

Ea:z =c0s 0= /(1 —4x?sn%s/c dn’s/c) =1 — 2x%sn?s/c;

and in the nodal Hlastica
%: cos 0= ,/(1—4sn?sfcen?sfc) =1—2sn%/c;

so that & is given in terms of s by means of elliptic integrals
of the second kind (§ 77).

A great simplification is introduced when x=x"=1}%,/2; the
Elastica now cuts the line of thrust at right angles, and

cos 0 = en’s/c = $y?/c?,

which shows that this Elastica is the roulette of the centre of
a rectangular hyperbola, rolling on the line of thrust.

It is easily proved that in this curve the radius of curvature
p is half the normal P@&; also that a chain can hang in this
curve as a catenary, provided the linear density is proportional
to (nes/c)®; this is left as an exercise for the student.
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When « =0, the undulating Elastica corresponds with small
oscillations of the pendulum, and the Elastica is ultimately
coincident with the line of thrust, the ordinate y varying
as sins/c or sinw/c; and then the length of the beam,
me=ma/(B/T), is the extreme length at which the straight
form of the beam begins to become unstable under the
thrust 7.

The nodal Elastica becomes practically a circle when =0,
corresponding in Kirchhoff’s Kinetic Analogue to the practi-
cally uniform revolutions of a pendulum when the velocity is
indefinitely increased.

The Elastica is also called Bernoulli’s Lintearia, being the
cross section of a horizontal flexible watertight cylinder, when
filled with water, the free surface of which lies in the line of
thrust Ox; for if ¢ denotes the constant circumferential tension,

t/p=wy, the pressure of the water,
or yp=t/w=_c2

It is also the profile of the surface of water drawn up by
Capillary Attraction between two parallel plates (Maxwell,
Encyclopeedia Britannica, Capillary Action).

The student may prove, as an exercise, as in § 80, that if the
wire is bent into a tortuous curve by balancing forces and
couples at ics ends, it will assume the form of a curve in a
surface of revolution defined by an equation of the form

Y2+ 22 = a?en®(s/c) + b%sn¥(s/c).
(Proc. London Math. Society, vol. XVIIL)

98. ProBuEM VII. Summner Lines on Mercator's Chart.

Sumner Lines, so called after Captain Sumner, of Boston,
Massachusetts, are the projections on Mercator’s chart of
small circles on a sphere; if simultaneous observations are
taken of the chronometer and of the altitude of the sun or a
star, the observer knows that he must lie on a small circle
having its pole where the Sun or star at that instant was in
the zenith, and having an angular radius the complement of
the observed altitude; and two such observations are em-
ployed in Sumner’s Method for determining the ship’s place.

According as the observed altitude of the Sun or the star is
greater or less than the declination, the small circle on the
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Earth does not or does enclose the polar axis; and the cor-
responding Sumner line will be a closed or open curve, whose
equation may be thrown into the form

cosh y/c=8eCacoSL/C, .oovrunrrninninnnnnnn. i)
or sinh %/c = tan B cos z/c. .. (i)

On Mercator’s chart (§ 16) the latitude 6 and the lonaltude

¢ of a point whose coordinates are @, y may be written

=g/c, 0=amh y/c,
where 7¢/180 is the length on the chart of a degree of longitude
at the equator.

These relations are obtained by noticing that the bearing by
compass of two adjacent points on the chart will be the same
as on the terrestrial sphere, if

dy _ do
da "~ cos B¢’
and now, if z=c¢, so as to make the meridians of longitude
equidistant parallel straight lines, then
dy[do=csec 8, y/c=[sec 60,
or (§ 16) f=amh y/c.

Now let ¢ denote the declination of the Sun or star, y the
observed altitude, ¢ the difference of longitude of the observer
and of the object' then in the c;pherical triangle SPZ

PS8=}r—6, SZ=4nw—a, PZ=%w—0,SPZ=¢,
S denoting the Sun or star, Z the zemth of the observer, and
P the pole of the Earth’s axis.

Since cos 8Z=cos PScos PZ+sin PSsin PZ cos SPZ,
therefore  sin a=sin §sin 64-cos ¢ cos 6 cos ¢,
or  cosdcos¢p=sinasecH—sind tan O

=sin a cosh y/c—sin §sinh /¢
and according as o is greater or less than §, this is reducible to
the form A cosh(y—b)/c or —Bsinh(y—b)/c; and this again
by a change of axes to the form of (i.) or (ii.).

(Crelle, X1, Gudermann, on the Loxodrome; Messenger of
Mathematics, XVI. and XX., Summner Lines.)

Differentiating equation (1.) with respect to «,

dy —secasinz/c  —secasinwz/c
de™  sinhyle —  /(sec’a cos%c/c— 1y
ds tan a sin a

da /(sePacostrfc—1)  /(sina—sinz/c) ;
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so that, as in § 3, 4, and 8,
sin w/c=k sn sfe, cos z/c=dn s/c,
cosh y/c=sin a dn s/¢, sinh y/c=tan acn s/c,
the modular angle being a.
This shows that s/¢ in the closed Sumner Line (i.) may be
equated to n¢ in the oscillating pendulum, and then x/c will be

half the angle made by the pendulum with the vertical ; also
in the Sumner Line

cos gl»:%og: cn s/e, or r=am s/c,

the intrinsic equation ; and p=csin asecx/c.
The differentiation of equation (ii.) gives in a similar manner

ds _ 1
da™ o/ (1 —sin?Bsin%x/c)
so0 that x/c=am s/c, with mod. angle 3;

and now, in the corresponding undulating Sumner Line, /¢ is
half the angle made with the vertical by a revolving pendulum,
if we put s/c=xnt.

Also cos \[;:to%=dn 8/c=(cn ks/c, 1/k)
by § 29; so that b =am(xs/c, 1/x),
the intrinsic equation ; and p=c cosec 3 sec x/c.

Fig. 10.

The second curve, by a shift of origin a distance }zc to the
right, becomes sinh y/c =tan 3 sin a/c,
and then it cuts at right angles the first curve (fig. 10)
cosh y/c=sec a cos x/c.
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For, differentiating these equations logarithmically,

coth % % = cot g—c;

1

tanh?—/ c_lgz —tang—c'
e de ¢’

and therefore the product of the g—gya’s is —1.

In fact putting sec a=coth «, the curves are derivable as
conjugate functions from the equation

x+1y = ¢ amh(a’+10).

99. ProsrEM VIIL.  Catenaries.

“The catenary for a line density proportional to cosh s/a,
where s is the length of the arc measured from the lowest
point, is of the form

tanh 4/b=dnx/a, or dna/b,
according as «, the ratio of the tension in pounds to the density
in Ib. per foot at the lowest point of the catenary is greater
or less than b; the Catenary of Uniform Strength being the
curve in the separating case of @ =15."

The equation of the Catenary of Uniform Strength, in
which the linear density or cross section is so arranged as to
be proportional to the tension, is well known (Thomson and
Tait, Natural Philosophy, § 583) being

evlheos wf/b=1, or e¥/*=geca/b;
or as it may be written
tanh /b = tan?4wx/b.

For if o, denotes the density in Ib. per foot, and &b the
tension in pounds at the lowest point 4, o the density and
ob the tension at any other point P, at a distance s from 4,
measured along the curve, the equations of equilibrium of
AP are

abcos =g, obsin =fo-ds.

Thence s=ogec, and fods = o tan ) ;
so that o =aobsechbdyr/ds = asecy,
or ds|dr=bsec,

s :_éfb see Yrdi)r = b cosh ~1sec = b cosh ~lg/o,,

o =c,cosh s/b.
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We might therefore take a piece of uniform flexible and
inextensible material, cut out from a plane piece by two
catenaries, or modified catenaries, say y/c= *cosha/b, and
hang it up in a catenary of equal strength.

Also x= fcos Yds=[bdrjr=rp,
Yy =/éin Yrds =/b tan yrdyr=blog sec;
so that y/b=log seca/b, or e?* =secw/b,

the equation of the Catenary of Uniform Strength.

But now suppose two supports at the same level to be made
to approach or recede from each other; the piece of cloth or
the chain will hang in a different catenary. -

Denoting by o, the tension in pounds at the lowest point
A, and by ¢ the tension at P, then

tcosr =gy, tsinf —fo-clL = o'ob sinh s/b;

so that P or —Ccll—y =tanr= smh '
the intrinsic equation of the curve.
dp _ 8 ds \/ 1 2 N
Then dh=a oo o=tV a+27)
or / ‘ abdp
N O a?p? 14 p%)

an elliptic integral, of the form (10), p. 33; and putting p=tan J,
dr)r coszx,b sin®/,
da ( a? b? >
In the separating case, a="0; and then x=>by, as in the
Catenary of Uniform Strength; the greatest possible span of
a catenary of given material is therefore 7b==+/w, where =
denotes the tenacity of the material, in pounds per sq. foot,
and w the density or heaviness, in 1b. per cubic foot.
But with a >,

dlp 1,~/ l—xchSZI‘b\)———A( 7+, k), where ' =0b/a;

S0 that, ir+r=amax/b,
dy . _cenaxfb
and __tdn\l’—"_s_n—w‘/b,
—cnaz/bsna/b —r%nw/bsnw/b, )
. —qi%/b—d T I—duib dw=btanh-1dn x/b,

or tanh y/b=dn /b.
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With a <?b,

d\” LU= gsing) =2 Ay, «), where &' =ajb;
50 that \p=am xfa,

dy _snaja
and —d—m.—tan \b—cn oo
_ /snxfacnafa,  fr*ne/acna/a
Y _/ en’z/a dov = dn’z/a— k" do
G dnm/a+;c 1dnw/a
—é—,log dna/a— 7=b coth
or tanhy/b= =dn(K —z/a),

T afa

by § 57; so that by a change of origin, taking the axis of 4 in

a vertical asymptote of the curve, its equation may be written
tanh y/b=dn z/a.

(Compare Cayley, on A Torse depending on Elliptic Func-

tions, Q. J. M., XIV., p. 241.)

100. In the catenary formed by an elastic rope or flexible
wire, obeying Hooke’s Law “ut tensio sic vis,” we may still
have p=sinh w ; but % is no longer proportional to the are s.

We use o, to denote the uniform density of the rope when
unstretched, and s, to denote the length of rope which stretches
in AP to length s, o, denotes as before the tension in pounds
of the rope at the lowest point 4, and o is used to denote the
modulus of elasticity of the rope in pounds; so that, by

) ds
Hooke’s law, s, =1 + -

Then, as before, for the equilibrium of AP,
teos Y=oy, tsiny=/ods=oys,

so that p—%—/-—ﬁ:smhu
if we put sy=0 sinh u;
and then t=0/(a®+38,2)=0,4a cosh w.
ds t \ds, at .,
Then = (1 +o-—oc>6l_ﬁ_ a cosh w4 " cosh?u,

ds _ o
and %—J(1+p)—cosh w,
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2
so that @=a+g cosh w
A ¢

Y . a? .
dn= sinh At cosh % sinh w.
Integrating, putting a/c=h,
8/a=sinh w+ }h(w+ cosh w sinh w),
wla= w+ h sinh u,
9 /o =cosh w+ A sinh?u.
For the corresponding points on the rope, when it is supposed
inextensible, putting ¢=c0, and ~=0,
so/a=sinh u, x)/a=u, y,/a=coshw,
giving an ordinary catenary ; so that the tangents are parallel
at corresponding points of the catenaries of the elastic and of
the inextensible rope.
The terms depending on %, considered separately, define an

ordinary parabola; so that the catenary formed by an elastic

rope is something intermediate to a parabola and a common
catenary.

101. ProBLEM IX. Geodesics.

- “Investigation of the geodesics on the Cutenoid, the surface
formed by the revolution of a catenary round its directrix, and
on the Helicoid, into which it can be developed; also of the
geodesics on the Unduloid and Nodoid, the capillary surfaces
of revolution, of which the meridian curves are the roulette
of the focus of a conic section, an ellipse or hyperbola, rolling
upon the axis of revolution.”

The simplest mode of determining a geodesic on a surface of
revolution is to treat it as the path of a particle moving
under no forces on the surface, considered as smooth, so that
ds/dt is constant ; and then, since the reaction of the surface
passes through the axis, r2d0/dt is constant ; and therefore

TZ@ =0, a constant,
ds
r and 6 denoting the polar coordinates of any point of the
projection on a plane perpendicular to the axis Oz ; and thus
ds? _dax® | dr? 7t
ap=ae T ap T "
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In the catenoid »/a=-cosh x/a,

so that %llf =sinh z/a= /(=) ;
@ a
and therefore, in the geodesie,
r2—a? dr?  dr? 7t
= aptaet
dr?_ (12— a?)(r2—b?
. It 1)

We must distinguish the two cases according as 0? = o

When b%>a? then 72> b2%; the geodesic osculates the circular
cross section of radius b; and we have

rsn =0, with k=a/b,
as the polar equation of the projection of the geodesic.

When b% < a?, then 72> ¢?; the geodesic crosses the circular
section of minimum radius a; and supposing it cuts the
meridian here at an angle a, b=¢ sin a; and now

7 sn(0/x) = a, the modular angle being a.

In the separating case, b=« and x=1; and then snf=tanh0;
so that 7 tanh O=a
is now the polar equation of the projection of the geodesic, a
curve having r=a as an agymptotic cirele.

Generally in any geodesic on a surface of revolution, which
cuts the meridian curve at a distance » from the axis at an

angle y, sin y = rde =0
so that sin y varies inversely as 7.

102. Now suppose the catenoid is divided along a meridian
curve AP, and again along the smallest circular section 4.4,
and that this section AA” is drawn out into a straight line, of
length 27a ; the rest of the surface, if flexible and inextensible,
will assume the form of a Helicoid, or uniform screw surface
of pitch a, such that its equation is

Z=a¢,
taking the axis of z along the axis of the surface, and p, ¢ the
polar coordinates of the projection of a point on a plane per-
pendicular to the axis; and AP will become a generating line
of the Helicoid ; this is proved geometrically, by noticing that
the length of the helix PP’ on the Helicoid is equal to the
length of the circle PP’ on the Catenoid.
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The surface being inextensible, and a circular cross section
of the Catenoid becoming a helix on the Helicoid, it follows that

2 A0 = pPdp?+ dz? = (p?+ a?)dp? ;

and since 2= p*+a?, therefore 0=¢.
Z
P P A P
A
o 7 TG0
P
2 ,
P 4
Fig. Il

Therefore the equation of the projection of a geodesic on the
helicoid is either of the forms

(P 4+ a)sni(g ) = a2,

ptn(p/)=a;
or (0?4 a?)snlp =b2=0?/?,
_adng¢
T ksng’

p en(K — ¢p)=ax/x.

The Catenoid is the surface of revolution formed by a
capillary soap bubble film, when the pressure of the air is the
same on both sides of the film. The surface is easily formed
practically by dipping a circular wire into soapy water and
raising it vertically; and it is evident from mechanical con-
siderations that the surface is a minimum surface (§ 31).

The Helicoid, into which the Catenoid can be deformed, can
be produced in the same manner by a film between two coaxial
helical wires of the same pitch (C. V. Boys, Soap Bubbles).

G.E.F. G
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These surfaces are particular cases of Scherk’s mimimum
surface, whose equation is

1Y /(@ =) /@ty =)
z=atan~! 4 atan b/ @y +a2)+bt nh N CERT
or

rma cos- N @y 0?) —ay /(@ +yt—bY)
N (@05 +y7)
(22492 +a?

+b cosh-1/(ZH Y+ J(Cbzi 5 ).
reducing to the Catenoid when =0, and to the Helicoid
when b=0.

The verification in the manner of § 32 is left as an exercise
for the student.

103. The meridian curve of the Catenoid is the roulette 4P
of the focus of a parabola a@, the pressure of the air being the
same on both sides of the film (fig. 12).

But when the pressure of the air inside the film is increased
or diminished, we find that the surface of revolution formed
by the capillary film has as meridian curve BP or CP, the
roulette of the focus of an ellipse or hyperbola, the first surface
being called the Unduloid and the second the Nodoid.

Maxwell, Capillary Attraction, Encyclopedia Britanmica.)

Denoting by ¥, ¢’ the perpendiculars from the foci P, P’ on
the axis Oz on which the conie rolls, then in the Unduloid
BP, generated by the focus P of a rolling ellipse bQ),

y+y =P+ QP )cos yr=2a cos ),
and yy =b?;
50 that b2 +y%=2ay cos .

If in the meridian curve BP of the Unduloid, we denote

the radius of curvature by p, and the normal PG by n, then,

since b2+ 2= 2ay cos gb = 2ay?/n,
1_
therefore - Zay Qa
i by
and since cos = Zay+ 5
differentiating,

smx[f Eb <2ay 2a>CjZ:Z’
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or

so that

Then, if p denotes the excess over the atmospheric pressure

of the air inside a capillary film, in the shape of an Unduloid,
and ¢ the tension of the film,

=t<l_1>=.’5_-
=" o)’

so that, if inside a Catenoid, the pressure is increased, the
surface is changed into an Unduloid.

If the pressure is slightly diminished by p, the surface be-
comes a portion of a Nodoid CP; for now

1)

and in the meridian curve CP of the Nodoid, the roulette of
the focus P of a hyperbola ¢R with foci P and P”,

' —y=(P"R— RP)cos \» = 2a cos \l, and yy’ =b?;

so that b?—y?=2ay cos \Jr=2ay?/n;
_b 1
n 20> 2’
1 8 1
p 2a2 T 20

and p=t/a.
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In the geodesic on the Unduloid,
Y?df/ds=a sin vy,
supposing the geodesic cuts the meridian curve at an angle ¢
at its maximum distance « from the axis; also a=a(1+e¢), and
the minimum distance B=a(l —¢), so that aB="5% a+B=20;
and y lies between a and 8.
Now, in the projection of the geodesic on a plane perpen-
dicular to Oz, writing = for ¥, so that tan \»=dy/dw=dr/dx,
2 2 4
e 0 e ity

. r? .
o ggrTTem \”<m‘1>’
and 7 cos = (b241%)/2a; so that

dr® _ {Tz — M}<_T27 — 1)
a6 4a? Zsin?y
(&= )12 = B)(r" — osin’y)
h a*(a+ B)’sin?y
leading to integrals of the form (72) and (73), p. 52.

We suppose first that 3> asin v, so that the geodesic crosses
the minimum section of the surface, and therefore all the
sections if produced; and now with a>7> (3> asiny, we
have, according to equation (72),

aZsin?y’

m9=./.a ma(a+ B)sin ydr —an-1 §2.a27¢2.

N/(a?,___/l,a‘l.,,a_B?./),.'2____ 2Sin2,y)— (12‘_62-7'2,
1 _cen?mf | sn®m6

or PR

Secondly, if a>>asiny> 3, then the geodesic osculates
the circle of radius @ siny, and is limited by the convex part
of the surface between two such circles; and the equation of
the projection of the geodesic is obtained from the above
merely by interchanging a sin y and .

In the separating case asin y=3; and then k=1, m=tan {y;
and the polar equation of the projection of the geodesic is

1 _sech?m@ , tanh?m0
™ @ B3 7
a curve having an asymptotic circle y=4.
The formulas are similar for the geodesics on the Nodoid.
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104. Euler's Equations reswmed. Poinsot’'s Geometrical
Representation of the Motion of a Body uwnder No Forces.

We now resume these equations of motion, of which the
solution by elliptic functions has been indicated in § 32. /7. 7%

By the Principle of the Conservation of Angular Momentum
(Routh, Rigid Dynamics, Chap. IX.) the axis OC of the re-
sultant angular momentum G will be fixed in space; and the
direction cosines of this axis with respect to the principal
axes of the body being

Ap/Q, Bq/G, Or/@,

the component angular velocity about OC will be

Ap*+ B+ 0r2_ T
e =@ a constant,

where, as before, 7' denotes twice the kinetic energy of the body.

It is convenient to denote this component of angular velocity
about OC by a single letter, say u; and also to replace G and 1’
by Dy and Dy?, making 7/G'=u and G*/T'= D; and then D will
be a constant quantity, of the same dimensions as 4, B, C.

If 7 denotes the moment of inertia about the instantaneous
axis of rotation OP, and if OP denotes the vector of the
momental ellipsoid at O, then 7 varies as OP-2, so that we may
put Z=Dh?*/OP? where & is a new constant length.

Now, if » denotes the resultant angular velocity about OP,

T= Iwz, or D/}.2=Dh2w2/0P2,
so that the angular velocity o varies as OP; and
h_OP _o_y_»
poo p g T

The direction cosines of the normal of the momental ellipsoid
at P being proportional to Awx, By, Cz or Ap, Bq, Cr, are
therefore Ap/G, Bq/G, Cr/G; so that OC, the axis of @, is
perpendicular to the tangent plane at P; and if OC meets this
tangent plane in C, it follows that OC'=h, so that the tangent
plane at P is a fixed plane; and during the motion the
momental ellipsoid rolls on this fixed plane, called the inm-
variable plane, with angular velocity proportional to OP.

The curve traced out by the point of contact P on the
momental ellipsoid is called the polhode, and the curve traced
out by P on the invariable plane is called the Lerpolhode ;
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these names are due to Poinsot, as well as this geometrical
representation of the motion.
(Théorie nowvelle de la rotation des corps, Paris, 1852.)
The equation of the momental ellipsoid may now be written
Aa?+ By?+ 022 =Dh?;
while Awx/Dh, By/Dh, Cz/Dh are the direction cosines of the
snvariable line OC; so that
A%+ B2y? 4 0222 = D2

The polhode is therefore the curve of intersection of these

two coaxial quadric surfaces, and therefore lies on the cone
A(A —D)a*+B(B—D)y*+ C(C—D)z*=0,
called the polhode cone; and the projections of the polhode
on the principal planes are therefore
(4 —B)By?+(A —0)022= (A —D)Dk?, ....

105. Denoting by v the component angular velocity of the

body about the axis OH, where OH is equal and parallel to CP,
p2+ q2_‘_ /)42=w2=M2+y2’
Ap*+ Be*+ Cr?=T = Du?,
A2p +BZQ +02’V'2 GZ D2 2

and, by solution of these equations,

A—-B.A-C 1 1 G
AT Pt (G g)T— 5 =et—edsuppose,
or =+ (1 - %) (1 “%) pE=v"—vg% suppose;

Q:%;&E Vz_l_(l_f_j)(l_%) ==l

and in these equations we may replace p, ¢, 7, o, u, v by
z, y, 2, OP, h, p, respectively, where p?= OP?—h2
Example—Prove that

(ae) + (o) () =@

(0] () 4ol iy A= 2D 0=

and simplify

@)+ G+ )
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106. On the supposition that
AT>BT>G*>CT,or A>B>D>(,
r never vanishes, and the polhode encloses the principal axis C;
but p and ¢ alternately vanish, so that »* oscillates in value

between (1 - %X]C’g— 1>,U.2 and <1 — g)(l@) — 1>M2

If we put ;—Z: <g — 1>{<l — 1142)00329 + <1 - §>sin29},

then Ap?=Du? B——g cos?0,

Bg DM gsmze

Or?= Du? <A g B é)mn?@)

We now find, on substituting in one of Euler’s equations,

d¢_ A-C.B—C(A=D .. B-D_
=P e (Gogeoso+i_ i)

cos20 +

and collt? -D 2<A—_§)~(élﬂ sin 0 cos 0,

the solution of which is of the form, as before in § 18 and 32,
0 =am(nt, k),
A—-D.B-C o A—B.D-C
apo M=o e
the anharmonic ratio of 4, B, D, ¢'; while

where n?= Du?

Ap*=Dy? D=0 cn’nt,

A4—C
Bq2 = D,U,zB: )
Or?= D,u. 24— g dn®nt;

giving (§ 32)
D.D-C D.D-C D.A-D
2 — 2 2 2. "7 T

P=ya=o Y=g p—o Bog a0

107. Quadrantal Oscillations.
The oscillations given by a differential equation of the form

d26/dt*= —m?in O cos 6

are called quadrantal oscillations (Thomson and Tait, Natural
Philosophy, § 322), the system having two positions of stable
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equilibrium given by 6=0 and 6=, and two unstable posi-
tions in the remaining quadrants, given by 6= * 1z ; for
instance, an elongated piece of soft iron in a uniform magnetic
field, or an elliptic cylinder moveable about its axis in a cur-
rent of liquid performs quadrantal oscillations. (Q.J. M., xvi.)
When the system performs complete revolutions, the solu-
tion is (§ 18) 0 =am(mt/k, «);
but if it oscillates about the positions of stable equilibrium,
given by 6=0, the solution is (§ 29)
0= am(mi, 1/c),
or cos 0= dn(mi/x, «),
sin 0=« sn(mt/x, «),
where « is less than unity.
The second solution will apply to the second state of motion
in § 32, where AT > G*> BT > CT, or A> D> B> (, and where
p never vanishes, and the polhode encloses the principal axis 4.

108. Differentiating the equations of §105 with respect to ¢,
do dv_ A-B.A-Cdp B-C.B-A dg O-A.C-B dr

o=@ B0 PuT A4 @~ 4B "d@t
B—C.0—A.A—B
- ABC pars
or 9%:—,\/(%.(»@2——& w2 — 0. 02— o),
dy?

= — oSG = v =2 vl —0R)
so that ? and »? are elliptic functions of ¢, of the form given
by equation (15), p. 36.
But, on reference to equation (A), p. 43, we see that
Pu= — /(49U — g — g3) = — (4. pU—€q. PU— ;. PU—¢,),
if e, e, ¢ denote the roots of 4s*—g,s—g,=0; so that on
comparison we may make
Wi — 0% o — 0%, 0l — o OT v — % vt — 12, vE— 1%,
proportional to  pu—e,, pu—ep PU—e;
or, symmetrically, we can put
App= —m¥B—O)(pu—ocy),
Bg= — (0= A pu—ey),
Or?= —m¥ A —B)(pu—e,);
where the factor —m? is introduced for the sake of homogeneity,
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m being of the dimensions of an angular velocity, such as p, g,
7, ®, 4, v; and now, on substitution in Euler’s equations,
du* B-C.C-A.A-B 2__(B—C’ C-4 A-B\ , ,
= e = (T A et
suppose ; so that w=a constantni.

109. As in § 32, we take 4> B>(; and then
(i)when AT>BT>G*>CT, oxr A>B>D>C,

7 never vanishes, and we must take
0> €= PU> ey
so that 0,= "0, Ca=164, €3 =0
(i) when  AT>G?>BT>C0T,or A>D>B>C,
p never vanishes; and then
o> 0> QU ey ;
and we must take e,=¢, ¢,=¢, ¢;=¢.

Since pu oscillates between ¢, and e, and is taken
initially equal to e, we find, on reference to equation (42),
p. 45, that we must put

W = 20, + wg— 1,
so that the constant of integration for u in § 108 is 2w, + v,

Now, at the cost of symmetry, to get rid of the imaginary
w,, and to make the argument of the elliptic functions a real
quantity nt, equation (42), expressed in the direct notation,

. e, —tg.6,—¢
gives pu—ey=1— 32 3
Nt —e,
pUu—e __el—gmt.eg—eg,
L= R
pnt —eg
e, —ey.6,—pnt
o p— 3PN,
pnt—eg

and e, always replaces ¢, while ¢, replaces e,, ¢, replaces ¢,, or
vice versa, according as the polhode encloses A or C.

110. For the determination of e, ¢, ¢, we have the equations
e+ e+ ¢, =0,
(B—=CYey+ (C—A)ey+ (Ad—B)e= T/m?= Du?jlm?,
A(B—C)ey+ B(C— A)ey+ C(A — B)e,= G*/m? = D*u?[m?,
whence AT — P =m¥C —A)YA —B)(e,—e.),
BT — @=m*A4 — B)(B—0C)(¢;—¢q),
CT—@P=m*B—0)C —A4A)ea—e);
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Dp? -D

or == 720 A A=K
Yy Dy B-D
T e A — | B . B=C
comey=20  C=D
TR B0 (=4’

so that e,—e, is taken positive or negative, according as
BT—G* or B—D is positive or negative; while e,—e, and
e, —eq are always negative, as explained above.
Also (€a—€p) — (€c—¢q)=Beq, ..
whence the values of ¢4, ¢, ¢.
Then 9= 3{(er—€o)*+ (¢ — €a)*+ (ea— &)’}
can be found ; and the discriminant (§ 53)
A=16(e,— 60)2(60 —e,)%(eq— eb)2
_ 1w (A= DXB=DP(C-D)
m2 (B—0){C—4)4—-B)*’
J=g£= {(B=C)YA—Dy+(C—A)(B— D)2+(A —B)2(C— D)2}3'
108(B—C)X(C— A A — B4 —Dy*(B—D)}(C—D)?

111. We have supposed no forces to act; but the case in
which the impressed couple is always parallel and proportional
to the resultant angular momentum leads to equations which
can be solved in a similar manner; in this way we imitate the
motion of a body, like the Karth, which is cooling and con-
tracting uniformly.

Now, the component impressed couples about the principal
axes being of the form A4p, \Bg, \Cr,

A(dp[dt)—(B—C)qr=\Ap, ...,
which, on putting p=¢-"p’, and \t'=1—¢", reduce to
A% B0y =0, .
so that p’, ¢, " are the same functions of ¢', which p, g, » would
be of ¢, in the case where no forces act.

In the case of the cooling and contracting body, we put

A=e¢MA, B=e" “B C=e¢MCj; and the equations become

0 dt’ —(By,—C)qr=0,

which are solved as before; and Poinsot’s geometrical repre-
sentation of the motion still holds, with slight modification.

*
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A similar procedure will solve the following theorem :

“ A rigid body is moving under the action of a.force whose
direction and magnitude are constant, always passing through
the centre of inertia (e.g. gravity), and of an absolutely con-
stant couple.

“If p, ¢, r denote the component angular velocities about the
principal axes at the centre of inertia, and if u, v, w denote the
compound velocities of the centre of inertia along the principal
axes at the time ¢; then the determination of

pft, qft, v[t, wft, v/, wlt,
in terms of 1% is the same as that of p, ¢, », w, v, w, in terms
of ¢, when no forces act; ¢ being reckoned from the commence-
ment of the motion.” (W. Burnside, Math. Tripos, 1881.)

112. To obtain the equation of the herpolhode, we notice
that during the motion the polhode cone, fixed in the body, rolls
on the herpolhode cone, fixed in space, O being the common
vertex ; corresponding areas of these cones are therefore equal,
as also their projections on any fixed plane, for instance the
invariable plane.

Therefore if p, ¢ denote with respect to C' the polar co-
ordinates of P on the herpolhode,

@_@< dz dy>+By<doc dz> 07( dy oloc>

Pae = oiN\Yar % ar) T on\ar ag) Y o\ ar ~Vai)
P g oy ou
de_u B—-C
therefore il Yz,
dz d A—B -4 D(A-D
and (5 104) 5 — 207 =/i( C Y= B W)‘”(B(f’) ha,
so that d¢ < A 2-}— DBQ -{—O Cz>
P =\"Bo oa Bt am
_(A—D)4%+(B— D) B>+ (C—D)C%?
ABC 1
A—D.B—-D.C-D
=P2f"+ AB0O 2 2
which, combined with the value of dv?/dt or dp?/dt of § 108,
dp?

g = e pd =t pit =t pi =),
will determine the equation of the herpolhode.
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113. Using Weierstrass’s functions of § 108,

v Pttt
2= M2
B— C’
:"—;2{ A (u’ ea)“l' B (@u_eb>+‘v_<83u’ 60)+ }
n?
- Mz(g)v'_g')u))

B-C (C—-A A-B 2
A 3a+ B lIf)b"' d 60""7}%2
B—-C (C—4 A-B ;
e e

and then  pv—e,= %;(1 — £> (g — 1>, (positive),

with pv=

U — ey = Z—j(l - g) <§ — 1>, (positive),

2 DN\/D .
PV —e,= %(1 - Z)(—E - 1), (negative),
pro= 4pv—e)(pv—e)(pv—e.)
_ 4 (A=Dy(B—Dy(C— D)2

nﬁ A2prC2
and, since e, (or €,) > pv > e, (01 ¢),
we must, by (39), § 54, where ¢’ is a proper fraction, take
v=0;+ t’wg
Therefore Ohé: wtn—2— BN
pv—pu’
d¢ M $ip'v
o du— n+ PV —pu
and, integrating, ¢ =put+5i @i") 7_’_%,

and we are thus introduced to a new integral, called an
elliptic imtegral of the third kind.

The cone described in the body by OH (§105) is called by
Poinsot the rolling and sliding cone ; during the motion this
cone rolls on an invariable plane through O, while at the same
time this plane turns with constant angular velocity w about

0C'; so that, it p, ¢" denote with respect to O the polar co-
ordinates of H on this plane,

e b= L gwdu
P =9¢ mb=141 ov— gm
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114. With the notation of the elliptic functions of Jacobi
as in § 106,
p*_DD— O DD-C DA-D
B-4A4=0c°

2 2
nt+BB oo t+OA Cdnnt
_A-D.D-C D‘A_B‘D_Gsn%t

- AC - ABC !
which can be thrown into the form

2

P _A—-D.D-C

~ Y1 — 2%nq sn?
E= AT (1 —«%n%q sn’nt)
on putting KkZsn? a=QA -5
© DA-D
o, D B=C c2a~—-—qB—D dna _AB-D
=B D-0 T TR0 TBACD
With ¢, =e,, e, =¢,,e,=¢;, and v =0, 4 'w,, then by (32), p. 44
(e —e)=K+tiK';
2 pv—e,_A B—D 2, .
and dnX(K +tiK") = ov—e B A= D*dna,
so that a=K+tiK'.
d¢ __ B-=D "
Then dt — B 1—«*n’asn’ni
_ ., _f%cnadna n
sna  1—«%sn’qsn2nt
and, writing w for nt,
$= ;_tsnadna dw
# sna /; — k%snZa sn’w
0
_ t__?lcnadna «*sn @ cn o dn a sn’u
K sna

s U
1 —«%sn?e snu ’
0

the last term an elliptic integral of the third kind, in the form
employed by Jacobi.

On putting sn v =sin 6, and sn ¢ =sin q, ¥’sn?= —m, then
;008 ala ao
¢=ml=g a

(14+m sin?0), /(1 — k’sin0y
0
the third elliptic integral, as employed by Legendre

; the
further discussion of this integral must be reserved for a
subsequent chapter.
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ExXAMPLES.

1. Prove that, if the excentric anomaly in an undisturbed

planetary orbit of excentricity ¢ is represented by 2am(w, e),
the mean anomaly is
Sd%am u
2 am w+ Z*Zcil{ovz"'

2. Prove that the envelope of the straight line rays

&2 sn w+(en w—+x dn w)y =« sn w(dn w+« cn w)
where w is the variable parameter, is the curve
k2= — 3y (1 — Byt
the caustic of parallel rays, after refraction at a circle, of
refractive index 1/k; and find the order of this curve.
(Cayley, Phil. Trans., 1857, « Caustics.”)

3. Prove that a portion of a flexible inextensible spherical
surface of radius a, bounded by two meridians (a lune, or gore
of a spherical balloon) can be bent into the surface of revolu-
tion given by

x=0¢08 0 cos(¢p/x), y=wacosOsin(¢p/k), z=aki(6, k);
0, ¢ denoting the latitude and longitude of the point on the
sphere.

Explain the geometrical theory, distinguishing the cases of
k<1, and «>1.

4. Denoting by w the solid angle subtended by a circle of
radius ¢ at a point whose cylindrical coordinates are 7, z with
respect to the axis of the circle, prove that

do _ az &,
da  2(ar)t (2
where e daur n_ PH(a—r)?

A(at+r? © T2y (atr)y
Show how to determine the illumination at any point of the

surface of the water at the bottom of a deep well, due to the
light from the sky.
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5. A uniform circular wire, charged with —e coulombs, is
presented symmetrically to a fixed insulated sphere of radius
@ centimetres, so that every point of the wire is at a distance
f em from the centre of the sphere, the radius of the wire sub-
tending an angle o at the centre of the sphere.

Prove that the electricity, in coulombs per em? induced at a
point of the sphere whose angular distance from the axis of
symmetry is 6, is given by

e E
(4 271'2a {U,Z— 26’/]0008(9-—-61) +j‘.2}~/{a2__Zaj’cos(e_i_a)_{_‘fz}y
where x%= dafsin asin sy 02— 2af cos(0— a)+f2

@ =2afcos(0+a)+/2 © T a?—2af cos(0+a)+ /7

6. Prove that if this sphere and wire gravitate to each other,
and if the wire is free to turn about a fixed diameter perpen-
dicular to the line joining the centres, the wire will be in stable
equilibrium when its plane passes through the centre of the
sphere ; and prove that the oscillations of the wire due to the
gravitation will synchronize with a pendulum of length

2
where b denotes the radius of the wire, ¢ the distance between
the centres of the sphere and wire in em, M the weight of the
sphere in g, C the gravitation constant; and

1 /2 v /3 l 7/
F=_;:f; B-K = (1467 S+,
where  «®=4bc/(b+c)% ‘
Determine the position of stable equilibrium and the length

of the equivalent pendulum, when the attraction is changed to
repulsion,

7. Two uniform concentric circular wires of radii b and ¢ cm,
weighing M and Mg, are freely moveable about a common fixed
diameter. Prove that in consequence of their gravitation, the
oscillations will synchronize with a pendulum of length

0% (b+c)
CFMbr+ e
where F and « have the same values as before.



CHAPTER TV.

THE ADDITION THEOREM FOR ELLIPTIC
FUNCTIONS.

115. So far we have considered the elliptic functions of a
single argument u; but now we have to determine the for-
mulas which give the elliptic functions of the sum or difference,
wtv, of two arguments w and v, in terms of the elliptic functions
of w and v; and thence generally the formulas for the elliptic
functions of the sum of any number of arguments u+v+w+...;
and the formulas for the duplication, triplication, ete., of the
argument.

The Addition Theorem for Circular and Hyperbolic
Functions.

The analogous formulas in Trigonometry for the Circular
Functions are well known, namely,

sin(w+v) =sin w cos v+cos w sin v,
cos(u+v)=cos w cos vFsin usinv;
or, as they may be written,
sin(w+v) =sin % sinv+sin’y sin v,
cos(u £ V)= CoS U COS VF oS cos ;
the accents denoting differentiation ; and to these may be added
tan w+tan v .
1¥tanutanv’
these formulas constituting the Addition Theorem for the
Circular Functions.
For the Hyperbolic Functions, the formulas are
cosh(w £v)=cosh w cosh v+sinh w sinh v,

sinh(w+v)=sinh % cosh v+ cosh u sinh v
112

tan(uwtv)=
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or, as they may be written,
cosh(u +v) = cosh u cosh v+ cosh’u cosh’v,
sinh(u +v) =sinh « sinhv+sinh"w sinh v;
and to these may be added
tanh w4+ tanh v .
I+tanh wtanh v’

constituting the Addition Theorem for the Hyperbolic Funec-
tions,

tanh(utv)=

116. The Addition Theorem for the Elliptic Functions.
For the Elliptic Functions the analogous formulas of the
Addition Theorem are found to be
sn(w+v)=(snwsnvx  sn'u snv)/D,
en(u+v)=(cnw ecnvE  cn'u en'v)/D,
dn(u+v)=(dnw dn v+,-2dn'w dnv)/D,
where D=1—k%nusnv;
or,performing the differentiations,and dropping thedouble signs,
snuwcnvdnv4tenwdnusnv

sn(u+v)= T Pondu oo s enerennasd Y
cnucnv—snuwdnwsnvdnv
en(u+4v)= O — s eeerenen (2)

dnudnv—«’snucnusnvenv
dn(u4v)= [P~ (3)
Putting «=0, we obtain the formulas for the Circular
Functions, sin(u+v) and cos(u+v), the denominator D re-
ducing to unity.
Putting k=1, remembering that then (§ 16) snu becomes
tanh u, cnw or dnu becomes sech u, we obtain from (1)
tanh w sech?v +sech?u tanh v
1 —tanh?y tanh?v
__tanh o(1 —tanh2v) 4 (1 —tanh?w)tanh v _ tanh w4tanhv
- 1 —tanh?u tanh?v " 14tanh wtanh o’
as before; with the corresponding formula for sech(u+v)
or cosh(u+v), the formulas for the Hyperbolic Functions.

tanh(u+v)=

117. To establish these formulas of the Addition Theorem
for Elliptic Functions, let us employ the geometry invented
by Jacobi (Crelle, Band 3; Gesammelte Werke, L, p.279), at

the same time interpreting the geometry in connexion with

Pendulum Motion.
G.E.F, H
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To do this, let us suppose that P” would be the position of
P in fig. 2 at the time ¢, if it had started + seconds later, and
put t—7=1"; then (§ 6)

AN’ =AD sn®nt’, N'D=AD en’?nt’, N'E= AE dn?nt/, ete.;
and we shall prove that PP’ touches a fixed circle through B
and B’ during the motion (fig. 13).

/

= Qe

A
Fig. 13. Fig. 14.

For suppose that, in the small element of time d¢, P has
moved to an adjacent point p and P’ to p’; and let PP, pp’
intersect in R, so that R is ultimately the point of contact on
the envelope of PP’

Then since, by a property of the circle, PP’ cuts the circle
AP'P at equal angles at P and P, ;

PR 1 Lr Pp ' __velocity of P ND
RP ™ P' "~ velocity of P~ NND"

Now describe a circle with centre 0 on A, passing through
B and B, and touching PP’ at a point which we shall denote
by R’; then

PR?=Po*—0oR?=P0%*+ 00>*—200 . ON —oR"
=0B%24 002—200 . ON — Bo*
=0D*—Do*>+ 00*—200 . ON
= 00(0D+ Do+00—20N)
=00(20D—20N)=200 . ND.

Similarly, R'P?=200.N'D,
so that PR / ND_TR

RP-NND™ RP
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and therefore R and R’ coincide; and we have thus verified
that PP’ touches at R the circle oR (using the notation oR to
mean a circle of centre o, and radius oR).

Putting Oo=a, and denoting the angles AOP, AOP" by 6,

0, and ADQ, ADQ by ¢, Jr, then
PR?*=2a. ND=4aR cos\r = 4alk’cos’p, RP?=4alk’cos™};
s0 that P’ R+ RP=2,/(al)x(cos Yr+cos ¢),
while PP =2lsin {(6—6"),
and therefore sin $(0—6")=/(a/l)x(cos [+ cos ¢).

Putting nt=u, nt'=v, nr=u—v=w; then since (§8)
¢=amu, sin {0 =xsin ¢ =«xsnu, cos 10 =dnu;
Y=amuv, sin 6’ =«siny,=ksnv, cos {6’=dnv;

a_ sin}(6—0) _snudnv—dnusny

I k(cos\r+cos¢p) cnv+tenu » & constant.
Putting ¢'=0, v=0, and therefore w=nr=w, we find
spw _l—enw_ [l—cnw,
\/l 1+enw snw Nl+tenw’
so that
l—en(u—v)_snudnv—dnusnv_ cnv—ena
T+en(u—v) env-+enu “snudnv+dnuwsne

one form of the Addition Theorem, which by algebraical trans-
formation can be reduced to one of the preceding forms of § 116.

118. Representing, as in § 81, snu by s;, enw by ¢, dnu by
d,, and the corresponding functions of v by s,, ¢,, d,; then

L—en(u—v) _sidy—s,dy _ c,—¢;
1+en(u—v)  cyte;  8dy+8,d;
1—cn(w—v) _ (cg— ¢ )(8,dg— 8,dy)
that =0T O U5 Q = 80y )
o LT+en(u—v)  (cp+e)(s:dy+8,y)
N 810y + 850y
- en(u—v)= 8190+ 831y

and changing the sign of v,
(w+1v)= 8,010y — 805y

o 8,Colly — 850,0l;

another form of the Addition Equation.
. 1—cn(u—v) _ (8,dy—8yd;\? Co—C; \?
Again 14+en(u—v) < ooy > o= (sld +8,d, >

(¢gtc)?— (sldz:, ,‘32@1) or = (8, +850,)% — (c—0y)*
(eatc)P + (sydy — syl ) (81dy+ 8yl )P+ (e — ¢’
and, adding numerators and denominators (componendo),

>

en(u—v)=
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2(¢,04+ 8,0,5,00)
012 + 022 + 812d22 + 82261/12
GGt 8,850,
1— K2812822 ?

en(u—v)=

the usual form (2) of the Addition Theorem for the en function.
But, subtracting numerators and denominators (dividendo),
e+ c2—s2d2—s,2d 2
2( 6169 — 8,018,05)

_1—82—s24 k% %,2
T e —8disdy
— 8,7 — 87+ %8, 78,"

ciCot+8ydys,dy
and another form can be easily established in the same way,

— k28, ¢
en(u+v)= Fgﬁjfzzsl';;jz

(Glaisher, Messenger of Mathematics, vol. x., p. 106;

M. M. U. Wilkinson, Proc. London Math. Soc., vol. xiii., p. 109;

Woolsey Johnson, Messenger of Mathematics, vol. xi., p. 138.)

en(u—v)=

en(u+v)= !

119. Expressed again in Legendre’s trigonometrical form,
with g=amu, \=amwv, y=am(u—v),
a_1—cosy_sin Ay —sinA¢

A sin y cosr+cos ¢
\/E _14cosy _sin gAY +sinAg
o  siney cos—cosp

Therefore, eliminating Ay,
2sinrsinyA¢p = (cosyr—cos ¢p)(1+cosy)—(cosyr+cos ¢p)(1-cosy)
= —2cos ¢p+2cosrcosy,
or €0S ¢ = €08\ cos y —sin - sin yAg.
Expressed in Jacobi’s notation, since w=v4-1w,
en(v+w)=cn venw—snvsnw dn(v+w).
Changing v+w into w—w, this becomes
en(u—v)=cnwcnv+snwsn v dn(w—o),
or €OS =08 ¢ €0s \r+sin ¢ sin Y Ay.
Conversely, these relations, treating y as constant, lead to
the differential relations du—dv=0,
or deop|Ap —d )| AYr=0,
or (dgp)2(1 —k?sin*r) — (dr))?(1 — ksin’p) = 0.
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Writing « for sin ¢ sinv, y for cos ¢ cos ), and m for Ay,
then cos y=,/(m*—«?)[c (§ 17); and the integral relation
becomes y+ma=/(m?—«?)/k,
leading to the differential equation, of Clairaut’s form,

y—ap= /(" — ")/,
denotmg dy/dz by p; this is the form of the differential
equation when we change to these new variables = and y.

120. We have begun in § 117 by supposing the points P and
P’ to oscillate on a circle with velocity due to the level of the
horizontal line BDB’, cutting the circle in B and B’ (figs. 2, 13);
but if they are performing complete revolutions with velocity
due to the level of a horizontal line BB’ through D not cutting
the circle, but lying above it (figs. 3, 14), a similar proof will
show that PP’ touches a fixed circle having with the circle
- PP’ the common radical axis BB', the two circles not inter-
secting ; and the Landen point L (§ 28) will be a limiting
point of these two circles.

But this motion of P and P’ in fig. 14 is imitated by the
circulating motion of @ and @ on the circle AQ in fig. 13; so
that Q@ touches at 7' a fixed circle, centre ¢; and the hori-
zontal line through ¥ is the common radical axis of this circle
and the circle CQ, the Landen point L being a limiting point;
and thus the Addition Theorem for Elliptic Functions can be
deduced from the motion of P and P’ in fig. 14, or of @
and @ in fig. 13, as given by Durege, Elliptische Functionen, X.

For if in fig. 14 a circle is drawn with centre o and radius
oR, such that BDB’ (fig. 8) is the common radical axis of this
circle and of the circle AP, then, since the tangents to these
circles from D are equal in length,

DO?*—O0P*=Do*—oR?;
and now, if the tangent to the inner cxrcle at R cuts the outer
circle in P and P,
PR?*=Po*—0R?*=P0*4 00*—200. ON — PO?+ OD?*— Do?
=0D?—D6*+002—200.0N=200.ND,

as in § 117 ; and similarly RP?=200.ND; so that -

PR _ |N'D _velocity of P

RP" NND ~ velocity of P’
and therefore PP’ will continue to touch the circle R, during
the subsequent motion of P and P".
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Similarly, in fig. 13, Q@ during the motion touches a fixed
circle, centre ¢ and radius ¢7'; and putting Oc=c¢,
QT?=2¢c. NE=4cl dnzm‘ TQ?=4cl dn’nt’.
We notice, on reference to § 28, that
L@Q*=2LC. EN=2LC. EA dn’nt =41*1 —«')*dn*nt = LA*dn’n4,

8o that LQ=LA dnnt;
LQ LY
and therefore T QT

or LT bisects the angle QL in tig. 13; while LR bisects the
angle PLP' in fig. 14; we may state this theorem geometrically,
“the segments of a tangent to one circle, cut off by another
circle, subtend equal angles at a limiting peint of the two
circles.”

Then, with the notation of § 117,

T+ TQ=2,/(cl)(Ayr+Ag),
and QQ=2Rsin(¢—)=2uHsin(¢p— ) ;
so that, in Legendre’s trigonometrical form,
KZIEI((_}; A;‘)b) \/ 5 \/ —, & constant,
Putting /=0, then ¢p=1v; so that

¢ _ksin(g—) _xsiny or LT Ay
B AYy+Ag l-I—Ay’ KSlny
E_ksin(p+y)_«siny 1 +A~y
¢ AYy—A¢p 1-Ay rsin’
the product of the two equations being umty
Conversely, the relation
sin(g £) = 0(Ay+Ag),
where ('is an arbitrary constant,leads to the differential relation
dop/A¢ xd\r[Ar =0.
121. Taking the equations
1+Ay_«sin(g +\//) 1—Ay_«*sin(¢p—)
siny T AY—A¢ ' siny  AY+A¢ ]
we find, on eliminating sin ¢,
2%08 ¢ sin Yrsin y = (1+ Ay) (A — A¢) — (1 = Ay) (A + Ag)

= —2A¢+AyAy,
A¢p=AyAyr—kicos ¢ sinrsin vy,
or dnu=dnvdnw—«2cn wsnvsnw,

with wU=v-+w.
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By eliminating cos ¢,
2k%sin ¢ cosJr sin y =2Ayr— 2AyA¢,
Avr=ApAy+risin ¢ cos yJrsin vy,
or dn(w—w)=dn w dn w-+x%n w sn w en(uw —w).
Changing w into v,

dn(u—v)=dnu dnv+«*nwsnven(u —v),

or Ay =ApAr+%sin ¢ sin - cos .
Writing 2 for «%in ¢sinv), y for ApAy,, and m for envy,
then y+me =/ (*+k>m?),

the integral relation of Clairaut’s differential equation
y—ap=n/ (%),
which is therefore the transformation of
dp|Ap— | A =0,
when we change to ‘these new variables « and .
Taking the two trigonometrical expressions from § 119, 120,
for the Addition Theorem,
1—cosy sinpAy—sinAp 1—Ay «%sin(¢p—1))
siny ~ cosytceosg osiny T AY+Ag ]
we obtain, by subtraction and reduction,

Ay—cos _ cosyrAgp—cos pAYr

sin y singp+sinyr
or dn(u—v)—en(u—v) dnwcnv—cnudnv
sn(w—v) - snu—+snv

the form of the Addition Theorem given by J. J. Thomson
(Messenger of Mathematics, vol. IX., p. 53).

122. With the notation of the elliptic functions,

1+dn(u—v) k(snuenv-+snvenw)

& sn(u—2o) dnv—dnw ’
1—dn(u—v) k(snuwenv—snvenu)
csn(u—v) dnv+dnw

Therefore, as before, with Glaisher’s abbreviations,
1 —dn(u—v) — (dy—dy)(8105 = 85¢1)
1+dn(w—v)  (dy+d;)(sc, + 8561)

810yCy+Sydi0y

dn(u—v)=
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Similar algebraical reductions to those given above for

(=
en(w—v) will establish the formulas for dn(u—v) and do(uw+v),
given by Glaisher (Messenger, X., p. 106)
_ 830y — 8ty Cq0ydlidy+ k%83,
dnfuto) 1oty —sydic, ey, + 58,y
1=k — k%824 k%8, %8,F dydy—k?8,8,0,C,
T didyF P800y 1—kPs2sE
the last of form (3), § 116.

128. The Duplication, Triplication, etc., Formulas

Putting v=w in formulas (1), (2), (3) of §116, and writing
s, ¢, d for snu, enu, dnw, we find

sn2u= 2800l

T 1 k%Y
on 20— 1—28% 4% — 24 222+ %t
1 —i2s* K24 2x"2c2 — k2c¥
2 1—2K282+K284__K/2—2K’2d2+d4
n A= 1 — 2t

T kP 2d2—d*
Writing S, €, D for sn 2w, en 2u, dn 2u, we find

1-C &d* 1-=D (*** D—C (%,
1+C~ & 14D d*° D+C d?’
bﬂ—llgn=l 1;D,=etc
14D & 1+C ’
D+C k21-D
2 —_—— = —_—— ==
=140 ¢ D=0
D+C _ ,1-C
P 2 _
d =T30=" D=0 ;etc
Putting w=1K, thenS 1,C=0,D=x"; and
K= (= 1K =
sn K—\/ 1+K, , end K <1+ ,>, dnd K = /.
Again, in § 67,
en(v, >\)_(1—|-:c)sn(u en(u, k) _14+«" 1 —dn(2u, k)
dn(u, k)
and

K 1+dn(2w, k)’
2u=(1+Nv, A=(1—«)/(1+«),
_1=Asn¥(v, D)
dn(]. + A v, IC) = i + \ 'Sng_('v‘ “>\'\)1
(142A)sn (v, A)
S(LHA -0 0 =S (o, A
en(1+X.v,«) _on( Adn(v, A)

T+ Asn(w, \)
which is called Landen’s second transformation
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Again, putting v=2u, and making use of the above formulas,
we shall find

_ 38— 4(1 4 x%)s3 + 6%° —k*s°
sn 3u = 1—6r%s*+4(1+ K'Z);c286 — 3kt
1—sn3uw_14s8/1— ‘28+2;<233-—K'Zs4>2
T+sndu  1—s\I 4 25— 2,23 — 2/ '
1—xsn 3U/= 1 —I—fcs/l — 8+ 2c8® — K284>2.
T+rsndu L —rs\1+2s — 2cs® —i2st/
with similar expressions for ¢n 3w and dn 3u, leading to
1—cn3u _ 1—c /24 2c2 ¢4 223+ 1c2(}4>2
14+en3u 14¢ <K'2— 22 c— 223 1%/’
1—dn3u _1—d /%4 2"d—2d? ——d4>2
14dn3u 1+d<xl2 —2%2d+2d3 —dt/)’
dn 3u —«’ _ d—k'(d*+2dP—2'd — K,2>2 .
dn 3w+« d+ x/<d4 — 2% A3+ 2 — k™ ’
the algebraical work is left as an exercise for the student.

124. Poristic Polygons of Poncelet, with respect to two Circles.

Starting from the point 4 in fig. 13, and drawing the
successive tangents AQ;, Q@ @@ ... to the inner circle,
centre ¢, from the points @, @, Qs ... on the circle CQ;
or starting from A in fig. 14, and drawing the tangents AP,
PP, P,P,, ... to the inner circle, centre o, from P, Py, P,, ...
on the circle OP; then, if we denote the first angle ADQ, or
AEP, by amw, it follows from this construction that

ADQy=AEP,=am 2w, ADQ,=ALP;=am 3w, ...;

and we have thus a geometrical construction for the elliptic
functions of the duplicated, triplicated, ... argument.

When w is an aliquot part, one n'®, of the half period 2K, or
7 of the half period 27" seconds, then after n such operations
the polygon 4Q,Q,Q,, ..., or AP .P,P,, ..., will close on itself
at the starting point 4; and the preceding investigations show
that during the subsequent motion of these points, the polygon
formed by them will continue to be a closed polygon, inscribed
in the circle CQ and circumscribed to the cirele ¢7’, or inscribed
in the circle OP and circumscribed to the circle oR; and thus
we have a mechanical proof of Poncelet’s Poristic Theorem for
two circles, a problem discussed by Fuss, Steiner, Jacobi,
Richelot, and Minding.

(Cayley, Philosophical Magazine, 1853, 1854, 1861.)
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Let us consider the particular cases of w equal to 4, , 1, 1,
... of the half period 2K.

(1) When w=2K, PP’ is horizontal in fig. 13; and P and
P’ coincide in fig. 14.

(i) When w= K, the circle oR in fig. 14 and the circle ¢T'in
fig. 13 shrink up into the limiting point L, Landen’s point
(§ 28) ; and now any straight line through L will divide these
circles OP or CQ into two parts described in equal times, £7';
while in fig. 13 the line PP’ will touch the circle described
with centre £ through B, I, and B’, subtending an angle 4a
at O; and any arc PP’ will be desceribed in time 17, half the
time of describing BAB’; hence the following theorem—

“Two segments of circles are described on the under side of
the same horizontal straight line, one subtending twice as
many degrees at the centre as the other; if a particle oscillates
on the lower segmental arc under gravity, any tangent to the
upper arc will cut off from the lower an arc described in half
the time of oscillation.” (Maxwell, Math. Tripos, 1866.)

As P’ is passing through 4 in fig. 15, P is instantaneously
at rest at B or B'; and 4B, AB are obviously tangents at B
and B’ to the circle BLB, drawn with centre /; while PP’ is
one side of a crossed quadrilateral, escribed to this circle BLE’,
and inseribed in the circle BAB'.

When the circle ¢7' shrinks up into the limiting point Z,
then, as in § 120,

QL?=2CL.EN, LQ?=2CL.EN’;
and since QL.LQ is constant in the circle CQ, therefore
EN.EN’is constant, and equal to LE? the value it assumes
when N and N’ pass each other at the point L.

Since EN.EN' =EI[2=EB?

a circle can be drawn passing through N, N’, and touching EB
at B; and the triangles XNB, EBN’ are therefore similar, so
that ENB=EBN’, EN'B=EBN.

(Landen, Phil. Trans., 1771, p. 308.)

Translated into a theorem of elliptic functions,

EN . EN'=EA%n’*u dn%, and EB*=('"2, EA?,
50 that, as in (59), § 57,
dnudnv=«", when w—v=K,
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Otherwise, since (§ 28)
QL=ALdnw, LQ'=ALdnw,
and QL. LQ=AL . LD,
therefore dnwdnv=LD/AL=x"

A
Fig. 15.
The similarity of the triangles AQL, LDQ shows that
AQ/AL=DQ[LQ;
and since (§ 10) AQ=ADsnu, DQ'=ADecnv,
therefore, as in (57), § 57,
snu=cnv/dnv or cdv, when u=v+K.

Again, since DQ'/DL=AQ/LQ,
_ DL snu_«'snu
therefore cnv= AL dnn = dnw’

as in (58), 57, when v=u—K.

123
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Conversely, if the straight line QLQ)', passing through L,
moves into the adjacent position ¢L¢/, then
1 t-LQ QL _ [EN _velocity of Q
qQ LY NEN' velocity of @
if @ and @ move under gravity, or diluted gravity, on the
circle CQ with velocity due to the level of E; so that QLQ’
will continue to pass through L, and will divide the circle CQ
into two parts described in the same time 7' (§ 28).
If in fig. 13 we denote the radius of the circle ¢7’ by », then
cosy=r/(R+c),
v or amw denoting the angle 4.D@), ; while, from § 120,
T-dy_o o R—e
I+Ay "R & YT Ry
4cR n_ (R—c)2—1?
(R4cp—r? T (Rtcp—1¥
Again, if Dq is drawn from D to touch the circle ¢T', and
the angle 4Dg is denoted by 3" or am w’, then

Sin o/ = CO8Y or snw’—-cnw
VIR Ay’ - ’

so that (§ 57) w+w =K.

125. Poristic Triangles.

(iii.) When w=2%K or £K, triangles @,Q,Q; can be inscribed
in the circle 0@ and circumseribed to the circle ¢7', while at the
same time triangles P,P,P, (or hexagons) can be inscribed in
the circle OP and escribed to the circle oR (fig. 16).

The well known relations of Trigonometry

¢2=R*—2Rr, or 2= R2+ 2Ry,
where Cc=¢, Oo=a, ¢cI'=7, oR =1, are now easily deduced.
We may er‘ee these relations, more symmetrlcally
7 7’
R— c+R+c 1, or a—R a+R-

In fig. 16, ADQ;=y=amiK, ADQL-— '=amiK ;
and since cQ blsects the angle ]\2QZA which is equal to 1,
therefore DcQz =4(wr—1y); and DcQ2 ——DQ§C or D@y =De.

Similarly AQ1 =Ac; so that

and thence k2=

A Qy+DQy=A4D.
Therefore siny +cosy=1,
or sniK +enzK=1,

or =1.

b
R—ct T RBte
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We shall employ this suffix notation for the points N, P, @
to signify points corresponding to aliquot parts of K.

Corresponding to w=4K, the circle o becomes the circle
through B, Ny, B’; and now P;AP, is a triangle escribed to
this cirele, and inscribed in the circle OP.
. For w=%K, the circle oR becomes the circle through
B, N. v B’; and now we shall find that hexagons can be
escribed to this circle, and inscribed in the cirele OP.

E

Fig. 16.

The tangents at Py P, touch the circle BN,B', and the
tangents at P%, P% touch the circle BN %B’; while AP%, AP%
are the common tangents of the circles BN, B, BN, 5'.

Denoting the sides of the triangle @,Q,Qs by ¢,, 95 ¢, then

pe Dl

2(q1+ 95+ 25

But w,, u,, u; denoting the value of w corresponding to the

points @, @, @, and d,, d,, d, denoting the corresponding
values of dnw, then (§120)

¢, =05 =24/ (cl)(dydy), ...
a constant, a relation connecting d,, d,, d,, when
Uy — Uy =1y — Uy =2K.
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126. Poristic Quadrilaterals.

(iv.) When w=%K, quadrilaterals @,Q,Q,@Q, can be inscribed
in the circle CQ which are circumseribed to the cirele ¢7', and
now the corresponding relation is found to be

r O\ ro\?
(R—c) +<R+c> =1
while T\T,, T,T, intersect at right angles in L, being the
bisectors of the angles between @, LQ,, Q,LQ, (fig. 17).

This relation is proved immediately by taking the quadri-
lateral in the position 4@ DRy ; and now y=v'=am }K,

sn K~R 7 cn—ZK—m

so that squaring and adding leads to the desired relation.

As in (ii.), quadrilaterals can be escribed to the circle BLE,
which are inscribed in the circle OP, since Ny coincides with L.

But the circles BN, B and BNyB' are related to the circle
OP with regard to poristic octagons and the common
tangents of these circles are easily recogmsed at the points
Py, Py, P

Conversely, starting with the circle ¢I' and the internal
point L, and drawing T\LT,, T,LT, through L at right angles
to each other, the tangents to the circle ¢7' at 7\, T, T, T,
will form a quadrilateral @,Q,Q,%9, which is inscribed in a
circle CQ, the diagonals Q,Q, @,Q, passing through L, and
being equally inclined to 7,7, and 7,7,

If Q¢ Qe Quc, Quc are produced to meet the circle CQ again
in ¢, g 95 9, then q,g; and g,q, are diameters of the circle
CQ; for Q,q, bisects the angle @,Q,Q,, so that the arc
Q,9,=arc ¢,Q,, and similarly the arc Q,q,=arc ¢,Q,, so that the
arc ¢;Q,9;=are ¢,6,g,, and each is therefore a semi-circle.

It follows, from elementary geometrical considerations, that

LT+ LT2+ LT+ LT 2= 4%,
or T\T? +TT2 TT2—|—TT2—4T,
1
and gt g
so that  cq2+4cq,2=cq,2+ocq 2= (R?— %72,
leading to 2(R2+c?) = (R2—c?)?[r?,

or, as before, <RT:E>2+ <—R—%-C>2 =1.
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<&

Denoting by wu,, u,, g, u, the values of w at @, @, @, @,

so that Uy — Uy = Uy — Wy =Wy — U, =} K ;

and denoting by d,, d,, d;, d, the corresponding values of dn u,
then (§ 57) dydy=d,d,=«";

and (§120) LQ=2l(1—«")dn u,

sothat  Q,Q;=2l(1—«")(d,+ds), Q=211 ') (d,d,);
while @@y =2./(cl)(d,+d,), ete.

Fig. I7.

Now by a property of the circle (Euclid VI. D)
Qle QR =@y 0Q, . Q3Q4+ @@, - Qg

s0 that P =« (d,+d)(dy+d,)

=cl{(d,+dp)(dy+d) + (dy + d,)(dy+dg)}

=cl{(dy+dg)(dy+d) + 4},
or (dy+dg)(dy+d,) is constant, and =2,/k'(1+")k
the value obtained by putting w,=0, when

wy=3K, uy=K, uy=34K;
and d, =d,= /¢, dy=«, d,=1.
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Then  (dnu,+ a}f_w) (an u2+5n£;72) =2, /K(1+x),

when Uy %2= 1K / ,
Thus  dnu+ 3 K)+—— o + e 2~/::i(1112:i1)cdnu,
dn(u+ LK) — T _; 5" —2./k gln;-ux?in wenw,
so that ’
dn(u+iK)= \/K(1+¢) dnw— Eilz—ux_l)—s’? wenw
mu+ik)=  JRsEaudng
en(u+3K) = /k' /(1 +« )M_—zilbljr@fkﬂrﬂ

127. Poristic Pentagons, etc.

(v.) When v=2K, or £ K, the poristic polygons are pentagons
(fig. 18), and the relation to be satisfied is of the form

L+p+g—(p+9)—(p+9(p—9’=
or (P—@?=p+q—1-1/(p+9),
where p and ¢ are used to denote »/(RB—c) and »/(R + ¢).

‘We notice that the relation for pentagons leads to a cubic
equation, when two of the three quantities R, , ¢ are given;
but the equation reduces to a quadratic when ¢=0 or the circles
are concentric, the case considered by Euclid.

The reader is referred to the articles of Cayley (Phil. Mag.,
Series IV., Vol. 7, and Collectedd Works) and to Halphen’s
Fonctions Elliptiques, t. IL, chap. X., for the proof of this
relation and the similar relations for other polygons.

We shall find that Halphen’s a and vy (t. IL, p. 375) are con-
nected with our R, 7, ¢, k, and w by the relations

4Re . R—c\2
T T Ry o= ¢2’7=dnw=<ﬁ+c>’
and thence Halphen s ¢ and g can be formed.

By the use of Legendre’s Table IX. for F(¢p, «) (F. L., t. IL.)
we are able to construct geometrically, to any required degree
of accuracy, figures of circles related to each other for poristic
polygons of any given number n of sides.

Having selected an arbitrary modulus x or modular angle
La, we look-out the value of X, and then determine, by pro-
portional parts, the value of ¢ in degrees corresponding to an
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amplitude of K/n, 2K/n, ...; and these values of ¢ will mark
the position of the points @, Q,, ....

Thus, in drawing figs. 13, 14, 16, 17, we have selected
e=5in 60°, when K =21565; and in drawing fig. 16 for poristic
triangles, we find, from Legendre’s Table IX.,,

am ;K =cm. of 38°49, am 2K =c.n. of 68°5’,

Fig. 18. ‘

These angles enable us also to set out figs. 13 and 14, where
the circles are drawn so related as to admit of poristic hexagons.

In drawing figs. 15 and 17, Landen’s point L is sufficient to
complete the diagram ; also to double the number of sides of
a polygon of an odd number of sides.

In fig. 18, « has been taken as sin 75° as in figs. 1, 2, 3; and
now K=276806; and from Legendre’s Table IX.,,

am 1K =cm. of 30°18’, am 2K =c.m. of 70°20",

by means of which the figures can be drawn.

Fig. 19 shows poristic heptagons, to the same modular angle
of 75° laid out by means of-the relations

$y=am K =c.m. of 22°8, ¢p,=am K =cum. of 56°49’,
¢py=am K =cm. of 77°6".

G.E.F. 1
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a
Fig. 19.

128. The poristic relation between the quantities E, », ¢
has been obtained by placing the polygon in a symmetrical
position ; but another method is employed by Wolstenholme
(Proceedings London Math. Society, vol. VIIL, p. 136; also
by Halphen, F.E., IL, chap. X.), where the polygon on the circle
OP is considered in its limiting form, when passing through
one or both of the common points B and B’

Thus with triangles, the tangent to the circle oR at B must
meet the circle OP again at a point P, the point of contact of
a common tangent of the two circles P and R, the degenerate
triangle being BPP.

For quadrilaterals, the tangents to R at B, B’ must meet at
A on the circle P, BACAB being the degenerate quadrilateral.

For pentagons we obtain the degenerate form BP P, P, P,B,
where BP, is the tangent at B to oR, the circle through
B, N, B, and Py is the point of contact of a common tangent
of the cireles OP and oR (fig. 18).

For hexagons (fig. 16) the limiting form is BP,P,B'P,P B,

where BP1 P B’ are tangents at B, B’ to the mrcle through
B, Ny, '; and o on.
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- 129. Geometrical Applications of Elliptic Fumctions to
Spherical Trigonometry.
Taking the fundamental formulas of Spherical Trigonometry
c0s ¢=c08 ¢ cos b4-sin ¢ sin b cos C,
sind _sinB_sinC
sina  sinb sinc
then cos C'=,/(1 —x¥%in%c)= Ac,
so that €os ¢=cos ¢ ¢os b-+sin @ sin bAc,
a formula like that of § 119, with «, b, ¢ for ¢, 4, v; so that if,
keeping C, ¢, and therefore x constant, we vary o and b, then
cos B.da+cos A .db=0,
or da/Aa—db/Ab=0;
and, conversely, the integral of this differential relation is the
formula above.
(Lagrange, Théorie des fonctions, p. 85, §§ 81, 82;
Legendre, Fonctions elliptiques, t. L, p. 20.)
If, in Jacobi’s notation, we put
a=am(u, «), b=am(v, ), ¢c=am(w, ),
then the differential relation becomes

=, Suppose ;

du—dv=0,
so that w—v=a constant=aw,
since a=c, or u=w, when b=0 and v=0.

Supposing  is less than unity, and the angle C is acute, then
¢>C, and of the other angles, one, 4, must be obtuse, and the
other, B, acute. ‘

But by changing to the colunar triangle on the side BC, we
may convert the triangle ABC into one in which all three
angles are obtuse ; and in such a triangle we may put

a=amu, b=7—amov=am(2K —v), c=am(2K —w);
so that if the triangle 4 BC' has three obtuse angles, we may put
G=am,, b=amu, ¢=am u,,
where W+ Wyt Uy =uU~+2K —v+ 2K —w=4K;
and now
cos A= —dnwu,, cos B=—dnu,, cos (= —dnu,,
so that, by § 29, we may write
A =m—am(ku, 1/k), B=m—am(kuy, 1/k), O=m—am(xu, 1/),
where k is less than unity.
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For instance, if A BC is the spherical triangle formed by three

summits of a regular tetrahedron,
A= B = C = %r,
and cosa=cosb=cosc=—1},
sing=sinb=sinc= 2,/2,

_sind 3,/3 38,/6 , /10 9 ;315

Tsing 4270 8T 8T
while Uy =Uy=uy=4K,
sothat cniK=-—% sn4K=%,/2 dnstK=1

When =0, K =17, and the triangle A BC is coincident with
a great circle; and now

a=uy, b=1uy, c=u, and a+b+c=27;
while cosd=cos B=cos O=—1, A=B=C=n.

When «=1, K=o0; and therefore of w,, u,, %y, two of them,
say u, and 1, are infinite; so that

cos a=sechu, =0, or ¢=%=; and similarly b=1r;
the triangle A BC now has two quadrantal sides and therefore
two right angles, the third side ¢ and angle (' being equal, and
taken greater than a right angle.

130. For values of x which would be greater than unity, we
change the notation by considering the polar triangle; and now
if ABC is such a polar triangle, having three acute sides, instead
of three obtuse angles, we put

sing _sinb _sine _
sind sinB sinC

?

and A=amwv, B=amuwv, (=amuq,,
where =2K — g, v,=2K —u,, v;=2K —u,,
so that v+ v, v, =2K.

Now  sina=ksnv,, sinb=ksnwv,, sin c=ksnv,;

cosa= dnwv, cosb= dnwv, cosc= dnv,;
so that a=am(xv,, 1/x), b=am(kv,, 1/k), c=am(kv,;, 1/k).
The fundamental formula
cos ¢=c0s ¢ ¢os b+sin g sin b cos ¢
now leads to the formula of § 121,
dn vy =dn v,dn v,+«%n v;sn v, cn 713,
or dn(v, 4 v,) =dn v;dn v, —k?*n vlbn veen(v; + V).
In the degenerate case of k=0, K =i, and
v 4+v,+v=a, or A+B+C=7;
and now a=0, b=0, ¢=0, so that the spherical triangle is
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indefinitely small, and may be considered a plane triangle;
and we can thus deduce the formulas of Plane Trigonometry.

181. A spherical triangle thus falls into one of two Classes,
I or IL; in Class 1. the triangle, or a colunar triangle, has
three obtuse angles; in Class IL. the triangle, or a colunar
triangle, has three acute sides; the quadrantal triangle falling
into Class I, and the right-angled triangle into Class TI.
In Class I. we put
sind_sinB_ sinC
sing  sinb sinc -
and then  is less than unity ; and we put

a=amu,, b=amu, c=amu,,
where Uy Uyt Uy =4K,
and then
A=m—am(kuy, 1/k), B=7—am(kty, 1/k), C=m—am(ku, 1/k).
In Class IT. we put
sing _sinb _sinc
Csind sinB snC ©
and then « is less than unity ; and we put
A=amv,, B=amuv,, (=amu,
where ‘ v +v,+v,=2K,
and then a=am(kv,, 1/k), b=am(kv,, 1/c), c=am(kv,, 1/k).
When this triangle of Class IL is the polar of the triangle
in Class I, Uy 0 =y +Vy=U;+ v, =2K.
The change from one Class to the other affords an illustration
of the change from one modulus to the reciprocal modulus (§29).
The spherical triangles employed originally by Lagrange
and Legendre fall into Class I.; and a full discussion of the
connexion between Elliptic Functions and Spherical Trigono-
metry will be found in the Quarterly Journal of Mathematics,
vols. 17, 18, 19, in articles by Glaisher and Woolsey Johnson.
But it is preferable in some respects to work with the
spherical triangles of Class II., as growing out on the sphere
more naturally from the infinitesimal plane triangle; so it is
proposed to develop here the relations with Elliptic Functions
by means of a typical triangle of Class IL, having three acute
sides, and to refer to the articles of Glaisher and Woolsey
Johnson for the corresponding relations of Class I.
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132, Writing ¢,, 8,, d; for cnv,, snv,, dnwv,, ete. ; then with
: ’ v v, +v;=2K, ’
we may put, in Class IT,
A=amwv, B=amuv, C=amuv,;
so that cos A=cy, sin 4 =s,, etc.;
and now sing=rsin A =s;, cosa=d,, ete.
From the fundamental formulas
cos ¢=¢0s ¢ ¢os b+sin o sin b cos C,
—cos (=cos 4 cos B—sin A sin B cos ¢,

we obtain =, dy+ K28,8,Cs,
— 0y =0y — 8485,
where dy=dn vy =dn(v;+v,), cy=cnv,= —cn(v,+7,).

Again, from these two formulas of spherical trigonometry,
—cos C'=cos 4 cos B—sin 4 sin B(cos ¢ cos b+sin ¢ sin b cos €),
cos A cos B—sin A4 sin Beos a cos b

1—sin4dsin Bsingsinb
0105 — 88,0,
1—k2s2%,2
cos @ cos b—sin ¢ sin b cos A cos B
1—sin A sin Bsin asinb
leading to | dy=dn(v, +v,) 2@1_0%_—_'5::112?;_102
As a specimen of Class II, take the spherical triangle formed
by three adjacent summits of a regular icosahedron ; then
' A=B=C=%r; '
_cos O+cos Acos B cosC 1

or —cos C=

so that —cy=cn(v;+v,) =

Similarly, cosc=

3

and  cose smAsnB  l—cosC /5
sothat k=sin¢fsin O(=2,/(10—2,/5);
and then - v =Uy=0;=3%K,

so that en K =cos C=4(4/5—1),

dn 2K =cosc=1%,/5.

133, To prove that in a triangle of Class II. we obtain the
differential relation ‘
cosb,dAd+cosb.dB=0, or dA/AA+dB/AB=0,
when we change 4 and B, keeping ¢ and (' constant, dis-
place the triangle ABC into the consecutive position 4BC’,
keeping the points 4, B fixed and the angle AC"B unchanged
in magnitude (fig. 20).
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Then, if (A and CB produced on the sphere meet the great
circle of which C is the pole in P and @, the arc PQ=C; and
if ("4 and C’B produced meet this great circle in P and ),
the arc P'Q)’ is ultimately equal to the are PQ, or

14(PP/QQ)=1.
C
J ,
AN
P o0 Bl

Fig. 20. _ Fig. 2l

But PAP = —dA, QBQ’:CZB ; while ultimately
PP =—sin AP .dA= —cosb.dA, Q@ =cosa.dB;

so that cosh.dAd+cosa.dB=0,
or dA/AA+dB/AB=0,
since sina=«ksin 4, cosa=AA.
With A =am v, B=am v, this becomes
dv, +dv,=0, -

so that v, 4+v,=constant=2K —v,;, where C=amv,;

since B+C=m, or vy,4v,=2K, when A=0, v,=0.
Conversely, this differential relation, interpreted with respect

to the triangle ABC, of which the side AB is fixed, expresses

the constancy of the opposite angle C.

134. If, as is customary, we deduce the differential relation
cos B. da+cos 4 .db=0, or daf/Aa+db/Ab=0,
from a spherical triangle ABC of Class L., in which
sin A =«sina, cos 4 =Aaq,

we keep the angle (' fixed, and displace the side AB into its
consecutive position A’B’, without change of length, through
an infinitesimal angle 6 about the centre of instantaneous
rotation 7, the point of intersection of the arcs A7, BI, drawn
perpendicular to C'4, OB respectively (fig. 21).

Then @z _RA_A’___ _sinIAyzf_sin IBH= __cos B._

da BB sin /B sinJAH = cos A
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185, To obtain immediately the addition formulas (1), (2),
(3) of § 116 for the elliptic functions, Mr. Kummell draws the
arc CD perpendicular to 4B (fig. 20), and denotes the perpendi-
cular CD by p, the segments BOD, ACD of the angle C by
F, @, and the segments BD, DA of the base € by f, g; so that

F+G=C, f+g=c.
(Kummell, Analyst, vol. V., 1878.)

Now, from the right-angled spherical triangles ACD, BCD,

cos G=sin A cos b/cos p, sin G=cos A/cos p;
cos F'=sin B cos a/cos p, sin F'=cos B/cos p;
or with sin 4 =s,, cos A =¢,, sin a=«s, cos a =d,, etc.,
and writing M for cos p,
' cos G=s8,d,/M, sin G=c,/M ;
cos F'=s,d, /M, sin F'=c,/M.

Also sin p=sin A sin b =sin ¢ sin B=xks;s,,

so that M2=cos?’p=1~—k%,2%,7

a quantity which we have found it convenient to denote by D.
Now, cos C'=cos F cos G—sin F'sin G,

or 0y = (8,85, — €15)/ D,

or en (v, 4v,) = — en vy = (¢,¢y— 88,0, dy) /D,

formula (2).
Again, sin O=sin(F+ @)

=sin F cos G4 cos Fsin G,
or 85= (3,090l +850,cy) [ D,
where 8y=snvy=sn(v;+7,), as in formula (1).

Changing the sign of v,
sn(v, —v,) =sin(F— G),

or F—G=am(v,—,),
while F+G=amv,=am(2K —v,—,)
: =7 —am(v; +,),
so that F=lr—1am(v,4+v,)+ 4 am(v, —v,),

G=}mw—%am(v,+v,)— L am(v, — v,).
Thus, for instance,
tan{} am(v, +v,) + 4 am(v, —v,)} = cot G=tan A cos b=s,d,/c,,
tan{ am(v, +v,) — § am(v, — v,) } = cot F=tan B cos a =s,d, /c,.
Again, from the right-angled spherical triangles BCD, ACD,
cos f=cos a/cos p=d,/M, sin f=sin ¢ cos B/cos p=«s,c,/M; '
cos g =cos b/cos p=d,/M, sin g=sin b cos 4 /cos p=rs,c,/M;
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and therefore
dn(v; +v,)=dn v, =cos ¢ = cos(f+¢)
=cos f'cos g —sin fsin g
=(d,dy— /czsls2clcz)/D
_dydy—i"8,8,010
T 1—k%s%,2
as before, .in (3), § 116.
Also  sin(f+9)=«sn(v,+v,), sin(f—g)=«sn(v;—vy);
whence f.and g can be found as functions of v;+v, and v; —v,.

186. The formula employed by Morgan Jenkins in the
Messe’nger of ‘Mathematics, vol. XVIL, p. 30, as fundamental
in Sphencal leonometry, is

"sin(A4+B) _ sinC

cosbioosa  Tocogg e (a)
and this now leads to
slczjﬁ,&_ 85
dy+d, 1+d,

or, in the Legendrian form
sin(A4+B)_ sin(C
AB+Ad 1+AC
a formula already obtained from pendulum motion in § 120.
Then the formula

81C2—8501 . 83
dy—d, 1—=dy
or sin(4A—B)_ sinC

AB—AA  1-AC
sin(d—B) _ sinC
oS —aosa T —aos g e B
The formulas of § 120, in the form
Sy t8dly 85 sdo—sydi_ 8y
e, 14e) cp—e,  1—cy
lead to the relations

gives

sin(a+b) _  sinc (y)
cosBreosA T—eos (P e Yy

sin(a—b) _ sine 0
cos B—cos A Tareos (p e

and from these four formulas of Spherical Trigonometry Mr.

Morgan Jenkins deduces the analogies of Napier, Delambre,
and Gauss.
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137. Write, as before, in § 185,
A=amu, B=amuv,
F=ir—Ltam(u+v)+}am(u—v),
G=%r—}am(u+v)—4am(u—v).
Then, since
sin(¥ + @) + sin(F — G)=2sin F cos G,
therefore, writing ¢,, s;, d, for enw, snw, dnu, and ¢, s,, d, for
cnv, snv, dno, and D for cos?p or 1 —x%s,%s,?

I

sn(uw+v)+ sn(w—2)=286do/D; . couiinnin. ceed(1)
cos(F— @) —cos(F + G)=2sin Fsin G,
en(u—o)+ cu(u+v)=2¢,6/D; cicviiiiiiiiiiiiiin. (2)
cos(f—g)+ cos(f+g)=2cosfeosg, :
dn(w—v)+ dn(uw +0)=2d,dy/Dj.cviviiiiininiinnn (3)
sin(F + @) —sin(F— G)=2 cos Fsin G,
sn(u +v)— sin(w—v)=28,6,d,/D;.ecviinini.. Y
cos(F'— G) + cos(F + G) =2 cos Fcos @G,
en(u—v)— en(w+v)=28,d8ydy/Djeeerninnininnn.n. )
cos(f—g)— cos(f+g)=2sinfsing, -
dn(uw—v)— dn(w+v) =2k2%8,6,8,C5/ D5 eevvevininnin. (6)

sin(F + Gsin(F — () =sin’F — sin?(,
sn(u +v) sn(u—v)=(c,2—¢,)D=(s2—s,2)/D. .(7)
Again, since
1+ sin( f + g)sin(f— g) = cos?y + sin?f,
and sin(f+g) =« sn(u + ), sin( f—g) =« sn(u—wv),
1+ k%n(u+v) sn(uw—v)=(d?+x%8267)/D; ..cccuee.(8)
1 +sin(F + G)sin(F — @) =sin?F + cos?,

1+ sn(u+v) sn(u—v)=(c2+82d)/D;..cccunn..... 9)
1—cos(F'+ Ghcos(F— G)=sin’G + sin?F,

1+ en(u+v) en(u—v)=(c2+¢?)[D; . vvervennann... (10)
14 cos(f+g) cos(f—g)=cos?f cos?g,

1+ do(m+9) dn(u—v)=(d2+d2)/D; ceeeinnnnn.n, 11)
1— sin(f+g) sin( f—g) = cos?f + sin%g),

1—x%n(uw +v) sn(u—v)=(d?+x%,2¢2/D;.......... 12)
1= sin(F + @)sin(F — @) =sin?q + cos?F,

1— sn(w+v) sn(u—2v)=(c2+82d»)/D;...cu....... (13)
1+ cos(F + G)sin(F'— @) = cosG + cos?F),

1— en(u+v) en(u—v)=(sd2+8,2d2)[D; cr.c...(14)

1— cos( f+g) cos(f—g)=sin?f+ sin%g,
1— do(uw+v) dn(w—v)=r¥s%62 +8,2¢,%)/D;....... (15)
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{1xsin(F+ ) H1Esin(F - G)} = (sin Ftcos ),

{1 sn(w+ o) H{1E sn(u—0)}=(c,x8,de)? /D covvnr..n.(16)
{1£sin(F + G)H1Fsin(F— G)} =(sin GEeos F)2,

{1 sn(u+v)HIx sn(u—v)}=(c;x8,d)2 D cceinnn. am
{1£ sin(f+g) 1% sin(f—g)} =(cos gEsin f)?,
{1xesn(u+o)H{1Fesn(u—v)} = (dyFrs,6)2 D eeneininnnnn. (18)
{1£ sin(f+g)H1F sin(f—g)} = (cos fEsing)?,
{1xksn(u+v)H{1Fesn(u—0v)} =(dFks,0)2 /D oeeinnnnnnn. (19)
{1Fcos(F+ GY}{1*xcos(F— G)} = (sin F*sin G)?,

{1£ en(u+v)H1E en(u—2)}=(c;*¢)?/D;.ccuvernnn.....(20)

{1£cos(F + ) }{1Ecos(F— @)} =(cos GFcos F)?,

{17 en(uw+v)H1E en(u—v)} = (8,dyF8,0)2Dseveennnnnn. (21)
{1 cos(f+g)}H1E cos(f—g)} = (cos fxeos g,
{1* dn(u+v)H1E do(u—v)}=(d,T2d)?/D;eeeeeiiiiinnn. (22)
(1% cos(f+g)}{1F cos(f—g)} = (sin fFsin ),
{1% dn(u+)H1F dn(u—2)} =¥(8,0,F8,)Y D v, (23)

sin(F + Gcos(F— @) =sin G cos G +sin F cos F,
sn(u+0) en(w—2v)=(8,6,dy +8,6,1)[ D ... .(24)
—sin(F— @cos(F + () =sin G cos G —sin F cos ¥,
sn(u—o) en(w +v)=(80,dy—8,6,d)/ D .........(25)
sin(f+¢) cos(f—g)=sin f cos f+sin g cos g,

sn(u +v) dn(u—v)=(8,dcy+ 8,0,e )/ D ; v......(26)
sin(f—g) cos(f+g)=sin f cos f—sin g cos g,
sn(u—o) dn(w +v)=(8,d,c,—8ydys;/D s oovv.en. 27

—cos(F'+ @)cos( f—g) = {cos A cos B-sin A sin Beos( f+g)}cos( f-g),
en(u+v) dn(w—v)=(c,cod,dy—k28,85)/D ;... ..(28)
cos(F-G)cos(f + g) = cos(F—G){cosa cosb + sinasinbeos(F + &)},
en(u—v) dn(u + v) = (¢ cod dy + £?818))[ D ; ... (29)

sin 2G' =2 sin G cos @,

sin{am(u +v) + am(u—2)} =28,6,dy/D;.cenennn. v (30)
sin 2F=2sin F cos F,

sin{am(u +v) —am(u—2)} =28,c,0, /D ;..o (31)
— cos 2G =sin?@ — cos?@,

cos{am(w + v) + am(u —v)} = (¢,2—8,2d,2)[D;............ (32)
— 08 28 =sin?F — cos?F,

cos{am(u +v) —am(u—v)} = (c> —8,2d,%)[D; .eovovnn. . (33)

the thirty-three formulas of Jacobi, given in his Fundamenta
Nova, 18, and reproduced in Cayley’s Elliptic Functions.
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Similarly any other formula in Spherical Trigonometry is
converted into a form of the Addition Theorem of the Elliptic
Functions, and conversely ; by writing ¢, s, for cos 4, sin 4,
and d,, ks, for cos ¢, sin «, ete., with

v vyt v,=2K.
Thus the six four-part formulas, of which
cot @ sin ¢=cot, 4 sin B+ cos ¢ cos B
is the type, obtained by eliminating cos b between (a) and (,8),
lead to 850y = 8,0, +8,Co (s,
with five other similar relations.

By means of these and the preceding relations we can prove

the following examples on the formulas of Elliptic Functions.

ExXAMPLES.

1. Prove that, if u4v4+w4a=0,
(>cnudnv dnwenv  enwdnz—dnwenx -0
SN W —Sn v SN W —Sn &
(ii) K2—,k%Psnusnvsnwsna+xicnucnvenweny
—dnwdnvdnwdna=0,
2. Prove that

1) ns(uw—o)+sn(uw+v)=

2¢?snucnvdnv
dn?y —dn%u
(1) 1—«%sn%(w+v)sn(w—v)= (1 —sn*u)(1 - k*sntv)/D?;
(iii.) «*sn(w+v)sn(u—v)sn(w+w)sn(w —w)
(1 — kZsn*u)(1 — k?sn?v snw)
(1 —«?sn?u sn?v)(1 — k’sn’u snw)
v ) —r?ed®(u+v)ed*(u—0v) ,2< 1 —%sn%u snv >
1—Zsn?(w+o)snX(uw—v) — \2+«Zenu cno/
3. (i) l1—snu_en’}(w+K)dn?}(u+K)
) 1+snu %2 (w+K) ’
i ) —'dn u—+rsn
14+ kdnw-+kisnw
4. Prove that

ltksnusnov=

7

=x2sn*i(u+ K).

{1xesn?(w+o)H{1Fesn? i {u—2)}
1—sn?(u+ov)sn?i(u—v) '
and hence prove that the expression
l—ksnaxsny l4ksnzsnw
1+KSD.’,USD:I/'1—KSHZSD’LU
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remains unaltered when for «, ¥, z, w we substitute respectively
Ho+y+ztw), H@ty—2z—w) {@—y+z—w),
bo—y—s+uw).
5. Prove that, if tanh 4 = sn%q, tanh B=xsn?g,
tanh(4 — B) =« sn(a+B)sn(a— ).
Deduce Jacobi’s relations,
sn(B-+y)sn(B—) +sn(y+ wsn(y — )+ sn(a+ B)sn(a—B)
+k%n(B+vy)sn(y+ a)sn(a+ B)sn(B—y)sn(y —a)sn(a—B) =0;
or
1-esn(B+y)sn(B-y) 1-ksn(y+a)sn(y-a) L-csn(a+B)sn(a=B)
T+xsn(B+y)sn(B-y) 1+rsn(y+a)sn(y-a) Liesn(a+B)sn(a—pB)
or =1;
1-ksn(f-w)sn(y-2) 1-ksn(t-y)sn(z-z) 1-ksn(t-2)sn(x- y)
T+esn(t-a)sn(y-2z) 1+xsn(t- y)sn(z x) T+rsn(t-z)sn(z-vy)
or =1;
l-ksnusnv l+esn(uwtw)sn(w+w) L-ksn(w+otwisnw
T+ksnwsno L-gsn(utw)sn(o+w) L+gsn(utv+rwsnw
(Glaisher, Q. J. M., vol. XIX,, p. 22.)

6. Prove that the tangents at the points on an ellipse of
excentricity e whose excentric angles are
p=4r—am(u, e), Y= w—am(v €),
will meet on a confocal ellipse when w4 —v is constant, and on
a confocal hyperbola when w4 v is constant.
Hence show that the general integral of
0/ (L= 2sinig) — ] /(1 — sinp) =

may be written

2
- +)\Sln2%<¢+¥’)+gzb¢xCOSQ%(¢+\0)=COS2%(¢—\[’);
and convert this into the form
COs 7y =08 ¢ o8 Yr+5in ¢ sin Yry /(1 —e%siny),
A@?+N)
a?(b24N)
7. Prove that the straight line joining the points
cen(u+v), esn(u+v) and cen(uw—2), ¢sn(uw—0o),

on a given circle of radius ¢, will touch an ellipse whose semi-
axes are c¢sn(K—w), cenv, when « is constant and v is

variable; and determine the envelope when w is variable and
v is constant. |

proving that tan?ly =



CHAPTER V.

THE ALGEBRAICAL FORM OF THE ADDITION
THEOREM.

188. The first demonstration of the existence of an Addition
Theorem for Elliptic Functions is due to Euler
(dActa Petropolitana, 1761 ; Institutiones Caleuli Integr alzs)
who showed that the differential relation

da// X +dy// Y=0,
connecting X =ax*+ 4baz®+ 6ea® + 4dw +e,
or (a, b, ¢, d, e)(z, 1)

the most general quartic function of a variable x, and ¥ the
same function of another variable v, leads to an algebraical
relation between = and y, X and Y.

This algebraical relation is

(%j/—gy =a(x+y)+4b(z+y)+C,

where C is the arbitrary constant of integration; and this
relation when rationalized leads to a symmetrical quadri-
quadric function of 2 and g, of the form (§ 148)
ax?y?+ 28wy (e +y) +y(@* + 4wy + y7) + 28w+ y) +e=0,
or (ax®+2Bz+v)y?+2(Ba?+ 2y + 8y + yat 425+ e=0,
or  (ay®+2By+y)*+2(By*+2vy+ Sr+ vyt +28y +e=0.
(Cayley, Elliptic Functions, chap. XIV.)

With ¢=0 and b=0, X and Y reduce to quadratic functions
of #z and % ; and then

M =2 constant

—Y
is the general integral of dx/,/X+dy/./Y=0.
142
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189. By writing (lo’'+m)/(l'c’+m") for x, which is called a
limear substitution, this symmetrical quadri-quadric function
becomes unsymmetrical, the five constants a, 3, v, 6, ¢ being
thereby raised in number to nine; and then

dz/ /X becomes changed to (Im'—lIm)da’/ /X,
where X'=(a,b, ¢, d, e)lx+m, Va+m')

The invariants g, and g, of the quartic X have been defined
in § 75, and in § 53 the discriminant A=g,>—27¢;% and the
absolute invariant J =g,2/A ; and now, if g;, g,/, A’, J’ denote
the same invariants of X', we find

gy =(Im' =Um)tg,, g5 =Um—1Im")lqg,, A'=(Im —Im)?A;
while the absolute invariants J and J’ are equal.

Conversely, any unsymmetrical quadri-quadric function
whatever of & and ¥ may be written
Az, y)=(ax®+2Bx+v)y2+ 2(Bw?+ 2y’ + &)y + v >+ 28"+ ¢’

=Ly*+2My+4+N=0;
G, y)=(ay’+26" 3/+v”)902+2(6y F oY+t 2
=Pr?+4+2Qr+R=0;
L, M, N being quadratic functions of z, and P, @, R being
quadratic functions of y.
Then by differentiation
(Pz+Q)da+(Ly+M)dy=0;
and by solution of quadratic equations
Ly+M=,/(M?*—LN)=,/X, suppose ;
Po+ Q= o/ @*— PR)= /Y, suppose;
and thus we are led to the differential relation
das] o) X + /) T=0,
where X and ¥ are quartic functions of X, not necessarily of
the same form, but having the same g, and g,.
A linear transformation, such as that given by
y=Uy'+m)/ly' +m),
can however always be found, which will transform
dy// Y into dy'// Y,
where Y is a quartic having the same coeflicients as the quartic
X ; in other words, the quartics X and Y have the same in-
variants; so that we may, without loss of generality, consider
X and Y as of the same form, and therefore drop the accents
in the expression for G(z, ¥).
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Now /X =Ly+M=(ax?+2Bx+vy)y+ B2+ 2yx+S,
N Y =Po+ Q=(ay®+2By+y)z+By*+2yy+3;
othat YN Ty By,
a form of the integral relation, in which the coefficients «, b, c,
d, e in X and Y are functions of o, 3, y, J, ¢, determlned by
a4+ 4bad -+ 6ca?+4dx e
—(Bw“r‘>w+6>2—<aw2+2ﬁm+v>(yw2+26w+e>,
the Hessian, with changed sign, of (a, 3, v, 8, €)(z, 1)*; and
a(x+y)P2+4b(x+y)+C
= {azy+Be+y)+v}*
= (8= )+ )+ 2By = ad) @)+ 7 —ae
140. Lagrange proves Euler’s Addition Equation as follows:—
-~ Put do/dt= /X, and therefore dy/dt= — /Y ; then

0%2— =2(aa®+ 3ba?+3cx+ d)=2X,

lt2 =2(ay®+43by?+3cy+ d)=2Y,
suppose ; so that putting w+y =p, &—1y=q, then
W= JX =T, =X+ T

d?p
dtz =2(X,+ 1))
= }a(p®+3pg®) + 3b(p*+¢?) + bep + 4d,
‘flp ‘;Zlq X-7
t dt
= $apq(p*+q*)+bq(3p*+¢*) +6cpg +4dg ;
d*p _dp dg _
whenee de T as a - PerE
2 dp d’p _ 2 dq(dp 2P
o ¢ di d ¢ dt(dt) dt+%

Both sides of this equatlon are now integrable, so that

<3 Cff) =ap?+4bp+C,

or (ﬁ/‘)i—;f/z> =a(z+y)?+4b(x+y)+C.
We notice here that, if ('=4b%/a,
NEX =Y _a(mty)+2b
x—1y N3
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141. In the canonical form considered by Legendre, with

x=snu, dafdu= /(1 —22.1—k%?),
y=snv, dyfdv= /(1 —y%.1—%?),
then X=1—02.1—x%2 Y=1-—92.1—%2
Therefore dee/ X +dy/J Y =0,
leads to du4 dv =0,
or w -+ v =constant;

which, in Clifford’s notation, may be written
sn~lz+sn-1y = constant.
Euler’s Addition Theorem of § 138 now gives
—_ 2
0= (=Y — ey
_(enudnw—en v dn v)?—gX(sn’u —sno)?
- (sn u—sn v)?
_ (dn’u, cnv—enwdn ?)>2 _ {dn(u+fv)— en(uw+2)) 2
snw—sn v sn(uw+v) ’
by J. J. Thomson’s formula of § 121.

142. But the Addition Theorem (1) for sn(w+2) of § 116,
_snwenvdnov+snvenuwdnu
sn(w+v)= 1 —k%snu sn®v
when translated into the inverse function notation, gives
-t -ty —am 128/ (L= P L= )y (L= 1 =)
1— y?
This reduces, for k=0, to the trigonometrical formula
sin~lz+sin~ly =sin- Y, /(1 — 4% +y /(1 —2?)},
the integral of dz/s/(1—a?)+dy//(1—4%)=0;
and for k=1, to
tanh -z +tanh -1y =tanh-! 190_':_——9_%,
the integral of  da/(1—a?)+dy/(1—y?)=0.
Similarly, equations (2) and (3) of § 116 may be written
2y — N (L =022+ 2a?) /(L — 2.2+ %)

)

en~tx4cn-ly=cn

1 — k2ay?
-1 1 g Y=k (=2 — D) (1 =92y — )
dn7e+dnTy=dn 1— K2w2y2 >

We can now see why so little progress was made with the
Theory of Elliptic Functions, so long as the Elliptic Integrals
alone were studied, and also why Abel’'s idea of the inversion

of the integral has revolutionised the subject.
G.E.F. KX
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143. A slight change of notation in the canonical integral
(11) of § 38, suggested by Kronecker (Berlin Sitz., July, 1886),
introduces a further simplification, on writing

r=rsn¥(3u//x);
then daxf/dw=\/k sn(Fu//x)en(w//k)dn(Fu/ k),

2 )

=w(l — pr+2a?),
with p= k 1k R
and now w=fdz/ /X,
0
with X =u(1-px+a?).

Now
B+ 0)] /=501 (@) +sn 2/ (i)
=sn-1~/90~/(1—p@/+3/1“’)+~/y~/(1 —pr+a?)
—ay
144. In Weierstrass’s notation, we take
X =4a? — gy — g,
so that, in the general expression of the quartic X,
a=0, b=1, ¢=0, d=—1g,, e=—g,;

and now Euler’s form of the Addition Theorem becomes, with
z for C the arbitrary constant,

—y(VE=NYY
z z( o—y > =Y.
Now if x=gpu, y=gv, so that /X =—pu, /V=—g",
then we shall find (§ 147) that z=p(u+v); so that
o o\ 2
go(u+v)=%<w> —PU— PV evrinininnnen )

PU—pv
or, in the inverse notation,

-1 -t 1 (X =YV _}
gowﬂayf@{i( o—y > Ty
Put w+4v= —w, so that
plutv)=pw, ¢'(wtv)=—pw,
since (§ 51) pw is an even function, and pw an odd function
of w; then, with
u+v+w=0,
PR}
gou+gav+gow=ix<@_~__“ W’>,

pu—pv
and therefore also, by symmetry,

—1(9% —Xﬂ/w>2_1<{(¢'w—go’u 2 .
—i<m_w =] W_m> .................. (F)
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Thus p'v— ga’w _pw—pu_pu— go’v’
PU—PW  PW—PU  PU— PV
or  (pv—pw)pu+(pw—pu)pv+(pu—pv)pw=0,
or  (pv—pwlpu +(pw—pu)pv +(p'u—pv)pw =0,
L g, g'w |
1, ev, v =0.ciiiiiiiiiiiiiin, (&)

1, pw, p'w 1

Weierstrass thus replaces the three elliptic functions snw,
enu, dnw by a single function pu, and its derivative g'u.

or

145. Take for example the integral of ex. 8, p. 65,
fX -8, where X = (— a)(ax?+ 2bx+c),
a cubic function of x, having a factor z—a.
This example shows that we may put
§ ac—b% |
aa®+2ba+c’
2 —h2
and then pu= 4 (:,-Ebagj‘j_ - 40&0126:i 2bZ:z +c
_ 4{ (aa+b)(@—a)+ aa®+ 2ba+c}?
i (wa®+ 2ba+c)(x— a)? '
Now, if y and z are the values of @ corresponding to the
values v and w of u, and if

u+v+w=0, or fX'g‘dm+fY“§dy+fZ"%dg=0,

then the integral relation (G) of § 144 connecting «, ¥/, z becomes

(y=2)X3+(z—a) V3 (@—)Z35=0. oo @)

We notice that the integral relation does not require the
knowledge of the factor #—a of X ; so that, writing

X =Aa?+3Bx?+3Cx 4D,

we have, on rationalizing the relation (1),
8(y—2) =) @—y) X VZ) = (y — 2P X + (= 2)* Y+ (@)%
= 3(y~2)(e~@)(@-y){ Awys + B(yz+ze+ay) + Cla+y +2)+ D}
or  XYZ={Awyz+B(yz+zx+ay)+Cla+y+2)+ D ..(2)

(MacMahon, Comptes Rendus, 1882; Q. J. M., XIX., p. 158.)

Then X}V3{(y—2)X}+(z—a)TH}
+(@—y{dxyz+ B(yz+ze+xy)+ Clo+y +2)+ D} =0,
s that 7= LY yX—a¥) + (@ —y){Bry+Clety)+ D}
XY XV— Yh—(a—y) (dey+Bla+y)+C}

equivalent to Allégret’s result (Comptes Rendus, 66).

Xs .
pu=_——, with g,=0, g;=4
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146. We shall find it convenient to replace the constant (f
in Euler’s integral relation by 4c+-4s, and to counsider s as the
arbitrary constant, the meaning of which is to be interpreted ;
and then

_F, ) —JXJY
. T -y
where

F(x, )= ax?y?+ 2bxy (e +y) + c(x?+ 4y + y?) + 2d(z+y) +e
= (aa?® + 2bz+ ¢)y? + 2(ba®+ 2cx + d)y + ca? + 2dx+-¢
=(ay®+2by + c)x? 4+ 2(by2+ 2cy + dyx + cy? 4 2dy +e,

a symmetrical quadri-quadric function of @ and y.
Treating s as a function of the independent variables = and
1y, we shall find
10F 1dX
Jxe_ 2 wY s aNY myx-xyv
CZ (@—y)* (@—y)
_ (a4 3by*+3cy + d)e + by* 4 3cy® 4 3dy + eJX
(@=yy
(cwc3+3bw2+3cao+cl)y +bad 4+ 3ex2+ 3dm+e~/Y
(@—y)
= (;;x +y§;2~/ + ,-;&.ZJ Y, suppose ;
and similarly we shall find that ,/ Y@ has the same value.

But if s 1s taken as constant then
Ad + dy 0,

or dm/JX+dy/./Y- ,
so that the differential relation which leads to Euler’s integral
relation is thus verified.

147. But now denote
483 —g,5—g; by S,
where g,=ae—4bd+3c? g,=ace+ 2bed — ad?— eb?— ¢3,
so that (§ 75) g, and g, are the quadrivariant and cubicvariant

of the quartic X (Burnside and Panton, Theory of Equations ;
Salmon, Higher Algebra).
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We shall find, after considerable algebraical reduction, that
~/S=(Y1w+ YZ)JX_(X1y+X2)~/Y,
fo 1 a1
1 de, 1 1 ds
so that :/TEZE—]—W?Z:_IS'%’
and the elliptic elements do/ /X and dy/,/ Y are now reduced by
this substitution to Weierstrass’s canonical form ds/,/S of § 50
Mr. R. Russell points out a concise way of performing this
algebraical reduction, by means of the linear substitution
t=(re+9)/(r+1) in the quartic (a, b, ¢, d, e)(t, 1)*;
which then becomes of the form

X4+ 4 Xy + X )3+ 6 F(w, )2+ 4(Yio+ Y)r+ Y,

or Art4+4B73+ 602+ 4D+ E, suppose.
If the invariants of this new quartic are denoted by @, & .
then Gy=(@—Y)'gp Gy=(@—y)°Gs;

and S=4s3—g,5—g,

_(O=JAJEP _ C—JAJE

- 2(&’}—3/)6 —92 2(90—3/)2 —Js

_(O=JAREP—G,(C— /A E)—-20G,

2(x—y)°
_(DJA—-BJEP
(z—y)°
A2+ V)X - (Xy+X,)/ Y}
(z—y)°
148. Rationalizing the integral relation of § 146,
{28(—y)"— F(w, )= X7,
or sHax—y)t—sk(x, y)— Ex, y)=0,
where E(x, y)={(ac—b%)y2+ (ad—Dbe)y + L(ae—c*)}a?
+ {(ad—be)y? + (tae+2bd — 5c®)y + be— cd }x
+L(ae — )2+ (be—cd)y +ce—d?;
or (=99 (@w—y)—sF(w, y)— H(, y)=0,
where H(z, y)=(ac—b®)a*y?+ (ad—be)xy(x+y)
+3(ae+2bd — 8c?)(x?+ 4y +y%) + (be —cd) (@ +y)+(ce — ),
a symmetrical quadri-quadric function of z and .
149. When x=vy, F(x, x)=X, and
E(x, x)= H(x, x)=(ac— b¥)x*+ 2(ad — be)a® + (ae+ 2bd — 3c2)a?
+2(be —cd)a4-ce — d?,

the Hessian H of the quartic X.
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One value of s is now infinite, and the other
t=—H|X,
as in § 75 ; for, when =1y,
T, 1)~/ XY _0
2x—y)? 0
Fa,pP-X¥Y __ _  —2Bey) __H
o=y P @, ) F /X Y], )/ XJ T "X
a substitution due originally to Hermite (Crelle, LIL., 1856).
Now, since =00, when X =0, or x=aq,

Jaa) X =3 fit] y =19~ HIX),

a denoting a root of the quartic X =0; and here
T= /(43 —g,t—g,)
=1t (Yo + Y2)~/X"(X13/+X2)~/Y=9
(z—y) 0
Yo+ V)X —(Xyy+ X )Y =_G_,
=P (Ve + Y/ X+ (X g+ X/ ¥} XY
where G is a certain rational integral function of « of the
siwth degree, called the sextic covariant of the quartic X ; the
preceding algebra showing that
T?X%=G? or 4H3—g,HX?+ 9, X3+ =0, ......... (H)
this is called a syzygy between X, H, and G.
(Burnside and Panton, Theory of Equations, p. 346.)
For instance, if X is already in Weierstrass’s canonical form,
so that, if T =pu,

=1t

X =" =42" — gy — g,

then H=— (a4 31g,)*— 2952;
and now t=p2u,
so that 2= (@ +19,)+29 P

4pPU—gopu—gs
This may also be written ,
P2uU=pu— }4} ZZO—ZL? log p"u.
150. With y=,
2s=ax?+2bzx+c— Ja /X,
or §2—(ax®+2bx+c)s—(ac—b2x?— (ad —be)r— 1 (ae—c?)=0.
With 4y =0,
2s=(ca?+2du+e—Jen/ X)/2?,
or 28— (ca?+ 2dx+e)s— Hae— c¥)a? — (be — cd)x — ce+ d?= 0.
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Writing F(z, y) in the first equation of § 146 in the form
Y+3Y(@—y)+: V" (@—y)"
we can find z as a function of s and y by the solution of a
guadratic, in the form
gy = NYVSHEY (s— 2 Y )+ YY”’
28— Y2 —taY

This method of the reduction of the general elliptic element
dz[ /X to Weierstrass’s canonical form ds/ &/ is taken from a
tract “ Problemata queedam mechanica fumctionuwm ellipti-
carum ope soluta.—Dissertatio inauguralis,” 1865, by G. G. A.
Biermann, where the formulas are quoted as derived from
Weierstrass’s lectures.

151. Changing the sign of /Y, we find that
o F@, )+ /XY

2z—y)*
leads to the differential relation

so that, putting ﬁx/ X =uﬁy/ Y=,

u—v——:/(:l;:/N/X-—-/oSloso/N/S,

implying that 4 —v=0 when z=y, since s=w when x=y;
and now, in Weierstrass’s notation,

s=p(u—v)= Fe, gz;"éff“/y

Changing the sign of v, and therefore again of ¥,
_ o, y) - JXJY .
p(ut+v)= 2Aw—1)° ’
so that p2u=—H,/X, p2v=—H,/Y,
implying that ©=0 when X =0, v=0 when ¥Y'=0; so that
w=/de|JX, v=/dylJ T,
a a

where a denotes a root of the equation X=0.

Then p(u—0)+p(utn) = 2 ”;’Z
JEXJY

(=) =plu+o) =Y~
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Mr. R. Russell finds, as is easily verified algebraically, that
Fay) H, Xy+X) Fay) Hy_(Vot Yy

@—yy¥ X (@—yPX (@-y? Y (@—yPY’
But, from the Addition Theorem (F) of § 144,

p(u—2)+p(u+v) +p2u=7 {@EZ Z% ZEZiZ))

g(u— v)+f@(%+v)}
olu—0)+o(u-+0)-+ 20 = {FU=D Lt
and therefore
Xy+X, 1o u—v)—¢'(utv)
@-PJX ™ 29 @—0)—p(ut+o)
Ya+V, 1o u—v)+p(utv),
@E=—JY " 2 p@—v)—p(utv)’
the sign being determined by taking v small, when y = a, nearly.

Now, @u—v)—pu+v)=-—2 (glcy +yX2J Y,

, , + 7,
§ (=) +p ()= -2 (f_y);,\/x;

so that, as in § 147,

— Yo+ Y2)~/X (Xl'!/+X2)~/Y

P(u—v)= —y P
’ — (Y2 + Y2>~/X+(X y+X )N/Y
pluto= G

152. When y=<o0,
p2v=—1t H,|Y =(b*—ac)/a,
and @' 20=—1t G,/ ¥ = (a2d — 3abc+ 2b%)/a? ;
1 (u—v)+p'(utv) 1t Yie+ YV, ax+bd
2p@—v)—ptv)” (@-y/¥Y Ja
Again, from equations (F)* and (G) of § 144,
1p(u—v)—p20 1p'u—v)+p(ut+v)  Ya+Y,
2p(u—v)—p20 29 @—0)—p@u+v) @E—pPJY¥
and putting w=0, and therefore x=a, we find
aa+b v
Jao  pv—p 20
so that the quartic can be solved, when pv and ¢’v are known,

(Solution of the Cubic and Quartic Equation, Proc. London
Maith. Soc., vol. XVIIIL., 1886.)
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Otherwise, with t=—H/X,
dt _ H'X-HX'_ 2G

dw X X
while T3 =48 — gt — g, = G/ X3,
so that dt/JT= —2dx| /X,
and ﬁw/,JX ﬁt/ﬂ’— 1o-(—H/X),

a denoting a root of the quartic X 0.
Then  p2u=t=—H/X, p2u=—T=—G/X?;

while v=0 when y=q, and ¥=0;
@, a)
so that pu=8= o= )’
Pu=— /8=~ (aa® + 3ba? + 3ca -I(—wd)a“/ —l)-gba3 + 3ca®+3da+ 6JJY.
—a

If v, k, K denote the values of u, s, S, when x =,
=1(aa?+2ba+c)=pv, K=(aa®+3ba®+3ca+d) /o= —¢v;
k=c&a3+3ba2+30a+d’
r—a

K —pv
s——lc)Ja (pu— pv)Ja
and now 20 =(b2—ac)/a, ¢'2v=(atd— 3abc+ 2b%)/a®.

Conversely, given these values of p2v and ¢'2v, and supposing
the bisection of the argument of the elliptic functions to be
carried out, we can determine pv and g'v, and thence solve the
quartic equation X =0.

8 —

so that T—q=

158. Since F(x, ) vanishes when z=q, a root of X =0, it is
divisible by @ —a ; so that
(aa2+26a+c)x2+ 2(ba?+2ca+ d)x+ca?+2da+-e
2(x—a)*

= aa®+2ba+ c)z%:%, suppose,

a typical linear transformation, which converts dx/,/X into
ds/N/S, the canonical form of Weierstrass.
Denoting the four roots of X=0 by «, 8, v, 6, then since
bla=—=%(a+B+y+9), cJa=}(aB+ay+ad+yé+dB+py),
we may write
1 a—=B.a—y.a—d/x @ x—30
8=1sd 2 x— Z < g+a z+a 3)
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and now
rBla=y)a=08)+y(a—=)a=B)+da=PB)a=y)
(a=y)a=38)+(a—=d)a—pB)+(a—B)(a—y)
with three other values (3, v/, 8’ corresponding to 3, y, d.
Now JS=((La3+Sba2+3ca+d)x+ba3—|—30a2+3cla+e

(z—a)® X
=(aa®+ 3ba®+ 30a+d)( “/{)2
_ _ _ _ a(w— B)(x—y)x—3)
—Jala—Bla—r)a— {220}

Denoting by e,, ¢,, ¢;, the roots of the discriminating cubic
46*—g,0—9y=0,
so that S=4(s—e)(s—ey)(s—e,),
then we may write
z—
z—a’

s—e,=

s—ey=la(a—8)(a— By =7,

s—e,=2a(a—

so that, to = a, B, v, 8, corresponds s=o, ¢, ¢, ¢;; and then
= 12a{(a V)( §—B)—(a—3 )(/8 ‘)/)}
T50{(a—38)(B—y)—(a—B)(y=23)},
63=%§@{(a—/3)(v—3)—(a—v)(3—ﬁ)}-
If we interchange o and 3, and put
—a By B 8.B~alz—y 2=0
e o=yt imath-)
then to 2= ,8 v é, a, corresponds 8 =D, €5, €y €
so that s=sg, gives a linear substitution converting
da/ /X into dz/./Z,
in which z=a, 3, y, J, corresponds to z=g0, vy, J, a.
If s is replaced by pu, and the same function of 2z by v, then
we find from § 54 that
V=", Wt oy, U+ o+ oy w20+ w5,
gives the four linear transformations which leave dx//X
unaltered ; and corresponding to the values (a, 8, v, 8) of @
we find (a, B, v, 0, (B v, 6 @), (1,6, 4 B) (6 a B, y) of z;
the first transformation being merely z=2, not a distinet trans-
formation.
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154. When, as at first,
2w—yy '
and when e is a root of the diseriminating cubic, then s—e is a
perfect square ; and we find
oy Nen Dy =/ Nn/ D
N(—o)= So=y)

where, as in § 70, the quartic X is resolved into the quadratic
factors IV, and D,, and Y into the corresponding factors N,
and D, ; this can be done in three ways, corresponding to the
three roots of the discriminating cubic.

Thus the integral relation

~/Nw~/Dy_~/Ny~/Dm
=y
leads to the differential relation
da| N/ (NoDe)+dy [/ (NyDy) =0,
as is easily verified algebraically, NV and D being quadratics.

= constant

155. A more elegant expression can be given to these rela-
tions if we follow Klein (Math. Ann., XIV., p. 112; Klein and
Fricke, Elliptische Modulfunctionen, 1890) in employing
homogeneous variables x, and w,, by writing x,/x, for x, and
Y4/y, for y ; and now

t/‘ @y, —a,dac,
X S (@t 4w P, + 6ox 2,2 + ddw x4 eyt
Conversely, by writing @ for @;, and 1 for @, we return to
our original non-homogeneous variable .
Klein employs the abbreviations

(zda) for a,dw, —a,dx, and (zy) for wy,—x.y,;
also fx for (a, b, ¢, d, e)(x;, ,)*; and now with

w=u—v-—ﬁ§c/¢X,

Y

F(x, )+ ST ST
s=pw= ( 3/)2(%;)/2 N

foia iy o o
where F(m: 3/) 12( CC oY 12+ o ax y1y2+aw 3Y2 >

afy 0 o f
12(63/ +2 0Y,0Y, 1w2+’<3y 2w2>
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s+ (5

afy ’afy ) ;
5%9@ N/fw'

and ,/S=—pw=

4(wy)3

reducing to the above in § 153, when fy=0.
The Hessian H or H(xz,, x,) of X or f(x,, x,) is now given by

o o2f
o a1
and the sextic covariant @ or G(x,, =,) by
of of
8G= 55]:, 872
oH ©oH
COMCTS

We may also use « and y as the homogeneous variables in
the quantities, instead of #, and ,.
Thus, for example, the integral f f-¥(xdy), where
f=aty + 11255 — a2y (the icosahedron form)
is shown to be elliptic by means of the substitution

z=—Hf3,
o 2t
=1 = 90
where H=1}7 W By
o o
owoy  oy*

— 220 + 228x15y5 — 494010 — 228515 — %0,

Then we can verify the syzygy
— H341728f5=T7%,

of of
where T=—45 3w 3y
ol o
o’ dy
—_ w30+ y30+ 522(x25y5 — w5y25) — 10005(9‘«203/10 4 m10y20).
Now dz  3tH —5t'H —5T
2(xdy) 8tH  — 3fH’
dz —5T% f* 5 (xdy ).
sothab = s ar®W)= ’

since —gy=4T%-%, prov1ded gs=—06912;
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dy 6 6 5
a:nd f e y ./;/(4523_'9) »—@_12=5{"_1("Hf"3‘).

Similar reductlons will show that the integrals

S H-"5(zdy) and /T-75(ady)
are also elliptic; also the integrals
f (wy — wy®)~H(edy) and f (a3 + T4atys 4 5) 3 (ady),
depending on the octahedron form, a8+ 1daty* 445
(Schwarz, Werke, I1., p.252; Klein, Lectures on the Icosahedron.)

156. The further development introduces the theorems of
Higher Algebra on the quartic and cubie, for the treatment of
which the reader is referred to Salmon’s Higher Algebra and
Burnside and Panton’s Theory of Equations.

Thus, H denoting the Hessian of a quartic X, and e, ¢,, ¢,
the roots of the discriminating cubic

4e® — g6 — 95 =0,
then 4(H+e X)(H+e,X)(H+e, X)=4H?*—g,HX?4 ¢, X3= — (2,
where G denotes the sextic covariant (§ 149); so that H4eX
is the square of a quadratic factor of G.

Following Burnside and Panton (p. 345) we shall find it
convenient to put 16(H +¢X)= —P?; and then

P P,P,=32G,
P,, P,, P, denoting the quadratic factors of the sextic covariant G.

Then P24+ P2+ P2=—48H,
since e, +e,+e,=0
while (ea— ) P+ (e5—e) P+ (6, — €g) P =0
and e P2+e,P2+4ePl=—16(¢2+e2+e2)X=—8g,X.

Since (eg—eg)P 2= (6, — ) P2 — (6, —e,) Py

={/ (1= e)Py+u/(ey— ) P} {/(e1— ) Py — A/ (6, — €5) P},
therefore each of these factors must be the square of a linear
factor, and we may therefore put

N (e —e) Pyt i/ (e, —e0) Py=2u?,
(e —e)Py— o/ (e, — ;) Py=2u.’,
so that v, and u, are linear ; and now
N (=€) Py =2u,u,,
N (e —e) Py=u+u?,
(e —e) Py=u,"—u,”
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157. Mr. R. Russell points out (Q. J. M., XX, p. 183) that
Hermite's substitution of {= — H/X reduces the integral

S@¥dx to L (43 —gt—gy) Bt v, (1)
dt 2G G?
For = "X and 4t3—gzt—gg=)—{g,
80 that G b= — 3483 — gt —go)3dt.
Again the integral / (483 — gt — g5)"2dlt, as well as the general
integral f U, vovoeeriieeiieiieeeninn, (2)

where U or Uz, 1) denotes the cubic (a, b, ¢, d)(z, 1)3,
is again proved to be elliptic by the substitution

S==K3U?% . iiiviiiiiiiiiiiiiiin, (3)
where K or K(x, y) denotes the Hessian of the cubic U(z, v),
U U | U U (82[7)2‘ )

given by  9K(z, y)=

20 wdy | ow? oyf  \owdy
20 U
vy oy
The cubicovariant J of the cubic U is given by
U oU |
S = 5)
oK oK
ox’ oy
and the discriminant A by
A = a?d? 4 4ac® — 6abed + 4db® — 3b%c2; .......... (6)
and now we have the syzygy
J2= — 4B AUZ (i )

(Salmon, Higher Algebra, §192; Burnside and Panton,
Theory of Equations, § 159.)
Differentiating (3) logarithmically
3ds _BK'_2U'_ 3
sde” K U KU’

while Js8)=7;
so that dx sdx  Uds ds

Ui- T K T T T JAs Ay
and JSUBde=p-Y(s; 0, —=A)=p-Y(—KUH).....(8)
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When we know a factor, z—a, of U, then we may employ,
as in ex. 8, p. 65, the substitution
2= U3 (=) ceeeeeeeeeeieiananennnn, 9)
Putting U=(z—a)(ax®+2bz+¢)
=(x—a){ax®+ (aa+3b)x+aa®43ba+3c},
then 42%—g, is a perfect square, when
4 -2 (aa+0)>+4(ac—0b?)

93 a2+25'a+(, aa2+2ba+c )
9 / _ Y
and now z—%g_—_““’ +2b“+§’% gs(x—a)
= —3K _ 3s .
_(Cﬂa2+2ba+0)U% aa®+2batc’
205\ g, 3ds .
(1+ >d aa®+2ba+c’

while ) , - \
3{(aa x ao a+tc¢
(49— (147%) 21 +(cz¢(12+§g:-+g)(~c T .
3(90 a)?{(a*a®+2aba— 202+ Bac)r+...}2
(aa®+2ba+c)2U?
_ 9J2 94 +A)
T (@4 2ba+cp U (aa2+ 2ba+c)®’

so0 that ~/(4z3 -—J(aa +Qba+c)~/(4‘ 3—|—A) ............. (10)
a transformatlon eqmva,lent to that of § 47.

158. Mr. R. Russell also shows (Proc. L. M. S., XVIIL, p. 57),
a4 2max+n
that JX+8H . X+ B
where X denotes a quartic and H its Hessian, can be reduced
to the sum of three elliptic integrals by Hermite’s substitution
t=—H|X.
For we may replace (§ 156)
la?+2ma+n by pP,+qP,+rP,
or by 4p/(—H—e¢X)+4qs/(—H—e,X)+4r /(— H—e,X),
where p, ¢, » are determined by equating coeflicients ; while
de| X =Ldt]JT=1dt/|J(t—e, . t—ey. T—e5);
so that the integral becomes
pr(~H~elX)+q~/(—II—e2X)+rJ(—H—egX) &/ Xdt
N(@X +BH . X+ H) N (E—e t—e,.t—0,)
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=f20~/(t“61)+QJ(t—62)+TJ(t—e3) dt
N (a—@Bt.a'—@Bt) SE—e t—e,. t—ey)

A e e e e e
JE—e,.t—e)) " J(t—ey. t—e))  J(t—e,.t—e,)] J(a—Bt.a-Bt)
the sum of three elliptic integrals.

Particular cases may be constructed by making 8 and B’
zero, or a and o zero; when we obtain

f(lw2+2mw+fn)dw/X, or f(lw2‘+2mw+n)dw/H.

159. Mr. Russell remarks that the reduction of the well-
known hyperelliptic integral

/ (la? + 2ma+n)da
A/(l —a?. 14, T+, 1 —ha?)
to the sum of elliptic integrals is a particular case of this
theorem, since the quartics
1—a2.1—k\z? and 14xa?. 14 A2
can be expressed in the forms «X+B8H and «X+S3H,
by taking X =1+4x\z* and therefore H=\x?;
and now a=1, a'=1, B=—14+\)/\, B/ =(c+N)/c\.

These integrals are considered in Cayley’s Elliptic Functions,
chap. XVL, where a? is replaced by a; they arise in the expres-
sion of Legendre’s elliptic integral

/dp/A(gp, D) in the form E+iF,
when the modulus b is complex, so that b2 =e+1if.
(Jacobi, Werke, I, p. 380 ; Pringsheim, Math. Ann., IX., p. 475.)

Writing P for a(1—a)(1+«ax)(1+Ax)(1—kAz), Jacobi finds

S| J P =3 +E){ Flp, o)+ F(g, b},
SadalyP=3 S 1, 0 Fg, b)),

x=<;_c> x=<%;;z>v
R
29, D)= N g = (A
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Then employing the inverse function notation,

o _
NP

1 4 e l+ne af M+edl+n.z }
¢<1+x.1+x){sn < 1+Kw.1+>\x’b>+s“ < 1+m:.1+>\w’°> ’
wdew _
JP

1 {sn-1< L 14N b)—sn‘1< 1k 14N 2 c>}
JEN L+ 14A) L Lkl +A2’ likx. 14+’ /)
When A is negative, then b and ¢ are conjugate imaginaries;

so that we can now express F(¢, b) in the form £+¢F, when
b? is of the form e+-if.

For, writing — A for A, and now writing
P for z(1 -—9(;)(1 +kx)(1 = Az)(1 4+ kAx),
/ ade _ 2F
~/P J(1+x 1=2) JP NICHETHE ESY)
In the particular case considered by Legendre, A =1, and now
P=g(1—a?)(1—r2?),
on replacing « by «?; so that
St/ /1 —a? 1 —a?)

can be expressed by elliptic integrals.

Mr. R. Russell employs the substitution.

y=Ax/(1+ Bx)?,

then

and now
f A(l—Ba)da
J1- y 1=oy)  JIAw{+Bap-Aa} {(1+ By o Az}]
so that, putting
2{(14 Bx)*— Az} {(1+ Bz)’— oAz} =P,
therefore Bt=¢2\% B=1=%,/(x\).
Taking B= \/(k\), and

(14 Bz — Az=(1—xz)(1—\z),

(14 Bz —ocAz=(1+xx)(1+ ),
then 2/ A=A =—1—¢),

2N —cd=k+,

or A=(1+~/K>\>2, 0'A=—(~/K+~/7\)2;
and taking B=—/(x\),

then A== /k\), ocd=—(Jx— /N2

G.E.F.
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160. Mr. Roberts’s integrals (Tract on the Addition of the
Elliptic and Hyperelliptic Integrals, p. 53)

S+ BaydalofQ,
where @ is a reciprocal quartic in a2, say
Q = aa® 4 4bab + 6cat + 4ba?+a
or al) = (axt +2b2% + a)? — (2a2 + 42— 6¢)ax,

furnish another particular case of Mr. Russell’s theorem, since
@ can be expressed in the form

(X +BH)( X+ H),
where X and H are in their canonical forms,
X =a*+6ma?+1, H=maz*+ (1 —3m?z>+m.
Or we may put a+z '=u, —2~'=v, when the integral
becomes FAU+VY+LIBU-T),

where U=-/‘ du ,
& {out—4(a—byur+2a —8b+6¢}

V=./ dv
L ovt+4(a+b)v*+ 204 8b+ 6}

Thus 1+4af =14 /202 +a*)(1 — /222 + )
(X4 o/2H)(X — J2H),
where X=1+4at H=0a
A+ Ba?

Therefore the integral N

is reduced to elliptic integrals by a substitution, such as

» y=1+a)/a?;
and then becomes

dy dy
YB—-A) 55— 1(B+4 -/;—————
=0 Y el
Another particular case of the general theorem occurs in the
reduction of the integral

J(e+m)dz/ /R,
where R is a sextic function, the roots of which form an involu-
tiom, and whose invariant Z therefore vanishes (Salmon, Higher
Algebra, 1866, p. 210).
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This invariant Z is the one tabulated in the Appendix,
p- 253, Higher Algebra, where it occupies thirteen pages.
The sextic covariant G of a quartic X is a specimen of a

sextic of which the roots form an involution; and writing
32G or

P P,P,=(ax?+2bx+ c,)(ayx? + 20,2+ ¢,) (aga? + 20,2+ c5)
=0y (0 — 0y . 0 — )@ — Oy . B— py)ty(w — Oy . T — by),
then since the squares of P, P,, P; are linearly connected by
the relation of § 156, therefore P, P, P, are mutually har-

monic, and any one is therefore the Jacobian of the remaining
two ; this leads to the three relations

(ol (sCy— 20,05 = ay0; + 165 — 2,0, = 56,4y, — 20,0, =0,
Now ,:71___00—91’ L=y 93—92, oc——qsz’ 90——63’ 2=y
p = =0, x—¢py x—0, w—p, x—0,

are the six linear transformations which reduce

dx , . _ dz
/ Jx to Legendre’s canonical form JAFF 60T EY

as in §74; so that if the quartic X is resolved into the
quadratic factors IV and D, we may write
N=p@—0y+q(@—9),
D=P(o—0P+Q@—g¢):
Now N/D is maximum or minimum when =20, or ¢.
Making P,, P,, P, homogeneous by the introduction of y,
which is afterwards replaced by unity, so that
P=(ay, by, 0 )@, 1) -
then the three distinct linear transformations of § 153, which
leave dz//X unaltered, are found to be

___ai oP, _% oP, BR /oP,
T oy Boc oyl o= oy’ dm
(R. Russell, Proc. L. M. 8., XVIIL, p. 48.)
Now lw+m f (Au, 4 Bug){uydu, — u,duy)
~/ 0 gyt —uy*)}
where u,, u, are defined in § 155, is reduced by the substitution
Y =uyfuy, or p(x—¢)/(z—0),

A+ B
to the form Ja- 1;//8) Y.

’
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This integral has been considered by Richelot (Crelle,
XXXIL, p. 213); and by differentiation we find
d ot ¥ _1+(J/2=Dy’
ay = <~/2+1>1 v (i
TN [E R E VEES N 2 s
d?/ 4y A=y A=y 7
according as 3?2 is less or greater than ,/2—1; and thence the
integration can be inferred; the value of x to be taken is
2—1 or tan 22%°, when it will be found that K'/K = /2.
161. As further applications, consider the integrals
S @) tdg, [(ap) g, [(Ap)-Fdg, [(Ap) Mg,
where Agp=,/(1—01%in%p).

(Legendre, Fonctions elliptiques, 1., p. 178.)
Putting A¢p =22 and 1—-b%=¢? then

, 1 90,
/(-A"b)—zd‘l’ =,/;/(1 S

the integration required in the rectification of the Cassinian
oval, given by

rry=3% or r*—2a’r’cos 20+ at ="
where 7, 7, are the distances from the foci (+a, 0).

The expression 1—at. @t —c? can be expressed by H*— X2
where X=ut+ec, H=(1+c)x?;
and now the substitution y=X/H gives

(T T N N R IR N
so that /(~A¢.)‘%ol¢

L dy L1 / dy
Ji+oy—2/aJ0—y >J 2 J{(1+C)yJ+2J0}J(1 )
1 of e 1+,/c N TN
=J(2+20)[011 {(1+Jc)x Je+20f"° {(I—Jc @ /2 +70)}]
by means of the results of §§ 39-41.
In the Cassinian

gt — B
0=1% cos‘l_#
=cos-15/{(_qﬁ2-gﬁ'ﬁ} - sin-“/ {B = (12— a??}
ar 2an ’
a0 /r‘l_a4+'84

'r% == N/{45()‘40/,4__(,,,.4_!_0‘4_ /84)2}.
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i&:_ _ 20.2’)“2
dr™ J{(a2+32)2“7”4}~/{""4'“(0‘2—/82)Z}’
V(@487 2a2r2dr

N/{(a2 B2)2 /,,4}~/{/},,4__(a _62)2}
Now, i we put
rt= (a4 3?)’cos’p + (a? — 3%)%in’p,
then  s= aﬂf {a2 + B%)%cos’p + (a2 — 32)2sin2¢} -id¢

~/ (a +;82) _/ { 2_|_ Bz)z Sln2¢} —%clqs.

 2dzx

Similarly ﬁ Ag)~¥dg / T
1 o4 4

5 N ( —at.

/ dy (ly
~ 2Jo/ J{(Lte)y-2Je} JA-y?) 2J6 JAHe)y+2e (=g’
which can be expressed in a similar manner.

Again, substituting A2¢ =23, then

aq,_ 3 [ da
ﬁASb) qus_é_/;/(l——aﬁ.wf‘—cz)’

0

1 xdx
(Ap)tde=5 [Fa—s m—am)
/ 2 Q=2 ad—c?)

particular cases of the preceding general integrals.
Mr. R. A. Roberts (Proc. L. M. 8., XXIL, p. 33) has shown
that VA (L4 m)(aad +2bad +¢) ™8 F ~3dw
can be expressed as the sum of elliptic integrals, not always
however in a real form. ;
Mr. Russell shows that if @ —@,, ®— 6, are the factors of P,
a quadratic factor of the sextic eovariant, then
le+m
JPJX"
is reduced by the substitution
?=p(z—0,)/(z—06y)
2
to the form IV (a,;ffl— _2254+0)dy,
and this again by the substitution
z=yP oty /e
z2—2.¢/ac)+ z4+2¢ ac
to the form f/ég i ~/~C/Lc)z/ zq2:-/(Zb )1//“0))

two elliptic integrals, not necessarily however in a real form.
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Abel’s Theorem applied to the Addition Equation.

162. Euler’s Addition Theorem is now found to be a very
special case of a Theorem of great generality, due to Abel, the
method of which we shall employ here, in the very limited form
required for the Addition of the First Elliptic Integrals.

Consider the points of intersection of the fixed quartic curve
whose equation is

P=X, i 1)
with any arbitrary algebraical curve whose equation in a
rational form may be written

f, y)=0. ooveiiiiiiinn(2)
By continually writing X for 3%, we can reduce equation
(2) to the form PAQu=0; iviiiiiiiiiininininnn 3)

and now the abscissas of the points of intersection of (1) and
(2) are given by the equation

PHQ/X=0, oo (4)
or, in a rational form, P?2—@Q?X =0.......ccciviveiiriniiiininin (5)

Denoting the degree of this equation (5) by u, and its roots

by @, @, ... zu, Abel puts

V=P —QPX=0@—a)(x—1x,) ... @—2u),.........(6)
and now he supposes the roots of this equation to vary in
consequence of arbitrary variations in the coeflicients of the
terms in equation (2), corresponding to arbitrary changes in
the shape and position of this curve; the coefficients in
equation (1) are however kept unchanged.

If 9P, 9@ denote small changes in P and ¢ due to the
changes in the coefficients, and if dw, denotes the correspond-
ing change in any root 2, of equation (5), then

W, de,+2PSP —2Q8QX,=0,
or, making use of equation. (4),
W, . de,—2(QOP — PoQ) /X, =0,
da, 2Q’c)P—PSQ_ Oz,

JX.” VS (7)

suppose.
Now, if the degrees of P and @ are denoted by p and ¢,
then the degree of 6x is p+¢; and we shall find this is

always at least one less than u—1, the degree of /=, or two
less than u, the degree of .
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For if in equation (3), P? and Q*X are of equal degree, then
g=p—2, and u=2p; so that u—p—q¢=2; and u—p—q is
greater than 2, if ¢ is less than p—2.

But if ¢ is greater than p—2, then the order of ) is given
by that of @2X, and therefore u=2¢+4, while p=q+1 at
most ; so that u—p—g=3 at least.

Since 0z is thus of lower degree than b, we can split the
fraction x6x/\x into a series of partial fractions, such that

xbx "t w2z,
Ve AValo—a)’

and now, if we make =0, we find that

Ox,
>- \/;ab; ....................................... 8)
a theorem in Algebra due to Euler; otherwise stated as
7= @€ m
’ =05, 9
(@ — T L — Tg) oo ovn (T — ) ©)

provided m is less than u—1, the x marking the position of
the missing factor @, —u,.

Applying this theorem to equation (7), we find
Zdw,/JX =0,. R L))

so that, if, in consequence of any finite alteration of the
coefficients in equation (2) or (3), the roots of equation (5)
become changed to @}, ', ..., @4, then

ARG A AN Y A PR Y

1 2
the Theorem of Abel, as required for presgnt purposes.

It is the combination of the theory of Integrals and of the
theory of Algebra which furnishes the key of Abel’s Theorem ;
the algebraical laws are expressed very concisely by a single
equation (5), of which the variables are the roots, and whose
coeflicients are not independent, but are connected by a number
of relations.

Thus, if we take P of the p* order, and  of the order p—2,
we have a plexus of u or 2p equations of the form (4)

ax,?+ Bty 2 (Va4 L )X =0
and the elimination of «, 8, v, ..., ¥/, ... leads to a determinant
of 2p rows, each row of the form
N N L RN NP CRE X ).
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163. Suppose for instance that (2) is the parabola

Y=a@?+ 202+, cooieriiniinnns (2) or (3)
then equation (4) becomes
ar? + 2B 4y — /X =0, oo (4)
and (5) becomes the quartic equation
(ax?+2Bx+yP—X =0, ccevrririiininn (%)

Denoting the roots by a,, «,, «,, ,, then the elimination of
a, 3, y leads to the determinant
x? a, 1, X
22 2 1, N/ X,
x? xg, 1, /X,
w2 w, 1, /X,
as the integral relation, corresponding to (u=4),
do, | de, | dey | do,
N/ SRING CIN) s ¢
By making a=,/a, so that the parabolas are of constant
size, or by writing equation (5) in the form
(a®+2Bw+v):—aX =0,
one root, , suppose, becomes infinite ; and now
4a(B—b)w® + (482 + 20y — bac)w? + 4(By — ad)x + 2 — ac=0,
so that
4(B—b)w, @yt wg)=6c— 2y — 4%/
=202+ 4B+ 6c— 2/ a/ X, — 43 a,
or  4(B=b)(x,+m,)=2ax+ 4bx,+6c—2/a/ X;— 4B a.
Now the two relations
ax,? 4282,y — /an/ X, =0,
x4 2B, +y— o/ X, =0,
give by subtraction
(w,— @) {alm; +a5) + 28} = (S X1 = X,),

so that (VNN oot apie o)+
17 %

=0’

=0.

@ a
= oz, +x,)* + 4b(@,+a,)+ 0,
where C=2aw?+4br,+6c—2/an/X;;

and we thus obtain Kuler’s original integral relation, the
general integral of the differential relation

davy | /Xy + iy Xy =0,
when C is constant; and a particular integral of

daty | N Xy dig o Xy ity S X =0,

when «, is considered as variable.
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164. When X is in Legendre’s canonical form 1 —a2.1 — k%%
then Abel takes P=ax+a3 Q=0b;
and now equation (6) becomes
Vo= (ax+a)?— 031 — a?)(1 — «%?)
=758 — (%2 — 2a)xt 4 (b2 + %2 + a)a? — b2
— @ =)@ — )~
where @24 w2+ a,t = 0% —2a,
woe,? a2, 2 o Myt = b2+ bA2 4 a,
@, 2kt = b2
But @ and b are determined by the equations
ax;+x2+0X, =0, ar,+x,°+bX,=0;
so that b= %%((4:0_{ ;3;?,
and therefore, as in formula (1), § 116,
= _9012 — 2y _ X, 2'_“_9322(_1.
ST Xy — X, 1k Pa?
Also  1—22. 1—a?. 1—a2=1-0%2+20+0?+ b2+ a?-b?
=(1+a)
while 24 a2+ a2 — k% 2w 0 = — 2a,
80 that
2 — o2 — a2 — .t + ke Mot =2(1 + a)
=2/ =2 1—w>. 1-z2),
or (2 -, — w2 — w2+ k% 22,1 = 4(1 — e, 2)(1 — 2,2) (1 — a,2),
which may also be written
N =ad)= (=l 1=zl tam, /(1 =z,
as in § 119, with z, =snu, z,=snv, x;=sn(u+v).
This, with @, =snw,, 2,=sn u,, &;=snwu,, may be written
1—cn?u, —en’u, — en’uy 4 2 en ;N Uyen Uy = k>0, Sn*UySn, ;
where U+ Uy + Uy =4K,
(§ 131); and, with a triangle of Class 1., is equivalent to the
formulas in Spherical Trigonometry
1 — cos?a — cos?h — cos?c + 2 cos @ cos b cos ¢ = k?sina sin?b sinc
=sin24 sin? sin’c = sin%q sin?B sin% =sin’q sin?b sinC,
165. To obtain the Addition Theorem for Weierstrass’s
functions, we consider the intersections of the cubic curve
YP=4aP—gm—gs or X, ..o, 1)
with an arbitrary straight line

Y=l (B ceenenrereineniiniiieniiiian (2)
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Now, if @, @,, , denote the roots of the equation
4% — gt — s — (a4 B2 =0, oeorrieirrein, (5)
then ax,+ B+ /X, =0,
az, + B+ N/ X,=0,
80 that a=‘\/X1_‘\/X2, 13=.9_6,1~/Xz“”2~/X1,

Ty — %y T~y

— 2

and (§ 144) xl+w2+mg=i—a2=i—(ﬁ/—%l—_;/—)(2) :
1 2

The elimination of « and 3 between these two equations and
azy+ B+ /X3 =0
leads, as in § 144, to the determinant (G)

1, z,, /X, 1, pu, p'u
1, 2y /X, | =0, or | 1, pv, v | =0,
1, z, /X, 1, pw, g'w
where u+v+w=0.
In addition, from (5),
oty + 0oty + 010 = — 4, — a3,
@@= 3¢5 +108%;

so that
(2014 + @) (42 o~ ) = (505 + @y + 2125+ 3G0)% .. (D

166. Consider the intersections of the fixed cubic curve

Y=Aa*+3Bx>+3Cx+D, ... (1)
with a variable straight line
Y=aZ+ B veviiii @)
Then Y =(ax+ B)° — (Ax® 4+ 3Ba? 4+ 3Cx+ D)

=(aP =AY — ) (=L)X —2g); ceeeniriininrann (6)

Q *B—B

and X fa, = — oaaf_A‘,

2 —(

g+ 25y + 24y = 3‘2’? 1

5—D
Xy = — ’%: e

Denoting by ¥y, 9, ¥; the corresponding values of y, then
Y1YaYs = (azy+ B) s+ B)(ax; + B)
= Py @yy+ { B — F(a® — A Y, 42y + 25) } (42, + 29, +2,2,)
+ {04 §(o® — A Yawywg + 252, + @,700) (0, + 2+ 25)
+D—(a®— A)zwm,
= Awwaity+ By, + 40 +a,2) + O (2 + @y +a,) + D,
as in § 145.
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Now, if the constants « and 3 receive small increments
da and 03, then '

ayda, + 3(ax, + B)X(w,0a+68) =

and Yoy =(a® — A) (@, —w,)(2, —3),
dml__q x13a+3,8 7 ‘
80 that 72 = B Ay — ) — gy (7)
and
d“’1+@2+%_3< 2, + Xy N Xy ) da
yoyd s gy By~ Ly~ By =Ty W10y =001/ @ -4
1 1 1 38
+3< + + =
Ly ) L)~ Ty Xy~ g~y Ly~ Ly g~/ a®— 4
T 0, ettt e 10)

and the sum of the three integrals is a constant, which can be
made to vanish by taking for the lower limits a root of the
equation y=0.
In the particular case of the cubic curve
aBd4yP=1,
the relation expressing the collinearity of the three points is
@y os + Y1 Y5l 3= 1.
Now, as in § 145, with g,=0, g,=1, and

1—a3)3 1+w
pu= (l—wx> ~/3

and, by symmetry, with
3)%
or=1 _yy)’ o= J3]+y
we find from (F) § 144, after reduction,
plutv)= %(S;Z ?v) —pu—pv=1,
so that w-+v=a, a constant.
With pa =1, then (§ 149) p2a=1; so that (§ 62)
p20=p(2w,— ), or a=Zw,.
We may therefore put
w="3%wy+1, v=">%w,—1,
and express « and y by functions of ¢.
For any other arbitrary value of «, the integral relation
connecting 2 and y will be, by § 145,
(A=) =) (1 —2°) = (1 —ay2)*;
and treating z as constant, this leads to the differential relation
(1—a?)-3dz+ (1 —13)-3dy =o0.
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We can put
_(=at (=gt (=2
=94 = 11—y’ LA TP
where w+v+w=0;
and pw=1, for the value z=o; and then
?+yt=1

167. When the quartic X is resolved into two quadratic
factors IV and D, we may replace (1) by the quartic curve

P=NIDj i 1)
and now equation (4) is replaced by
P/D4+Q/N=0;.cccceiiiiiniiiinninnnn. (4)
50 that equation (5) becomes
PPD—@QPN=0. cccocoiviininiiniinnnn, (5)

The elimination of the constants from the plexus of equations
determined by the roots of this last equation (4) leads to
determinants, whose rows are of the form

N/ Dyy 2 /Dy, ooy 2SNy 2,7/ Ny oo

For instance, by taking P and () linear, so that the variable
curve (2) or (3) in § 162 is a hyperbola, we can obtain the
integral relation of § 154 in the form

N/N1~/D2‘~/N2~/D1 . ~/N3~/D4— N/N%/Dﬁ‘:consta,nt.
x, — Xy — 1,
(W. Burnside, Messenger of Mathematics.)

We have taken X as a quartic function of «, so as to apply
to the elliptic functions, but Abel's theorem holds for any
higher degree of X, the method of proof being exactly the
same; and, according to Klein, we resolve X, supposed of
even degree, into factors NV and D, differing in degree by 0 or
a multiple of 4, when we wish to make use of the fixed curve

y?=N/D.

168. The reader is referred to the treatises of Salmon or of
Burnside and Panton for the proof of the Theorems in Higher
Algebra quoted here; they are easily verified, however, if we
work with the quartic in its canonical form

U= a'— 6m i+ Yyt
when H= —ma*+(1—3m2)a?y? — my*,
G =11 = 9mP)ay(at—y*).
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The following examples, taken from recent examination
papers, will illustrate the character of the algebraical work.

EXAMPLES.

1. Denoting by U the binary quartic, reduced to its canonical
form, 2t — 6ma’y? + 4%, its quadrinvariant and cubinvariant by g,

and g, and its Hessian and sextic covariant by H and G,
prove that

(1) dm®—ggm—g,=0;
(i) H+mU is a perfect square ;
(iii.) 4H3—g,HU?+g,U%+G*=0
°oH oH
(w) H(S 5 =5) = 16HH =g, U)g,H +3g,0)
aHaU ®H 2U U | ®*H/oU\? _ o arro.
0 Gt (5y) =28y B oy * oyeaa) =3200:07=67;
02U (oH °o*U oH oH *U(oH
(vi) 6?("67,) ~2owoy o 3y ot ( ) =48U(g,H -, U);
(vii.) the Hessian of A\U+uH is
(N =129 H + (92 u+ 19505 U,
and the sextic covariant is
AN — g u? — gsu®) G-
2. Denoting the roots of 4¢®—g,e—g,=0 by e, e,, e;, prove
that the roots of (2 +19,)%+29,2="0
are of the form  (/(e,65)+ A/(€561) + A/ (e58,).

3. Denoting the discriminant, Hessian, and ‘cubicovariant of
a cubie U by A, K, and J, prove that
AU2=J2+4K3
_ (Work with the canonical form U=aax?4by3.)
Denoting the same functions of AU +uG by A', K', J', prove
that A =(\t— u2A)A,
K== p?A)K,
J == p2A)AS +uAU).
4. Prove that X and Y in § 139 have the same invariants g,
and g, (Burnside and Panton, 1886, p. 418).
5. Prove that, in § 156,
N(ea—e)Pi+ (g —e) Pyt (e, =€) Py

is the square of a linear factor of X.



174 ALGEBRAICAL FORM OF ADDITION THEOREM.
6. Discuss the properties of the quartic X" in § 153, whose
roots are o, 8, v/, &'

7. Prove that (§160) 0,, ¢,; 0, ¢3; 05 ¢y ; define an involu-
tion of the roots of the sextic covariant G (R. Russell).

8. Prove that the cubic substitution
y= — (ba®+ 3ca®+ 3dw +e) [(ax? + 3ba? + Bcx + d) = — X,/ X

makes » dy _ 3dx
NGy = 95U, N (92Ha4-395U)
where U,=(a, b, ¢, d, e)(x, 1)

(Hermite ; Crelle, LX,, p. 304; R. Russell, Proc. L. M. S,
XVIIIL, p. 52.)

9. Integrate 28

10. Prove that, with s=gpu,
0'2u=(28° — £0,5* — 10g,8> — §9,7* — § 95058 — 95° +5'595°) /9% ;
N (P2u—e)= —(s*—2es — 262+ 1g,) /0w ;
N (20— e0) + A/ (P20 —eg) = — 2(s — €a)(3s— ep) /p'u ;

€ —Co. 03— Cq  Co—0Cq.Co—0C; Co—E..0,—¢
4 2u=s42 At R W M i A 1% 2,
§—e s—e, §—e,

11. Prove that, if
1) p(v; —20, —40)=35, then p2v=0, p3v= —1, pdv= &, ...

(ii.) p(v; —60, —10)=5, ............ 0, eovennnn I 5L
(i) p(v; —15, 19)=3Z, ... SRR 458 ...

12. Prove that
i) _/(A + Bx)dz/y is elliptic, if 4? = (1 —2?)(a+ 3z —4a?) ;
(ii.) f (4 + Bz+Cy)dx % is elliptic, if
f(z, y)=(a, b, ¢, f, g, h)(@?, 3* 1).
(W. Burnside).
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THE ELLIPTIC INTEGRALS OF THE SECOND AND
THIRD KIND.

169. The Elliptic Integrals, and thence the Elliptic Func-
tions, derive their name Elliptic from the early attempts of
mathematicians at the rectification of the Ellipse.

It was some time before mathematicians perceived that the
simple integral to begin considering is

Fg=/dp|ap,
which has not originally such a special connexion with the
ellipse; but the name Elliptic Integral has nevertheless been
retained generally for all integrals of this nature.

To a certain extent this is a disadvantage ; not only because
we employ the name Zyperbolic function to denote cosh u,
sinh u, tanh w, ..., by analogy with which the elliptic functions
would be merely the circular functions cos ¢, sin ¢, tan ¢, ...;
but also because it is found that the elliptic functions are a
particular case of a large class, called hyperelliptic functions,
but included in a larger class, called Abelian functions after
Abel, which, beginning with the algebraical, circular, hyper-
bolic, and elliptic functions of a single argument w (p=1)
are in the general case the functions of p arguments which are
met with when we consider the integrals

S a2 daf X,
arising in the linear transformations of _/ da/ /X, in which
X is a rational integral function of % of the degree 2p+2;
for now the linear transformation (lz+m)/(I'z+m’) converts

f da/ /X into (Im'—1'm) f (Ve+myr-1de//X.
175
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170. Legendre’s elliptic integral of the second kind has already
been defined in § 77; and denoting it by E¢, then the length
of the arc BP of an ellipse is given by a¢, where the arc BP
and the excentric angle of the point P are both measured from
the minor axes OB, and now the modulus is the excentricity of
the ellipse.

The quadrant of the ellipse BA is given by ak, where,
as in § 77, £ denotes Afggclq), the complete elliptic integral of

the second kind, in \(v)vhich p=1m.

The perimeter of the ellipse is therefore 4¢Z, the same as
that of a circle of radius ¢ &/}

The periodicity of sin ¢ and A¢ shows that, as in § 14,

Bir+9) ﬁ¢d¢ /+f 211+ Iy,

and generally F(mw- +¢)= ZmE + B¢,
when m is an integer.

Expanded in ascending powers of the modulus «,
<%1.3.5...2n—1 (ksin ¢)*
Ap=(1—rsinig)i=1- 22 Vo e
so that, employing Wallis’s theorems of lntegration, as in § 11,
i "22(1.3.5 ... 2n—1\2 ™
E=0 A"Sd‘ﬁ“”[l“ 2 4.6... 2n ) -1
whence the numerical value of E can be caleulated.

Tables of the numerical values of K¢ for every degree of ¢
and of the modular angle are given in Legendre’s F. L., 1L,
Table IX.; while the values of log Z are given in his Table I.
for every tenth of a degree in the modular angle.

We reproduce this Table of log E, and of log £’, correspond-
ing to the complementary modulus «’, to 7 decimals, and to
every half degree in the modular angle {a, corresponding to
the values of log K in Table I, p. 10.

171. By differentiation and integration, we prove that
d(E¢ Eqﬁ d d¢ _EP «* singcosg
dx > (KF¢) A k? T2 A¢ o

and theleiore Wlth ¢— L,

D)= aer=
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We can now prove Legendre's relation, that
EK'4+E'K— KK’ is constant, and =4 ;
for denoting it by A, we find that d4/dx=0, so that 4 is
independent of «; and taking x=0, then

I PIAY g, k) + A, )1 f
A=1’E/f O qsav = [ feosydgdy = 1.
. . A(qﬁ, K)A(\P,K) ) \[’ c \b ¢ \[’ g
172. In Jacobi’s notation, with ¢ =am u,
E¢=Eamu=/dn2uclu;
g

and now, from the quasi-periodicity of am w (§ 14),
Elmn+¢)=Eam(@mK+u)=2mE+ K amu,
where m is an integer.
We may therefore, as in § 78, separate Zamwu into two
parts, one the secular part, increasing uniformly with u, at a
rate 2F per increase 2K of u, and the other a periodic part,

denoted by Zuw in Jacobi’s notation, and called the Zeta
Sfunction ; so that

Eamu=Eu/K+Zu,
or Zu=f(dn?u— B/ K )du.
5

The Addition Theorem for the Second Elliptic Integral.

173. A well-known theorem, due to Graves and Chasles,
asserts that if an endless thread, placed round a fixed ellipse, is
kept stretched by a pencil, the pencil will trace out a confocal
ellipse (fig. 22). (Salmon, Conic Sections, § 399.)

If the excentric angles (measured from the minor axis of the
ellipse) of the points of contact P, ¢ of the straight parts of
the thread PR, R are denoted by ¢, Y, so that the

arc BP=qaE¢, arc BQ=al"\);
and if we put ¢=amu, Yr=amw, the modulus x being the
excentricity of the ellipse, then, as asserted in ex. 6, at the end
of Chap. IV., B moves on a confocal ellipse, when w—v is
constant, and conversely.

For the coordinates of R being given by

€08 \Jr— 0S8 ¢ sin ¢ —sin
= q— , Yy=b—~
sin(g—) * YT sin(p— )
we find from Jacobi’s formulas (4), (5), and (31), § 137, replacing
w and v by $(w-+v) and L(u—v),
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cnv—enw 88,0,y s dy  sni{u4ov)dni(w—ov)
“snamu—amo)  sod, e, enb(w—v)
y=b snu—snv__80d _ph - «enf(w+ v)'
sin(famu—amv)  8,Cod, Cy enf(u—wv)
R'

Fig. 22.
Therefore
zcd Luw—v)=sn (u+v), %— cn %(u,—p)=cn I(w4v);

and (@/a)+(y/B)=1,
where a=adef(w—w), B=bnci(u—v);
so that o= [B=a’—b?
and therefore R describes a confocal ellipse, if u—wv is constant.

If w4 is constant,
we find (afa P (/B =1,
where o =arsn (w+v), 8 =axcn H(u+v),
so that a4+ B2=w?=a’—b?,

and R therefore deseribes a confocal hyperbola (MacCullagh).

To realise mechanically this motion of R on the hyperbola,
the threads RP, RQ must pass round the ellipse, and be led,
in the same direction, round a reel moveable about a fixed
axis at C'; so that, as the reel revolves, equal lengths of thread
are wound up or unwound.

If the hyperbola starts from the ellipse at L, then

PR—arc PL=QR—arc QL.
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If the threads are wound in opposite directions on the reel,
then R will describe a confocal ellipse, as at first; but in this
case the reel may be suppressed, and the thread merely made
to slide round the ellipse, as in the theorems of Graves and
Chasles.

Moreover, it is not necessary that the tangents RP, RQ
should proceed to the same ellipse, but to any two fixed con-
focals, and the same theorems hold.

If tangents R'P’, R'Q, are drawn to the ellipse from any
other point R’ on the confocal hyperbola RER’, forming with RP,
RQ the quadrilateral RrR'», then 7, # lie on a confocal ellipse,
by the preceding theorems ; and now a circle can be inscribed
in this quadrilateral whose centre is at 7', the point of concourse
of the tangents to the confocals at R, », R, #’; for TR, Tr, TR/,
Tr" bisect the angles of the quadrilateral; (Salmon, Cowic
Sections, § 189).

If R is brought up to L, the circle touches the ellipse at L ;
so that the point of contact of the circle inscribed in the area
bounded by two tangents and the ellipse is at the point where
the confocal hyperbola through the point of intersection of the
tangents cuts the ellipse.

174. Putting w—v=w, or Fp— Ffr =K'y,
then when =0 and @ is at B, u=w and P is at G where

¢ =+ suppose; while R will come to D on the ellipse RD, where
it is cut by the tangent at B.

Now, since
PR+ RQ—arc PQ=BD+ DG —arc BG,
or arc PQ—arc BGd=PR+RQ—-BD—-DG,
therefore B¢ — BN, — By =a certain trigonometrical func-

tion of ¢, y, v, which is found to be —«%in ¢ sinrsiny;
this is the Addition Theorem for the Second Elliptic Integral.

For PR?= aZ{sin ¢———~COS¢—COS ¢ }2 + bg{—#———sm $SIDY_ o ¢}2

S0 (p V) sin(p— V)
_ (@Pcos’p +b?sin’p) {1 — cos(¢p — )}
(Sin“’(sﬁ)— V) ’ (
' _ 1—cos(¢p— _ 1—cos(¢p—)
so that PR = @Aqﬁm 5 RQ = CLA\/f—SiW,

while BD= a,l S8Y pe= ccAyl —oBY
sin y sin y




OF THE SECOND AND THIRD KIND. 181
Therefore, by § 121,

PR+RQ= aA‘i’(;%{l cos(p—p)} = a1+ 7{1 cos(p—y)}

PR+ RQ—BD—-DG= aw~-f {COSy cos(p—y)};

= a»s-i‘—_n—g{cos ¢ cos ¢+s1n ¢ sin YAy —cos(¢p —yr)}

= —al fAzy sin ¢ sin
sin y

= —ak’sin ¢ sin r sin y.

In Jacobi’s notation this is written
Eamu—FEamv—FE am(u—0), or Zu—Zy—Z(u—v)
= —x%n u sn v sn(w— o).
175. Putting v=w, and therefore u = 2w, then
FEam 2w—2 E am w= —«%n 2w sn%w,
or changing w into $w,

1—dnw .
Famw—2F amiw= —«Isnwsn*w= ST (§ 123).
Then PR+ RQ—are PQ=BD+ DG —are BG
=a(1—|—dnfw)1-cnw—aEamfw
1—dnw )
-a(1+dnw)1+ pHasnw 1+an—2aE’am tw
_ snw N >= (sn%wdn%w_ T >
20@(—————1+cnw Eamlw)=2a Tenlw Lamiw);

and now  cn Jw, or en J(w—v)="0/B, where 3=0K.

176. A ready way of proving the Addition Theorem is to
take the spherical triangle of Class IL, in which
A=amv,, B=amv, C=amu,

where v+ v+ v, =2K,

and to vary all the sides and angles, keeping x constant.
Then dw, +dv,+ dvy =0,

or dA/eos a+dBJcos b+dC/cos c=0,

or cosbeosc.dAd+cosccosa.dB+cosacosdh.dC=0,
or (cosa—sinbsinccos 4)dA 4 (cos b—sin ¢sin a cos B)dB
~+(cos ¢ —sin ¢ sin b cos A0 =0,
or cosadd +cosbdB-+-coscdC
=k?(sin Bsin Ccos Ad A +sinCsin Acos BdB +sin A sinBeos Cd ()
=2d(sin 4 sin Bsin ().
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Integrating,
E(A)Y+E(B)+ E(C)—2E=%in A sin Bsin C,
since f cos adAd = f (1 —k%sin?4)dA =E(4),
0
and v,=0 makes B=0, and A+ C=, or E(4)+ E(C)=2E.
In Jacobi’s notation

L am v, 4+ Eam v,+ L am v, — 2 = *sn v;sn v,sn 0,

or 2w, + Zvy + Zwg = k%0 1,80 V80 1y,
with v+ 0+ v, =2K.
With ut+v+w=0,
Zop 247w = —k%sn u sn v sn w,
or Zu+Zv—Z(u+v)= «snusnvsn(w+o).

Fagnano’s Theorems.

177. The particular case of the Addition Theorem, obtained
by putting y=4m, or u—v=K, was discovered by Fagnano
(1716), and leads to his theorems, namely, that if P, @ are two
points on an ellipse of excentricity «, whose excentric angles
¢, Y, measured from the minor axis, are such that

ApAyr=«', or tan ¢ tan\r=1/k'=a/b,
then the arc BP-+arc BQ—arc.4dB=ax’in ¢ sin),

or ' arc BP —are AQ=ax?sin ¢ sinr = %a’[a ;
x?x’? a?
and then tan?ep tanp’ = =
¢ () (a2 =a?)(a?— %) b2’
or k2% — (2 +a?) +at=0.

On reference to tig. 23 it will be found that, if OV, OZ are
the perpendiculars on the tangents at P and ), then
(i) A0Z=¢, AOY =+,
(ii.) arc BP —arc AQ=PY=QZ=VQ - PT,
so that VZ=PT, and PY or QZ=kza/|a;
the tangents at P, @ meeting 04, OBin 1, V'
(i) OP?—0Q*=0Y2—-027%; (iv.) 0Y.0Z=ab.
When P and @ coincide in F, then F is called Fagnano's
point; and then

(i) the arc BF —arc AF=a—b;

" . a? b
(ii) the coordinates of F are \/ axt Natb’

(i) KF=q, FH=b, FG=0~b, 0G=,/(ab);
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(iv.) the tangents at P, () intersect in R on the confocal
hyperbola FRD, through F, D, whose equation is
@ Y
o5
(v.) the tangents at P and @ intersect in R 'on the confocal

ellipse KDH, through K, D, H, whose equation is
2 2
T Y b,
a b
(vi.) PR—arc PF=QR—arc QF ;
(vii) the circle inscribed in the region bounded by A D, DB

and the ellipse 4 B touches the ellipse at F'; ete.
The proof of these theorems is left as an exercise.

7

v
P} D
o' N Y
AR

E / £
M [ 2\
0 S 4 H

Fig. 23.

178. Denoting the arc AP by s, the perpendicular OY on the
tangent at P by p, the angle A0Y by +, then by Legendre’s
formula

ds _dp
dxp d\lﬂﬂo’ while PY = @,

so that s+PY—ﬂ9d¢;
and in the ellipse
Pp=a/(aPcos Y+ b3sin) = a A,
while
- PY=—dp|dy=asin Vrcos o/ A = ax®sin ¢ sin ) ;
so that s4-oax%in ¢sinr=a Of Avrdrr = a BN =arc BQ,
or arc BQ—arc AP =ax%in ¢ sin,
as at first, in Fagnano’s Theorem.
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Confocal Ellipses and Hyperbolas.
179. If we put
x+1y=csin(¢+10),
then z=csin ¢ cosh 0, y=ccos ¢sinh 6 ;

2
so that cosh26 T snh’g smh26

2 2
sin%p %{s =%
the equations of a system of confocal ellipses and hyperbolas,
since cosh?§ —sinh?0 =sin2¢p + cos2¢ =1
Then :ZZZZZ + ZZZZZ le"zz +4q 0—2- = c*(cosh?0 —sin?¢) ;
so that, in an ellipse BP, along which 0 is constant, the
arc BP=c f &/ (cosh?0 —sin®¢p)dep = ali¢p
as before, with a=ccoshf, and the modulus equal to the
excentricity sech 6.

For the confocal hyperbola, along which ¢ is constant, the
arc is given by

¢ / &/ (cosh?0 — cos?¢)d0,
which can be expressed by elliptic integrals of the first and
second kind, of Legendre’s form.
Putting
a=csin ¢, b=ccos ¢,
the equation of the hyperbola is
(@fa)*—(y[by=1
and now the coordinates of any point P on the hyperbola may
be given by @ cosecy, beoty ; and the tangent at P by

x "
o oosee X'%/ cot x=1,

and then amh 0 =47 —x,
cosh f=cosecy, sinh §=cot x, tanh 0=cosy, ete.
The tangents at P, and at another point @ defined by x/,
will therefore meet at a point R, where

x_ cot x' —cot _ osin(x—x) y_siny—siny’

@ cosec x cot x'—cosecy'coty cosx —cosx b cosy’—cosy’
When we put

x=am v, x' =am v
the modular angle being ¢, then as in § 173 for the ellipse,
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X 8y G

x _ G en L — )

o sdsd, sdy snH(u+v)dn Hu—v)

Y_ sody e cn Huw+v)

b sdis,d, sdy snf(uw+v)dn d(u—v)
and therefore, eliminating en (v —v) and dn §(u—),

(@/a®)+(y/By=1,

_ a _bend(u4v)_acn f(u+v)

where *= s L(w+o) = sn f(w+0) ksnd(u+v)

and = =ct=a’+b?
so that R describes a confocal ellipse, when u 4w is constant.
J
S ©
D,
g S
::X N 7
?
E
0 v 7 MES
z Y
=
v
G
- Fig. 24.

180. By putting u+v =K, we obtain theorems for the hyper-
bola (fig. 24) analogous to Fagnano’s theorems for the ellipse.

Now (§ 123) a=c/(1+«"), B=c/,

or a?=c(c+b), pB*=ch;
and R describes the ellipse F'D, whose equation is
o Y
5ty =0

which will intersect the hyperbola in a point F, the analogue
of Fagnano’s point on the ellipse, the coordinates of which are

esin ¢ /(14-cos ¢), c(cos ¢)*.
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Now, asin § 57, with
x=amu, ¥’ =amv, and ut+v=K,
AxAXl =« =cos b,
cot x cot x"=«"=cos ¢,
or sinh @ sinh 6 =/,
and if », ¥ and «, 9’ denote the coordinates of P and @),
x=q cosec y=aAx[cos ¥, &'=a cosec x'=aAx/cos x;
y=a cotxy=ac'tany, y'=a cotx =ax'tanyx;
and thus Yy = a’’ = c%cos’ep.
Drawing the perpendiculars OY, OZ from O on the tangents
at P, Q, and denoting the angles 40Y, A0Z by w, »; then

b2
tan o= d y;az—tangbcosx tan ¢ tanh @ =sin ¢ sin x'/Ax’;

and

sinw=s1n [0 sin X , COSw= AX, sin @' =sin ) sin X, COS =AX.
Now denoting OY, 0Z by p, p/, then
P=a/(aPcos’o —bsin%w) = ¢ /(sin%p —sin®w) = c sin ¢ cos x’;
pp’ =c*sin?pcosy cosx’ = c’sin?epcos psinysiny’ = c2cospsinpsine'.
Making use of the formulas
ds d?p

do= " dw D and PY——EZI—O

dw

then
PY—arcAP=/pdo= J &/ (sinZp —sin’w)de
g~

=c/sin%g costydy/ /A =¢ f (A% =) dy'[AY
=c(EyY —k2FY);
also PY =csin wcos w/y/(sin%p —sin’w)
=c tan x'Ay’ =c/tan xAy
=ccosh 0 sinh 6/,/(cosh?0 —sin’p).
181. The arc AP of the hyperbola is now expressed in terms
of an elliptic integral of the first and of the second kind ; we
can however express the arc by means of two elliptic integrals

of the second kind, or by two elliptic arcs by means of Lan-
den’s transformation (§ 67).

We shall find that if we put
o+x =2y, or sin(2y—yx)=sinw=sin¢siny,

. sin2y (1+sin p)AW, )
then tany'= mv sec X' = sin ¢p+cos 2
where V= Asing =T,

T (1+4sing)? 7= T+sing’
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sin sin 24 Sin we sin ¢ sin 2y
X =i AW, v ™= ([ sin p)AG, 7
14-sin ¢ cos 23&
080 =AX= (1 sin )AG, 7)
dw dv' 2dnlr

~/ (sin’p—sin%w) Ay (14sin ¢p)A(Y, y)
08 w+ o/ (sin¢p —sin%w) = Ay’ +« cos ' = (1 +sin $)AW, y);
so that

(1-+sin Ak, iy =BT g
1 &2
— 4) 7 - ’
= <AX + 2k cos X3 AX,>dX ,
Integrating,
A+ EQp, y)=Ex +rsiny — i2Fy;
and now the arc of the hyperbola
AP=PY+2csiny' +clix' —2c(1+x)EQ), y).
182. If we put Xx—-X=4%7m—&
then we find (§ 180) '
(14cos ¢)tan x’ _osecyAx
fan £="1 "0 ¢ tan?y”’ 58 =1 cos ¢ tan?y”
(1+cos ¢)sin x'cos x’
AX/ ’
_1—=(1—cos ¢)sin®y’  A’y'+cos¢
A6 M= Ax' (1 +cosg)Ay”

and A(fgk) (14cos ¢)A ,» with A=tan?}¢.

Now, sin(2x' — £)=Asin §,
as in Landen’s second transformation (§ 123); and

(14 cos p)A(E N)d g = (A% +cos ¢)2€lx'/A3 '
<AX +2 cos ¢A ,+COS2¢>GZ /

sin y'cos v’
=2Ay'dy +2 cos -—,-—sm2 cl<——X—,-—X—>.
X 4X ¢AX o AX

sin £=

Integrating,
(L+cos ¢)E(E, N) =2Ex +2 cos ¢pF'y' —sin?¢ sin x" cos x'/AX;
and the arc AP can be expressed by means of Ey” and E(& N).

When y=y'=am { K, then f=ix;
also (§ 175) 2Ey = E(k)+1—cos ¢, while 28y =
so that I4+£N)EN)=E[K)+< K.
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183. The following theorems, analogous to those of § 177,
can easily be proved by the student :—

(1.) The difference between the infinite asymptote DT and
the infinite ave F'T is equal to AD—arc AF; so that
the difference between the infinite asymptote O1' and
the infinite arc A7 is equal to OD+AD—2arc AF;

(ii.) the coordinates of F' are (c+Db)a/{(c—b)/c}, A/ (b¥[c);
and the tangent FK=AD=0, KG=c;

(iii.) the tangents at P, @ intersect in B on the confocal
ellipse through F, whose equation is

and the tangents at P’, () intersect in R’ on the con-
focal hyperbola through D and K, whose equation is
@y
c—a a O’
(iv.) PR—arc PF=QR—arc QF;
(v.) PR+ R'Q—arc P'Q is constant;
(vi) the circle inscribed in the region bounded by the
straight line AD, the asymptote DT" and the hyper-
bola A touches the hyperbola at F';
(vil.) PT'=ccot Ay, QV =ccot x'Ay, Qu=-cAx'[sin x'cos x/,
PT.QV=FK? PY.QZ=c,
Qu—PTI'=QZ, or wZ=PT,
PR—, AX l—cos(x X) RQ=c AX 1—cos(X
sin y cos x'—cos x’ sin x' cos x’ —-cosX

184. The geometrical theorems of § 173 for the ellipse hold
with slight modification for the mechanieal description of con-
focal ellipses and hyperbolas from a fixed hyperbola.

The threads from the reel must be led round distant points
‘on the hyperbola 4 PQ (fig. 24) and be wrapped on the curve;

and now, starting from F, the confocal ellipse FRD will be
~ described, if the threads are led off in the same direction.

At D, one thread DI must be supposed of infinite length ;
and, beyond D on the ellipse FD, the thread DT must be trans-
ferred to the other branch of the hyperbola.

By making the threads come off the reel in opposite direc-
tions, the confocal hyperbola DK can be described, starting
from D or any other point E.
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185. The integration of the functions of § 77 can now be

expressed by means of the elliptic functions, and of the function
E am u, defined by ’

Eamu= f dn?uduw.
0

Then f kZsn?udu =u— E am w

9

f Zen®udu = FE am w— 2.

0
To integrate a reciprocal function, for instance nd’u, we

notice that

2
T log dn u = «?nd%w — dn’u,

so that f Kmdudu=E am w—«?snu cnw/dn v
0
and so on.
Again, since cd?w =sn?(K —u),

S edudu=u— /dn*(K —u)du
0 0

=u— K+ Fam(K —w)
=u—Famu+®sn v cen w/dnw ;
and since knd?u = dn*(K —u),
f knd?udu = — E am(I —u)

=L am w—«%n uw en w/dn u,

as before. :
In Problem III., 86, we find
' dt _dn?9 .,
" 36~ onrp =20
and nt:fdc26d€=9—~Eam 0+sn 6 dn O/cn 6.
0
ExAMPLES.

1. Prove that the area of the Cassinian
¢ —2a2r2cos 20+ ot = bt

is %/‘(ﬁbﬁ——a‘-‘sinzqs)%dqs, ifb>a;
0

or %/‘ (7(;4 — bisinZg) ~Fptcos? pdp, if o> b.
9
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2. Rectify, by means of elliptic arcs (pointing out the
geometrical connexion),
(.) y/b=sina/a, cosx/a, cosh a/a, dn x/a, en x/a, snw/a, ...;
(ii.) r=>bcos(bb/a) or & cos(af/b), the pedals of an epi- or
hypo-cycloid ;
(iii.) 7 cos(bb/a)="0, or v cosh(bf/a)=b, Cotes’s spirals;
(iv.) the limagon r=a+bcos 6, the trochoid, and the epi-
and hypo-trochoids.
3. Express « as a function of s in the Elastica of § 97.
Prove that if the ordinate is made equal to p, the perpendic-
ular on the tangent from the centre of an ellipse or hyperbola,
and if the abscissa is made equal to the arc AP+ PY, the
curve will be an Hlastica (Maclaurin, Fluxions, 1742.)

4. Prove that (1_K2)Czlf2f+1 K‘Sx %K—-K 0;
d2E 1 2 dE
)d/c “de +E =0.

Change the independent variable in these differential equa-
tions from « to k, 0, or w, where

k= /k=sinf=tanhu;

and reduce the resulting equations to the canonical form

1dw, .
y dw =0
Solve the differential equations in which
1=k y . %
I_W’ cosec?20, — cosech?2u, —sech?2u, ....

(Glaisher, Q. J. M., XX, p. 313; Kleiber, Messenger, X VIIL.,
p. 167.)
5. Prove that, if u, +w, +uy;4+u,=0,
Ty + Ly + Zowg + Ziw,,
—K78,80858,  (C,cly | ey csd ey,
TI144 81858384 ( 31 S, + 83 8, )
_ Ky, (84, 82d 8yl | 8,d,
~;c2clcoc3c4—:c’2< ¢ T 02 ¢ o T €y >

_ ki dodedy (810, | 850y | 805 | 8,0
K"?r?z'd;cm< 7 N cl>
=xa/ (824 8.2+ 8,2+ 8,2 — 28,8,8.8, + 2¢, 0,00, — 2).
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The Elliptic Integral of the Third Kind.

186. We can now make a fresh start, and prove the Addition
Theorem for the Zeta Function independently ; and then pro-
ceed to Jacobi’s form of the Third Elliptic Integral.
(Fundamenta Nova, 49; Glaisher, Proc. L.M.S. XVIL p. 153.)

Multiplying formulas (3) and (6), § 137,

2
dn{u1) = dn{u —0) = TR ILM B LMV ()
and, integrating with respect to v,

Eam(u+v)+Fam(u—v)=C— ————————-Qlc_ri i;jrg;béir;vu
where C is the constant of integration, independent of ».
To determine C, first put v=w; then
2c¢nuwdnw/snw,
1—i2sn*u
so that, replacing £ am w by Eu/K + Zu,
ko) + o)~ 20 = B e
B 2 2 sn?u —sny
l—xzsnzusnz'v) TR A asnu s
=Zsn(u+v)sn(w—ov)sn 2u.......... (2)
Replacing w+4v, w—v, and 2u by u, v, and w+w, this
becomes the formula given above, § 176,
Zu+Zv—Z(w+v)=1?n % sn v sn(U+v). ceeinnnnn. (2)*
Again, put =0 for the determination of '; then
C=2Eu+2cnwdnwu/snu;

C=FE am 2u+

sn 2u< 1 —k%sn*u
~ sn?u

and now
— 2«¢%n © en w dn w sn2

Z(u4v)+Z(u—v)—2Zu= 1= snu sn% cireeeeen(8),

another form of the Addition Equation of the Zeta Function,

leading immediately to Jacobi’s form of the Third Elliptic
Integral, as required in § 114

187. Integrating this equation (3) again with respect to v, and
employing Jacobi’s notation of

2, 2
«?sn 4w en w dn w sn?o dw
II(v, w) for/

1 — k%sn?u sny ’

0
where w is called the parameter, and v the argument, then -

(v, w)=vZu—} [ Z(w+v)dv—1 [ Z(u—v)do.
0 0
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Jacobi now introduces a new function Ou, called the Theta
Function, defined by

ﬁudu =log %%,

0

or Ou =060 exp / Zudi;...oooviniinna.n. (4)
0
so that Zyy= g_u
Now ﬂ(u—l— v)dv=1 ge(u_}_v),
O-/é(u, —v)dv=1log 5(—72——”) ;
O(w—v)
1
and (v, w)=vZu+% log OuF o)
O(u—v)
—loo gvZu
=loge Blugoy (5),

so that the Third Elliptic Integral is expressed by Jacobi’s
Theta and Zeta Functions, the arguments being % and v, two
in number only, and not three, n, k, ¢, as in Legendre’s form.

188. Integrating equation (3) again with respect to u,
f ’ {3n2(u +v) — dn?(u —v) }dvdu =log(1 — k?sn?u snv),
0 9 '

or
log 8(%+?)) +1log e(@é; v)_ 9 1Og(%6 =log(1l — k*snu sn?v),
or O(u—+v)0(u—v)020

=1—2sn?u sn?v,......... 6
O2uO ? (6)

a formula which takes the place of the Addition Theorem for
the Theta Functions.

For instance, putting w=v,

O2u = (1 —ksn*u)O*u/O%0. ......oevneis ™
Interchanging the argument and parameter, w and v, then
O(u—v)
= 1
II(w, v) =uZv+% log Bty
so that TI(u, v)—II(v, ) =UZv—VZUy...oovviiriiinnencnenn, 8)

and II(v, w) is thus made to depend upon II(u, v).
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189. In Legendre’s notation, II(n, «, ¢) or simply Ilg, is
employed to denote his Elliptic Integral of the Third Kind

dg
./(‘1 +nsin?p)A¢’
0
n being called Legendre’s parameter (§114); and with Jacobi’s
. du
notation, II(n, k, amu)= e

0
But Jacobi changes the notation, by putting n= —«*na,
and by calling @ the parameter; also by denoting the integral

2 2,
fx sn a cn o dn a sn2uwdw by TI(s, ),

1 —«%sn?a snu
0

and not the integral

./i —Kzsclllzboo sn?u’ which equals v+ Sncrci OILI c(l,lll:aa)/'
y
In Legendre’s notation, the Addition Equation of the elliptic
integrals of the first kind
‘ Fo+ Py =Fpy,
leads to B¢+ Er— Eu=«in ¢ sin \ sin p,
the Addition Theorem for the second elliptic integrals;
and now for Legendre’s elliptic integrals of the third kind,
the Addition Theorem is (Legendre, F. E. 1., Chap. XVIL)

1 na/asin ¢ sin ) sin p
Ty =—r an-1 n/
e+ Tk — 1l Na fan 14+n—mn cos ¢ cos yr cos '

1 na/(— a)sin ¢ sin - sin
o =~/(_a)tzmh 11—?—/7?(,—%)005200;‘1,?003’(;’ ©
according as a is positive or negative, where
a=(1+n)(1+/n)
this can be verified by differentiation.
This relation is very much simplified by the use of Jacobi’s
function II(w, a) ; and now with
¢p=amu, Yr=amv, u=am(w+v),
it becomes II(w, a)+11(v, &) —Il{(w+2, a)=4%log Q,
O(u—a)B(v—a)O(u+v+a
where Q=§2u+a)6(v+a))6((u+v—a§’ ............. 10)
and Q is capable of being expressed in a great variety of ways
by means of the elliptic functions cn, sn, dn of combinations
of u, v, a.
G.ET. N
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For {6(% —a)0(v— (:1,)}2 _ Su—v)0(utv—2a)
60 1 —Zsn2(u—a)sn(v—a)
{e(u +a)O(v+a) }2 _ O(u—v)0(u+v+2a)
60 T 1—sn(u+a)sn(v+a)
{Gae(u +v—a)\® _ O(u+v)O(u+v—2a)
00 T 1—Bsnfasn®(ut+v—a)
{Gae(uj- v+ a)}z _ O(u+v)0(utv42a)
00 T 1—iBnlasnX(utv+a)y
(§ 188), so that (Fundamenta Nova, § 54)
P 1—®sni(w+a)sn?(v+a) 1 —sn’a sn*(w+v— ) (1)
1—x?sn}(u—a)sn?(v—a) 1 —k?sn’e sn?(u+v4a)™
One of the simplest expressions, equivalent to that given
above in (9) in Legendre’s notation, is
g lzgmumumosiuto—w )
+*snusnvsn ¢ sn(uwt+v+a)
and a systematic collection of different forms of ) is given by
Glaisher (Messenger of Mathematics, X.).

190. According as Legendre’s a or (14n)(1+«%/1) is positive
or negative, so his Integral of the Third Kind II(n, «, ¢) falls
into one of two classes, the first called circular, the second
logarithmic, or hyperbolic, as we shall call it.

In the corresponding classification of Jacobi’s form, the para-
meter a is imaginary or real; and it is remarkable that in
dynamical problems, it is the circular form, with imaginary
Jacobian parameter a, which is of almost invariable occurrence.

When Legendre’s ‘

a or (1+n)(1+«*n)

is positive, and the corresponding Elliptic Integral of the Third
Kind is circular, then Jacobi’s parameter is imaginary; and

(1) with » positive, we must put n= —k*sn%a;

(ii.) —«*>n> —1, we must, according to § 56, put

n= —k%n*(K +1b),
as in § 114; and now the integral is expressed by
II(w, ia) or TI(w, K +1b),

involving Theta and Zeta functions of the imaginary arguments
i or K +4b ; for which there is no theorem, short of expansion,
to express the result in a real form.

We shall find however, in the applications, that this imagi-
nary form constitutes no real practical drawback.
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Taking for example the result of § 114, then, by (6) § 188,

A—D.D-C 00
p= h\/< - AC >,/{6(u+a)9(u a>}9u6a’
with u=nt, and a=K+t7K’; while

ip— M)_cnadn@ W TI(, a),

O(u—
6(u+a) ;

exp (¢ —ul)=ex <mc @dna
so that, by multiplication,

(4 1y)(cos ut — 7 sin ut), or p expi(p— ut)

A-D.D-C\O(u—a)00 (enadng >

= ex yaes )

h\/< AC > Ouba ( sn @ +2Za Ju; ...(13)

which, when resolved into its real and imaginary part, gives

the vector of the herpolhode, or its coordinates with respect to

axes resolving with constant angular velocity u.

w4 Za>

191. Take Jacobi’s II(u, a), and split up the quantity under
the sign of integration into a quotient and partial fractions;
therefore

1cnadna{/ dw _’:/‘ dw }
92 sna l—ksnagsnu J 14+ksnasnw

=wenadnafsna+I(w, a);

while

1cnadna{/ duw / dw
2 sna l—ksnasnw 1—|—;<snasnu}
_-/’Kenadnasnudu
o 1—i2sn?asn?u
=f{%/c sn(a ) — e sn(a—w) duw
1 dn(co+u)—:ccn((t+u) dna4kena

5% dn(e—w)+xen(e—w) dn a—« cn a<§ )
Therefore, by addition and subtraction,

engdn du -—u(Za+cn adn a)
sn o l—ksnasnu sn ¢
0

+11 O(e—w) dn(a—u)—«ken(a—w) dna+kena
Ola+u)’ dn(c&+u)+;ccn(a+u) dna—«kena’

enadna dw en ¢ dn o

sna _/;+xsnasnu-u<za+ sna )
+11 O(a—u) dn{a—u)+ken(a—w) dna—kena
°9(a~|—u) dn(a+w)—ken(a+w) dna+rena
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192. Again, taking the formula (7), § 137,

1 —«?sn® sn’u

and differentiating logarithmically with respect to a,
snaenadna | k’nacenadnasniy

=sn(a+u)sn(a—u),

sn?a —sn’y 1 —k?sn’q sn’u
_len(a+ u)dn(a+u) 1 en(a—w)dn(a—w)
=2 sn(a4u) 2 sn(g—uw) 7

and then integrating with respect to u,

/‘sno&cna dnadu 1 log sn(o+u)

snfg—sn®u 2 °sn(a—uw)

—1I(u, o)
’ sn(a+u) O(a+u)

- UZCH-? log s —w) O(a—u)
_ L H(a+w)
= —uZw+2l gﬂ(a wy (14)

introducing Jacobi’s function Hu, called the Ete Function,
defined by the equation (Fundamenta Nova, § 61),
1 Huw
SnU= -7 =—
This form (14) and Jacobi’s II{u, ) are the two forms of the

hyperbolic integral of the third kind to which Legendre’s form
can be reduced for negative values of a.

When 0>mn>—k? we put n=—n’,
and obtain Jacobi’s form II(u, a) of (5).
When —1>n>—w, we put n=—1/sn%q,

and obtain the above form (14).

This form again can be split up into partial fractions; and
a similar procedure shows that, since

du o SN U or Oddnu—cnu
snu gdnu-{—cnu’ > sn
therefore, by equations (4) and (7), § 137,

cn o dnesnudu
sn%q —sn’u,
0
=%fsn(a+u)—sn(c& u)Z

sn(a +u)sn(a—u)

du
%./ sn(a—w) %x;(a-{—u)




OF THE SECOND AND THIRD KIND. 197

11 sn(a+w) dn(a—u)+cen(a—w) dna—ena
? " sn(a—w) dn(e+u)—cn(a+u) dna+cend
sn(a—wu) do(a+w)+cen(a+u) dna—cna (16)
°sn(e4u) dn(e—u)—en(a—u) dnatcna’
Therefore, by addition and subtraction of (14) and (16),
enadn adu
f Sha—snw

0

Il

Il
DO
—

0g

O(a+u) dn(a+u)+cen(a+u) dna—cna
"G(a w) dn(a—u)—cn(e—u) dna+cn o’

en adn adu
sno-4snw
]

= —uZa+%log

= —uZa+ Llog

O(a+w) dn(e+u)—cn(a+u) dna-+tena
O(a—u) dn(ea—u)+en(e—u) dna—ena’

By means of equation (6), § 188, and the formulas of § 123,
these relations may be written

en o dn adu
SN g —Sn w

0

625 (a+u) sn jacn Fa+w)dn F(a+u)
S O2L(a—w) sn f(a—w)en fadn fa

en o dn adw
sna-4snw
0

= —uZa+ log

= —uZa+ log

02%(a+w)  sni(a+w)en fadnia
02k (a—w) sniacn f(a—w)dn L(a—u)

The student may prove, by a similar procedure, that

[ mednadu_y 1meE ) 1, 0

[

cnu—ena s 1_‘31)(“ w)
S e o

SR 1

Ko aen 0t log 1O i, ),

-uZa
>

snacnadna—snucnudnuu sn(a+u)6(a+u)60
W =
/ sn2q — snu OaBu

/snudnu—snadnaduzuza_log O(a+1)00 1—Qn(a+i). :
enu—cenda OaOu l—cng
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Luler's Penduluwm.

193. Cousider for instance the rolling oscillations on a
horizontal plane of a body with a cylindrical base, such as a
rocking stone, or a cradle.

Then the Principle of Energy, considering the line of contact
as the instantaneous axis of rotation, leads to the equation

3(c®—2¢h cos O+ 12+ k2)(dO/dt)? = gh(vers a — vers 0),
where 0 denotes the inclination to the vertical of the plane
through the axis and the centre of gravity at any time ¢, « the
extreme value of 6, ¢ the radius of the cylindrical surface, % the
distance of the C. G. from the axis of the cylinder, and k the
radius of gyration about the parallel axis through the C. G.

When ¢=0, this equation reduces to ordinary pendulum
oscillations, as in (8) § 3; but in the general case we have the
oscillations of what is sometimes called Euler's Pendulum.

Then d2_ {(c—h)2+Fk?}cos? 0+ {(c+h)2+?}sin?L6

) i/ 4gh(sin®,a —sin2L0)

_(e=R>2+ 2+ {(c+D)2 4 R2}tan?L0
" 4gh cos*a(tan?ia—tan®tl)
and now, if we put
tan{f =tan}a cos ¢,
dtt _c*—2chcos a+h24-k*— {(c+h)? 4+ k*}sin*}a sin’ep

E]g{) N gh(1 —sin*tasin?p)? ’
) dt (cz— 2¢ch cos a+h2+kz> A¢
o clqs \ ch 1—sin?la sin’g’
on putting n?=g/c, and »
(c+R)2+ k2 (c — B2 4k?
2 _ B _
‘ ZChCOSot—l-hZ-l—lzgln bai®= —2chcosa+h24+ k2 cos’}a.

To reduce this to Jacobi’s canonlcal fmm, put ¢ =am u,
and sin?}a=«"n’q ; then dn%g=cos’q,
;2 2ch cos a+ N2+ 2 2 4ch cos’}a

. .
and sn’a= CFhE+ I , en’a = —|—lL)2+702’

that dt _gha dna dn%u
SO thab m cng 1 —k?sn2q sn’u
snadna  2«%nacnadnaesn’y
% ena | 1—isnfasn®uw
and nt= 2§M¥l_@% —2TI(w, o)
en o

while tantf=tan}a cnu.
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In the ordinary pendulum, where ¢=0, this reduces, as
in § 8, to
tan{f=tanla en(K —nt),
equivalent to
sinlf=sinla snnt;

where n now denotes /{gh/(h*+%?)}.

As another application of the Third Elliptic Integral the
student may rectify the inverse (or pedal) of an ellipse or
hyperbola, with respect to any point; examining the parti-
cular case when the point is the centre; also the case of the
Lemniscate, the inverse or pedal of a rectangular hyperbola,
with respect to the centre (R. A. Roberts, Integral Caleulus,
p. 310).

ExXAMPLES.

1. Prove that, if k44 =1,

v im (kb cos?p+ K cos™r)depda)r
/ (T =Tesin?g) /(1 —K'sin®)

and deduce Legendre’s relation of §171.

9 1k Iy — w)dady
/ J(w.l—x.l—]cm)J( Yy l—y. 1—ky)

5 1/ y— dady K
f 1+;coc)(1—|—:y) o (=2 =) S (—1 1)
(S 66).
4 /’ / (y—x)dady
'P S a—e o—epu—e) (b y—e y—e,y—e))

5 / ot (y—z)dady
‘ /WA (a=2)(@=m) + 02} /A(Y-a)(y- m)2+n2}(§ 0
{

7 (B=a)ly = a)(3—a)(y —z)dady
// (x— a(y—a),\/( X7) =27 (§158).

DenotlngK E,K—FE, E—*K,E—@®K by J,J, G, &
respectlvely (Glaisher, Q. J. M., XX.), prove that

N S S
() ()

(§ 51)~




CHAPTER VIL

ELLIPTIC INTEGRALS IN GENERAL, AND THEIR
APPLICATIONS.

194. The general algebraical function, the integral of which
leads to elliptic integrals, is of the form

S+7X
U+VJy/X’
where S, T, U, V are rational integral algebraical functions of
x, and X is of the third or fourth degree in 2.
We first rationalize the denominator, so that

S+TJX S+TJX\(U-VJ/X) M N 1
TYvyx~  U-vx Dt gm
suppose ; and now the integration of the rational part M/D is
effected by elementary methods, when it is resolved into its

quotient and partial fractions.

In the irrational part N/D,/X, the rational fraction N/D
is also resolved, into a quotient, having a typical term a™,
and into partial fractions, having typical terms

1f(@~a) or 1/(e-a)"

By differentiation, we find that

%c(wm-ﬁ/X) = {(m —Dax™+ 4(m — £)ba™ -1+ 6(m — 2)cax™ -2
+4(m—3)dam=34(m— B)ex™ -4} /X ;
so that, integrating, and denoting ﬁmdm/ X DY U,
a8/ X = (1 — 1)ty + (1m0 — 3) by — 1+ 6(10 — 2)Chy o
+4(m —5) Aty - s+ (M — )€ty s,

a formula of reduction by means of which the integral ,, is

made to depend ultimately on the integrals w,, u,, and w
200
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Similarly, by differentiation and integration, denoting

Jdz)(@—a)"/X by vy,

we can determine another formula of reduction, of the form

“J—X_=A%+B%-1+Ovn_2+DUn-3+EUn—4,

(@=—a)y -t
by means of which the integral v, is made to depend ultimately
on the integrals v, v, v_,, and v_,; or rather, on vy, g, U, Uy;
since v, and u, are the same, and

Y_ =AUy —ally, Vg =Uy— 2a; + aily,
By the various substitutions of Chapter II., u, is reduced to

Legendre’s First Elliptic Integral, while at the same time the

integrals u,, u,, and v, are reduced to elliptic integrals of the
Second and Third Kind. '

When x—a is a factor of X, the substitution z—a=1/y
shows that v, becomes f ydy[// Y, where Y is a cubic function
of y, and v, now reduces to the Second Elliptic Integral.

But without carrying out this work in detail, now only of
antiquarian interest, we adopt instead the Weierstrassian
notation ; and by means of the substitutions of the previous
chapter we express @ and /X rationally in terms of pu and
@ ; so that the integration is reduced ultimately to that of

A+ Bg'u with respect to u, A and B being rational functions
of pu.

195. We must at this stage introduce the functions
fu and ou,

the functions employed by Weierstrass, in conjunction with
his funection pu.

The function {u, called the zeta function, is defined by
{u=—gpu,or fu= —fgouolu ;

while the function ou, called the sigma function, is defined by

o(l)lu log ou= ¢{u,

or log o= / {udu, cu=exp / Cudu ;

2
and thus d lccl)i fu = —pu.
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Taking the definition of s or pu in § 50,
U ——:/24583 —g,8—g,) " ds,

g,]u
expand in descending powers of s, and integrate ; then

@
3 o _ayv_ 1
w= 157K = fg=t— fgps) s

8

ﬁzs é_‘l' +1%08" by 16938_—S+ Jds
= shy -I—g2 8- 2+5() s~E4...,
the * marking the place of a missing term in the expansion.
Therefore, by Reversion of Series, since w? is a rational
function of s, we obtain in the neighbourhood of w=0,

2 4
s or 502/,——24— _l_qzu +g3u

To obtain further terms of the expansion, assume
gm:/zlﬁﬁ- % Fouieut4cub4 . eu 4.
and since  ¢%w = 4@ — g,PU— 75,
p'u=60"w—}g,,
©"u=12pup’u,
we can obtain from the last equation a recurring formula for
the determination of the coefficients ¢ ; and as far as u8,
-1 92’“ smo ggw® | 3g:95°
pu=at« oy Tos T gt st
The expanslon of the zeta function is now
_1 gu® _gsut  gyw 9o5%° :
w= b ~60 L0203 50T 23,5701
so that, defined more strictly,

§u=%+f<—i—2— gou)du
0

Similarly we shall find, for the sigma function,

go® gsu gs'uw’ _ Jogsu™
2¢.3.5 23.3.5.7 293%25.7 27.82.52.7.11 7
s0 that, strictly defined,

log cu=logu +f<§u — %)du, or gu= uexg/(fu - %)du
0 0

cU=w-+ 4 —
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0o
=
(WL}

Homogeneity.
196. From considerations of homogeneity it follows, that if
u is changed into w/m, and at the same time if g, and g, are

changed into m'g, and mfg,, then s or pu is changed into m?s
or MAPu ; SO that

P (U5 gy J3)= mz@( 5 migy, m 92) ;

’ (W
(%5 go 93)=W’ <% -_— m693> ;
and similarly

1 w
$(u s go 95) =;ﬁ§<— 5 Mg, ’m693>’

m

a(U; gy gs) =M 0o <:;bl ; Mgy, m6g3>.

At the same time the disecriminant A becomes changed to
m2A, but the absolute invariant J is left unchanged (§ 53) ;
we may in this manner alter the argument w proportionally ;
for instance by taking m = /(¢, — ¢;) we can make the argument
the same as in the corresponding elliptic functions (§ 51).

When m is chosen so that m'2A =1, or m = A-7>, the elliptic
integral is said to be normalised (Klein).

Suppose, for instance, that g,=0,
and m, m? are the imaginary cube roots of unity, — 4+ 3i./3;
then m3=1, and u/m=mu;
sothat  p(mPu; 0, g)=m?p(u; 0, g),

pmw; 0, gg)=m p(u; 0, g),
while ' =gp'mu= go’m%

. w
Again $(u; 0,99)= —% = = § e

= 2

a(w; 0, gy)=ma m—m m?
This is the simplest illustration of the theory of Complex
Multiplication of Elliptic Functions, of which we shall make

use hereafter ; the general theory is required in the integration
of the equation

Mdy _ dx
NP =00y —g5) N (42 —gyz—gy)
for particular numerical values of g, and g,, when 1/M is a
complex number of the form a+iby/n; in this instance g,=0,
and M is an imaginary cubie root of unity.
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197. With the aid of these three functions of Weierstrass,
ou, u, and ou, it is possible to express any elliptic integral,
and we can thus complete the problem left unfinished in § 194.

The function {u is analogous to Jacobi’s Zeta function ; and
with s=gu, it may be defined by the relation

Cu= sds fés —gy8—gs) s ds

=‘/(‘§S—§"“|' x F g agss ) ds
= S s s
Thus, for instance, from § 153, with appropriate limits,

_[i a—B.a=y.a=bfa—B z—y x—0E\ dx
§ut/;2a r—a <a—,8+a 'y+a—— >JX’

where 39;(
To obtain the Addition Equation of the zeta function
analogous to (2) and (3) of § 186, take the formula (F) of § 144,
_ (=Y
gm+sw+@(u+v)—4(w_m> ;
implying also the formula, obtained by changing the sign of v,
) 1 (PN
pu+gv+pw v)—%( W_gw> ;
so that, by subtraction,

plu—v)— go(u—l—v)— el ()
Integrating (a) with respect to v,

_ Pu

=)+ uro)+0=

where C, the arbitrary constant of integration, may be obtained
by putting v=0, when pv=00; so that 0= —2%u, and

- o= %
{u—v)+ {u+v)—2¢u U B
An interchange of v and v gives
—{v—v)+ {(u+v)—2fv= i@;*gj ;)w; .................. B)
so that, by addition,

Hutv)— fu — @4% Z;}’ ................... (v)
=/ {pu+pv+p(u+0)}

the Addition Equation, analogous to (2%) § 186.
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‘With wt+v4+w=0,
this may be written, analogous to § 176,

fut v+ fw= — /(pu+pv+pw).

198. We can now take the function 4 + B pw of § 194, and
suppose that 4 and B are resolved into their quotient and
partial fractions.

Writing p, p’, p”, ... for pu and its successive derivatives,
then the relations

PP= AP —gip—3s
P’ = 6p* =iy,
P =12pp’, ete,,
enable us to express the quotient or integral part of 4+ B p'uw
in the form ’
C=cy+cputcopu+cp"u+....
Considering next a partial fraction of 4+ B g of the form
P4+Qeu
pu—a ’
we replace a by gv, and write the partial fraction in the form
Hga’u,— v n Kga’u-{- v
PU— P U — v
2T {{u-+0)— G Eo} + 2 (=) = Gut-Co}
All such partial fractions can thus be expressed by a series
of terms,
L=1,{(uw—v)+L{(w—v) +:{(w—vy)+ ...,
where the sum of the coefficients [ is zero for each partial
fraction, and therefore for the whole series; so that
L+l+l+...=0.
Again, by repeated differentiation of equations (8) and (8"
(§ 197), with respect to u or v, we obtain equations, such as
@%@@f))z =p(u+v)—p(w+0),

/2,

@Q/E?‘_%W =p(u+v)+p(v—v)+2pv— @a@_v@’
by means of which partial fractions of the form
P+{gu P+{pn
(pu—gv)” (pu—poy”
can. be expressed by terms of the form p(u+2), p(vw—wv), and
by their derivatives; as well as by terms of the form L and C.

or generally
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Thus, finally, 4 + B @', or any rational function of puw and
9w, can always be expressed as the sum L + P of two series of
terms, L=1,{0w—v)+1,{(w— )+ L,{(w—v5)+ ...,
where L4l+L+...=0,
and P=c4Zmpt(u—nv);
and now the integral can immediately be written down, in-
volving, in general, the sigma, zeta, and ¢ function, as well as
its derivatives.

‘When the sigma and zeta functions are absent, the integral
is a function of pw and p'w, and is not properly elliptic, but
only algebraical.

This method of integration is taken from Halphen's Fonc-
tions Elliptiques, L., chap. vii.

Halphen points out that to obtain the coefficients in the
series of terms

Lé(u—v)+mp(w —v) + M9 (U — V) + mep" (w —v)+ ...,
corresponding to the same o, it is only necessary to take the
coefficients of (w—v)7%, (w—v)~% (w—wv)~3, ... in the expansion
of A+Bgp'w in ascending powers of w—wv; the coefficient 1
being Cauchy’s residue.

199. Integrating (B8) with respect to v, then
pudy g, o(ut)
gm—gov_lo (=) — 208U, ueeniiinn (B
which may be considered a canonical form of the Third Elliptic
Integral, in Weierstrass’s notation.
Thus, for instance, in § 113,

p'vdu
= PU— PV
— 1100 T(2+?)
—2z 1Og O'(U/—’U) u’&)a
or 6i¢':6 u{v\/o'(u—l_v)
o(w—v)

By integration of (y), with respect to w and v,

1pu—pv, a(u-H) o-(u—l—v) —ufo
/9 ou— gm)d =log oUo o oV sely)

Lgu—pvg, _ §W+Q_ —log Tt ik,
5 8Ou_gwdv—log g véu =log Ry seee(7v2)

—ufv=Ilog ———
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either of which may be taken as a canonical form of the Third
Elliptic Integral; and also as illustrating the interchange of
amplitude w and parameter v, as in the Jacobian Elliptic
Integral of the Third Kind, II(w, v), in § 188.
Or otherwise, mterchangmo wand v in (,81) orintegrating ("),
@'vdw loo (-

g)u—@’u= O o’( >+2LL§U, ............... (62)
so that, by addition of (3,) and (83,),
pudvtpvduy _, o
Teu—gy = 2ulv— 208U, oo )

a form of the theorem of the interchange of amplitude and
parameter, analogous to (8), § 188,

200. Integrating (83) with respect to u,
log O-(v u)

+log O_(U-HI) —2log ou=log(pu — pv),

or o—(U + u)a(v u)

G = PU— QU
v 20 PUw— P,
o(u+v)o(w—1) U — o
2% O_2u =§ Pu,

2
=%{/§10g o-u—-gplog av...(K);
the fundamental formula is the use of Weierstrass’s elliptie
function, analogous to equation (6) of § 188. ,
As an applieation consider the herpolhode of 113 then
p= mJ (pv—pu)= %h\/ M————(y(ut%z(%b =%,
while ¢ = \/ -———:_((Z__l__zge -ufo
so that, in the curve described by H,
. ; ,_nh o—(u+v) e
m+@y=pe¢’— M oUGY f
while in the herpolhode described by P we must multiply this
function by ¢* or cos ut+1 sin ut.
Putting w=v in (K), we obtain
o2u EU— PV
o o(u—w)
This may be obtained by integration of the formula of § 149,

2

u—pu—t L log pu
@ u-—g)u—zgdw2 og Pu.

= —pu.
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- If u, v, w, @ denote any four arguments,
a(uw—v )o(u+v)o(w—a)o(w+x)
+o(v—w)e(v+wo(u—x)e(u-+x)
+ow—w)e(w+w)o(v—a)o(v+x)=0,......c... (L}
since it is of the form
U-"(W=-X)+(V-WYUT-X)+(W=U)V- X)
where U~V = —cusc?(pu—pv), ete.

201. We notice that the Third Elliptic Integral can be
expressed very simply as the logarithm of a function, so that
we may write (y,) in the form

1 pu— go v

2 gu= du log ¢(u, v),

where o(u, v)= Ma‘ ufv

U gV ’
and ¢(u, v) is called by Hermite a doubly periodic function of
the second kimd.

Changing the sign of u, or v,
P, —v)=p(—u, v)= — (=) s,

ol oV ’
so that P(w, v)p(w, —v)=pu— pv.
202. Suppose pv=e,, €, or e,; then, according to § 54, we
can take v=w;, w; +w; Or v, to correspond ; and now

pv=0, and log ¢(u, v) =4 log (pu—gpv) ;
d(, )= p(u, — o) =/ (pu —e,), ete. ;

and ¢(u, v) is an elliptic function for these values of .
‘We may thus put

o'('U/-‘- wl) wf’wl G'l’Lb
N/(gO’LL ¢ ) oW ow, or ou’

so that

+w
where o, v denotes a(uto) o~ iw,
ow,

,J(gou—-@-—— N/(f(‘m"es)'-gj

Similarly,

whore  oqu="0T OO ey g o0, g,

(0, +0;) ocws
Also pu=-2./(pw— €. pu— €y pU —€5) =~ 20U oy o3u [0,
and (§ 200) 2% =20 oW TU oy U
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Denoting by a, 3, v the three numbers 1, 2, 3, taken in any
order, then the relation
o= U/ (PU— €a)
gives, by a combination of the expansions of cu and pu in §195,
o =1—%e,u?— (66’ — g yut—
s0 that o1 is an even function of w, and unaﬁ'ected by Homo-
geneity (§ 196).
Thus, for instance, from ex. 9, p. 174,
oco2u+op2u={/(p2u —ea)+ N/ (P2u—ep)}o2u
_ sl ca)pu——ts)
Pw
The symbol 54 is employed to denote {wa, so that » is
the analogue of Legendre’s £ of §77.
With positive diseriminant A (§ 53), we find (exs. 4, 5, p. 199),
Mg — Nawy = ¥i7;
and with negative A (§ 62),
7]2(.02/—'772/0)2= ?:71' 5
formulas analogous to Legendre’s relation of § 171.

2u =g U o

203. Denoting pu, pv, pw by @, 9, 2, then (§ 165) if
u+v+w=0,
(+y+2)dayz—gy) = (yz+ o+ ay +105)% o viirenenns @)
Denoting also (z—ea)(y —ea)(2— €a) by sd?, then since
ea® = 1{(aa+ 175
s =wyz—1gs—(yz+2u+ay + 1J2)6a+(00+y+2)6a
_yztextay—2x+y+2)ea
B 2,/ (c+y+2) ’
by means of (I); and this is of the form 4+ Beg, so that
(ea—e)s; (63— €1)3,+ (6, — €5)8,=0
or (6= €5)o W Vo W+ (65— €)ooV oW+ (€~ €)ooV aw =10,

a

since gq= T T TdD
U ol ow
(W. Burnside, Messenger of Mathematics, Oct. 1891.)
As an exercise the student may prove that, with
utv+wt+ax=0,
(ey—3)a1U o,V W 04 + (85— 1)yt T,V oW 0o
+ (&, — e)ogUovogWaogt+ (6 — e5) (65— ¢)(¢) — €)% oV ow o =0,
the analogue, in Weierstrass’s notation, to Cayley's theorem,
given in ex. 1, ii., p. 140.

G.E.F. 0
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204. The solution of Lamé’s differential equation, which may
be written in Weierstrass’s notation
1 d¥y
J Eﬁﬁ—n(n+1)g@u+h, ................................. 1)
is given, when n=1, by the function ¢(u, v) of § 201.
For, differentiating ¢ logarithmically with respect to u,
1dg_1 gu—gv_ —
b du" 2 W_@v—f(%“‘”) fu—{o,
and differentiating again,

1 d¥¢ 1 d¢?

¢ dw— g dwr= TP oY
so that ’
1 d2 1 /p'u—pv\2
P oy (?Ri%> —p(utv)+pu

=2pu+pv,
Lamé’s differential equation, with n=1, and h=gpv.
The general solution of

is therefore

y = COp(u, v)+C'¢p(u, —v), or Op(u, v)+C'¢(—w, v).

When & or gv=e,, ¢, or e, the solution is one of Lamé’s
funetions, as in § 202,

One solution is now ,/(pu—eq), where a=1, 2, or 3;
the other being ;

{utwo) — caw) o (g1 — €0),

as may be verified by differentiation, or determined indepen-
dently from a knowledge of the particular solution ,/(puw—eaq).

205. The revolving chain, resumed.

We are now able to complete the solution (§ 80) of the
tortuous revolving chain, by obtaining an analytical expression
for its projection on a plane perpendicular to the axis of
revolution.

Putting Yy=rcosy, z=rsin,
then we have found in § 80, p. 70, that, when the notation of
Legendre and Jacobi is employed,

dy H H|T
de ~ Tr2~ b%sn¥Kwja)+cen(Kxfa)
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which, on putting v = Kx/a, and

k¥sn?o= — (b2—c?)/c?, dn?v="5b%/c%,
so that, with  «?=(b*—c?)/(d?—¢?),
sn2y= — (d?—c?)/c?, en?v=d?/c?,
becomes d@g& _ _cnvdnofsnwv
1—«%sn?usnv’
. cnvdn v
so that = —u T T2, ). v, 1)

Since sn?v is negative, we may, by (67)§ 73, put v=tiK’,
where ¢’ is a real proper fraction.

Now r=cy/(1—r%*n’wsn?)
_ O(u+)O(u—wv) .
=¢60 ——————————9% By e (2)
while eV = \/ O+ Q}) _onvdny_ Z >
O(u— o)) sn v
. . anOutr en v dn v ) .
so that A +iz=cO0 O 60 exp(————s—n—v———Zv>u,....(3)

which, when resolved into its real and imaginary part, will

give y and z as functions of u or Kz/a,and thus represent the
equation of the chain.

206. The procedure is more rapid with Weierstrass’s notation.
Writing y%422=7? we have found that (§ 80)

A2\ 2 A
()" -
so that we may put

=T2PU— QU)o @)
rl w_yntwh
provided that - do= T

and g¢,, g, are suitably chosen.

Since v is the value of w which makes % vanish, therefore
T du? 4012

Y dT T T
the value of (dr?/dx)?* when =0 (§ 80) ; so that
@P=—16H?/n*wskS, ........oocoii (2)

and pv is therefore a pure imaginary, which we take to be
negative imaginary, so that v="='w, (§ 54).

P i’
Now dyy H dx_ 2H 1 gl

du” T du™ 22wl pu—pv pu—pv’
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d 5 B
or (;:f ou _gﬂgv v+uw)+Liv—u)—Cv........ (3)

from (B (§ 197); so that
r=1log TOFY e

c(v—u)

iV _ o'('v + ’bb) -ufw '
Y = \/ O u) e 4)
while = ic\/“"(”j’;)‘; (Z L) e (5)

. o) e

and Y41z = k . e
= ke(u,v),

Y—iz= kp(U,—0),ceiiiiiiiiiiii (6)

giving the form of the chain.

For a revolving chain fixed at two points, we must have r?
* restricted to lie between positive values, b2and ¢ and therefore
o1 must be restricted to lie between ¢, and e, ; so that with
du/dx constant, we must put uw=ww,/¢+ v,

For a chain attracted to the axis with intensity proportional
to the distance, and thus taking up a form of minimum
moment of inertia, we have w=xw,/a; and now pw can become
infinite, and the chain reach to infinite distance.

In this and other mechanical problems, the parameter of the
elliptic integral of the third kind is almost always imaginary ;
the apparent awkwardness of this imaginary parameter is
removed when we proceed to express the vector y+4iz by a
doubly periodic function of the second kind ¢(w, v), whose
logarithm is the elliptic integral of the third kind ; and thence
determine y and z theoretmally by resolving ¢(u v) into its
real and imaginary part.

Familiar instances of the same procedure are met with in
Elementary Mathematics ; thus
x+1iy =c cos(nt+ia), or ¢ cosh(nt+13),
will represent elliptic or hyperbolic motion about the centre.
Generally, with +iy=2, X +iY=Z=Fz; then

. ’ -l- :
5=F'z 13?=Fz+h,t _/;/(ZF%J;-Zh)

will give the motion of a particle of unit mass under component
forees (X, 1. (Lecornu, Comptes Rendus, t. 101, p. 1244.)
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207. The Tortuows Elastica.

A procedure, similar to that just employed for the revolving
chain, will show that the equation of the curve assumed by
a round wire of uniform flexibility in all directions can be
expressed by the equation

y+iz=ke(u, v)
and z=kiu+yu,
where W= 8w, ¢+ wg,
8 denoting the length of an arc of the wire, and 2¢ the length
of a complete wave.
(Proc. London Math. Society, XVIIL, p. 277.)

The elastic wire differs thus from the revolving chain in
having %= sw,/c+w;, instead of w=ww,/a¢+w; (§ 97).

To establish these equations, take the axis Oz as the axis of
the applied wrench, consisting of a force X along Ox and
a couple L in a plane perpendicular to Oz ; denote the tor-
sional couple about the tangent at any point by &, and the
flexural rigidity of the wire by B.

Then the component couples of resilience about the axes
Oz, Oy, Oz are taken to be

B(y/z// — yl/zl)’ B(Z/x” — Z//ﬂ;/), B(w/y//— x//y/)
the accents denoting differentiation with respect to the arc s;
the equations of equilibrium are therefore

Bly? —y'2) =G+ L.....cc............... 1)
B(#a"—2'a") =Gy + Xz (2)
By —a"y)=G2 —Xy..oooocoiiii L 3)

(Binet and Wantzel, Comptes Rendus, 1844).

Differentiating each equation with respect to s, multiplying
respectively by @/, ¥/, 2/, and adding, gives
@ =0; so that G is constant.
Multiply equations (1), (2), (8) by «, ¥/, #/, and add ; then
G—X(yz'—y'2)=0,
g0 that yd' —y'z=r¥yr/ds=G/X, a constant ;
and yz" —y'z=0.
Again, multiplying (2) by y, (3) by z, and adding, gives
Ba'(y' —y'z)— B (yz' — y'2) = G(yy +22),
or Ba' = X(yy' +2z2'),
s0 that, integrating, B =3 X (32 +2%) + H.
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Then B2 = X*(yy +27')?
=Xy +2)(y " +27) = (y' =2}
=32X(Bx'— H)(1—a?)— G2,
a cubic function of 2’; so that, by inversion of the elliptic:

integral, &’ or 3%+ 2% is an elliptic function of the are s, which
may be written

PAZ2=EHPo — PU)ye e (4)
or Byl =1 Xl (pw—pu)+ H,
provided = %—B‘ ;
da 2H
and now T k(pw—pu)+ XN
w 2H =
= §LL+ <KJQ) + )(—ké)bb, .................. (D)
also CZ?/\// oG ds  29BG 1 ) (6)

du T X du XU po—pu po—pu
By Kirchhofl’s Kinetic Analogue,it follows that the axis of
a Spherical Pendulum, Gyrostat, or Top can be made to follow
in direction the tangent of a certain Tortuous Elastica, when
the point of contact of the tangent on the elastica moves with
constant velocity} so that, it @, y, z are the coordinates of a
point fixed in the axis of the Gyrostat, and Ow is vertical,

y+iz=k lc,lw a-(:i_'—;o) xp(\ = {w)u,
z=lk(pv —pu),
where now =nl+w,,

and 2w,/n is the perlod of the oscillations of the Top, or Spheri--
cal Pendulum.

The Spherical Pendulum and the Top.

208. To prove these formulas independently for the spheri--
cal pendulum, let the weight of the bob be W 1b., and let the
tension of the thread be a force of NIW poundals; then the-
equations of motion are, with the axis of = drawn vertically
downwards, ‘

)
f]g—i—Nw =y, dltz + Ny =0, ‘Etf-sz 05 ereernn(1),
subject to the condition,  denoting the length of the thread,
PP tR=12
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The equation of energy is

L@+ 92+ )=g(@+c);ervininiiinn (2)
while yz—1yz=h, a constant. ............... (3)
Now, xi+yyj+22+ NP =g,

so that NP=gu+4 a2+ 52+ 2= g(3x+2¢);
thus giving the tension of the thread.
Hermite writes (Sur quelques applications des fonctions
elliptiques, 1885)
(y+1i2)(y—iz) =y +22—i(y2—72)
= —ax—1h,
so that the norm of each side is
(g2 +22) ()2 4 %) = a2 4 B2
Then
(2 —a?){2g(x+c) — &%} =ai?+ k2,
or 123 = 2g(x+ c)({2 —a?) — h?
= — Zga®— 2gca® 4 290%x + 2gcl? — L%
so that @ is a simple elliptic function of ¢, which we may write

=PV —PU), eeriiiiiien, (4)
where % =mnt+ w,, for pu to lie between ¢, and e,.
Then P20 u = 29k%(pu — pv)? — 2g9ckH(pu — pv)?

— 29k (pu — pv) + 2gcl? — h?
=gk (4p°u — g1 —g5),
provided n2=1gk/l? and pv= —Lcfk;
while g, and g, are suitably chosen.
The value of ¢'v is found by noticing that =0 when u=wv;
and thus PlPn2p" %0 = 290l — h2,
Now Hermite writes

2
&y +ie)+ Ny-+i2)=0,

2 2 I N2 3
37‘_-'_1“,; %@(yﬂz): —-N%2= —%: —23———90-;;20=6‘gou+ 6gv,
Lamé’s differential equation for n=2, with h=6pv.

The formal solution of this equation is reserved for the
present; but it can be inferred for this case by taking the
equation (3) and writing it

dy_ h
du” w(yF+2%)
divy _ ihjn _ %@'h/nl_'l_ Lihfnl

or ek o A (3)
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We now put
l—x=kpu—pae), t+a=kipb—pu);......... (6)
and since %2 = —h?, when = +{, or when w=a, or b, therefore
, , h?
0= = — T

With % positive, and pb>pu>gpa, we take p'a negative
imaginary, and ¢'b= —¢’a positive imaginary, so that (§ 54),
@ =Pwg, b=w,+ o, where p and ¢ are real proper fractions.

Then ~ W _ —ipe deb L (1)

du pu—pa  Eb—pu
and integrating, by equation (8), § 199,

i\[x:%loga((z+a)—u§a+ 110g%”ﬂ— ulh.(3)

while
(y+i2)y —iz) =y’ +2* =1 —a’ = (pu— pa)(pb — pu)
—k o(wta)r(u—a) o(b+ u)o-(b w)

U a*b o?u
so that y+iz= lco%c%%—ﬂexp( — fa— {b)u,

ig= ]ccr(u —a)o(b—w)
7 saobdu

Y — exp(+fa+Ebyu; ........ )

thus giving the solution of Lamé’s differential equation for n =2.

209. It is interesting to verify that these values of y-+iz
and y —iz are solutions of Lamé’s equation for n=2.
Denoting y+1iz by ¢, and differentiating logarithmically,
1d
3 dy= et a) = fu—gat Qo) —fu—0b
1 gou p'a 1 p'b— gou
2 pu—pa 2 pb—pu
and differentiating again,
1 d? 1 d¢\?
' ¢—<;p g%) —p(uta)+pu—p(b+u)+pu
_1(@’%—@/CL>2+]: g(o'u—go'a plb—gﬂlu+1<@/b“@,u>2
T4\pu—pa/) 2 pu—pa pb—pu ' 4\pb—pu
+2pu—puta)—pb+u)
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1pu—papb— gau,
=dputpated+y pu—pa pb—gpu
But with p'a= —¢’b,

Lpu—p'apb—puw_1 o2 — "%

w -+ pa -+ eb
2 pu—pa pb—pu 2 (pu—pa)(pb—pu) 2lputpateb)
so that <li> le ¢; 6pu +3pa -+ 3pb,

Lam¢’s differential equation for m=2, with h=3pa+3pb, in
place of the previous value of /= Gpv.
From Kirchhof’s Kinetic Analogue in § 207 we may put

S £.A G 0L Che oL JOOR O A

ot ab a*u

=} ({Z{——MG;ZL:?); z) exp(—{a—¢ b)u}

=k% (p(u, a+b)e v},

where A=&a+D)—fa— .
With @ a—b)y=pa=—¢b,
therefore {a—b)=_Ca—Cb;
and, changing the sign of @,
%%@ exp(a— {b)w 253%95(%’ —a+Db).
(Halphen, F. £, L, p. 230.)

210. In the slightly more general case of the motion of the
Top, we shall find it convenient to draw the axis Ox vertically
wpwards, and to call 6 the angle which the axis OC of the
top makes with the vertical Oz.

Then, from the principles of the Conservation of Energy and
Momentum, we obtain the equations (Routh, Rigid Dynamics)

1A(dO)dt+ LA sin?0(dir/dt) = Wg(c—h cos D), ...... (1)

A sin?0(dyr/dt)+Creos =G, .ovvneinviininin. (2)

where = denotes the constant angular velocity of the top about

its axis of figure OC, di/dt the angular velocity of the verti-

cal plane through Oz and OC, k the distance of the centre of

gravity G from O, W lb. the weight of the top, and C, 4

its moments of inertia about the axis of figure OC, and about
any axis through O at right angles to OC.
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Putting 4/Wh=I[=0P, as in the simple pendulum, then
P is the centre of oscillation for plane vibrations.
The elimination of dir/dt between equations (1) and (2) gives
il s1n26<d6> J(h oS 9)(1 —cos?0) — ll<G - C’z C(ng
=g(cos O — cos a)(cos O —cos B)(cos 6 —d),.....(3)
suppose ; the inclination of the axis of the top to the vertical
being supposed to oscillate between « and 3,
a>6>p, or cosa<cosf<cosB<d.
Guided by equation (17), p. 37, we put
cos §=cos a cos’¢p +cos B sin?¢p,
cos 6 —cos a=(cos 8 —cos a)sin’ep,
cosB—cos O=(cos B—co8 a)cos?p ; c.uerririnninnn (4)
and therefore

(@) =3 fa-eso)

=3 fz{d—cos a—(cos B—cos a)sin’p}

=11 —«%in’p),
cos B—cosa ,_ d—cosf3
d—cosda * “d—cosd’
and In?=1g(d—cos a).
Now we may put ¢ =am nt, and
cos B=cos a en’*nt+cos B sn?nt, . ...ooeinennn. (5)
so that the projection on the vertical Ox of the motion of a
point on OC resembles ordinary plane pendulum motion.
When d=1 and cos a= —1, then
n?=g/l, ¥¥=cos?}B=sin*}(r—p);
G and Cr vanish, and the oscillations are in a vertical plane.
But, in the general state of motion,
Agl_\p_ G—Creos
dt sin%)
_1 G+Cr 1 G-=0Cr
21+cosf 21—cosB
_1 G+Cr 1 G—Cr
" 21+4cosa+(cos B—cosa)snnt ' 2 L-cosa—(cos B-cosa)snnt’
so that  is expressed by two Third Elliptic Integrals.

where 2=
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Putting cos = +1 in equation (3), show that

(S 9Y = 2901 +-cos a1 +cos B+ 1)
<§,_A_07>2 = 2%(1 —cos a)(1—cos B)(d—1),

while, in accordance with Jacobi’s notation, we put
cos 3—cos a cos 3—cos a .
o l—l?—COSa K K2sn2v2="7’1”§66§&m? ’
so that, finally, with w=mnt, we find
diny _envydn v, /snv, | en v,dn vy/sn v, (6)
du  1—rsn?vsn?u  1—rsnivsn’y * 77T
and, as in the spherical pendulum (§ 208), we take
v =1pK’, vy=K+iqK’,
where p and g are real proper fractions.
In the Weierstrassian notation, we put, as in (6), § 208,
14cos O="Fk(pw—pa), 1—cos O="Fk(pb—pu);
and thence (§ 224) ¢ — /1 cos 6 =hk{p(a+b)—pu}.
We thus obtain  ©¥ = —3¢@ ¢ . )
duw ~— pu—pa  pb—pu
but now the relation p’a= —¢'b holds only when Cr=0, or
when the motion of the top is comparable with that of the
spherical pendulum ; on the other hand, the relation p’a=¢’b
implies that G=0.
The Kinetic Analogue of the Top with the Tortuous Elastica
(§ 207) is obtained by putting
a+b=0, and A\={a+b)— fu—{D.
In the Steady Motion of the Top, a=0, k=0, K={=;
and the elliptic functions degenerate into circular functions.
We thus obtain the condition for the steady motion, and the
periodof the small oscillations,given in Routh’s Rigid Dynamics.
211. A similar procedure will solve the general equations
of motion of a solid figure of revolution, moving under no
forces through an infinitely extended incompressible friction-
less liquid; the work will be found in Appendix IIL of
Basset’s Hydrodynamics, vol. T; also in Halphen’s Fonctions
elliptiques, IL, chap. IV. The problem is of practical interest
from its bearing upon the determination of the amount of spin
requisite to secure the stability of an elongated projectile.
(Proceedings, Royal Artillery Institution, 1879.)

K%sn, =
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212. We again resume the consideration of the motion of a
body under no forces, first mentioned in § 82, as affording a
good practical illustration of the necessity for the introduction
of various analytical theorems of Elliptic Functions.

Geometrical Representation of the Motion of o Body under
No Forces, according to MacCullagh, Siacci, and Gebbia.

Quadrics concyclic with the momental ellipsoid, that is,
having the same circular sections, are given by (Smith, Solid
Geometry, §170)

(A—H)w?+(B—H)y?+(C— H)z?=DI?;
and now, if we produce the instantancous axis of rotation OP
to meet the concyclic quadric in /P, and denote OP by R/,
(A—H)p*+(B— H)g*+(0— H)r*=Dh?«?|R?,
while Ap2+ Bqg*+ Cr?= Dh*w*| R?,
so that, by subtraction, .

Along the polhode, R=Fhsec 6, where 6 denotes the angle
between the instantaneous axis OP and the fixed axis of
resultant angular momentum OC'; and then

2
}}%;2 = cos20 — 'g, ............................ 1)
the polar equation of a quadric surface of revolution.

Since R? is less than h%sec?0 for all points adjacent to P on
the momental ellipsoid, therefore in the concyclic quadrice
cos’  H
R T DR
except at the point P’, and therefore the coneyclic quadric
touches this quadric surface of revolution at P’ and rolls
upon it during the motion.

We may also take concyclic quadrics, given by
(H—A)x?+(H—B)y*+(H— C)zt=Dh?,

2 2
%@=%—%=%—0052& ..................... (2)
the polar equation of a quadric of revolution.

In particular, if H=D, then R'sin 6=h, the polar equation
of a cylinder of revolution, outside which this coneyelic hyper-
boloid rolls during the motion (Siacei, In memoriam D.
Chelini, Collectanea mathematica, 1881.)

Ri’z is greater than

and now
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213. By reciprocation of these theorems, we prove Mac-
Cullagh’s theorem, “ that the ellipsoid of gyration,
@ oy 21
AtpteTw
always moves in contact with two fixed points on the axis of
resultant angular momentum, equidistant from the centre”;
and we also deduce Gebbia’s extension of MacCullagh’s theorem,
that “confocals of the ellipsoid of gyration, the polar recipro-
cals of the concyclic ellipsoids of the momental ellipsoid, slide
without rolling on fixed quadric surfaces of revolution.”
In particular, the polar reciprocal of Siacci’s cylinder of
revolution is a circle, upon which a certain confocal to the
ellipsoid of gyration slides without rolling.

Geometrical Representation of the Motion, according to
Sylvester, Darboux, omd Mannheim.

214. In Sylvester’s splendid generalization of Poinsot’s re-
presentation of the motion of the body, it is proved that a
confocal to the momental ellipsoid rolls upon a plane per-
pendicular to the axis of resultant angular momentum OC at
a constant distance from O, which plane rotates about OC with
constant angular velocity, and therefore gives a geometrical
representation of the time. (Phil. Trans., 1866.)

The proof of this theorem depends upon two geometrical
propositions, in connexion with confocal quadric surfaces—

(i.) “The locus of the pole of a fixed tangent plane to a
quadric surface, with respect to any confocal, is the normal to
the first surface;”

(ii.) “the difference of the squares of the perpendiculars from
the centre on two parallel tangent planes of two confocals is
constant and equal to the difference of the squares of the
corresponding semi-axes.”

Thus, in fig. 25, if OP’ is a surface confocal with the
momental ellipsoid OP, then @), the pole of the invariable
plane CP with respect to the surface OF’, will lie in the
normal P(Q) to the momental ellipsoid at P ; while the surface
OF will touch a plane C'P’, parallel to the invariable plane
CP, and such that 0C?2=002—\2% A? denoting the difference
of the squares of corresponding semi-axes of the confocals.
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Sinee O is a fixed point during the motion of the body,
therefore C’ is also fixed.

Drawing the plane QL through @), parallel to the invariable
plane, and denoting OC by &, as before; then since @ is the
pole of CP,

0Q.0V=0P? or OL.0C=00%=h—\?
so that OL=h—\2/h, LC=N\%h.

L C' C

Fig. 25.

Again, denoting as before (§104) by u the constant com-
ponent of the angular velocity of the body about OC, so
that the resultant angular velocity of the body about OP is
wcosec OPC, then the velocity of the point P’ in the body is

wmeosec OPC . OF . sin POP' =y, . PV,
where V' is the point in which the line OP cuts the plane C"P".

Therefore the angular velocity of P’ about the invariable
line OC is rv_py_re_ x
me o ep T Moo T e
a constant ; so that if the surface OP” rolls without slipping
on the plane C'F’, this plane must revolve about OC with
constant angular velocity u)?/R2.

The point P’ lies in the plane OQPC'; and since

opr _CP 00 00

P T LQ 0L T 00"
therefore 0c’.C’P'=0C.CP,
and P’ lies on the rectangular hyperbola PP’; this is the
geometrical property principally employed by Prof. Sylvester.

(Solid, Geometry, Salmon, §§167, 180 ; Smith, §§ 163, 167.)
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The angular velocity of the vector O’ with respect to the
revolving plane P’ being Ccll(f ,u,;:—;, it follows that, if p’, ¢’

denote the polar coordinates of a point /” on the herpolhode
described by P’ on the revolving plane C'P’, then

p2_002_ I

7O "=
e A—D.B=D.C~D uh*
and pZdt_“<1 h2> B V.10, 2N

equations similar to those required for the herpolhode of P.

In particular, if we take A2=Ah2% then 0C’'=0, and the con-
focal OP’ is a cone; and the plane through O rotates with
constant angular velocity u, while the cone, called by Poinsot
the rolling and slipping cone, rolls on this revolving plane,
the angular velocity about the line of contact O.H being ».

If we consider the curve described on this revolving plane
by the point I, the foot of the perpendicular from P on the
plane, then p, ¢’ being the polar coordinates of H (§ 113),

d¢’ d¢p ~ A—=D.B-D.C—-DR
At Tdt M ABC o2
o that the point H describes on the revolving plane an orbit
as if attracted to O; and, as in § 89, we shall find that the
requisite central force is of the form Ap+ Bp®.
(Pinczon, Comptes Rendus, April, 1887.)

This is otherwise evident, by noticing that the vector z+1iy

of this curve satisfies Lamé’s equation (§ 204)

w(% +iy) = 2pu+pv)(z+iy),
where p2=k¥pv—pu),

2 2 2

so that Z g (‘Sgw > dl t‘; <3gov ]2>

A value of A\ may be found which makes the herpolhode of
P’ a closed curve; and this closed polhode is an algebraical
curve, when v is an aliquot part of a period, the correspond-
ing elliptic integrals of the third kind becoming pseudo-elliptic.

Abel has devoted great attention to the subject of pseudo-
elliptic integrals (Huwvres, X1), and the algebraical herpolhode
affords an interesting application of his theorems (§ 218).
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The Addition Theorem for the Third Elliptic Integral.
215. Theorems (9) and (10) of § 189 show that, employing
the function ¢(w, v) of § 201,

log ¢(uy, ) +10g ¢(u,y, v)=log ¢(u,+1u,, v)+log Q,

Py, V) (g, )

or P\, V) P\ V)

Pty + 2y, V) Q’

A sV ca Cla A e Y B (1)
STty u)ev ot e

where, expressed by elliptic functions of u,, u,, and v,

Q=g'7%<u1"'u2)_ﬁ"7(v+%: Uyt U) | ©' 51y + 1)

95Uy ) — U+ F Uy Fug)  PE(8y +ug) — 95( — u2>(2)
Also, as in equation (8), § 188,
log ¢p(v, w) =log ¢(u, v)+ulv—oviu;
so that
log (v, w;)+log (v, w,)
=log ¢(v, wy+uy) — { {uoy + {ry— {wy +uy) bo+10g Q,...(3)
the Addition Theorem for the parameters w,, w,.

These theorems have been generalized by Abel for the addi-
tion of any number of amplitudes or parameters in the
Third Elliptic Integral, and the proof is a simple extension of
his method, employed in § 162 (Fuwvres, XXL.).

Denoting by « any arbitrary quantity, equation (7) of § 162
may be written

1 de, 0,
a—au, X, (a—a 0z,
Now, since Oa is of lower degree in @ than \a, and
Vo= CTI(e—uw,),
it follows that, when resolved into partial fractions,
Ba s Oz, .
va (a—a ) a
and therefore, writing fz and ¢ for P and () respectively, and
A for the value of X when z=aq,
1 dw, _ 8o _ padfa—fadpe
a—w, f X, Pa (fa) —(pa)d
1 Sfa—8¢pa . /A 1 Sfatd¢pa. /A
T VA fa—ga. JA T Na fatga. JA4

WA dr o fa—gan/A (P
or TNy =dlogg BN = 26 tanh (»EJA>...(4)
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Integrating, with the notation (§§ 197, 199),

1 ’
fpvdu N o(v—u) 2t
[ or—py—? log(pu — pv)—log ¢(u, v)=14%log (0t u) e
where x=pu, JX=—pu, a=pv, JA=—¢v;

¢(u¢, v) fo+¢a. /A f'a—¢p'a. /A4 (ou, —pv .
Z]0g¢( V) logfce—q{)aw/zl tf'a+¢pa. /A Hgm’,-—gw’ ®)
so that ‘

¢(u7’ Q)) O'(v'{'u?{)
Mot o) " ot ur)
is expressible by elliptic functions, p and ¢’, of v; provided that,
as in (11), §162,

?ﬁzm’,./ JX =0, 0r D=5ty e, (6)

the coeflicients in fo and ¢a being determined as functions of
pu, and p'u, by the plexus of equations (4) in § 162; f'¢ and
¢'a being the same functions of u',.

Thus the function

a(v+u,)

o,y s ()
is an elliptic function of v provided that the sum of the values
—u, of v which make the function vanish is equal to the sum
of the values —4, which make the function infinite ; in other
words, briefly expressed, provided the sum of the zeroes u is
equal to the sum of the infinities w'.

In particular, with the ’’s all zero, Zu, =0 ; and in equation
(6), § 162, we can put

Va= (P —(gapd =Ti(pv—pu,) ;
so that X log ¢p(u,, v)=log(fa+ ¢a . /A)+ constant.

oo(v4
Thus TI¢(u,, v), or o(v+u,)o(v _(I_O_Q:SI)L ol u“), ....... (8)
when Wyt UgF Uyt FUp=0,0cii ©)

is a rational integral function of pv and ¢’v, which may be
written, as in § 198,

C=cy+epv+epvt...+eup® Do L. (10)
P

G.E.F
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So also, since (§ 201)
¢(_' U) ’U>¢( U} ’U>=KJU— v,

therefore, writing U for —uy,

r=u-1
b3 log ¢, v) = log (U, v)+log Q2 +a constant,...... 11
=1

where Q=ClpU —gpv).
In particular, when U=e,, ¢(U, v)=,/(pv—eq4) (§ 202), and
T fi Bty D)= O S (@ = 0oy e rrreerererenn 12)
when ul+u2+u3+...+uu_1=wa.
By an interchange of amplitude and parameter,
Zlog ¢(u, v,) — Zlog ¢p(u, v,)=log Q—pu,.........(13)
provided that Zv, =2

Q being a function of pu, p'u, pv, P'v; and

p=2(gv,— 0.

216. A further application of Abel’s Theorem of § 162 shows
that p is expressible as a function of pv and ¢'v; this is the
generalization of the Addition Theorem for the Second Elliptic
Integral, given in § 186.

i @, dx, a0,
For / =2 Vz,

and this case can be determined as a degenerate case of the
preceding result ; since, making =00,

a,da, dw, a®  du,
/ _ltz_/. a—xz, —ltZ a—x, N Xy

=the coeflicient of 1/a? in the expansion in ascending powers

1 fa—gpa. /A
Ofl/a of :/_Al gm ..................... (]4‘)
Thus, with X =4a®—g,x—g,, and 2=gpv,
then Sv=fadn/JX ;

and p or Z({v,— v, )——QItJAtanll‘1¢ Y JA, (a=»). (15)

Jacobi calls (/4 the factor of the Third Elliptic Integral.
-~ (Werke, 11., p. 494.)
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217. Similar results hold when, as in § 167, X is supposed
resolved into two factors, X, and X,.
Denoting P2X, —@Q2X, by Y,
and varying the arbitrary coefficients in P and @), and conse-
quently the roots of \x=0, as in § 162, then
Ve de,+2P3P . X, —2Q6Q . X,=0,
while PJ/X +Q/X?=0;
s0 that Ye,da, — 2(QoP — PoQ) /(X,X,) =0,
daw, QBP PQ O,
JX. Y, A,
and Zda, /o X,=0, or Zu,=3Zw,.
Again, as in § 215,
s 1 da, _0a _, padfa—fa 6¢a,
a—a, o/ X, Yo (fa)zA —(pa)24
1 Ofa. . JA,—dpa. A, 1 ofa. /A, +dpa. /A,
TJA fa JA = ga. JA,T JA fa  JAF o JA,
_1 §log fo.JA,—¢pa. /A,
A Sfa. NAtpu A,

Thus, as an apphcatlon to the formulas of § 174, 176, 186,
and 189, take, as in § 38 (Durege, Elliptische Functionen, § 36),
X=X X, where X,=2, X,=(1—a)(1-ka).

Then, with z=sn%u,

or

da wde 2
;/X =2u, JX ](fu, Eam w),
. @ dm
and /;v_—% 7X= ZII(’n; K, ¢))
in Legendre’s notation, with ¢ =am u, and n= —1/a.

Now, if, as in §§ 164, 165, we take
P or fe=p+4a, and @ or px=q,
and denote by x,, 2, @,, the roots of the equation (7), § 167,
Y, or P2X, —@Q%X,, or (p+x)%c (1 —2)1 —kax)=0;

then XLl = q7,
l—z,. 1—o,. 1—x;=(1+p)
@, 2y + 2y — ke o= —2p ;

80 that, as in § 164,
(2=, — g — g+ kayx, P =41 -2, . 1 =, . 1 —1y),
where Uy + Uy + Uy =0
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Again,
o dr, AL dz, YA da,
_/c;-—cc1 NX S a—a, JX, S a—a, JX
0
@ fa. \/A —¢a. \/A h_1¢’a N/A . (16)
JA 8 £ A+ pa. JA JA a /4,

since @,, @, @5 vanish when p and q are made zero; and this is
equivalent to the result of equation (9), § 189, with ¢ = —1/n,

l—a.1-=F b
G (1) = o
and Ppa N A, %Jl a. 1—-ka) /??iq~/(_.a‘)
fu /4, (pta)ao 1—mnp

- 'nN/ (= a)mwyry .
I+n—n/(1—w . 1—z,. 1—x,)
Similarly, for the Second Elliptic Integral,

mldocl xorlacz @ 361003
N X

_ Zco 9NV (A=a 1=ka)
=l o T—a. 1_7M)tanh (p+a)~/a (@==)
=—21t{p+a+§<1'—“.1 ka) + )3 }

= =20 =— 2,/ (L)yg) 5 e ovvin i (17)

as before, in § 174, 176, and 186.

218. Abel's pseudo-elliptic integrals are derived by making
the w's equal in equations (7), (12); or the ¢’s equal in equation
(18); also by making their sum equal to a period ws, or the
sum of multiples of periods, such as pw, 4w,

Now wlog ¢(u, v) is of the form log Q2 — pu,
or ¢(u, v)* is of the form e~r¥(),
where Q is a rational integral function of pw and p"uw of the
form of €' in (8), sometimes qualified by a divisor /(pu—e,).

We begin with the simplest case of an algebraical herpolhode
by taking v=w,+$w,; and then, from equations (89) and (40),
§ 54, we can infer that the value of s, between ¢, and ¢,, which
makes Gl 7l 7% 2%

e, —s s8—e,

is s or pu=e;+a/(e;—€5. €—¢,).
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Denoting pu by s, p'u by /S, and gv by «, we infer that
ds
(s—a) /S

is pseudo-elliptic, that is, can be expressed in terms of

Jds| /8 and of tan-1(Q/S/P).
In fact, by differentiation of

0= %OOS-IJ(gf,‘%li??:?l) = %Sin—l{ N (e—ey) “~/(e2_63)}~/<8“63>’

a—3§ a—38
d ita—2
=M o) = (o) AT

CEONA

since ipv=—24/(e;— ;. =) {n/ (=) — /(%= )}
In the herpolhode, therefore, of § 113, /o.zo S
1"y du
p-ut=1f N ==t a) = Y aw)nt,
or 0=~ ut+i{/(e1—e5) — /(g — ey}t
and therefore, relatively to axes revolving with constant
angular velocity,

p=3{ (=) — (=)},
the herpolhode will be the algebraical curve, given by
9—1 COS—1~/(8~61 - 8—ey)
? a—s
(a—8) cos 20= /(s —¢, .8—¢,),
(a—8)2c08?20 = (a—8)* —(e;+ 2a)(a—8)+(a—e ) a—¢,),
(a—s)sin’20+ {/ (e, — €5) + 4/(6,— ;) }*(a —5)
— (e —ey. e —ex) (e, —e;) — /(e — ) P =0;
. 2 2
where, as in § 113, a—s, or pv—pu= ’%2 %2
Referred to Cartesian coordinates, in which
pi=a*+y% psin 20=2xy,
this equation becomes

L4024 (=) = 0= )

,n? n
x [4‘?/2 + (e —ey) — /(6= 63>}2p‘2h2 =(e— 62)2'(747&4 )
of the form (2H) (PP Hb) =at oo (18)
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The relation pr—ey=o/(e;—e5.,—¢y),
combined with the equations of § 110, 113, leads to the relation
A-D.D-C A-B.B-C,

D? - B
and either B= D, which gives the separating polhode ; or
1 1 .
p=aA" BT

the relation for this algebraical herpolhode.
Now, from §§ 108-110,
D D\? D D\? u?,
b~ “”‘(0 B) 61’“(3 1)
while, with 4 > B> D>(, and ¢,=¢,, ¢,=¢, ¢, =¢,,

Jer—e)—Sie—e)=(5—2D 4 Do (1D,

n
wmmtmeam (Y-

To determine the confocal surface which will describe this
algebraical herpolhode by rolling on a fixed tangent plane, we
must equate the angular velocity of the axes to wA%h%; and

now 22 1(1 —I—D>
The squares of the semi-axes of the confocal are therefore
B (5oLt Do (B
e (1 o1
Te=(g-ama s slo-ie

while the square of the distance from the centre of the tangent
plane on which this confocal rolls is given by

h2->\2=%<1 -—-.I—)>h2.

B
The confocal is therefore a hyperboloid of two sheets, of the
f i .
orm ~ =]

and in rolling on a fixed tangent plane at a distance b from
the centre, it will trace out the algebraical herpolhode (18),
being the preceding herpolhode, changed in scale in the ratio
of A to b (Halphen, F. E., 1L, p. 285).
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219. A more complicated case can be constructed by taking
v=ew;+%wy; but now we must choose particular namerical
values for g, and g,

If we select the modular angle of 15° then 2xx’=§, and in
(C),§53, J=5%+4, J—1=112+4; so that, by choosing A =108,

then gp=15, 93 —11
and e, =%+a/3, 62=—-1, e;=%—a/3.

It is easily verified that, with the above value of v, pv=1;
for p2v= —2=p4wv; also this value of pv or s makes, in equa-

tions (39) and (40), § 54,

~1f{€1 8- 65— €5 e Ve 9p-1(l1 - C—C _
( s—ey 2 9o 9’3) 2¢ < e,—s 5 Yo J3>
The corresponding elliptic integral of the third kind in the

herpolhode will now be pseudo-elliptic ; we find, in fact, that,
i 09— %Sin_13~/(482 4s—11) — 1o _1(25 7)J(2§+2)’
(2s—1)% (2s—1)%
ch 1 2545 1 _ ~/ Lipv @’

T225—1 8¢ ds pu—pv ds
since ip'v=—3,/2; so that, in the herpolhode,

_ %flga'v duw )

Pwt=f o ou = —a/21t+6;

and therefore, relatively to axes revolving with constant

angular velocity u—14/2n, the herpolhode will be the alge-
braic curve

N 48_11)

0=1sin
(25—
or (1 —2s)’sin230 + 9(1 — 2s)?— 108 0,
in which 1—28=2(pv—pu)= 2‘"L i %z =32 suppose ;
and now p%sin?30+ 3¢?pt — 4t = 0, .................. (19)

a curve, consisting of six equal waves, arranged on a circle.
With(i)A>B>D>O and
=14+4/3, ta=—1, eb—f—J?’ pr=14%
. A—D.D— C‘
then § 118) pv—e,= /3= Z“T’
24A—-D.B-D
- /g M a=-r.-b=,
e v B
A-D.D—-C A-D.B-D
AC - AB ’

so that
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Then, either 4 — D=0, which would give a stable rotation
about the axis 4 ; or

so that D is the harmonic mean between B and C.

: 3 u2B—D.D—(
Again, @v-—ea=§_—_%2___§_(j__,,

80 that %JS:%}% ﬁ,
111y 11 2

or DA~ z(D B> BT0TAT 2 (o B>

or =@ ) 2D)

which is impossible, with 4 > B> (.
But (ii.), with 4 > D> B> (, we find that D is the har-
monic mean between 4 and B; also
== G ) (22)
so that 24 ,/3 is the ratio of the semi-axes of the focal ellipse
of the momental ellipsoid, and &/3(./3—1) is the excentricity.
Another algebraic herpolhode can be constructed by taking
v=0w,+30,; and, with g,=15, g;=11, we find that

pr=—5+./3, ipv=—3/2(2—./3).

Now, if
0=} sin 6(n/8-1)a/(5—€, . 5—€;) 1008_1(28 1047,/3)a/(25-2¢,)
(25-2./3+5)} (25—2,/34+5)F
do_ J2/3-1)_  3J/22-J3) .
ds— 2./8 T (2s—2/3+5) /S’
so that

Yipgvdu £ —3J2(2—./3)ds
OV — pu T/.(Zs—2~/3+5)~/»8'
Ca o ey I8 6(B-1)/(s-e . 5-€5)
=3,/2(/3-1) N/S-l-gbm (28—2~/3+5)% ;
and now the algebraic herpolhode, with respect to revolving
axes, is given by
(25 —24/3+45)%sin 30 =6(/3—1)a/(s—¢y . 5—¢y),

reducing to an equation of the form

9510230+ Ppt+ Qo2 R=00cceverenre(23)




AND THEIR APPLICATIONS.

With (i) A >B>D>C(, and
=3+a3 eu=—1, e=51—4/3; pv=—3+./3,
) o M B=D.D-C
il S
; o uwA=D.D-C
pv—e,=—3+2,/3= nZ a0 )
V—Cp = —3 __mA=D. B D,
pU—ee=—2 T2 AB
A-D.D-C _B-D.D-C
g s e T 2_———‘———"5
Therefore A0 RO
and rejecting the factor D—C,
D ./, Dy 1,1 2
1—;4-:2(1—8‘), (82} Z—!—D—B ............... (24!)
D0 A_2y3-3 1 _1_2y3-31 1
Ao p o™ T ¢CTDT G <D_}1>’
1 1_ 2 1N b g gl 1 2
*o B_~/3<B”}1>’ ( B‘<~/3—1) <O A>' """""" (25)

so that the excentricity of the focal ellipse of the momental
ellipsoid is /3 —1.

With (il.) 4 > D > B > (, we are led to an impossible result.

Points of Inflexion on the Herpolhodes.

220. The original herpolhodes drawn by Poinsot (Zhéorie
nouvelle de la, rotation des corps) were represented with points
of inflexion, as curves undulating between two concentric
cireles on the invariable plane.

But it was pointed out by Hess, in 1880, and de Sparre
(Comptes Rendus, Nov., 1884), that such points of inflexion can-
not exist on Poinsot’s original herpolhodes, which are curves
always concave to the centre, as drawn in Routh’s Rigid
Dynamics, Chap. IX.; like the horizontal projection of the path
of the bob of a conical pendulum, or like the path of the Moon
relative to the Sun, a good figure of which is given in the
fnglish Mechamic, p. 337, June, 1891, by Mr. H. P. Slade.

The herpolhodes described on planes parallel to the invari-
able plane in Sylvester’s representation are capable, however,
of possessing points of inflexion, when the confocal of the
momental ellipsoid attains a certain shape. (Hess, Das Rollen
einer Fliche zweiten Grades auf eimer invariabeln Kbene
Munich, 1880 ; de Sparre, Comptes Rendus, Aug., 1885.)
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Denoting by % the constant distance from the centre of the
plane upon which a quadric surface rolls, de Sparre shows that
the herpolhode on the plane has points of inflexion, when the
quadric is

(i.) an ellipsoid

CALAT =1 e<ir<e 11 ad >1}é+0125
(in a momental ellipsoid, 4 <B+0, or ! — < b3+ » so that
points of inflexion cannot exist on the her polhode) ;
(ii.) a hyperboloid of one sheet
+3é2 6‘“1 @<V, it R<a, and [)12+1'

(iii.) a hyperboloid of two sheets
2 a2 2
% ZZ Z;2= 1, Lkr<ey if 52 > -l- ., whatever the value of h.
These herpolhodes being snmlar to the original herpolhode
of the momental ellipsoid, when referred to axes rotating with
constant angular velocity uA2/h?, can be considered as defined

by the polar coordinates p, 6, given in terms of the time ¢, by
the equations of § 113,

PE=IHPU—Qu), o (1)
o Fip'v i
a—t =m-- ov— ?dn ........................... (2)

with u=nt+w, v=0,+tw; m/u=1—N/k
Denoting the velocity in the curve by V, and its radius of
curvature by R, then, resolving normally,

Ve _dpl d< d6> d@((l?p d62>

R~ dt pdt\dt) " Par\de " Pde)
which will be found to reduce to an equation of the form
Vs
F:sz—l— QF%; v (3)
where P =m?+ 3mnpv+niip',

Q=3m2nipv—mnp v —Iniip” v ;
and the corresponding herpolhodes will have points of inflexion
when A is chosen so that Pp®+ @) can vanish.

Thus Halphen points out that the algebraical herpolhode
of § 218 will have points of inflexion, if 12 < a?.
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221. The polhode being given by the intersection of the two
quadric surfaces Ax? + By? + 02 = Dk?,
A%2 4 BYy2 4 %2 = D2,
we may in consequence write
B2, up=5 e, 2= B e,
where (B—Cha?+ (C—A)*+ (4 —B)2=I1Dh?,
A(B—C)a*+ B(C— A2+ C(A - B)*=1D%?;

la? =

a2 2 22

Y =
and then a.2+)\+bz+7\+02+>\_1’
the equation of a system of confocal quadrics, on choosing !
B—-C (-4 A-B

such that =" 4ty Tt

Then

s o, D.A-D.B-C, ., , D.B-D.C-A

P—c?=—-"" CARe h? ¢ —a?= — B —=hY,

D.C—-D.A-B
2 12— _ 2
a?—b AB0 h2.

By varying A along the polhode, we find

2 da 1 dx  de 1 @« dx

st TEEN A " T2 EEA A
so that the polhode is an orthogonal trajectory of the confocal
surfaces, for any one of which A is constant; and two ellipsoids
can be drawn on which the curve is a polhode, of which the
generating lines of the confocal hyperboloid through the points
are normals.

When these confocals are hyperboloids of one sheet, the
generating lines may be made of material rods or wires,
jointed at the points of crossing; and now any such a system
of rods forming a hyperboloid is capable of deformation, and
assumes in succession the shape of the confocal hyperboloids;
the trajectory of any fixed point on a rod being orthogonal to
the hyperboloids, and therefore capable of being a polhode, if
the hyperboloids are coaxial with the momental ellipsoid of
the body. (Messenger of Mathematics, 1878 ; Senate House
Solutions for 1878 ; Larmor, Proceedings Cam. Phil. Society,
1884, Jointed Wickerwork; Darboux and Mannheim, Comptes
Rendus, 1885 and 1886.)
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Darboux has shown (Despeyrous, Cours de mécanique, t. 11,
Notes XVII, XVIIL) that if we hold a given generator fixed,
then any point fixed in any other generator will describe a
sphere ; thus, if a rod moves with three points P, @, B on it
connected by means of bars to three fixed centres 4, B, C' in
a straight line, any other point S of the rod will describe a
sphere about a centre D in the line 4 BC, such that the A. R.
(ABOD) is equal to the A. R. (PQRS).

The point where the line PQR meets the generator parallel
to ABC will describe a plane, the corresponding centre being
at an infinite distance; and generally, if one gencrator is held
fixed, any point on the parallel generator will describe a plane.

The herpolhode can now be described by taking a jointed
hyperboloid, similar and similarly situated, and of half the size
of the former one used for describing the polhode, with one
generator fixed along the invariable line OC, and with the par-
allel generator along the normal PQ at P; and now, if P is
moved in a direction perpendicular to the hyperboloid at P,
it will describe a plane curve, which is the herpolhode.

222. Any point fixed in a body moving under no forces,
whose co-ordinates with respect to the principal axes are
represented by «, b, ¢, will have component velocities

eq—Dbr, ar—cp, bp—aq, parallel to the principal axes;

and will describe a curve whose projection on the invariable
plane will be given, in polar co-ordinates p and ¢, by (§§ 104-113)

IRPERTy R adp+bBy+cOry?
PPt < Du >
(bCr —cBg)?+(cdp —aCry+ (aBg—bAq)>
= D22 B

zd¢>_ 2 2 . AP
= {2+ c)p—abg ocm}D/;

+ {(4arg—ber — cobp}gz

5 Cr
+{ (V%) —cap —beg }DM,

the moment of the velocity about the invariable line OC'; and
p, q, v are given as functions of ¢t in §§ 32, 106, and 108.
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The equations are much simplified when the point is fixed on
one of the principal axes, when two of the three quantities
o, b, ¢ vanish; and it will be a useful exercise for the student
to prove that, in these cases, the curve of projection on the
invariable plane with respect to axes rotating with angular
velocity G/A4, G/B, GJC respectively, is given by an equation
of the form

@41y =kp(u, wg—v), or kp(u, op—v), or kep(uw, w.—2).

Another useful exercise is to deduce Poinsot’s relations when
the co-ordinate axes fixed in the body are not principal axes.

Now, if the equation of the momental ellipsoid is

Ao+ B2+ 022 — 24 yz —2B'z0 — 202y = Dh?
and if p, ¢, r denote as before the component angular velocities,
and h,, hy, h, the components of angular momentum about the
axes, the three equations of motion under no forces are

%1 —hyr+h,q=0, C%Z/? —hyp+hyr=0, dcé? —hq+h,p=0,

where
hy=Ap—C'q—Bv, hy=Bg—Ar—Cp, hy=0r—Bp—A'q;
and these equations are solvable by elliptic functions.

(Dissertation Ueber die Integration eines Diflerentialgleich-
ungssystems ; Paul Hoyer, Berlin, 1879.)

223. The numerical results obtained in the preceding alge-
braical herpolhodes can be utilized in the corresponding

problems of the revolving chain (§§ 205-206) and of the
Tortuous Elastica (§ 207).

Putting ¢'=14, or v=14w, in § 206,
then pr=e,— o/ (e, — 5. €,— ¢,),
ipv=24/(e,—e;. e—e){(e1— )+ N (e =€)}
Loo's o]
and =/7j_@}?

Pu—puv
= boos W) b)) -
or  (s—pv)eos[2yr+ {/ (e= ;) + o/ (6= ) Yoo, Ja] = &/ (5-1.5-¢,),
where s—pv="r2[k%

In the corresponding problem of the Tortuous Elastica of
§ 207, it is merely requisite to replace = by the are s.
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The working out of the analogies for the other algebraical
herpolhodes is left as an exercise; merely mentioning that

@(3wy; 15, 11)= —3,

VEINAC LU 1) SRS Lk L
(2s+8)* ° (2s+3)¥
g1 2541 1 1 1 ipv 1
ds ™ /22543 /8 /2 /8 28438
or fi‘;}@_@@ﬂ/z ,u‘,,, — 1 sin- 1 ;%831/_{;.
pu—pv /2 3 (pu—@v)*

224. The analytical expressions in §§ 208, 210 for the motion
of the Spherical Pendulum and of the Top or Gyrostat show,
by comparison with the equations of the herpolhode in § 200,
that this motion may be considered as compounded of two
Poinsot representations of the motion of a body under no forees,
as given in §§ 104, 214 (Jacobi, Werke, 1L, p. 477).

The relations connecting these two component Poinsot
motions have engaged the attention of Darboux (Despeyrous,
Cours de mécanique, I1., Note XIX.), of Halphen (F. E.,, II,
Chap. IIL), and of Routh (@. J. M., XXIIL.).

We may put the conclusions arrived at by these mathema-
ticians in the following condensed form, depending on funda-
mental dynamical and geometrical considerations.

(i.) If the vector OH represents the axis of resultant angular
momentum, then H lies in a horizontal plane through the point
@, where the vertical vector OG represents (&, the constant
component of angular momentum about the vertical

(ii.) If the plane drawn through H, perpendicular to the axis
of the Top, cuts this axis in C, then OC=Cr, the constant com-
ponent of angular momentum about OC, the axis of the Top.

(iii.) These two planes, one horizontal and through &, which
we shall call the invariable plane of G, and the other through
€ and perpendicular to OC, which we shall call the invariable
plane of C, intersect in a line HK perpendicular to the vertical
plane GOC; and if HK meets the plane GOC in K, then

CH*—-GH?=CK?— GK?=0G*—0C?= (G- C%2

(iv.) The instantaneous axis of rotation OI lies in the plane

HOC; and if O meets CI in I, the resultant angular velocity

and that, if

f=1sin-
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[NO)
[V}
©

about 0I is 0I/C; also  CI/CH=C/A,
and the velocity of C'is ». CI.

(v.) By equation (i.) of § 210, the square of the velocity of ¢
is 2022 Wg/A)c—h cos 0) ;
so that CI2=(202Wg/A)(c—h cos 0),
CH2=2A4Wg(c—h cos 6)
=24 Wghk(pw — pu), suppose.
Then, by equation (3) of § 210, with w=n{+ ws,

HnlPe ™ u =gl (pu — pa)(pu — pb)(pu — pw) — (a-+ Bow)* ;
and therefore, when w=a, b, w, we have three equations of the
form  ip’a=a+ Bpa,—ip'b=a+ LBpb, ip'w=a+LBpw;
so that, according to § 165, we may put w=>b—a.

(vi) Now GH?=24 Wghk{p(b—a)—pu}— G*+C%?
=24 Wghl(pw' — pu), suppose,
where pw —p(a+b)= —(G*— C%*)[24 Wghk;
and since

’L*M“ Yhe'a, i- G—0Or = 1ko'b
N (2AWghle) ¥ ~ QA Wghk) =gk 0,
and 2 =k(pb—pa),
therefore ow —p(b—a)= — (_@%%% .

and therefore (§ 151) we may put w'=b+a.

(vil.) The point H moves in the invariable plane of G with
velocity equal to the impressed couple of gravity, and parallel
to the axis of the couple; so that the velocity of H is in the
direction HK, and equal to Wgk sin 6 ; and the moment of this
velocity about G is Wghsin 6. GK.

But . GKsin 6=00—-0G cos 0,
so that pXde/dt)= Wglh(Cr— G cos 6),
if p, ¢ denote the polar coordinates of H in the invariable
plane of G.

Now p2=24 Wghk{p(b+a)—gpu},
and cos 0= k(pu—Lpa—3pb);
so that finally we shall find, after reduction,

dgp G Fig'(b+a)

A =34 o(bta)—gu™ _
and therefore H describes in the invariable plane of G a her-
polhode with parameter b+ a.
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(viii.) Similar considerations will show that the curve de-
seribed by H in the invariable plane of (' is also a herpolhode,
with parameter b—a.

If in equation (2) of § 210 we replace C'r by 4+, the motion
of OC is unaltered, but now the momental ellipsoid at O becomes
a sphere, and OH is the instantaneous axis of rotation ; so that
the motion of OC is produced by rolling the cone, whose base
is the herpolhode described by H in the invariable plane of C,
on the cone whose base is the herpolhode in the invariable
plane of G, the angular velocity being proportional to OH.

(ix.) But in the general case, where OI is the instantaneous
axis, the curve described by I in the invariable plane of (' is

similar to the curve described by H, and is therefore a herpol-
hode. ’

Now from (v.), drawing CM, IN perpendicular to 0@,
0I*=0024-CI?
=022+ (202 Wg/A)(c— O0G+GM)
"
—oe Vo064 46N
so that OI2 varies as the height of I above a certain horizontal
plane ; and the locus of I is therefore a sphere, to which the
point O and this plane are related as limiting point and radical
plane.

The motion of the Top can therefore be produced by rolling
the herpolhode described by I in the invariable plane of ¢ on
this sphere, with angular velocity proportional to OI.

(x.) It still remains to be shown that the cone described by
OI in space round OG is a herpolhode cone ; this is left as an
exercise.

Darboux shows that two such hyperboloids as those described
in § 221, with a pair of generating lines, P@, PQ’in coincidence,
and the opposite generators O@, OC of the same system inter-
secting in a fixed point O, may be used to represent the
motion of OC, the axis of a Top, when OG is held vertical;
the point P of intersection of the coincident generators being
made to describe herpolhodes in the invariable planes of &

and C, by being moved in the direction of the common normal
of the hyperboloids.
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225. The numerical results of the pseudo-elliptic integrals
of §§ 218, 219, and 223 can be utilised for the construction of
similar degenerate cases of the motion of the Top.

Thus, if a= %w3, b= L
then bta=w+w, b—a=w;;
and we shall find cos a=0, cos 8=k, d=sec 3, and
C*r2=24Wgh sec 8, G2=24Wgh cos 5.
The spherical curve described by C is now given by
sin 0 sin(nt cos B—1)= 4/ {cos 6(cos B—cos 0)},
sin 6 cos(nt cos B—) = /(1 —cos B cos O).
With o=}ws, b=w,—}w; and b+ae=w;,
we find that cos g, cos 8, and d are unaltered, but Cr and G
are interchanged ; and C now describes the spherical curve
sin 0 sin(nt —1}) = y/{cos O(sec 83— cos 0)},
sin 6 cos(nt—)= /(1 —sec B cos 6).
Again, with =20, b=w,—}%w, g,=15, g;=11;
so that pa= —3, pb=1, we find that
k=1, cosa= —,/3+1, cos B=—13, d=/3+1, C*r*=44A Wyl ;
and the spherical curve described by C is given by
$in®@ sin 3yr = (—1—2 cos 6)%,
sin®0 cos 3y = (14 cos 6+ cos20),/(2+ 2 cos O — cos?l).
To realise this motion practically, place a homogeneous sphere,
of radius ¢, inside a fixed spherical bowl of radius a, in contact

at an angular distance of 60° from the lowest point, and spin
the sphere about the common normal with angular velocity

o)

The sphere if released will roll on the interior in this curve.
As another numerical illustration we may take

9, =48, gy=44;
when plog+im) =2, piug=—4;
(0,4 Jw;) = — 93wy =61,/3.
Also, with 0,=30, ¢, =28, wylw,=1/2,

G.E.F.

plog=—5—3./6, pIw;=1—34/6, ete.
Q
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226. It is convenient to represent the two parts of +» by
yr, and r, such that
iy _ 1 G+Cr 1 glil Ligp’ o .
dt ~2 A T4cost du  pu—pa’
dxpz_ G-Cr 1 dofry __Lig'h

dt =2 A T—cos0 du gb—pu
also to put y =1~ whence Euler’s angle ¢ =x+(4-C)rt/4,
dx Cr—Gcos6
and 0= A
an expression obtained by interchanging G and Cr in .
With @ =pw,, b=w,+qw,, a change of g into — ¢ interchanges
(¢ and Cr, while a change of p into —p interchanges G and
—Cr: both changes of sign change G and — G and Cr into
— Cr, and thus reverse the motion.
The following degenerate cases of the motion of the Top will
afford an exercise on the preceding results of §§ 210, 224 :—
A. With b—a=w, or ¢—p=0,
_ G ¢ l—l-coczacos,B
Tk cosatcosB
C'2r2/2A Wgh cos a+-cos 3;
and by § 215, x is now pseudo-elliptic; and
x = /(€05 atcos B)a/(hg /Dt~ £, )
. ~ cos 3 —cos 0)(cos 6 —cos a
where - g=tan™! 1 -|-((30.s a,BCUS 8- ()(gos a+cos B)cos 6
_a/{(cos B—cos O)(cos O —cos a)}
sin 0
_1a/ {14 cos a cos B — (cos a+cos B)cos O}
sin @
The angular velocity of I round ¢ in the invariable plane
ot (F is now constant and equal to 1G/4.
B. With b—a=w;+w,, or g—p=1,
G@ ¢ 14+dcos a
B0 =h e atd’
C*2)24 Wgh =cos a+d,
and the spherical curve described by C has cusps on the circle
given by 6=08; and now
= et ) ol
, . cos B)(cos B —cos a
where  £'=tan 1\/ 14+dcosa -—((cos a+d) cgs [

=sin

=CO08s

ete.
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The angular velocity of H round @ is again equal to 1G/4.
C. With b+a=w, or g+p=0,
d__gﬁi__l—}-COSaCOSB;
G cosa+t-cos 3
and now v is pseudo-elliptic, and given by
W=/ (c05 -+ cos B)/ (b /Dt — &;
while the angular velocity of H round C in the invariable
plane of € is constant and equal to $Cr/A.
D. With b+a=w,+w,, or g+p=1,
cos B_go _l4dcosa
cos a+d
Y= (008 a+ )/ (gl €
and the angular velocity of H round € in the invariable plane
of Cis again Cr/A.

E. With ¢=1, b=w,+w; G —Cr=0, and -, disappears ; and
now cos B=c/h=1, the Top being spun originally in the
upright position.

Now if the Top falls ultimately to the extreme inclination q,
we find that Cr22AWgh=14cosa;
and subsequently, after a time ¢,

sin 30 =sin {a sech{sin La /(g/0)t},

Ort . cos f—cosa .
V= 94— 1\/ T4cos®
so that the integrals for ¢ and - are pseudo-elliptic.
F. With ¢=0, b=0w,, @ — Cr=0, and 1}, again disappears; but
now d=1, and the Top does not rise to the vertical position.
For numerical illustrations of this motion, take

a=gw3, and ¢g,=15, g,=11, when pa=—%;
or =48, g,=44, when ga= —4.
G. With p= 1 a=w; G+Cr=0, and , disappears; now
cos a= —1, and the Top passes through its lowest position.

For numerical examples of pseudo-elliptic cases, employ the
results @(w,+3wy; 15, 11)=14, and p(w, +Fwy; 48, 44)=2.

H. With p=1 and ¢=1, G=0 and Cr=0; and the motlon
reduces to plane revolutions, as in §18.

I. With p=1 and ¢=0, G=0 and Cr=0; and the motion
reduces to plane oscillations, as in § 3.

K. With p=1,¢9 =0, d=1, cos 8= —1, cos a= —1, the pen-
dulum is at rest in its lowest position.
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The Trajectory of a Projectile, for the Cubic Law of Re-
sistance.

227. An immediate application of the function ¢(u, v) of
§ 201 occurs in the solution of the motion of a body under
gravity in a resisting medium, in which it is assumed that the
resistance of the medium is in the direction opposite to motion,
and that it varies as the cube of the velocity.

Refer the motion to oblique coordinate axes, one Oz in the
direction of projection at the point of infinite velocity, and the
other Oy drawn vertically downwards.

Denote by w the terminal velocity of the projectile in
the medium ; so that if W denotes the weight in pounds, the
resistance of the air at a velocity v is a force of W(v/w)
pounds, and the retardation produced is g(v/w)s.

The equations of motion are then

d?x ds\3 dax
W ’LU3< g t) g e (1)

d?y ds\® dy .
= I (Y Y g )

Eliminating the term due to the resistance,
da d*y dPx dy _ dx’
dé de-—de dt~a
or, writing p for dy/dz,

dp dt dp de _

Iqw O i @ =0 e 3)
It Ox makes an ang]e a with the homzon then
ds* _dy? 2dy da sin dos?

ap”de " " dt® “+dt2
dac? .
= W(zﬂ—?psm a+1),
and now equation (1) becomes

To__g(b)tdo
dee  w\dt/ dt

_ (AN e o

=~ 2% —2psina+1),

do 4d2ac__ dp - . .
. (dt) Jp=—  gp (PP—2psinatl).. (4)
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Integrating, noticing that da/dt=oco, when p=0,
3w3(0$) Uy —psinatp=1P,
suppose, where p°— 3p’sin a+3p is denoted by P;
or %xt- =P R e, (5)
Then, from (3), (cil]a(o) g(dw> _£2P§,
so that Qgg lez 3
and % # P'éclp, .......................... (6)
0
%:ﬁop“%dp, ......................... (N
0
while C(% = %Pé,
9—uf= PP oo (8)

ex.,

228. The integration required in (6) is similar to that of
8, p. 65, dlscussed also in § 157 ; we substitute

z=m2P/p,

where m is some arbitrary constant factor ; and then

42® — g, = {(4mP®— g,)p? — 12mPp sin a+ 12mS}/p?,

which is a perfect square, when

4mb— g®=3mPsin%q, or g,=m4--3sin’a);

so that N (4727 — g5) =m?/3(2—p sin a)/p,
622dz  2mP/3dp
and S =T
or dz  m3/3dp _ dp  _ _ (ﬁag
NAF—g) T 3p%t /3P v

on choosing m?=% 5 80 that

_/ N4 (4z3

2= @<Zu2’ 0, gg> e e M
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,gw_psin a—2 .
Then 9= T
and supposing =« at the vertical asymptote, where p =
go_sina  ga_1
w3 Yt W
90 _ T _ 2
so that ol s 3
2 ga
3 6p™ 5
or p=W_ 3 W .0
dw™ ga_ 0w g0 _ 00
T T e
2
2
d, integrati = kd
and, integrating, Y a ,ga:dm’
0 wr Vo
the equation of the trajectory.
It is convenient to write w and v for ga/w? and ga/w?;
2,
and now 99 _ 6,9 Y cl:w’ ........................ (11)
Pv—pu

to be integrated by the preoceding rules of § 198.
Rationalizing the denominator p'v—gp'u, it becomes
92— " or 4(pPv—pdu),
0 ; and resolved into linear factors, it becomes
4(pv — pu)wpv — pu)(w’pv — pu),
where o, w? denote the imaginary cube roots of unity, viz.,
— 3+ 1a/3%, o= —3— % /3i.
Now, resolved into partial fractions,
6p% _ 6p*(p'v+p'w)
pv—pu 4(pv—piu)

since g,=

_1 pvtpu { pvtpu

T2 pv—pu 2 0PV — PU

E ik
27 wPpv—pu

1 gvtpu

T2 pv—pu

+zw

1 gowv+pu+1 , P+ p'u

27 pov—pu 2° gawzv pu -

on making use of the results of § 196, when g,=

Then

qy 1s@v+sou

2pv—pu

wtof |

whlch is prepared for integration as requir ed in §198; and since

pwv+pu

lo'wv+pu f
20 av— gaud + 20 0W—p U gau

2)

J
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‘lgov+g9u _/‘ L i
5 gue g“blw— {{v—w)+¢u—vidu

= —log o(v—u)+log cu — v+ constant
= —log -O;(E‘@e“?” = —log ¢(—u, v);

therefore the result of the mtegramon may be expressed by

%}—?/2 —log ¢p(—u, v) —wlog ¢( —u, wv)—w?log ¢(—u, »’v)...(13)

The conditions of Homogeneity of § 196 also show that the
last equation (13) may be written

'.:_y - (U u) (f{)'rlf‘“‘”u)_ o-(w2v u)
o 3ulv—log - o w?log o
or simply

9y

o 3ufv ~log o(v —u) — wlog a(wv — ) — wlog o(w?v —w), (14)

subjeet to the condition that =0, when w or w=0.

The equation is left in the complex imaginary form, as there
exists no theorem for the expression of

log o(wv—u) in the form P+1iQ;
unless we introduce a new function (e, «), defined by
(Halphen, F. £, 1, p. 151)
D(a, a) ‘—:/{?(CL +ia)+{(a—ia)}da.
0

229. For the expression of the time ¢ in the trajectory,
equation (8) leads to

gt 6gw bpvpu o

pv—pw

Lovpuy, pf Oy, Lk, s

2 pv-pu 2 Pwv — pu 2 o —pu
when resolved, as before for 4, into partial fractions; so that
L= —log ¢(—u, v) — w’log gp(— v, wv) — v log (—u, w™),
or = —log G(Q;U w) —wlog E@me —w log (T'(»w—%i—@,
[exc

or simply

= —log (v —u) — w?log o(wv—u) —wlog a(w?v—u), (16)
subject to the condition that {=0, when 2 or u=0.
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By addition,
qy+qf —3log ¢p(—u, v)+log ¢p(—u, V)P(—u, wv)$(—u, 0®v);
— _log u)em} +log o (V=)o (wv—w)o (0’ —1u)
- VoW oV g0l 5w’ odU

’

and this last term, when expressed in a real form, is equal to
log Hp'v—p'u).
(Halphen, F. £, I, p. 232))
This can be proved independently ; for

1!

02+ +3100‘ (=, v)

/‘6@1(@@-}—@@0)1 +3:/‘1 gav+gou
pr—g

—6p%u du
=
230. For the purpose of the expression of y and ¢ in ascend-
ing powers of @ or u, it is useful to employ the function
o(v—1u)
ol
so that J(—u, v)=0u ¢(—u, v), and =1, when v =0.
We may now write
gyjw?= —1log Y(—u,v) —w log Yr(— 2, wv) — w?log Y —u, v’v),
gtjw = —log Y (—u,v) —w?log Y(—u, wv) — w log Y (—u, o™v).
Differentiating logarithmically,

7 o ==l Wl

wo, W,
=—-ugw+igov—-3?go V...

=log(pv—gp'u)+a constant. ........... 1

¢, which we may denote by y(—wu, v) or ;

on expanding the second side by Taylor’s Theorem ; so that,
integrating again,

w? W, b,
log«,b(—u,v):—;_Zwl—gav—{—g@v—ii@ VAo, (18)
Then, with g,=0, and gowvzwgw ete.,

log Y(—u,wv)=— ),wgw-i- gov—4,wgov-|— .......... (19)

log Yr(—u, 0®v) = — q.:)% w’ov +;§£:go'v —-%wga”v—l— Cel} e (20)
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80 that %—gg,@@' ~—g0 U—I— {@(““)U—...),.........(21)
gt_ofw W ) o > )
P 3<). pv 5.@ v+ g» V)i, (22)

and here w=gx/u?, ¢,=0, g3—§7(4.«—3 sin’a), pv=1,
Pv=1sina, pv” =2,pv" = Lsinq, v =4-4sing, p®v = 42sinaq,...

231. When p,, p,, p, denote the values of p corresponding to
three points defined by the values a, @, 25 of o, or uy, Uy, U,
of w, such that

@+ ay+x,=0, or u,Fuy4-u,=0,

then, according to § 143,
(P PyPo) =, 1y py— (Do Py Py Py + Dy Po)sina+py +py+py (23)

This Theorem follows also as a corollary of Abel’s Theorem,
as applied in § 166 ; and it is interesting to proceed to the
determination, in a similar manner, of the corresponding values
of Y+ Y+ ys and &6+t

Changing, in § 166,z into p and y into P3, then from (7)§ 166,

g,"z(dyl +dy,+dyg)=p. P\~ %dp +po Py %dp ot 5Py %dps

3 <p1 da+ ;8 n Py*da+p,08 B P2Sa+ p366> @i,
_ P=1\p;=p1.p1=P;  P1=Pa-P2=Ps  Pa—P3-Ps~P1 Cad-1"
I @ty + byt dty) = Py=py+ Py~ ddpy+ Pyhp,y

3 [(ap;+B) pda+dB) }___ 3ada

(Ps—P)(P1—P2) =1
Therefore
“3d
Tty = 574

, = —log(a—1)—w log(a — w) — wMog(a — w?),..(24)
“3ad
gt +trt)=/ 50

= —log(a—1) — v’log(a—w)—w log(a —w?); ..(25)
3 5 5i_p3 —pP3
‘where o Pd=P_Pi-PE_Pi-PE (26)
Po—Ds Ps—P1 Pr1—Pe
and a=o0, when p,=p,=p,=0

As a corollary from the preceding expressions for y and ¢ in
terms of z or u, it follows that

c(v—u)ov—uyo(v—1us)_ 1

a3V Uy U Uy a—1
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232. By taking 2,=0 and p,=0, then

Pr+pe—py psina=0, or 1/p,+1/p,=sinq,
when 2+ 1,=0, or u;+u,=0.
Now, from equations (13) and (16),

Tty =—lo«<g»u — 1) log(ge — apv) — wlog( — pv)

_ 1 (pu—pv)?  Jepan-t &/ 3pv
T2 5o P — @ ~/3 tan 2004 v’
Tt +,)= —10°(s@u ) — oHog (P — wpv) — w log(pu — wipv)
_ (pu—pv)® pv)* n-L / Spv_
) 1 U — %) G — iy TA/3 1 20u+ g
In par tlcular, when % =w,, then

o(—u, wy) = J(go’t( — 92)

a B ~_1_ (@v ) 1 _L/3pv
an e —Bw,{v i ’Zv J% tan S, Fpv
gt _ _ 1 (pv— 1 _1A/3pv
w 1108 go’zv 2“/ 3 tan 2¢,+ oV’
so that the expressions for y and ¢ are pseudo-elliptic; and, at
this point, p=2sin a.

233. We may now investigate the properties of certain points
on the trajectory.

When w=2w,— v,
then pu=1% pu=—%sinq and p=coseca,
s0 that the tangent is perpendicular to Ox.

The velocity in the trajectory is given by

w( p?— 2p sin a+ 1)3( p?— 2p%sin a+3p) 4,

and this is a minimum, by loga,rithmic differentiation, when

p—sina —2psina+1 -0
pP—2psina+1l p —Jpzsma-l—Sp ’
or pPeostatpsinag—1=0. ..o, 27)
If the tangent 4 B makes an angle 8 with Oz at the point 4,
sin
_sinf3
then ~ cos(a—B)
so that the relation becomes
tan o= —2cot 2@=tan B—cot B. ......... (28)

Then  ,/(4+tan?a)=tan B4 cot B3=2 cosec 2,
or & (3gs) =%4/(4—3 sin?a) =% cos a cosec 23.



AND THEIR APPLICATIONS. 251

The relation (28) is equivalent to a number of other re-
lations, such as
tan(28— a)=tan o —tan 28 =tan a+ 2 cot a,
tan(a— 3) =cot?g,
tan a = {cot(a—B)} — {tan(a— B)}%,
3 tan ¢+ tan®a =2 cot 2(a — 8) = cot(a — B) — tan(a— B),
tan a={cot(a— B)}* — {tan(a— B)}}, ete.
Also, since P
SN o — 2@ U
therefore, at these points of minimum veloeity,
P =3(4—3sin%a) =3y, and pPu=g,,
and therefore p2u=pu, or u=%w,, as in § 166.
The integrals for 4 and ¢ at these points of minimum velocity
are therefore pseudo-elliptic, and depend on

sds
./~ DJH31)M{/~ 1)/

integrals first considered by Euler (Legendre, F. F L., Chap.
XXVL).
We ﬁnd by differentiation, that
3(2s—1 2841 1
= t, nh- 15;/7(%3~) 1'\/O T 1y
1d log (s —=1)+,/3
2 ds J(455 1)+ /3(2s— 1)
in/3 L (30)
TVESE )T JEs — 1)—|—J" ~/(485
o0 (4s*—1 3(2s+1
/35, tan 1~/1://(4s3—1;—://3((23—1§
= S ) S 1)t 3
by means of which the results can be constlucted and
noticing that, if s=gv, /(4s*—1)=¢"v, 9,=0, g,=1, then
S 1)+ /3 ,
JAF ) 3=~ F (Ve
483 —1)— . /3(2s+1 ,
v 3://2483—1;—}-:;3528—- 1;':@ (v=30,)
we find finally, when % = %w,,
GY[1? = Fwylw,— 20,8 + § log p(v—,w,)—F4/3 tan ~2p (V-3 w,), (32)
gtjw = 20wy~ wylwy + § 10g p(v—3wy)+34/3 tan =10 (v—Fw,). (33)
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234. Denoting by 6 the angle which the tangent at any
point makes with Oz, the tangent at O, the point of infinite
velocity, and by ¢ the angle which it makes with the tangent
at 4, the point of minimum velocity, then 6=8—¢, and

sin 0 sin(B—¢) .
cos(a—0) " cos(a— B+ §)’

sina—3pu _1 _cos(a— ,8+¢)
so that 5 —p— Ssin(B—¢)

pP=

and 3¢/ = S0 asin( mfzﬁ 2 ;(;S(a B+¢)
o o (8
~ —2cosa “)O*B 95)8 ; (B‘ﬂ&‘_:;)s.ln(ﬁ ¢)
9 aps g W8 ¢)S;] <(:;>3t ,i)sm(lB — )

Py = — /(395 = J 4—3 sina) = — 2 cos o cosec 2B,
therefore §ﬂ(ﬁt¢)

tan 95 Ot 12
or tan 3 91+ 2w,
Therefore, at points defined by w,, wu, where the tangents
make equal angles with the tangent at 4,
{J”bb] Py =5,
Thus, if u, =0, then w,=w,; and the tangent where u=w,
makes an angle 25 with Ox.
By the principle of Homogeneity of § 196, we can select any
arbitrary value of g,, and it is convenient to take g,=1; and

. giag aﬁ 0 9% _ s,
now, if 'w then go _m pu, 97 5 =mipu,
where = 93, m= (eL — 3 sinq)b/, /3.

With g.z=0, g,=1, we have found, in § 166,
@%w2= 1, p'%w,= —A/3, p'iw,=A/3.
Again, 1f — j : 5» then
pv=(4—3 smza) 8 o= ./3sin a(4—3sin%e) ¥ = — /3 cos 26;

so that, as a increases from 0 to 7, p'v increases from 0 to ,/3,
and v increases from o, to 4w,
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Denoting the analytical expression for tan ¢/tan 8 in (34)
by X, then X is independent of « or B, and therefore a Table
of numerical values of X, with % or mgz/w? for argument, will
serve for all trajectories.
It will be a useful numerical exercise for the student to
prove that corresponding values of w and X are

ho, V3BED=Y2,
» 2572

1 .
%wQ, i/—-é’
1 ~/3+1 _~/2:/3 .
2 Wo, R R
%wz’ 0;
5 ~/3—1 —~/2~4/3 .
TWg) ———'-2—;

w, —1 ;
BB,
b 2.5/2 ’
4wy 0.

ExAMPLES.

Prove that, with g,=0, g,=1,
Puta/3
put/32pu—1)
. P U—/3(20u+1)
2' ga(u 0)2> N/ w+~/3(z)g')u_ 1)

1
3. ¢ (w—3w)p(u+ Fwy) “‘(@g_ 1)

L p(u—3w,)=

d 3 u J-
4.‘. Qu:lf ———u—§~/3 ta}nh—lJ) 80 u
5 d
pu_:!;/(;_fx/gu‘%i 10g@(u~-%w2)—TbJ3 tan‘lso(u_ w?‘)'
6 {Jf::—d:b/g —1% 100‘ ﬂo(u— 30)9)"' 3,\/3 tan‘lso (w—% w‘))

7. Integrate (pu)~Y, (pu)~2 (pu)~3



CHAPTER VIII.

THE DOUBLE PERIODICITY OF THE ELLIPTIC
FUNCTIONS.

235. Besides pointing out the advantage of the direct Ellip-
tic Functions obtained by the inversion of the Elliptic Integrals
(§ 5), Abel made an equally important step (Crelle, I, 1827)
in showing that the Elliptic Functions are doubly-periodic
functions, having a real period, 4K or 2K, as already defined
in §11, and an 4maginary period, 4K’s or 2K, where, as
before in § 11,

K ‘—f/C‘ZiZ/J(]. - K’QSin‘z\l/‘) = Fx.

Doubly-periodic functions make their appearance when we
consider functions of a complex argument w =4+ vi.

Denoting z+y7 by z, we have already discussed in § 179 the
system of confocal conics given by

z=csinw, or ¢cosw, when « or v is constant.

In this case W= ——C—ZZ—

NG
and the poles of this integral, as defined in § 54, are given by
z= +c, the foci of the confocal system of conies.
Changing the origin to a focus, then
wef
(2. 2c—2)
and z=2¢sin%*}w,
20—z = 2¢ cos?Sw,
dz/dw= ¢ sin w.
Denoting by =, 7" the focal distances of a point, then
72 = (2 4 yi)(% — Y1) = 4c®sin?s (v + vi)sin?$ (1w — vi),
25

Pt
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or : r=2¢ sin (w4 vi)sin J(u—vi),
1 =2¢ cos F(u+vi)cos Hu—vi);
so0 that 9’ 41 =2¢ cos vi=2¢ cosh v,

7 —1r=2¢ cosu,
giving the confocal ellipses and hyperbolas, for which v and
are constants.
It is convenient to denote x—y? by 7 and u—vi by w';
and now the Jacobian

J or o, y)—02

sin w sin w’ = v’

o(w,
236. Now, if we cons1der the integral (11) of § 38,
_ dz
Y e 1=z 1=k
then z=sn%w,

1—z=cn*}w,
1—kz=dn%*}w,
dz/dw=sn fwen twdn fw;
and the poles of the integral are given by z=0, 1, and 1/k.
Denoting by #, +/, #" the distances of a point from these
poles or foci 0, 0’, 0" in fig. 26, then
7’=sn jwsn fw', r=cn jweniw’, k"=dn jwdnfw’;
or by means of formulas (2), (3), (5), (28), (29) of § 137, with {w
and $w’ for w and v, and therefore v and 7v for «+v and u—w,

;o cnvi—enu 1 dn vi—dnwu
L vi+dn w T envidcenw’
cnvidnu+4cnwudnvi 2 dnvi—dnw

= dnvi+dnw % cnvidnw—cnwdnwd
Tor” =1 vidnu+tcenuwdnvi c¢n vt —en w

cnvitcnu =K cnvidnw—cnwdnvi
From these relations, by the alternate elimination of u and v,
r+r'dnvi=cn z'fi}
r—r'dnw =cnu

or kr" 4+ kr'en vi=dn vt
e —Fr'ecnw =dnw }
or kr¥dave—krenvi=1— 70}
kr'dnw —krenw =1-—kJ°

the vectorial equations of one and the same system of confocal
orthogonal Cartesian Ovals (fig. 26); also J=krr'v". (Darboux,
Anmnales scientifiques de U'école normale supériewre, IV., 1867.)
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As we travel round one of these curves and make complete
circuits, each enclosing a pair of poles of the integral w, defined
either by 0 and 1, or 1 and 1/k, the integral increases by
constant quantities 4K or 4K", the corresponding periods of
the elliptic function sn%}w, as in § 55.

V'ﬂ .
VA
H' o QA 7O x
O

Fig. 26.

By making k=0, we obtain the degenerate case of the
confocal conics, and now K=}z, while KX'=w; so that the
circular functions have a real period 27 and an infinite
imaginary period; on the other hand, the hyperbolic functions,
as illustrated by the confocal ellipses, have an infinite real
period and an imaginary period 27i.

Mr. J. Hammond has shown, in the American Journal of
Mathematics, vol. 1., how these Cartesian Ovals may be de-
scribed mechanically, by means of reels of thread, as in the
case of the confocal conics of §173.

He takes two reels of thread, of different diameters, fastened
together, and pivoted on the same axis at C. Now, if the
threads are led through a pair of the foci, O and (0, the curves

r+lr'=c
will be described, if the diameters are in the ratio of 7 to 1.

By leading the threads round an oval, as in fig. 26, theorems
can be obtained, connecting arcs of confocal Cartesian Ovals,
analogous to those of Graves and Chasles for elliptic ares.
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237. By inversion of this system of confocal Cartesian Ovals,
we shall obtain another system of orthogonal quartic curves,
with four coneyelic foci 4, B, C, D, defined by the vectors
z=a, 3, v, S, suppose ; and now

w=fclz/J(z—a.z—B.z—y.z—6);
or, writing w for w/4/(a—vy . B—4), then, from § 66,

B—=b.2—a_ o, a—=B.2—=8 o a—B.2—y_ 4
P By B Ly By B P

Denoting by 7, r,, 75, 7, the distances of a point from the
foci A, B, C, D, then, from these equations,

-8 a—fB
mod. B=8m_ sn fwsn Jw’, mod. ~4=cn Jwen W,
a—24 Ty a—3 7,
a—Br
mod. a=f -2=dn lwdn Ju’;
a=—y Ty :

so that we obtain the vectorial equations of these orthogonal
quartic curves on replacing #, v, " in the equations of the
Cartesian Ovals by these expressions.

(Proc. Cam. Phil. Society, vol. IV.; Holzmuller, Einfihrung
in die Theorie der isogonalen Verwundtschaften, 1882.)

238. We now proceed to express the elliptic functions of the
imaginary argument v¢ by functions of a real argument v.
We know that cos vi=coshv, sin vt =1 sinhv, tanvi=1 tanhv;
and that the function ¢ or amh u, and its inverse function
w or amh~1¢=log(sec ¢+ tan ¢) =cosh~Isec ¢, ete.,
connects the circular functions of ¢, for which x=0, with the
hyperbolic functions of u in § 16, for which x=1; and then
cosh u =sec ¢, sinh u=tan ¢, tanh u =sin ¢, tanh Ju=tan }¢.
Now, if . ¢ =amh 1,
then cos ¢ cosh /i =1, or cos ¢ cosr=1,
a symmetrical relation, so that
Y=amh ¢/i;
and sin ¢ =tanhyri=1 tan y,
cos ¢p=sech \Ji= secy,
tan ¢ = sinh ¢ =1 sin , ete.

Also d¢ =1 sech Vridr =1 sec\rd),
A, k)= /(1 +«an)) =sec VAR, «),
so that de il

Alp, x) AQY, «)

G.E.F,
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If Y=am(v, «),
then ¢ =am(vi, k);
and sn(vi, k)= 'b%:ll—((%—x,;, or 4s¢(v, k'), or ¢tn(v, «);
en(vi, k) = Eﬁ(qlf’)’ or nc(w, «);
dn(vi, k)= iﬁév’—x:g, or de(v, «),

connecting the elliptic functions of imaginary argument vi and
modulus ¢ with the elliptic functions of real argument v and
complementary modulus «”.

Putting v=K’, we notice that sn K4, en K'¢, and dn K'i are
infinite; and putting v=2K", then
sn2K'i=0, cn 2K%=—1, dn 2K't=—1;
also sn4K7=0, cn4K'i= 1, dn4K'¢= 1.

239. The Addition Theorems of § 116 may now be written
en(u+vi)=(enu cn v—isn wdnwsnvdnv)+D,
sn(u+vi)=(snudnv+icnudnu snv env)-+D,
dn(u+vi)=(dnucnvdnv—ix’snu cn wsnv)+ D,

D =co?v+k%sn’u sn?v;
remembering that the modulus of the elliptic functions of v
is «’, while that of the functions of w is «.

Thus, putting v= K,

Cnw

dn(u—l—K )= —@—u,

,. .dnw ,.
cn(u—}-K@):—zK P sn(u+K@)=
so that, putting =K,
en(K+K9)y=-ic'l, sn(H+Ki)=1/k, dn(K+K7)=0.

Writing C, S, I} for cn 2u, sn 2u, dn 2w, then (§ 123)
, en(2u+ K4 1 «S+Di

sui(u+ 4K = lFHH((Q&'-E”K’@z S

Generally, when m and n denote any integers, we find that
en(w+ 2mKE + 20 K1) = (—1)"*t"cn u,
sn(u+2mK +2nK'i)=(—1)y* snu,
dn(u+2mK +2nK'i)=(—1)" dnwu;
so that 4K and 2K'i are the periods of sn u,
2K and 4K are the periods of dnu;

the periods of e¢nu being 2(K 4 K'7) and 2(K — K'7).

ete.
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In § 164, we may now write
Uy + Wy + g = 4ME + 40K ;
or in the notation of the Theory of Numbers,
Uy Uy + Uy =0 (mod. 4K, 4K7).
240. A combination of the transformations of §§ 29 and 238,
to the reciprocal and to the complementary modulus, gives

en(vi, )= —Ar= L o el i),
P el &) dn(kv, 1/x) " dn(cvi, ix/x’)
oty &) isn(ky, 1)) sn(k'vi, ixx)
sn(vi, )= en(v, ) Kdn(cv, /)" dn(vi, ix/k")
dn(vi, k)= dn(v, «) _ en(c'v, 1/c) 1

en(v, ) dn(cv, 1) dn(vi, ’l:IC/K/)~
Thus en(k'w, ic/c")=cd(u, k) =sn(K —u, ),

or am(kw, tc/k)=Ltr—am(K —w, );

as is otherwise evident, when we notice that, if

¥ _1 1 1 K. 1
w =-/ (1 —k%0s?¢p) *d¢p :'Z/- I+ 7 sin®r) *dy,
0

0
so that Y=am(ku, ix/k’),
3T _1 ¢ -1
then K—u =-/ (1 —kcos™) *dnfr = / (1 —«%in%p) édgb,
¥ 0
or p=am(K —wu, ),
provided =ir—¢.
241. As an application, take the values of v; and v,in §210;
14cos 8 d—cos a d+1
2y — - 1 COSP 29 = 2, —
dn®v, = 14cosa S 14cosa oy 1+cosa
1—cos 8 d—cos a ; d—1
2, = - OO P = - =
dn B eosa M T—cosa %7 T1-cosa’

so that, with v,=pK'i, v,=K+qK’i, where p and g are real
proper fractions (§ 56), then

l—cosa_ _sn’y _ _sn®pK’i dn’gK’s v
1 —}—cos a anvQ - enqK%
—cos B _snPy dnfo, kZsn?p K’
1 +cos B " snPu, dn?v,  dn*pK’ien?qKi
d—1  snPuy en’v,  «Zsn’pKisn?q K"

d+1"  sn’y, cn?y, en?pK'ien®g K1
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Thence, expressed in a real form,
l—cosa_sn’pK'dn’gK’
1+4cosa cn’pK’
or (§185)  tanja=tanifam{(p-+q)K’, <’} +am{(p-g)K’ '},
a=  am{(p+q)K’, ¢’} +am{(p-¢)K’, «'}.
9) —cos 8 kZsn?pK’en?q K’
l4+cosB  dn¥pK’
sn px’K 1//( )dng(qK’K’ 1/1{

Also (§2

en?(pr’K', 1/k") ’
so that B=am{(p+q)’K’, 1/} +am{(p - q)c' K’, 1/x'}.
And g;—} =k"%sn’pK'sn’qK’
_sn’(ipK’, k)dn*{(1—q)iK'— K, «}
en?(ipK’, k) ’

or d=cosfam{(p+q- 11K+ K, «} +am{(p-q+1)iK'- K, «}].
In the Spherical Pendulum, Or=0; and therefore (§ 210)
l1—cosa 1—cosB d—1

l14cosa 1+cosf cl—l-l:l;
d—1 , , _snqK’cn pK'dn pK’
an dF1 k2 sn?pK'sn?q K snpKen K dn i
or : sn(p—q)K' =snpK’en ¢K’'dn ¢K'.
Thence
sn(q-}-p)K’ en(q+p)K’ dn(q+p)K’
=2 cosB=—— AL cosq= s
sn(q—p)K p= en(g—p)K dn(g—p)K

242. With Jacobi’s notation of § 189, the expression for iy
in § 210 becomes

., (enudnv,  env,dnw,

i = (T R T, )+ 1L, )
__(enwvdnv, _cn vydn v, 110 Ou=1)O(u-7,)
_< sn v, r 3 +Zv2>u+ log ¢ O (u+v,)0(u+ vy)’

and now, if we divide v into its secular and periodic part,

in the form Y=Yu/K+,

then ¥ is called the apsidal angle, in the motion of the Top or

of the Spherical Pendulum, as seen illustrated for instance in a

Giant Stride ; and

W= (953’,151,‘? Y4 T, + & Q’zd“ Vs
snv,

which must now be expressed in a real form.

O(K ~v,)O(K —v,)
O(K +,)O(K +vp)

+Zv >K+ Llog
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From § 172,
vi
(w1, 1) =¢/{dn2m_ EIK)dvi
0

B [ «)
=K' cn2(v, K)>dv

snvdnwv
env

=f~{-v—v+Eam(v, K)— (§ 185)

<E' E

,. snovdnv

= (gt =1 +m =22
) ~ snvdnv

=3k A )= oy

cnv
by means of Legendre’s relation of § 171.
Thus, with v, =pK'3,

.fen v,dn v, _mp , o, cnpK'dn pK’
Z( sn v, +Z’U1>—-2K+Z(pK,K)+ snpK

Again, by (2)*, § 186, since ZK =0,
Z(K+w)=Zu—«*snusn(K+u);
therefore, with v,= K + qK"3,
/en v,dn v -
o2y 70, ) = T4 2, ).

sn v,

Also, if p and ¢ are proper fractions, the logarithmic term
of ©¥ vanishes (§ 264) ; so that, finally,

\I, oy s cn K/dn K/
E=ag Pt O+AUPK, )+ UK, )+ EE T

In the Spherical Pendulum,
en pK'dn pK'[sn pK' =«"%sn pK'sn ¢K'sn(p—q)K'
=ZqK'+Z(p—q) K —ZpK’;
‘\I, ’ Vv (A
80 that jf=21-]f(p+q)+2 Z(qK, )+ Z{(p— K, «'}.
With the Weierstrass notation, taking « in equation (8)
of § 208 between the limits w, and w, 4+ w,;, we find (§ 278)
¥ =(a+b)fw; — ({a+ {)wy,
where a=pw; b=w+qw;

In small oscillations near the lowest position, p and «” are
very nearly unity, while ¢ and « are small.
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The Geometry of the Cartesian Oval.
243. Denote the angles POO, PO'O, P00 in fig. 26 by
0, 0’, 6" respectively ; then with O as origin,
x+yi=cnw, z—yi=cnu;
5 tan 10 = N @+ Y1) — /(@ —y1)
PO byt S —yi)
_cenjw—enjw \/ —cnu 1—-cnm>
“en fw-en dw’ l+enuw ldcnoi
or, in a real form, with modulus «” for the functions of v,

- - 1 .
tan 40 = \/1 cnw 1 cnv) sniuwdnfu snjvdnie,

Fenw 14cnw cn fu eny
cnu--cn v . sSn w sn v
cosG:-Hi——~, sin=————.
l4+enwenv l4cnuwenw

With 0” as origin,
k¥ (x~+yi)=dn24w;
and, similarly,
i tan %9,,=dn sw—dn jw’ _ (l —dnw 1-—dnm)>
dn {w-+dn Jw’ 1+dnw 14dnws/’
tan 10" = «/<] —dnu dnv—cn @) =xzsn tuenju  sniv
2 1+dnw dnv-+cnw dnfu  enfvdniv”
008 6 = cnv+dnwudnwv sin 0 = k%D wsn v
dnv+dnwen dnv+dnuenv
With O’ as origin, and
@+ yi=sn?w,
then itan 36/ = sn %w— sn Jz-w’”
s fw—+-sn jw
To reduce this to a real form, similar to the above, we require
two new formulas, not included in Jacobi’s list (§ 137), but easily
derivable from it, namely,
{dn(vw+v) £ en(uw+v) H{dn(uw—v) £ en(u —v)} = (¢, dy £ c,d, /D,
{do(uw+v) £ en(w+2)H{dn(uw —v) F en(w —v)} =k*(s; F 8,)2/ D.
Now, with }w and }« for w and v, and » and vi for u+v
and w—w, ;
. , dnuw+4cnw dnvi—cnog
itan }6'= dnw—cenw dnwi+ten ml)’
ton l&9,=\/<dn w+enw 1—dn 'v) _cnjuwdnjusniveniv,
‘ dnu—cnu 1l4+dnw sn fu dniv 7
—cnu+dnudny . KZsnasnv

sin@f=—-— " —.
dnuw—ecnwdnv dnw—cnw dno

cos @'=




OF THE ELLIPTIC FUNCTIONS. 268

244. Again, denoting the angles which P subtends at 0°0",

00, 00" by ¢, ¢, ¢" respectively, so that
¢=7T—0,—'6”, ¢/=6 0// ¢// __6_0/;
then we shall find
1 ,_snjudnfu  enjv _\/ —cnu  l+enw
ban ¢ = cndw  snjvdndw l+cnu, 1—cnv>
Ksniu  «sniveniv \/(dn w—cnw 1—dn 'v>
cn fu dn fu dn v dowtenw 1+dnv/’
1 1

tan }" ,_snjuenfu enfvdn v _\/(1 —dnw dnov+ecn fv> _

tan 1¢'=

dnfw  sniw l1+dnw dnv—cnv/’
cos¢=»cnu—cnv sin¢= SN sn v ’
L—cnuecnv 1—cnucnwv
cosgb,=cnu+dnfu,dnv’ in ¢ = k%sn u snv
dnw-4cnu dnv dnu-+cenwdnv
cqu’,)”=—cnv+dnudnv ing’ = K2sn L sn v )
dnv—dnw en v’ dnv—dnwcnwv

Similarly, denoting by , o', »” the angles which the normal
at P to the oval along which v is constant makes with PO,
PO, PO", we shall find

,_snwenv - snudnw ” sn
tanew = ———, tanw an @ =———
snv “dnwsn o cnusnv

Drawing the three circles through 0'P0”, 0"PO, OP(0', and
denoting the points in which the normal at P meets them
again by @, @', @", we shall obtain similar simple expressions
for PQ, 0Q, ... (Williamson, Diff. and Int. Calculus).

245. The two ovals defined by v and 2K’ — v form a complete
curve ; and so also the ovals defined by v and 2K —wu.
Denoting by P, P, Q, @ the four corresponding points
defined by (u, v), (u, 2K'—v), 2K —u, v), 2K —u, 2K'—v);
and denoting by p, p’, ¢, ¢ their consecutive positions when
w receives a small increment du, then
Pp=/Jdu=r(rr'r")dw
_cnridnu+cenwdn m\/(cn vi—en u)du
dnvi+dnw en vi4-cen u.
dnu+4cnudno [/l—cnucenv .
“dn v+dnw en ’v\/<1+cnu cn v)du’
and changing « into 2K —u, v into 2K’ — v,
Qq = dnu—cnudn v\/(l—cnu cn v)du

dnv—dnuwcnv’V\l4+cenucnv
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Then P10+Q’q'_—_2 dnu dnv J(l—cnucnv)du

& T+enuenvN\l+cnuenw
= 3—2%?2:)) &/(1 =2 en v cos 6 +cnv)df ;

so that the sum of the arcs described by P and @' is expressible
as an elliptic arc.

. ,, 2 kenu—«%cnov [[l—cnucnv

Again Pp—Q'q Tk 1+cenwceno \/(1 +cnuen v)du’

which is expressible in the form

Zen vJ(l — 2 dnw cos 6"+ dnZ)d6

k?snv

Kzsn%“/ (dn*v+2 en v dn v cos ¢" +cenv)de” ;

so that the difference of the arcs described by P and @ is
expressible by the sum of two elliptic arcs; and thus the arc
of the Cartesian Oval described by P is given by means of
three elliptic arcs, which is Genocehi’s Theorem (Annali di
Matematica, V1., 1864 ; Mr. S. Roberts, Proc. L. M. S., 111, V.).

246. Let us examine the analytical properties and physical
applications of the functions
log en w, logsnfw, logdn jw.
Denoting logen Jw by ¢, 4+, when resolved into its real
and imaginary part, then
¢1+iYr =14 log en $w en w’+ 4 log en fw/en fw'
en fwdn fwen fwdn fw .,
dn w dn Jw’ T tap Yen tw'+cn fw
cnwdnu+tdnvienu . .\/<l—cnu, 1——cnm§)
=1 -1 .

b log dnvi+dnw Futan™h l4cnw l4cnwvi/’
as in § 236, by means of formulas (3), (20), (28) of § 137 ; and
now expressing the elliptic functions of vi, to modulus «, in
terms of functions of v, to modulus " understood ; then

dou+4cnudnwv \/<1—cnu 1—cnv>

=1logon WA WHRY o —tan-1, /(2= 2% T Y),

¢1—210gdnv+dnucnv’ Y =tan l4+cenuw l4cnw
Denoting log sn 1w by ¢,+ iy, then

¢o+ i, =1} log sn w sn w4} log sn Jw/sn ju’

sn w dn fwsn fw'dn fu’ sn jw’ —sn fw

itan~li—32——— 2
dn jwdn w’ + sn yw'+sn fw

cnvi—enu o . . [fdnu-+tenu dnwvt—cnor
=1log —————+itan-1¢ . - .
dnovi+dnuw dnuw—cnu dnovi4cn v

.cn fw’ —en Jw

=1 log

=1log
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l—cnucnv | . dnu+cnu 1—dnwo
=1]og_—_cnwenv -1 ,
log dnv+4dnucn v+@tan \/(dn w-cnu l4du «v>'

Similarly, denoting log dn fw by ¢y+i, it
_ cnvidnu+enudnot |, _1.\\/ 1-dnw 1—drw7§>
=4log envitenuw Fotan” <1+dnu 1+dnwt

dnu—l—cnudnv . —1\/ l—dnw dnv—cnw
=4log "T1+cnwenw +1tan <1+dn'u, dnv—i—cnv)'
By (20), (21), (22), (23) of §137, we prove, in a similar
manner,

14cnw cnvi+cnw —¢snovidnw
lo =% ;+@tan'1————.———
l—cnw Senvi—enu dnvisnuw

= tanh~(en u en )+ tan~(dn v sn v/sn v dn v),
log\/l +dnw _ta,nh-l(dn w en v/dn v)—74 tan-(en w sn v/sn ),

log dnw+cuw
dn w—cnw

=ete.

247. These conjugate functions ¢ and i of the complex
w+vi are capable of representing the solution of various physi-
cal problems concerning a plane in which u and v are taken as
rectangular co-ordinates, since they satisfy the conditions

O _Yr 9%_ oY,

ou  ov w ow
2 2 2 2
Tp e By Y,
ou? ' o ou? ' o?

Here u and v are not restricted to be rectangular co-ordinates,
but they may represent the conjugate functions of confocal
conics or Cartesian Ovals, as in §§ 179, 236, or of any orthogonal
system, which divides up a plane into elementary squares or
rectangles, as on a map or chart.

As in § 54, we take a period rectangle O.ABC, bounded by
u=0, u=2K, v=0,v=2K"; and now, as the end of the vector
w or w+wvi, drawn from O, travels round the boundary OABC
of this period rectangle, the vector w assumes the values

2K (0 <t<1); 2K+ 20 K0 <t' <1);
24K +2K"i(1 >t > 0); 2 K'i(1 > ¢ > 0).

When the sides of the period rectangle are ¢ and b, we

replace u and v by 2Kwx/a and 2K'y/b, where K'|K =b/a.
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Taking the function log en w or ¢,+14\r, then from O to 4,

1=0; from 4 to B, ¢, =1%=; from B to 0, Yy, =%+ ; and from
C to O, y,=0.

At A, where u=2K,v=0, then ¢=—; and at C, where
u=0,v=2K, ¢p;=w.

The functions ¢, and 1}, therefore satisfy the conditions
required of the potential and stream function, due to electrodes
at 4 and C, of the plane motion of electricity or fluid, when
bounded by the rectangle OABC.

The function v, will also represent the stationary tempera-
ture at any point of the rectangle, when the sides 04, OC are
maintained at temperature zero, and the sides AB, BC at
temperature .

When the period rectangle is a square, or K =K', then
Yo, =17 when u+v=2K, or along the diagonal AC; we thus
obtain the permanent temperature inside an isosceles rect-
angular prism, when the base is maintained at one constant
temperature, and the sides at another.

Similar considerations will show that the function logsn {w
or ¢+, will give the streaming motion in the same period
rectangle, due to a source at 0, and an equal sink at C.

The function v, is now zero along OA, AB, BC, and { along
0C'; and v, will therefore represent the stationary temperature
when OC is maintained at temperature 4, while the other
sides are maintained at zero temperature.

A superposition of four such cases will give the permanent
temperature when the sides of the period rectangle are main-
tained at any four arbitrary constant temperatures. (F. Purser,
Messenger of Mathematics, VI, p. 137.)

ExAMPLES.
1. Solve the equation

kZsntu — 2%sn?u 4+ 1=0.
2. Investigate the curves given by
dzjdw=(1—2%)2
3. Prove that the system of orthogonal curves given by
£+in=sn(u+vi)
are the stereographic projections of a system of confocal sphero-
conics (W. Burnside, Messenger of Mathematics, XX.).



OF THE ELLIPTIC FUNCTIONS. 267

Prove that the stereographic projection of the points
z=Rsnudnv, y=Rdnusnv, z=Rcnucno,
on the sphere ?+y?+2 =12
whose latitude and longitude are 6, ¢, are given by
£ i = 2R tan (b — 30)(cos ¢+ sin ) = R\/l—_%ﬁ%—)-

14en(u+v1)
Prove also that

S+ G+ G -G+ G+ G
<6u + + ou ov + ov + ov
= R¥(1 — «%sn’u — «snv).
4. Discuss the physical interpretation of
. kksnwsny Lo keny.
¢+up= tan dnwdno +otan KCnu
and determine the single function from which it is derived ;
L kenu . _,KSDUSNY
also of ¢+iyr=tanh- domdno 4+ tan v
Interpret these expressions when
2+yi=csin(u+vi).
5. Prove that, if ac-l—yi—bn'w

then o+ip= <Zw+2KK>

gives the plane motion of liquid streaming past two obstacles
given by =1 and 1l/k, z=—1 and —1/c (W. Burnside,
Messenger, XX.).

The Double Periodicity of Weierstrass's Functions.

248. A procedure similar to that of § 236 will show that the
Cartesian Ovals of fig. 26 are also the representation of the
conjugate functions of the system z=gpw, obtained from the

definition of § 50,
w
W e

or S dzldw=pw= — J(42® — g,z —g,),
where 4P — g — gy =4z —e)(z—e)(z2—e5) ;
and z=e,, €, ¢, define the three foci.

According to § 51,

pw —ey=(e;—e)ns’/(e; —ex)w= (¢, ey)sn*{/(e, — ex)w+ K1},
pw—ey=(¢;~€;)ds? /(e —ex)w= (e;—ey)en*{ /(e ~ ex)w+ K},
pw—e; = (e, — €5) cs?/ (6, — e)w = — (¢, — e5)dn*{/ (¢, ~ e)w + K0},
by §239; thus identifying these results with those of § 236.
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With the notation of § 202,

2 2 2
w—e, = a;lz/g wW— e, = gﬂ] W — e, = _%,L_U 5
p i ow/’ g 2 \ew/’ g 37 \ow

and denoting the focal distances by v, 7,, 7, and w—vi by w/,
,,,1=0'1'w°'1u;’, 2=ngo’2@‘f” 3=°'3'w°'3u//,
oW oW ow ow owow
249. To express these focal distances in a real form, as in §236,
we employ the Addition Theorem (K) of § 200, written
(U +v)o (U —v) = U 20 { (Pv — €a) — (PU —€q)}
=02 02V — T PU 02V i, (M)
Again, from § 154, p(u+v)—eq is a perfect square; and we
may write a=gpu, y=pv, s=p(u+tv),
N =pu—eq, D=pu—eg. pu—ey;
{p(u+v)—ea} ,
_ (pu—eq. pv— eg. PV —ey)— N (pu—eg. pu—e . gw—ea)’ (N
pv—pu

and now
Falti ) (u— 1) = N/ {P(u+ ) — e} s 0o (v — pu)
=gWa,W a-ﬂ’l) o',y’l) - o-ﬁu o',y’l,l/ T, Uav,... (O)
and changing the sign of v,
c(u+v)o (uw—v)=cU oW TGV OV o T U TV OV (P)
Again, by multiplication with (N) and reduction,
o (u+ v)o-ﬁ(u — )
a(u+v) o(u—)
_ N (pu—ea. pu—eg. pv—ea. pv—eg)—(ca— g/ (PU— ey . Pv—ey)
PV —PU ’

or
a(uw+ v)a'ﬁ(u —V)=0o,U TG T TG — (e,— eg)ot o, U TV T, Q)
o (U — v)o-ﬁ(u +v)=g, TRl TV TGY (€~ eﬁ)a-u awaova. (R)
Similarly,
Tt Voo (1=0) _ (1= Mev—e,) — (= ¢g)(ea—2)

a(u+v) a(u—v) U — QU :
or
T (WFV)o(w—v) =0, U 50— (¢, —¢g)e, — €, )T*U ™. ... (S)

(Schwarz, Elliptische Functionen, p. 51.)
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Now, from these equations (0), (P), (Q), (R), with
w or l(u+vi) for w, and w’ or 3(u—wi) for v,

o TIW TR a-lw a-zw = —(ey—e, T W 0V + ot oy U
1= oW O-Q/LU oW qu 3 }a'gu a'l’l)?: —o U 0-3’01"

or = oy W o3W o'l'w o'3w — (e - \o-lu 0'31)’1,+ ol crﬂ)@
oW oW ot o'3w a' w 0'2721 — oW a'l’l)?,

with similar equations for r, and r,; and thence the vectorial
equations of the Cartesian Ovals analogous to those of § 236
Toas — T30l = (ez—es)a-lu} ete
PVl — Ty Vi = —(eg— e vi)
These vectorial equations again are the geometrical inter-
pretation of the formula, immediately deducible from (N),
oW ogW's (w+w)— o we, og(w+w)
=(eg— 0, )oW oW (W+wW), ......... (T
Making m?= —1 in the homogeneity equations of § 196, gives
P(V5 g g =— 9(V5 o —Gs),
the equivalent of the equations of § 238, by which a change is
made to a real argument and complementary modulus; while
{Wis gy go)=— (V5 g —7y)
o(Vi; o go)=  1o(V; gy —0s)
To(V15 Gp J) = 0u(V3 Po —Gy)
250. When a point has made a complete circuit of one of the
ovals, enclosing a pair of foci, defined by ¢, and e, or ¢, and e,,
z will have regained its original value, but w will have increased

or diminished by 2w, or 2w, defined as in § 51, 52 by the
rectilinear integrals

o, f ds//S / ds/n/S,
w0y = f ds/ /S / ds/ /S

so that 2w,, 20, are the periods of the function pu, and
P (w4 2mw, + 2nw;) = pu.

To fix the ideas we have supposed the circuit of two poles
of the integral made on the enclosing branch of a Cartesian
Oval, but the result will be the same whatever be the curve,
provided it makes the same number and nature of circuits.

Now, in § 165, we can have

U+ v+w=2Mwo, +2nw;=0 (mod. 2w,, 2w,).
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251. In § 54 it has been shown how, as the vector of the
argument w traces out the contour of the period rectangle, pw
assumes all real values; and pw may be made to assume any
arbitrary complex value at a point in the interior of the
rectangle, given by a determinate vector tw, + t'w,.

It is convenient to put w,+w;= — w,, so that
w,+ wy+ 0w, =0, with e +e,+e;=0
and now Pw,=¢y, gaw2 =0y Pw;=¢;
while Po=p 0= w,=0.

The equations of § 54 show that

€€y .6, —
pluto)—o =102 0

pu—e,

Cy—Cy. Cy— ¢

putw,) —ey="2—2"2_"1
pU—e,

€y—e, . —e

P+ wg)—ey=-2—-15 1
PU—ey

equations analogous to those of § 57, in Jacobi’s notation.

Thus, from ex. 9, p. 174,

49 2u=pu+p(w+ o) + o+ w,) + Pt + w;).

With negative discriminant, as in § 62, we take e, as real,

and e, ¢, imaginary ; also o, = (w0, +o',), v;=3(w,— o) ; and
Po =01, Pug=eg  Puy =Py =

252. A great advantage of the Weierstrassian notation (at
first rather baffling to one accustomed to the methods of
Legendre and Jacobi) is that the dimensions of the elliptic
integral ave left arbitrary, and can be changed by an applica-
tion of the Principle of Homogeneity of §196.

When the canonical elliptic integral of § 50 is normalized
in Klein’s manner (§ 196) by multiplying by AT?, then

ATrds
N (At~ ‘923—93) ./;/(4‘0' - ')’25' ')’3)
where s=A%,  g,=Aby, gs=Aby,;
and now v —2Tvy2=1,

so that the new discriminant is unity, and
J=v J-1= 27y,"
If @, @, denote the real and imaginary half periods of the
normalized integral, then

1 1
T, =w,ATE,  Ty=wAT2,
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The general elliptic integral, written with homogeneous
variables as in § 155, is also normalized by Klein by multiply-
ing by the twelfth root of the discriminant of the corresponding
quartic, and its half periods are now @, and @,

If we normalize, for instance, the canonical integral (11) of
§ 38, written with homogeneous variables ;, ,, in the form

/(aclxz Sy — 8, 1 — ey Mo, — e, dlaty),
then the invariants g,, g,, and the discriminant A of the quartic
By Ly . By — Ly . Ly — Koy,
being the expressions given in § 68, therefore
A= (3oL = )} = 3/ (G )

Now the half periods of integral (11), § 38, being 2K, 2K,

= 2K\3/<%KK,), Ty= QK”L',E/(%KK/).

We are thereby enabled to change from Weierstrass’s o, and
w, to Jacobi’s K and K, and to utilize the numerical results of
Legendre’s Tables. (Klein, Math. Ann., XIV,, p. 118.)

When the discriminant A is negative, we normalize by
multiplying by (—A)™, and replace o, and o, by w, and w,
(§62); but now the new discriminant y,*—27y,2= —1, and

o —A)T=2KY/(Grr’), o' (—AT)=2K"18/(ex’) (§§ 47, 58).

For instance, if g,=0 in § 50, (—A)™ = ¢/3/¢,; and in § 58,

J =0, or 2k’ =1}, 2,9/(4xx’)= /2 and now
W/ 3NGs =K /2, w0/ /BN Gs=1K"Y2;
while (§ 47) wy [w,=K'1|K=1i,/3.

Confocal Quadiic Surfaces.

253. The symmetry and elegance of the Weierstrass notation
is well exhibited in the physical applications relating to con-
focal surfaces of the second degree.

The equation of any one of a system of confocal quadrics
2 2
being a3+7\+bz +02+k 1,
we put
@+A=mHpu—e,), P+ X=mHpu—e,), +A=m(pu—e,);
and now the integral

/’” AN _2u
y @ ENDEEN AN m

With e, > e, >¢,, we must take a? <2< 2,
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Three confocals can be drawn through any point z, ¥, 2,
an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two
sheets.

Supposing the ellipsoid to be defined by A or =, and the
hyperboloid of one sheet in a similar manner by u or v, and
the hyperboloid of two sheets by v or w; then in going round
the period rectangle of § 54, '

(i) w=pw, ©>pu>e, for the ellipsoids; starting with p=0
for the infinite sphere, and ending with p=1 for the inside
of focal ellipse ;

(i1.) v=e,+ quws, e,>pv>¢,, for the hyperboloids of one sheet ;
starting with ¢=0 from the focal ellipse, and ending with
g=1 for the focal hyperbola;

(iil.) w=rw,+w,;, €,>pw>e, for the hyperboloids of two
sheets ; starting with ¢ =1 from the focal hyperbola, and ending
with ¢g=0 for the outside of the focal ellipse ;

(iv.) the fourth side of the period rectangle gives imaginary
surfaces.

254. Replacing b2—a? and ¢®—a? by (8% and 2 so that
WIBr+(ely)=1, 2=0,
are the equations of the focal ellipse of the confocal system, we
should have to put, with Jacobi’s notation,
a24r= ylesHu, k), BP+A= yids (u,k), 2+A= ynsi(u,k);
a4 p=—F%n(v, «), P+ pu= BFn’(v, ), +p= +2dn¥(v,«);

a2+ y =—y2n(w,k ), b2+ v =—y%en*(w,k), >+ v =x>ysnH W,k );
2—=0  , b:—a?.

where K= T =
cz—a? ¢z —q?

and now u, v, w will be Lamé’s parameters, as given in Max-
well’s Electricity and Magnetism, 1., chap. X.
By solution of the three equations of the confocal quadrics,
w2=0b2+)\ a2t a4y y2=bz+>‘ N TN v
a?—b%. a*—ct b2—c*. b*—a?
22=c2+>\ Ctp. Pty
¢—a*. —=b?
and thus @, ¥, z can be expressed as functions of u, v, w.
Employing the function s, of § 203,
e m?s? = m2s,? . ms?
€y — €y . 61— O og— €y . Cg— €] eg—e; . eg—e,
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When b2=¢? the ellipsoids are oblate spheroids, and the
hyperboloids of two sheets degenerate into planes through Oz ;
and now the orthogonal system is given by

2 2.4 .2
EA i = (i)
cot’u ' cecu ’
2 2
LA e A S (i)
" tanh® ' sech?y
v _ 2 . (i)
COS2w sin2w =US e .

intersecting in the point
&=+ cot w tanh v,
9=+ cec U sech v cos w,
z=ry cecw sech v sin w.

When b?=a?, the ellipsoids are prolate spheroids, and the
hyperboloids of one sheet are planes through Oz; now the
orthogonal system is given by

x? + y 22

2 .
Cechzu + coth?w YT e (1V.)
ax? y2
- SinZ’U + COS21) = 0, ..................... (V)
a? 4P 2 .
890h210+m~y S eeereienenareaanes (Vl.)

intersecting in the point

x =+ cech v sin v sech w,
9 = cech u cos v sech w,
z=r coth w tanh w.
The degenerate case of confocal paraboloids, where the centre
is at an infinite distance, may be written

2 2
2
: = ha —@), cvevennnn
cosh? %u+ sinh?fu 8a(acosh u —a), (vii.)
y2 Zg 8 ees
odln T winil, —oud  COSV—D), ...enn..n .
cos?v  sinZlo ale  cosv—a), (viii.)
Y 22 _
sinh?jw ™ coshZw = 8a(a coshw+w), ............ (ix.)

intersecting in the point
2 = a(cosh ©+cos v — cosh w),
y=4a cosh u cos Lv sinh Jw,
z=4a sinh Lu sin v cosh Lw.
(Proc. Lond. Math. Society, XIX.)
S

G.E.F.
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255. We may take u, v, w as Lamé’s thermometric para-
meters, and now Laplace’s equation becomes (Maxwell, Elec-
tricity, L., chap. X.)

2 2 2
(=S E+ =N L+ =g B=0,
Thus ¢ =Au+ Bv+ Cw+ D(u?+v%4u?)
+ 2 Evw+ 2Fwu+ 2Guv + Huvw
is a particular solution of this equation; for instance, the
electric potential between two confocal ellipsoids, defined by
u, and u,, maintained at potentials U, and U,, is given by
U_= { Un(w = ug) + Uyt — w) (g — ).

When the solution ¢ is equal to UV W, the product of three
functions, U a function of w only, V of v, and W of w only,
then Laplace’s equation becomes

2 2 2
(=0 Gt 6=N - TT + =)y T =0
so that we may put
2 2 2
three equations of Lamé’s form (§ 204), when g=n(n+1).

256. The complete solution of Lamé’s equation was first

obtained by Hermite, in the form
U=CF(w)+C'F(—uw).

Denoting by Y the product U, U, of U, and U, or F(u) and
F(—w), two particular solutions of the general linear differential
equation of the second order, in its canonical form

1eU_,
Udu* ™™
where I is some function of u, and denoting differentiation
with respect to w by accents, then
Y=U0,/U,+U,U,,
Y'=U0,"U,+2U0,U,+ U, U,
=21U,U,+2U,'U,,
or Y'—2IY=2U/U,;
and YV”-2IY'-2I'Y=2U,"U,/+2U0,U,
=2I[(U,U,/+ U,/U,)=21Y",
or Y —41Y —-2I'Y =0,
the general solution of which linear differential equation is
AU2+2BU,U,+CUA
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A first integral of this differential equation is
2YY"' = Y2 —4IY?24(%=0),
where C is a constant, given by
U0, -U0/U,=C,
the integral of U,0,-U0,/U,=0.
In Lamé’s differential equation
I=n(n+1)pu+h;
and now, changing to x =puw as independent variable,

aBaY a2y
(4a® — gy — 93);%3 +3(62?— 2020 7

—4{(n?+n— S)az-l—h}%g— 2n(n+1)Y =0,

and this equation for Y has, as a particular solution, a rational
integral function of a or gu, of the nth order, which we may
write Y=Tl(pu—pu),
and h=(2n—1)Zgpa.

Now, by logarithmic differentiation,
vy U’ Y P'u
U, + U1 Y ng—@co’
U, Ul’ C C
U TU,TY T T (pu—pay

Brioschi shows (Comptes Rendus, XCIL) that, when resolved
into partial fractions, we may put

2 {(oa

H(gm pa)” “ou—pda

while

provided that
2p'a=0, Zpap'a=0, Z(pa)yp'a=0, ..., Z(pa)*~%p'a=0,
and Zpay-1p'a=C.
Then 77# 21 ou— pa E 21 gou—i—gaa

2pu—pad 2pu—pa’

and, integra,tmg,
Fu, or U, Ha(u+ @) exp(—ua) =1¢(u, a);

ol oW

while U, or F(—w) is obtained by changing the sign of u or a.
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257. Hermite shows (Comptes Rendus, 1877) that the fune-
tion F(u) may be otherwise expressed by

p=(2) e (L) A ) g

and ¢u, called the simple element, is of the form eM¢(u, w),
¢(u, w) being a solution for =1 and k= gpw (§ 204).

To obtain the coeflicients 4,, 4, ... in F(u), we suppose
du or Mp(u, w), Fu, pu expanded in the neighbourhood of
w=0 (§ 195), in the form (Halphen, F. E. I, chap. VII.)

N 1 % o , ud
(U, w)= -~'+7\+ A2— @w)§+ M=\ pw—p w)y +
! —5)!
(=tppn= D g (0 g O
Substituting in Lamé’s differential equation
F'y={n(n+1)pu+h}Fu,
we obtain, by equating coefficients,
n—1)n—2
Al'( 2(23( 1) )h
A _(n— D(n—2)(n—3)(n— 4){h2 n(n+ 1)(2n 1) }
2 8(2n—1)(2n—3) Jafp oo
On comparing the two forms of the solution Fu, we find that
w=2a, and A=_{w—Zfa.
Thus, for instance, when n =2, we find, as in § 209,

F(u)= “:a?;g; D exp(—fa—yu

o b
~du og(%-%%j—gu) exp(— {o— {byu.

When n=3,
F’Lb:gb(u, a1)¢(u! az)ﬁb(u; ag)

2
= do,iz()b(u’ w)e)\u - (g"a’l + @“2 + 847(1/3)¢(u, 'w)e)\u’
where O+t ay=w,
'ay+g'ay+'as =0,
Pty +paop’ a,+ pag'a; =0,
§or— Gty — §ay— {a =2
This fails when g,=0, and a,=v, ¢y=wv, 0;=0? ; but now
(§ 229) Fu=}(pv—pu).



CHAPTER IX.

THE RESOLUTION OF THE ELLIPTIC FUNCTIONS
INTO FACTORS AND SERIES.

258. The well-known expressions for the circular and hyper-
bolic functions in the form of finite and infinite products
(Chrystal, Algebra, 11, p. 322; Hobson, Trigonometry, chap.
XVIL) have their analogues for the Elliptic Funections, as laid
down by Abel in Crelle, 2 and 3.

Granting the possibility of the resolution into linear factors,
the individual factors are readily inferred from a consideration
of the zeroes and imfinities of the function.

Denote 2mK+2nK'i by Q,
where m and m denote any integers, positive or negative,
denote also Q4K or 2m+1)K+ 2nK'i by Q,,

Q+ K+ K% or 2m+1)K+(2n+1)K'i by Q,,
and Q4+ K% or 2mK +(2n+1)K'% by Q,
Then considering the function
_ . snw,
the zeroes are given by u=(), and the infinities by u=Q,
(§ 239); and thus we infer that, if snw can be resolved into
a convergent product of an infinite number of linear factors,

the form is
m=w n=w W
w I 1T (1 _s_z)
snuw=2A4 m=_—oo ni_w ,
m=w R=00 w
m:I:Eoo %Ew<1_g&>
the accents in the numerator denoting that the simultaneous

zero values of m and n are excluded.
277




278 THE RESOLUTION OF THE ELLIPTIC FUNCTIONS

Similarly,  enu=BII(1=2) /Dy @)
1

dnw=CTI H(1—g—2> /D. ..................... 3)

the zeroes of enu being given by w=(,, and the zeroes of
dnu by u=Q, while the infinities are given as before by
u={); D denoting the denominator in (1).

259. But now, in demonstrating the analytical equivalence
of the expressions on the two sides of equations (1), (2), (3), it
will fix the ideas if we employ a physical interpretation, such
as that given in § 247.

It was shown there that the real and imaginary part (norm
and amplitude) of

log sn w,
where w=u+wvs, will represent in the rectangle OABC the
potential and current function of the flow of electricity (or of
liquid, following the laws of electrical flow) from a positive
electrode at O to a negative electrode at C, 1o ampéres being
the strength of the current ; but here we take 04 =K, 0C=K’;
and u, v are the coordinates of any point in the rectangle.

The infinite series of electrodes, which are the optical images
by reflexion of these two electrodes at O and C, will form a
system on an infinite conducting plane, such that, if the
strength of the current at each clectrode is 27 amperes, the
resultant effect in the rectangle OABC will be the same as
before.

(Jochmann, Zeitschrift fiir Mathematik, 1865 ;
0. J. Lodge, Phil. May. 1876 ; Q. J. M., XVIL)

Starting with a single electrode at O, of current 27 amperes,
the potential and current function at any point whose vector
is w or w+vi are the norm and amplitude of logw ; and log w
may be called the vector function of the electrode at O.

For an electrode at a point whose vector is ¢=a b4, the
vector function at z=x+yi is log(z—c),
which may be written

log(1—z/c),
disregarding the complex constant log(—c).
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The vector of any optical image of O in the sides of the
rectangle 04 BC being given by , the vector potential of the
corresponding electrode is log(1 —w/Q); and the vector function
of the system of images of the positive electrode at O will be

log wH’H’(l - %)

Similarly the vector function of the system of images of the
negative electrode at € will be

w
log IT H(l - Q;)
But these functions, considered separately, represent a

physical impossibility, and are analytically meaningless; their
difference, however,
ot W w

log wnn<1-§>/nn(1—ﬁ—3>,
will represent the vector function of the whole system of posi-
tive and negative electrodes; and since this function satisfies
the requisite conditions inside the rectangle O4BC as the
function log snw, we are led to infer equation (1), with suitable
restrictions explained hereafter.

For logen w, the positive electrode is placed at A, the
negative electrode being still at C'; the vectors of the positive
electrode images are given by €,; and now equation (2) is
inferred ; while for log dnw, the positive electrode is placed
at B, and the vectors of its images are given by , the
negative electrode being at C'; and we infer equation (3).

When in the rectangle 04ABC we have 04 =a, OC=b,
we take K'/K=b/a, and write K(x/a)+ K'i(y/b) for w+wvi,
x, y now denoting the coordinates of a point.

260. We now proceed to express these doubly infinite pro-
ducts of factors, corresponding to the different integral values
of m and m, by means of singly infinite factors for different
values of n; that is, we combine all the factors for one value
of n and the infinite series of values of m into a single ex-
pression ; and here we employ the formulas for the trigono-
metrical functions expressed as infinite products.

Interpreted physically, we determine the vector function of
an infinite series of electrodes, equispaced on a straight line
parallel to OA4.
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- Denoting the vectors of such a series of positive electrodes
by 2ma+nbi, the vector function is

m=w

log II (z—2ma— nb@) or lod(a—-nb@)ﬂ’<l—-d nb@>;

=0 2ma
and provided that (z—nbi) /Qma is ultimately zero when m is
infinite, or that z/ma and n/m tend to the limit zero, we can
write this vector function (Cayley, Elliptic Functions, p. 300)
log sin $(z—nbi) [0, «oovvvviiiiiniiinin (4)
Resolved into its norm and amplitude, this vector function is

$log {eosh {7 (y —nb)/a} —cos 7x/a]

+ i tan~[tanh{{7(y —nb)/a}cot(trx/a)]. ...(5)
The amplitude or current function is therefore constant when
=(2m+1)a; and there is no flow across these lines, provided

however, as is physically evident, we do not recede to such a

large distance from the origin that we are not Justlﬁed in
taking 1t z/2ma as zero.

261. We suppose that Oy passes through the centre of this

infinite series of electrodes, or that m reaches to equal infinite
positive and negative values; but now, at a very large dis-
tance from O, the electrodes on one side of a line, given by
z=(2m+1)a, where m is a large number, will preponderate
over the electrodes on the other side, and the resultant effect
will be a uniform normal flow a across this line, to counteract
which a term of the form —az or log e~% must be added to the
vector function.
‘ The analytical equivalent of this physical effect is illustrated
by the theorem proved in Hobson’s T'rigonometry, p. 328, that,
when the integers p and ¢ are made infinite in any given
ratio, then ¢z, the limit of the product

(142) (1 214 2)e1-2)0-2) . (1=2)

qa
4

= (g)asin 7r§. .......................... (6)

The infinite product II(14-c,xz) is. convergent for all finite
values of «, if the series ¢, is convergent; as is evident on
expanding the logarithm of.the product.
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But Weierstrass shows (Berlim Sttz., 1876) that the divergent

product z(l - 2)(1 - 2—2)(1 - %) .

can be made convergent if the exponential factor e#™® is
attached to the linear factor 1—z/ma; or, interpreted electri-
cally, if to the motion due to the electrode at ma, whose
vector function is log(l—z/ma), we add a uniform streaming
motion parallel to the vector ma, given by log e#™* or z/ma.
Now, denoting the harmonic series
1-142-14-3-14 ..+ p 1 by sp,
P =%~ sin(mz)a) = (p[q)"sin(rz/a),

since the limit of s,—log p or s,—log q is Huler's constant.

262. In a similar manner it is inferred that the vector
function of an infinite series of positive electrodes, whose
vectors are 2m+1)a+nbi,

m reaching to equal positive and negative infinite values, is
log cos yr(z—nbi)/a=}log Heosh{m(y—nb)/a} + cos(wr/a)]

+4 tan-tanh{r(y—-nb)/a}tan(iww/a)], (7)
having lines of equal amplitude given by x=2ma.

Therefore the vector function of a pair of lines of electrodes,
whose vectors are 2ma+nbs, is

log sin{ {7 (z —nbi)/u}sin{im(z 4+ nbi)/a}
=log }{cosh(nwb/a) —cos(wz/a)} ;
or, corrected by the addition of a constant, which makes the
function vanish when z=0, the vector function is
Io cosh (n7b/a) — cos(wz [a) o L 2q"cos (mz]a) + ¢**

cosh(nzb/a)—1 g (T—q7y? ,(8)
where g=e-Ttla,

For a pair of lines of electrodes whose vectors are

(2m+1)atnbi, the vector function is
log cos{im(x—mnbi)/a}cos{{m(z+nbi)/a},
which may be replaced by
1 cosh(nzb/a) + cos(wz/a 1 + 2¢7cos(wz/a) + ¢ |

log. E:osh(/n;b/a)-l-( 1 ) <log 121 a +<g“)/2 )

For the line of electrodes along 04, whose vectors are 2ma
or (2m+1)a, the vector function will be

log sin(47z/a) or log cos(iwz/a). .oovvunnnn.n. (10)
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263. Under Cayley’s restrictions, that m reaches to equal
positive and negative infinite values, and = also; but that the
infinite values of m are infinitely small compared with the
infinite values of m (equivalent to taking the infinite array of
the images of the electrodes as contained in an infinite rect-
angle, of which the length in the direction O4 is infinitely
greater than the breadth in the direction OB), we can now
replace the doubly infinite products in (1), (2), (3) by singly
infinite products, in the form

n=21—2¢" cos(mru/K)+q*"

snu=4 sm(%wu/K)nI}l =gy =D, (11)
_ 14207 costru/K)+g™ o
cenwu=DB cos(}7u/K) II \ (14 gy =D, (12)
_ 1+ 2¢% - tcos(wu/K)+q¢*~2 |
dnu= C1I g1y +D, (138)
where
—_ 2n~1 4dn -2
D= 1= (f‘fé’;ﬁ/ﬁ)w e (14)

By putting =0, the values of A, B, ' are seen to be
K/}m, 1,1; while ¢g=exp(—7K'[K).

The common denominator D of the three elliptic functions,
which represents physically a function whose logarithm is the
vector function of the negative electrodes at points whose
vectors are of the form (2, is the equivalent of Jacobi’s Theta
Function of § 187; and we write

1 —2q¢2n-1 4n-2
ou=60TI- =% (fo_sgj,ff/f)?ﬂ
_ sin?(37u/K)
=00 H{1+sinh2(2n—1)%wK’/K . (15)
The numerator of snu will now be the equivalent of the
Eta Function, defined in § 192; and thus
Hu=,/ksnuOu
= /oK 00 sin(ru/ g )Tt 2L (T K) '
g (1—g™)

ot
= ngr 00 sin(%wu/K)l’[{l +ﬁ%} ...(16)

The numerator of cnwu is represented by the Eta Function
of w4+ K, and the numerator of dn u by the Theta Function of
w4+ K ; and the factors are so chosen that
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' Hu+K) 9(u+K)

snu:—jK—I:eLZ, cnu=7’~c— —ou dn u=,/«" (7
Equation (6) of § 188 may now be written
O(u+v)0(u—v)0%0 =62 0% — H?%u H2v; ......... (18)
while, by means of (7), § 137,
Hu+v)H(u—2)020=H%u 62— 62 H%. ......... (19)

264. It is convenient to replace [7u/K by a single letter a;
and we shall now find that the constant factors are so adjusted
as to give the expansions in a Fourier series in the form

Ou=1—2q cos 2z + 2¢*cos 40 —2¢%os 6+ ..., ...... (20)
Hu = 2¢sin & — 2¢%sin 34+ 2¢sin 5z —.... ....cc.... (21)
It is easily shown algebraically that

nﬁw(l —_ q2n-1z)(1 — q2n—-1z-1)
n=1

— QU= q(r+5 )+ (2 ) — P2 +.) (20
by changing z into ¢?% and multiplying by ¢z, when the pro-
duct on the left hand side merely changes sign; whence equa-
tion (20) is inferred from (15) by putting z=¢?**; and equation
(21) is obtained from -(20)* by writing ¢z for z, and multi-
plying by ¢z,
Written in the exponential form,
Ou=3 izgiensi, Hy= —Tim-1go-Ppen-ri __(99)

n=-—-ow
or with g=e-% a=7K'/K, and b=ui,
Ou = Sitng-na+2nd | oy = — Fin-lo-(-blat@n-15,_ (23)

Then O(u+ K)=Sg» e = X~ nfatmd,
H(u+ K)=Zqr-#Pelr-ri=Fe--Pat@-1b. (24)
and - O(u+2K)= Ou,
Huw+2K)=—Hu,......cooivivenenn. (25)
Changing u into w-+ K", or @ into x4 47 log g, we find
O(u+ K'i)=1q-te-*Hu,
Hu+K4)=1ig-%“Ou, ...ccuv...... (26)
agreeing in giving ssnusn(u4+K7)=1,....ccocvinininnnn. (27)
and leading by differentiation to the formula
Z(uw+K'i)=Zu+(ecnwdn u/sn w)— (37i/K),......... (28)
which, with (§176),
Z(w+EK)y=Zu—(®snuwen u/dn ), .cococeereennenee..(29)
leads to

Z(uw+ K+ K'i)=Zu— (snuwdnufenu)—A7i/K).......... (30)
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265. Jacobi writes (Werke, 1., p. 499) « for lzu/K, and

Ox for Ou, 0, for Hu, 2 for H(uw+ K), and 6,2 for O(u+ K);
and now

Ox = 2™ qn2 p2ni

=1-2q cos 2+ 2¢*cos 4 — 2¢%cos 6+ ... ...... (31)
61-’17 —_ 2?'/277, - lg(n ~$)2e@n—1)zi

=2¢%sin @ — 2¢¥sin 34 2¢sin 5 —... ... (32)
O, = Sqtn—Dgn—Dei

=2qtcos z+2gtcos 3 +2¢* cos 5z ... ... (33)
0337 — Eqn‘262mci :

=1+2q cos 2+ 2q*cos 4o+ 2¢°%os 6+ ... ... - (34)

or, with ¢=e-¢, b=ui,
Or =3 exp(—mnla+2nb),
Oz=3% exp(—nfa+2nb),
0=~ texp{ —(n—})’a+(2n—1)b},
O,e=2%  exp{—(n—5%a+Cn—1)b}. ..oonnnn. (35)
Conversely, starting with these # functions as defined by
these exponential series, it is possible to rewrite the whole

theory of Elliptic Functions ab initio in the reverse order, and
to deduce all the preceding results. '

(Jacobi, Werke, 1., p. 499 ; Clifford, Math. Papers, p. 443.)
For instance, we find that
Ox+imy= 64, O@@+14ilogq)= —ig ez,
O,(m+1m) = Oy, 6O(x+3ilogq)= —igFei0z,
Oz +im)= =0, Oyx+iilogg)= qw%‘—éxiesx’
Ox+3m)= Oz, O x+lilogg)= g teifm. ....(36)
The quotient of two 0 functions is thus a doubly periodic
Sfunction, of real period 27 or 7, and imaginary period-ilog q.
The form of the § and © function series shows that they
satisfy partial differential equations of the form
a0 do
G= " HTagq e (31)
and the 6 functions are therefore suitable for the solution of
problems in the Conduction of Heat.
- Thus, if 6(x cos a+y sin g, ) represents at any instant, t=0,
the temperature at the point (x, y) of an infinite plané, of



INTO FACTORS AND SERIES. 285

which y denotes the thermometric conductivity, then at any
subsequent time ¢, the temperature will be given by

O(z cos a+y sina, ge ™). .....oeiiii e (38)

266. Similar considerations to those of § 258 enable us to
resolve other expressions into factors ; for instance,

dnu—xenw . . dnu-4xenu
—————, or its reciprocal ——————
K K
<o that dnu—renw K _ [dnu—kenw
! dn w-+kenw dnw+xenw

Now dcwu, or sn(K —w)=1/k, when
w=(4m+ 1)K+ 2n+1)K",

or cos yru/K= cosh(2n—1)i=K'|K ;
while deuw=—1/x,
when cos tru/K = —cosh(2n—1)iwK'[K ;

and therefore we may put
dnu—genwu o cosh(@n—1)i7K'|K —cos jmu/K
K " "eosh(2n—1)iw K| K +cos ru/K
_ Oﬂl —2¢q"{cos(fmu/K)+ ¢t
1427 tcos(fmu/K)+¢-v "
where the letter C is used to denote some constant factor.
Now, writing « for f=u/K, and supposing 2 and u real,
log(1 — 2¢ cos @+ ¢%) =log(1 — ce*) 4 log(1 — ce=*)
= —2(c cos x+ LcPcos 2z 4L cPcos B+ ...,
log(1+2¢ccosz+c?) = 2(c cos x—fc?cos 2+ 4cPcos Bz —...),
1 1—2¢ cos x4 c?
14-2¢cos o+ c?
Therefore, expanding the logarithm of (39),

= —4(c cos w+ LcPcos B+ Lcbeos b+ ...).

dnu—genu
log ===

=log C'— 4?(q"'%cos x4+ %q“‘ fcos 8w +1¢"feos Sz +-...)

=log C— 4»—-qA—cosw+— q cos3m+l /i cos dx+...
g —q - 51—¢°

1 COb(Zm— 1)mu/K

=log 0= 2 LRI (40)
and, differentiating,
an( 1)1
cSnu=—"3 sin(2m —1)fru/K (41)

K smh@n— DK R
the expression of snu in a Fourier Series.
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267. By forming the similar factorial expressions for
ksnu+7dnw and snw-4-4cenw,
and taking logarithms, we shall find

log(k sn w414 dn w)
_ sin(2m —1)7u/K
constant — 2@22m T cosh(: )m—l)ln-K’/K""(M)
. _ <1 sinmgu/K
log( snw+1%cnw)=constant — 42 i cosh mr KTl (43)
and, differentiating,
7w cos(@m—1D)iru/K
kenw= chosh(Zm—-l) jomy ) G RULUINREE (44)
cos mauw/K
dn ’LL—ZK-I—KEm, ............... (45)
and therefore, integrating,
_ sin mau/K
amu= 2.K+ E,ml—cosm ............... (4:'6)
We have now found that, in § 78,
1 .
Bu= n coshnr K [K

268. From § 263, we find, in a similar manner, that

log Ouw = constant 4-log II{1 — 2¢*~lcos(ru/K) 49"~ 2 -

cos(mzu/K)

= constant Em m, .................. (47)

and, differentiating, ( /K)

. sin(mzuw
Z KE WE}' ..................... (48)
_ m cos(maw/K)
dn?u = K'l'Kzzmm PN (4‘9)
E 7 mcos(mru/K) -

or 2SI12U/ ]. '—K—Kzzm .......... (OO)

Now, referring back to § 78, we can put
1 T 29"
K smharK K~ K 1—¢
Putting =0 in (49) or (50) gives what is called “a ¢ series,”
‘ m _y2mg" _K(E—E)
Esinh(mm-K’/K) =21 e (51)
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As an exercise, the student may form the similar factorial
expressions for
l—cnuw l—snw l—dnu dnu—cnu
snw ~ enuw  ksnw ' kS0

, ete.,

and their reciprocals

l1+enw l14snuw 14dnw dnuwdsnw
snw ~ end | ksnw Ksnu

ete. ;

and thence determine, by logarithmic differentiation, the Fourier
Series for nsu, esw, dsu, ete. (Glaisher, Q. J. M., XVIL),

The applications of these expansions will be found in papers
in the Q. J. M., XVIIL, XIX, XX.

269. Asan application of these g series, consider the problem
of the electrification of two insulated spheres, in presence of
each other, of radii ¢ and b, and at a distance ¢ from centre
to centre, when maintained at potentials V, and V;, with
charges of E, and E;, (Maxwell, Electricity and Magnetism,
I, chap. XI.).

Then E“= gaaVa‘l'q:szb; Eb = gabVa+ beVb,- cereesnee (52)
where g4, g are called the coefficients of capacity, and qq the
coefficient of induction.

We take w and v as coordinates, given by the dipolar system

tyi=ktan LW+ vi), coeviineriininnnnn (B3)
so that w=constant represents a circle through the poles
(0, £k), and v=constant represents an orthogonal circle, with
the poles as limiting points.

Now, if we revolve this system about the axis Oy, which
may be supposed vertical, the two spheres, if outside each
other, may be supposed defined by

v=ga and v=—0,
so that a=1%k cosecha, b=Fk cosech B, ¢=k(cotha+coth 3);
and putting a+B=w, Maxwell shows, by Sir W. Thomson’s
method of successive images, that
Qua=kZ cosech(nw— ), qu= —kZ cosech nw,

g =FkZ cosech(NT —a), -c.vevvereninnnnes (54)
the summations extending for all positive integral values of n
from 1 to .

Here qg is called Lambert’'s Series; it is considered in the
Fundamenta Nova, § 66.
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Again, with a— 8=z,
Gaa=kZ cosech L{(2n—1)w+2),
qws = k2 cosech F{(2n—1)m —u};
and by the preceding formulas it can be shown that

7

Qoo —Qea= 7c;c€§ tan am <K ’g, x’>. ............... (55)

When the two spheres are equal, =0, and
-
Qaa=Quw ="k cosech }2n—1)o=Fk EE——

1— q2n—1’
When 8=0, the sphere 3 becomes a plane; and now
Qo= — Qap=EkZ cosech na=qa sinh o> cosech na;
which shows that the capacity of a sphere of radius ¢ is raised
from & to ¢ sinh a2 cosech na by the presence of an uninsulated
plane at a distance ¢ cosh a from its centre.

Similar functions occur in the determination of the motion
of two cylinders or spheres, defined by v=a and —3, when
the interspace is filled with homogeneous frictionless liquid. -

(W. M. Hicks, Phil. Trans., 1880; Q. J. M., XVIL, XVIIL;

Basset, Hydrodynamics, 1., Chaps. X., XI.; C. Neumann,
Hydrodynamische Untersuchungen.)

270. To illustrate geometrically the singly infinite product
forms in § 263 of the elliptic functions, consider the analogous
problems of electrodes at the corners of curvilinear rectangular
plates, bounded by arcs of concentric circles and their radii.

The vectors from the centre as origin of a series of p
electrodes, equally spaced round a circle of radius a, will be

@ exp 2 rxifp, where r=1, 2, 3, ..., p;
and with polar coordinates r, 6, the vector of the point will be

rexpi0; so that for the p electrodes, each conducting a current
of 27 amperes, the vector function is

by De Moivre’s Theorem (Hobson, Trigonometry, Chap. XIIL.).

Interpreted geometrically, the norm is the logarithm of the
product of the distances of any point P from the electrodes,
while the amplitude is the sum of the angles the lines joining
the electrodes to P make with the vector 6=0.
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We thus prove incidentally one of Cotes’s theorems, namely,

that the square of the product of these distances is :

(rPeivd — qP)(rPe~ 0 — @) =122 — 2qPrPcos pO+a??, ...(57)
and, in addition, the theorem that the sum of the angles the
vectors from the electrodes to P make with the vector =0 is

_, rrsinpl
T s LRSS (58)
and when the sum of these angles is constant, the locus of P is
an oblique trajectory of the curves
rPcos p or rPsin pf = constant.

With a single negative electrode at the centre, of current
na ampéres, half the total current from the n» electrodes on the
circle will flow to O, the other half flowing off to infinity.

Now the vector potential is, on writing ¢? for r/a,
1Og(,)mein9 — (,‘b”’) — %, ]Og pgind

. 7™sin 16
=14 log(cosh np—cos n0)+1 tan~- lr”cos b —

We can isolate a sector, bounded by 6=0, 6==/n, and
=@ ; and the preceding expression will represent the vector
function of the electrical flow of L amperes, with electrodes
at the end of the vectors »=a, and at »=0.

The amplitude of this expression will also represent the
temperature in this sector, if the radius 6=0 is maintained at
temperature 0, while the radius 6=m/n and the arc r=a are
maintained at temperature 4.

—4imb....(59)

271. Now suppose that on the same circle r=q, an equal
number p of negative electrodes are placed, equally spaced be-
tween the positive electrodes; the vectors of these electrodes
being @ exp(2r—1)=i/p, the vector function is

—log(rpei?? 4 qP) ;
or, if moved out radially on to a circle of radius b,
—log(12e®P+bP). Lo, (60,

The vector function of p equal electrodes at a exp 2vrai/p,
and of p equal negative electrodes at ¢ exp(2r—1)rif/p will
therefore be log(ree? — ) /(12e? + a?)
which, when resolved into its norm and amplitude, is

1% —2aPrPeos phta .o i20P77sin pd

120 4 2021 Peos ph 4 a*P 7P — 2P
G.E.F. T

1
§ log
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_ycospf .. sinpf
coshpp-H' tan sinh pp’

with p=Ilog(r/a); this function will represent the state of

electrical motion in a wedge bounded by 6=0 and 0==/p.

272. The substitution in the preceding expressions in § 247
of the conjugate functions pf and log(r/a)? or pp for u and v,
leads to the solution of corresponding problems for curvilinear
rectangles bounded by arcs of concentric circles and their radii;
and now q=(b/a)?, where ¢ and b are the radii of the curved
sides, while 7/p is the angle between the straight radial sides;
so that in the rectangle 0.4 BC,

OA=ar[p, BC=brlp, 0C=AB=a-b.
The vectors of the images of an electrode at O are now

= —tanh

aq™/Pexp 2rari/p,
where n denotes any integer, positive or negative, and
r=1,23,...,n
For electrodes at A4, B, C, the vectors of the images are
ag?rexp(2r—1)im/[p,
aq®-Ylrexp 2ri/p,
aq@®-Yirexp(2r — 1)iz/p.
For a given value of m, the vector potential of the electrodes,
whose vectors on a circle of radius ag™? are
aq™Pexp 2rim[p or aq"Pexp(2r—1)wi/p
will be  log II(r2¢#0—a?q™) or log II(rPeif+ arqm). .........(62)
Now, suppose a positive electrode is placed at O and a

negative electrode at O, with the corresponding system of
images; the vector function is

n=c
10g i (,r.peipo___apq2n)/‘(q,.peip0__a/pq2n—l)

B s e e

= O —
log ('rglt’>zp 1: { — - 1<700> }{1 g 1< a > }
@ a et
on introducing a negative electrode, of current 7 amperes, at
the origin ; and, writing 7w/K for pf+41log(a/r)?, this becomes
1—2¢* cos(ww/K)+g*
1—2¢2~teos(mw/L) 4 ¢ 77 ‘

log sin(37w/K)HIL
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equivalent, as in § 263, on omitting constant terms, to
log snw.

A similar procedure with electrodes at 4, C, and B, C, will
lead to the singly infinite factorial expressions for enw and dnat.

Projecting these equipotential and stream lines stereographi-
cally on a sphere which touches the plane, we shall obtain the
corresponding solutions for the flow of electricity on the surface
of the sphere.

(Robertson Smith, Proc. R. S. of Edinburgh, vol. VIL;
M. J. M. Hill and A. J. C. Allen, Q. J. M., XVI, XVIIL)

273. When these electrodes are replaced by straight parallel
vortices, perpendicular to the plane, which is taken as hori-
zontal, the potential and stream functions are interchanged.

Suppose a vortex is placed at a point P in the rectangle
0OABC'; to introduce the restriction that there is no flow across
the sides of the rectangle, we must suppose the motion due to
vortices which are the optical reflexions of the point P in the
sides of the rectangle ; the sign of the vortex being positive or
negative according as the corresponding image has been formed
by an even or odd number of reflexions.

The vectors of the positive images will therefore be

21+ 2nbi + 2,
and of the negative images

2ma+2nbi + 2
where z=a+tyi, =x—yi

The resultant current and velocity function at {= &+ yi will
therefore be the norm and amplitude of
_(‘Zma, +2nbi+ (=) 2ma+2nbi+{+2)
log HH(Zmu-}- 2%6?—{—2“— 2 2ma 42001+ {42 (64)
At the point P, this vector function, due to all the other
.images, is therefore

(2ma+ 2nbi)(2ma -+ 2nbi 4 2z)

log HH(;‘me—l- 2nbi+2—2)(2ma+ 2nbv+2+2") ’
.. K b x "y .
P - 2 — L= =
and writing . and ]{a+2K b W v =10,
this may, according to § 263, be replaced by
lox H(u+wi)

E e seresess e (65)
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The stream function at P is therefore, disregarding constants,
Hu+vi)H(w—wvi) 6%y H2vi — H2u O%0i
F o8, 5 B 1og = o i (5 263)

0% O
=108 (j 1~ 15,
=1 log(ns?u —ns?v7)
=1 log{ns*(u, )+ ns*(v, ) —1} ;...(66)
so that the curve described by the vortex is given by
ns’(2Kw/a, k) +ns?(2K'y/b, )= constant, ......... (67)
and all the other image vortices keep up a symmetrical dance,
by describing similar curves.

274. The vortex is stationary when at the centre of the
rectangle; and now, changing to the centre as origin, the
vectors of the images are ma+mbi, where m-+n is even for
the positive, and odd for the negative images; so that the
vector function of the motion is given by

Io HH(2ma+2nbi-z){(2m+ Da+(2n+1)bi — 2z}

S e+ @n Db — 2] {@m+ Do+ Znbi—2)
log *1 Jwdn Jw l—cnw
= Og e 1.., o e Og s
cn jw l4cnw

Expressed as norm and amplitude, as in § 247, this function
l—enw 1—cnw' | l—cnw l4cnw

. /+ 'y log . 7
14+cenw 14cnw ©l4+cenw l—cnw
cn vi—en u snu dnvi—dnw snvi

1

-2

=1log

=1log — - +1 log
23 . 0 .
= gcnm+cnu 2% gnudnovi+dnwsn vl
cnu snu dn vi
= —tanh-1-— —tanh-1———~,
) V1 dnw sn vt

snwdnv .
Tou sy (69)
with u=2Kx/a, v=2K"y/b; the modulus of the elliptic func-
tions of v being «’.

The equation of a stream line of liquid is therefore given by

cn % ¢n v =constant, or
en(2Kw/a, k)en(2Ky /b, k') =constant. ............ (70)

Close up to a vortex the velocity according to these ex-
pressions would become infinitely great, which is physically
impossible ; but a solid core may be substituted for this central
portion, and the shape of this core has been investigated by
J. H. Michell, Phil. Trans., 1890.

= —tanh-!(enw cn v) 44 tan-?
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275. When.a point is placed inside an equilateral triangle,
the Kaleidoscopic series of positive images is given by the
vectors 2, wz, w’, where z=x+y1, and o is an imaginary cube
root of unity ; the negative images being given by 2/, w?', 0%/,
where 2= —x+y4; the origin being at a corner of the triangle,
and the axis of  perpendicular to the opposite side (Fig. 27, i.).

QAR
AT

NNN/N/N
VAV,

YN

(i.) Fig. 27. (ii.)

In addition, similar groups of six images must be added,
ranged round the centre of hexagons forming a tesselated pave-
ment, the vectors of the centres of the hexagons being

2mh+2nhinN/3 and (2m+1D)h+(2n+1)hiy/3,
where % denotes the altitude of the equilateral triangle.

In the corresponding doubly infinite products, the elliptic func-
tions will have K'/K = \/3, so that (§ 47), x=sin 15°, 2k«'={.

Then, in Weierstrass’s notation, the vector potential at

{=&+m
for a single source or electrode inside the triangle will, neglect-
ing constant terms and factors, be expressed by (§ 278)
log o ({—2)o ({—wz)o ({—a’s)

oy({—¢)oy({—wz)o({~w')

o ((—&)o ({—wso ({—w%)

o({ =)o ({— w2 o (E— )5 voviiiiiini, (71)
while for a vortex or electrified wire, the vector potential is

log o({~2)o({~ws )a({'—w?z )o’l(f—z/)al(f—wzl)al(f—w.zz ) (72)

o({~#)o({-wz)o({~0" )0 ({~&)a ({0 oy ({~ ")

The nature of the resolution of these functions into their
norm and amplitude is illustrated in §§227 to 231.

(0. J. Lodge, Phil. Mag., 1876 ; O. Zimmermann, Das logar-
ithmische Potential einer gleichseitig dreteckigen Platte, Diss.
Jena, 1880 ; A.E.H. Love, Vortex Motion in Certain Triangles,
Am. J. M, XL)
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So also for a rectangular boundary OACB, if we write
a for f—az+(—yn, or {—z,
B8 for f4+a+(@H—y), or {+7,
v for é+a+(n+y)i, or {+2,
8 for f—x+@+y)n, or {—2;
2, —2, —2z, 7 being the vectors of the point P and its images
by reflexion in the coordinate axes Ow, Oy, taken in order in
the four quadrants; then the vectors of all the other images
by reflexion in the sides of the rectangle OABC being ranged
in a similar manner round points whose vectors are 2ma -+ 2nbi,
it follows from what has gone before that we may express the
vector function at ¢ of all their images, taken as positive, by
logoaaBayad, cooviiiiiiniiinnnn, (73)
with o=, wy=0i;
disregarding constant factors, and exponential factors of the
form exp(Aw-+ Bu?).
But when we represent the vector potential of a vortex or
electrified wire at P, the vector potential becomes

276. As another illustration of the connexion of a regular
Kaleidoscopic figure with Elliptic Functions, consider the solu-
tion of the reciprocant

(#4+1De—10abt+ 156 =0, ..covvinnne... (75)
Yy Py Ay _dy
where = “Tar V@ o

(Sylvester, Lectures on the Theory of Reciprocants, V1., 1888.)

Mr. J. Hammond has shown (Nature, Jan. 7, 1886, p. 231 ;

Proc. L. M. S, XVIL, p. 128) that the integral of this equa-

tion (75) may be written

. (L4ta)dt - .

o=/ e i 4 e =y T

By turning the axes through an angle }tan-'(\/x), we can
make A vanish ; and now, replacing « by unity,

(14ti)dt
. e TIRTSTTT 7
S+ T=10)) )
14t\2 . 1—1i\2
(12%) = —ptwtyi; 0.4, (F555) = —9@—yi; 0,4),...(78)

and plat+ydp(e—yi)=1. .o (79)

xtyi=
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Since (§196) poz=0wpz, Pus=ow’Pz,
where o is an imaginary cube root of unity, therefore
po(@+y1) po*(@—yi)=1, ...coociiivenninn (80)
which shows that the curve is unchanged if turned through an
angle of 60° about the origin (Fig. 27, ii.).
Captain MacMahon has shown that the intrinsic equation of
this curve may be written
cos 3yr=dn(s/c), with k=3,/2..cccceeirini.rn (81)
The student may also show that the equation of the curve
may be written in one of the forms
am(zt K, )=am(y+ K’ ),
«2tn?(w, )=« tn¥(y, ),
k 2sn¥(x, k) =0y, «),

dn(z, )dn(y, €)=K, cocvriiiiii, (82)

with k=sin15° « =sin75°
As a similar exercise, the student may solve the reciprocant
le—5ab=0 ....coocoiiiiiiiiin (83)
in the form Prey="T1, . (84)

and determine its intrinsic equation, drawing the correspond-
ing curves (Proc. London Math. Soc., XVII, p. 360).

277. When we expand, in ascending powers of wu, the
logarithm of a doubly infinite product, such as that in the
numerator of sn« in equation (1), § 258, we find
log uII’II’(l—%):logu—uZQ‘l—%}WEQ‘z— LuSQ-3—...(85)

Now, when the origin is taken at the centre of all the
points whose vectors are ), the coefficients of u, w3, w5, ...
vanish ; but the value of the series is still indeterminate, until
the infinite curve containing all these points has been defined.

For if P denotes this infinite product, and P’ its value when
the boundary has changed into a similar curve, then

log P'—log P={u?ZQ 24 JutZQ-4+...,
where the summation now extends over the region lying be-
tween the two boundaries; and now the limit of XQ-2 is a
definite number, 4 suppose, while the limit of ZQ~% ... is zero.

Therefore

log P'—log P=4Au? or P'=Pe4* ; ......... (86)
so that the value of the infinite product depends on the shape
of the infinite boundary (Clifford, Math. Papers, p. 463).
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But, as in § 261, Weierstrass removes this ambiguity by
attaching to each linear factor of the product, such as
u

=g

an exponential factor exp<u +1 & 2) ;
Q202
and, in the physical analogue, the corresponding electrode at Q,
whose vector function is log(l~w/Q), must have associated
with it a uniform flow in the direction of the vector (), repre-
sented by 4/Q; and a streaming motion in rectangular hyper-
bolas, whose asymptotes are parallel and perpendicular to the
vector Q, represented by L(w/Q)%
Now in the expansion of the logarithm of the doubly infinite
product P, when these exponential factors are introduced,
log P=log u—{u*ZQ~*—3uSZQ-0— ..., ...........(87)
an absolutely convergent series; that is, a series the value of
which is independent of the order of the terms.
278. Making a new start ab initio with the sigma fumnc-
tion (§193), as defined now by the equation
m=0 2
o-u—umEI_w n}'[_’w< (2) exp<Q+}z g‘é>’ e (U)
where Q=2mw+2nw’, and o'/wi is a real positive quantity, so
that w, o’ correspond to w;, w; Or w,, w, according as A is posi-
tive or negative, then ou is the analogue of Jacobi's Eta Func-
tion; in fact,
ou = Cet”H,/ (e, — e )u = Ced0,(Jrufw), ....... (88)
(§ 263), where C, 4 are certain constants; also loggu is the
same as log P in equation (87).
Now denoting, as in §195,

d log ou d?log g d{u
du by fu, a,nd-—“ e by —pu,

1
§’w=g;+ < —at (2+(22>
=;E_u329—4_%529"6—-.,., ............ (V)

by differentiation of (U) and (58) ; so that, on reference to § 195,
we may put

Gy =060ZQ "4, 93—-—14:()29“6
also ¢,2=2%.3. 52 7208 go9,=2%.3.5.7.11 2Q-1, etc.
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Differentiating (60) again,

1 , 1 1
PU = 52-‘-2{(”/?9)2—@}, ............... (X)
L2, 2
{J’U;———:u?’—2<u/_9>3 ......................... (Y)

Then (cw)/u, wlu, wpu, w?p'u, utp"y, ..., are unaffected by
the considerations of homogeneity of § 196 ; as for instance in
the expansions in equations (21) and (22) on p. 249.

A change in (X)) and (Y) of % into w+ 2pw+ 2qe’, where p and
q are integers, merely leads to a rearrangement of terms; so
that, as in § 250,

(U + 2pw+ 2qw) = pu.
Also, since in Q=2mw+ 2n, the arrangements (i, n) and
(—m, —m) exist in pairs, therefore
Pw=0, @w+o)=0, pw'=0;
and PPu=4.pu—po.pu—p(o+o). pu—pw
=4PPU— Gy PU— gy vevreriririiiienin i (AA)
as originally defined otherwise in § 50.

A change of u into ©w+ 2w in (V) shows that, by a rearrange-
ment of terms,

{‘(u-l—?w): §fu,+ Dy e eeeeneinea (89)
where 5 is a certain constant, determined by putting w= —,
50 that H=80e i (90)

Similarly Eu420)=Cu+2 i (91)
where 11/ = g‘w' 3 Seeeetriatceccetentaninan (92)
and, generally, :

{u+2pw+2q0’) ={u+2py+2qy. .......... BB)

Integrating (89) and (90),

o(t+2w) = Ce™M™au, o(u+20) = C"e*"ou ;
where C' and (" are determined by putting w= —w and —w’;

80 that
(U4 2w)= — e tOgu, o1+ 20)= — 1@ tgu, (93)
and therefore
o(u+2pw)= — (= 1)PHPMe4rdgy, (94)
o(u+2qw) = — (= 1)TH2MCHIGy, (95)
and, generally,
c(u+2pw+2quw)= —(— 1)+ De@en+ 297 u+po+a0)gy, . (CO)
obtained also by integration of (BB). :
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The doubly infinite products in (U) may be converted into
singly infinite products; and now

_20 s o W 1 —2¢7cos(mufw) + 9
O'u/— 7re wSlné;)H (1-92,”)2 N ...(BB)
where q=¢"/“ and
21
2pw=3mt—7 2( ﬂ?n‘)i 12— 722 cosech?(nw'[wi),....(97)

ete. ; for the proof of these and other similar formulas merely
stated here, the reader is referred to Schwarz and Halphen.

Also, denoting Q+w, Q4+ ow+o, QA+ by Q, Q, Q
then the function ouu of § 202 may be otherwise defined ab
wmitio by the relation

Jequ? 1 ﬁ_
oullb=¢> HH( -9 )exp<(2a+§ Qa2>’ ........ (EE)
which will be found to lead to the preceding results.

Denoting 6%2 log o, u by —g,u, we shall find that

pu=p(U+w,), a=1,2,3. .. (98)
(A. R. Forsyth, Q. J. M., XXIL)

279. Returning to the function ¢ of equations (8) and (10),
§ 215, and changing the sign of the w’s, we may also write it
o'(v+ul—|-u2+ A U)o (V= U)o (v —Uy) ... o(V—Un)
(ov)*!
=CyF C U+ C V4 o ™ DU (99)
and since we may suppose the u’s and v to be all increased by
equal amounts, the condition (9) of § 215 is no longer required.

Now, since (! vanishes when v=1u,, where r=1, 2, 3,..., u;
therefore the coefficients ¢y, ¢;, ¢y, ..., cu are determined by
a series of equations of the form

0=cy+ C, U+ Coo U+ ... FCpp =D, 5 .niin. (100).
and therefore the determinant
1, pv, ¢, ..., p-No |=MC,......... (101).

...............................

...............................

where M is a factor independent of v; and now this theorem,
as a corollary of Abel’s theorem, shows that the determinant.
" also vanishes when v= —u,—u,—... —uy.
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The symmetry of the determinant shows that M must be a
symmetric function of the u’s; or writing u, for v, and denot-
ing the determinant by ¢(u,, w,, Uy ..., wy), then ¢ is a
symmetric function of the w’s, such that
oyt vy + ... +wp)lL g0 (1) — )

(@up)** Hou )+ L. (upp+1

P<¢p g=012 ..., u)
and it will be found (Schwarz, § 14) that
A=(=T1)k-111218! ... ul
Thus, for instance, with u=2,

By, Uy, ..., wg)=A ,...(FF)

1, pu, pu | _ 2o—(u +v4+w)o(v—w)o(w—u)o(v—v),
1, v, pv | U v Pw
1, pw, p'w

By forming a similar function C” of the w’s, subject to the
condition (6) of § 215, we see that (7) is an elliptic function of
v, which can be expressed by C/C’, where ¢ and (" are given
by determinants, as above.

Equation (CC) is also sufficient to prove that the function
in (7) § 215 is doubly periodic.

As an application of the principles of this article and of
§§ 209, 215, 216, 257, the student may prove that Q of § 215 is,
writing a for u,, b for u,, and w for v, given by the equations

Q= a(uw+ a)o(w+b)o(a+Dd)
a(w~+a+b)ow oa ab
=i5 1, pu, p*u —:-1 1, pu, p'u |

7,0

1, pa, p'a | 11, pa, po|
| 1, pb, 9% |1, pb, p'b
={u+a+b)~ fu—u—b.
We thus verify the equations of §§ 209, 257,
d o(uw+a+b —u _o-(u—i—a a'(u—l—b)l_u
dw o'(u a(a+ 5;6 == 21‘66 oo
=¢(u, a)p(u, D).

When condition (6) of § 215 is not satistied, then (7) reappears
qualified by an exponential factor of the form e” when v is
increased by 2pw+2q’; the function is then called by Hermite
a doubly periodic function of the second kind ; the function
¢(u, v) defined in § 201 being the simplest instance of this
kind of function.
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280. Making the w's all equal, as in § 218, and interchanging
w and v, the function
_ o{utu){ou )}
T (ow)rr(ov)r+l)
is a doubly periodic function which can be expressed in the
form of C'; but now the coefficients ¢ must be determined by
a series of equations of the form
0=cy+cpv +cpv +..0,
0= cp vtcpv+..

777

0= Cp" vt cp v+

.................................

Expressed as a determinant we may now put

we b 1] pu—pv, pu—pv, .., el-Du—pk-Ty
X2= @', e'v, ..., pWu  —peky
gJ/IU’ p///'b’
lp— 1)y Py,

Finally, making w=wv, and dividing both sides by (w—v)¥,
we find, in the lmnt

o(u+Dw_ ; e,  @"u, s pulu ] L (GG
D R S L TR A I
' pru, @kl @(2e -1y,
where M= (1 2(‘ jll)‘ aly (Schwarz, §15);

Halphen denotes this function of w by v+ 1yu.
Thus for instance, as in § 200 with u=1,

b= ( %)4 —p'u.
Again, with u=2,
3w
V== HE 0 e ) = 0 u(pu —p2u).
By logarithmic differentiation,
a? d? naL
T 75108 Yru = iuzl g (O-a—)ﬁ;_n%gou-—gonu), ....(HH)
whence pnu can be expressed rationally in terms of pu, pu, ....
When w=9,
x o+l
=)~ oy P Ve
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Also, when =0,

v
owptxu= (=1 T (= 1

=lt(cu) *Hay+ apu+ ...+ aupls-y)}

= (= DB+ Lty o, (102)

and therefore a, =0, when uv=2pw, +2qw,.

281. In the pseudo-elliptic integrals (§ 218)

wo=0 (mod. w,, wy);

and now, knowing the number u, the coefficients ¢, ¢,, c,, ... In
C or xu are readily calculated from a knowledge of the values
of gv, p'v, p"v, ... ; in this way the results employed in §§ 218,
219, 223, 225, 233 were inferred.

Thus, for instance, in § 219, we know that

n=3, u=30+w;;

pv=1, Pv=3i /2, pv=—06, p"v=18i/2, ¢"v=—252 ...;

so that the ratios of ¢, ¢, ¢y, ... can be calculated from the
equations - O=c,+ f¢;+ 3i/2¢,— 6cs,

0=3i,/2¢,— 6c,+ 180,/ 2¢,,

0= —6¢,+18i/2¢,— 252,

Taking an arbitrary value of ¢;, say %, we find, by solution,
co=—9, ¢;=—10, c¢y,=—3i/2;
XU =30y(% 9" u—31,/2 p'u—10 pu—9)
=30, {(2pu+2)(2pu—T7)—31/29"u}.
_ ot 3o, 0,)r%(w—1)
Xw= ot %

Now

=C0y/(pu— 62){0<u —v) cPu}3 ;

ol oV
so that, in the algebraical herpolhode referred to axes rotating
with a certain angular velocity, we may put
(@+1iy)? = Axu(pu—ey) 3,
thus leading to the results of § 219.

As other numerical examples the student may investigate
the results of §§ 218, 223, 225, 233 ; also the example due to
Abel (Tuvres, 1., p. 142), where u=35, g,=12, ¢,=19, and

=2p, or %w,, when pv=—2 or 1; we then find that the
values of ¢,, ¢, ¢, ¢, ¢,, ¢5 are proportional to

—~288, —36, —48i,/3, 12, 4/3, 0;
or —396, —252, —12i/3, —24, /3, 0.



302 THE RESOLUTION OF THE ELLIPTIC FUNCTIONS

Writing s for pu, then we may put
W= —288 —36pu — 48i,/3p'u+ 120" 1 +1./3p"
= 36(2s2—s—10)+12i/3(s—4) ./ (4s* —125—19),
xw=—396 — 25200 — 124, /3p"u — 249" u+1./3p" u
=— 364+ Ts+7)+ 120 /3(s—1) /(4> —125—19).
We thence infer that the corresponding pseudo-elliptic inte-

grals involve
_i(8—4)0/(4s*—125—19) e W 3(282—s—10)

tan J3@F—s—10) 08~ 2(8_1)? =...,
s—1)/(4s*—125s—19 3(4s24+Ts+7
or tan‘1< &}5(4%82?—75 7 )—cos—lﬁ/_fm_isgi)= s
and now by differentiation we infer that \

25413 ds tan- (s—4)8/(4s® =125 —19)
s—1  of(ds®— 128—19) Jo W32 —s—10)
ds—T7 ds _2_t an- (s =1)4/(4s*—125—19)
Joos+z J(@s—125—19) /3 o34+ Ts+7)

Thus, in the Weierstrassian notation,

Yipgvdw L (pu—4)pu L e
/ pu—pv tan & 3(20%u —pu —10) — /3,

(pu—~1)pw )
—_1 W 2 /s
or Ltan~! 30" Tou ) 2/ 3u,

with ¢,=12, g,=19, according as pv=1 or —2,
Ge 93 g

These results may be employed in the construction of
degenerate cases of the catenaries discussed in §§ 80, 205, 206.
Thus, for instance, the curve given by

=X pu+2),
i7cos(24/3u — 50) = o/ 3k(4rt — 922 + k),
is a plane catenary for a central attraction n*wr per unit of
length, in which (§ 80)
t=4{n2w(r?—3k%), tp=3,/3n2wkd
So also a tortuous catenary is given by the equations
2 =1 p(2x/k)—1},
19c08(50 + 20/ 3c/k) = N/ Bl(27* + B2 — O&Y),

under an attraction n2wr to the axis Ox.
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282. Other pseudo-elliptic integrals are formed by the sum
of two or more elliptic integrals of the third kind, when the
sum of the parameters is of the form pw+qw', as in § 226, for
the expressions of £ and £".

We shall denote the integral of the third kind in the form
(By), §199, by P(u, v), as this we have found is the form of
most frequent occurrence in the dynamical applications; and
now ((3;) shows that '

P(u, a)+B(u, b)—P(u, w+b) ) b
(a6 —w)o(b—w)o(a+b+u
={§a+§b—§<a+b)}u+%log(,§a )
lgaa @b utl loggo(cc+u) p(b+u) pu—p(a+b— u)
2 oa — ngb So@—uw)—pb—u) pu—p(a+b+u)
by reason of (y), §197, and (K), §200.
When a+b=wa4 ¢ (a+b)=0, ®(u, a+b)=0; and now

_ )@ Pla+u)—ea
S, a)+&(u, 0)= — T utlog g v

By equation (N), § 249, we may write
1o ﬂﬂﬁb_t anh - \/ —eq . PO—e3 . goa—ey>
S o(a—u)— eq 04— €q . gaa-—eﬁ pu—e,
=tanh- 1"~ pa_ pu— f—~, or fotan‘lw—a S_"’L—iq’
pa—e. PU pa—e, U
the latter form to be employed in dynamical problems, where
@ @ is always imaginary ; thence the expressions given for ¢
and £ in § 226 can be inferred.
As an application we can put a+b=w,+w; or w, in § 209, and
hence deduce a degenerate case of the Spherical Pendulum.

ExAMPLES.

1. Prove the following g series :—

(1) 1+29+2¢*+20°+...=0K = J(K[}7);
2qt +2¢F +2¢% + .. _HK_

(i.) 1429 +2¢ + ... OK LS
1-— 2q+2q —_.
(iii.) 129+ 2¢° + GK =,/c;
(iv.) (1—29+2¢*— ...)4+(2q¥+2q1+...)“:(1—|—2q+2q4+...)4;
(v.) o) 32 2g%, qunfar®c?, JER1/1728¢2 or — 1/1728¢, accord-
ing as A is positive or negative, when ¢ and « or «" is small.
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2. With the notation of § 265, prove the theorem
B5(w)03()05(y)0(2) — 0x(10)65(2)0,(y) 0,(2)
— 0()B)0()0(2) + 6,(1)0,(2)0,()0,(2)
= 291(8)61(8 —Yy- 2)91(8 -z m)91(3 ——y),
where 2s=w—+x+y+2z.
Deduce the formulas
(i) Psnusnvsnrsns
—¢?enucnvenrens+dnu dnvdnrdns—g2=0,
provided wtvtr4s=0.
(ii.) &%sn f(w+v+r+s)snf(utv—r—s)
xsni(u—v+r—s)kni(u—v—r4s)
_ (dnudnvdnrdns—«’enwcenvenrens+x’snusnvsnrsns—«?)
~ (dnudnvdnrdns—«ienucnvenrens —k% snusnosnrsns+i’>)
3. Show that
(e, — ex)ay(W)a (Bu) + (€5 — e )ay(w)ay(Bu) + (¢ — ep)os(w)ay(3u)
=2(e;—e5)(e3— €))(e,— €5)a*(w)o*(2u).
4. Show that Weierstrass’ function o(w) satisfies the partial
differential equations

Jo O o
4.‘]255;‘“ 693553 +o— YT 0,
g o o
our ! 29359_2 - %92265; + 1'595%%o =0.

Show that the second of these equations is also satisfied by
the function
oa(u)/{(ea = eg)ea—ex)}¥;

and write down the differential equation satisfied by oqu.

5. Prove that the projection of a geodesic on a quadric of
. revolution on a plane perpendicular to the axis is analytically
similar to a herpolhode (Halphen, IL, Chap. VL.).

6. Evaluate the surface of an ellipsoid.

7. Construet some degenerate cases of trajectories or caten-
aries on a sphere, or on a vertical paraboloid or cone, employing
the numerical results of the pseudo elliptic integrals.



CHAPTER X.

THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

283. By the Theory of Transformation is meant the ex-
pression, in terms of the elliptic functions of modulus « and
argument wu, of an elliptic function with respect to a new
modulus A and of a proportional argument w/M; and then M is
called the multiplier, and the relation connecting the moduli
A and « is called the modular equation.

A particular case of Transformation has already been intro-
duced in Landen's Transformation (§§ 28, 67,71, 123, 181, 182)
in its application to Pendulum Motion, and to the Rectification
of the Hyperbola.

In accordance with the plan of this treatise, we begin with
a physical application of the Theory of Transformation, before
proceeding to the analytical treatment of the subject.

Suppose then in § 259 that an odd number, n, of such
rectangles as OABC are placed in contact, side by side, so as
to form a single rectangle 04,B,C, of length 04, =mna,fand
height 0C=0; and now put

04,/0C0=na/b=K|K,

04 [0C= afb=A/N,
so that AN/A=nK'|K;
where K, K’ denote the quarter periods with respect to the
modulus « (§ 11), and A, A" with respect to the modulus A.

Let us begin by placing a positive electrode at O, and an
equal negative electrode at C'; then, inside the rectangle OB,
the vector function will be

log sn Az/a=log sn(Axz/a+ Aiy/b),

with z=w+y1i.
G.E.F. U
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But, inside the rectangle OB,, the vector function of these
electrodes and their images will be that due to positive elec-
trodes at 2sa and negative electrodes at 2sa-+bi, where s
assumes all integral values from 0 to n—1; and the vector
function of this system is (§§ 259, 275)

§=n-—

1
log II sn K(z—2sa)/na=1log Il sn(Ka/na+K'iy/b—2sK|n).
s=0

The physical equivalence of these two forms of the vector
function, as seen from two different points of view, shows that

sn(Az/a) =4 szf[_l sn(Kz/na—2sK/n),
$=0

or sn(u/M, \)=A Tl sn(u—28K/0), cooovvvininnnnn.n. 2
where w/M=Aza, w=Kz/na;
so that M=KnA=K[AN; ..cc.ccoeeviiiiiiniin 3)

this is the formula for the first real transformation of the sn
function, of the nth order.

Similar considerations will show that
en(uw/M, \)=BILcen(u—2sK/n), .ccovvvirniiininnn.n. (4)
dn(u/M, \)=CILdn(w—2sK/n). .......ccovinnnnnn (5
If, as in §263, we put
g=cxp(—mK'[K), and r=exp(—mA[A);
then P, i (6)
and A is less than «.

It simplifies matters to place the rectangle OB in the
middle of » such rectangles placed side by side, and now s
ranges from —%(n—1) to $(n+1); and combining equal posi-
tive and negative values of s, we find, according to (7) § 137,

s=4rn-1) gn?y —sn? 25w -
sn(u/M, \)=A4A snw SZEII T o S sn (7
where w=K|n;
N
or y = Mnm‘@ ........................... (8)

connecting y=sn(uw/M, \) and x=sn(u, ), a=sn(2sK/n).

284. Next suppose that n equal rectangles, such as 0ABC,
are piled on each other, so as to form a single rectangle
0AB,C,, where 04 =a, 0C,=nb ; and now put
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04/0C,=a/nb=K|K',

04/0C = a/b=A/N;
so that K[K=nA[A. ccooviiiiiiiiiiinii 9)

The physical equivalence of a positive electrode at O and an
equal negative electrode at C, and of their images in the rect-
angle OABC, with the positive electrodes at 2sK"iy/b and the
negative electrodes at (2s+1)K"iy/b in the rectangle 04 B,Cy
and their images, shows in a similar manner that
sn(Az/a, \)=A4 I sn(Kwx/a+ K'iy/nb—2sK'i|n),

where s may assume all integral values from 0 to m»—1, but
preferably, from —(n—1) to {(n+1); or

sn(w/M, \)=A I sn(u—2sK"i/n, k), c.ooovne. (10)
where w/M=Azla, w=Kzlu;
so that M=K/A=K'|nN; ....c......ooinin (11)

and now, with
q=exp(—7wK'|K), r=exp(—=wA’[A),
we have 7 =g,
and now A is greater than «.
Similar considerations show that, by placing pos1t1ve and

negative electrodes at A and C, or B and C, we shall obtain
the formulas

en(w/M, N\)=BII en(u—2sK"i/n) ;
dn(u/M, \)=CIldn(uw—28K"i/n); ccccvvenn... (14)
these are the formulas for the second real transformation of
the elliptic functions, of the nth order.
A similar physical interpretation of Transformation may be
given in connexion with the curvilinear rectangles bounded by
concentric circular ares and their radii, as discussed in § 270.

285. Besides the first and second real transformations in
which ¢ is changed into ¢* and ¢*", now denoted by »_ and
T, there are in addition n—1 imaginary transformations,
when n is a prime number, in which ¢ is changed into w?g'/",
denoted by r, where p=1,2, 3,..., n—1, and » is an
imaginary nth root of unity ; so that, corresponding to a given
value of «, the modular equation of the nth order, if prime
‘will be of the (n+1)th degree in A, having the roots

Aor Agp Ay Agseves Auoty

of which two only, A and A, will be real; A <k <A,
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We need only consider the Transformations of prime order,
as a Transformation of composite order, mmn, can be made to
depend on the transformations of the mth and mth order.

The different transformations of the mmnth order are formed
by changing ¢ into ¢"™; so that the number of transformations
for any number in general is the number of divisors of mn ;
reducing to n+1, as before, for a prime number n.

For a transformation of order n? there is one real transforma-
tion for which ¢ remains unaltered, and we thus obtain the
formulas for Multiplication of the argument w by n.

286. After this physical introduction, we can proceed to the
general algebraical theory of Transformation, as developed by
Jacobi in his Fundamenta nova theorie functionum ellipti-
carwm, 1829.

The theory in its generality consists in the determination of
¥y as a rational algebraical function of , of the form

y=UlV, ..o, (15)

where U and V are rational integral functions of z,

U=“ﬂ“"+“”-‘“"“1+"'+“1”+“°'}........ ...(16)
V="ba+ b, 12" *+...+ bz +b, "
so as to satisfy a differential relation of the form
Mdy dx
N/Yj,::/*X, ........................... (17)
where X = ax*+ 4bxd 4 Gea?+ dda+te, } ............. (18)
Y=Ay*+4By*+6Cy?+ 4Dy + E,

Making the substitution of (15), we find that we must have
al av
(%"~ V) _ e
NAUHABUV +6CUV2+4DUVEH EVY /X
and the first condition requisite is that
AU +4BUV+6CUV24+4DUVI+ EVE=XT?, ...(19)
where 7' is a rational integral function of x, of the (2n—2)th
degree ; and now, if we can make
al av
where M is a constant multiplier, the Transformation is
effected.
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But if U and V ave both of the nth degree, or if one of the
wth and the other of the (n—1)th degree, so that either a, or
b, (not both) is zero, this is necessarily the case; for any
square factor in (U, V)* will appear as a linear factor of

which is also of the (2n—2)th degree, and can therefore only
differ from 7' by a constant factor M.

The Transformation is now said to be of the nth order.

By taking X of the sixth, instead of the fourth degree, Mr.
W. Burnside has derived hyperelliptic integrals (Proc. L. M. 8.,
XXTIIL) from the elliptic element dy/,/ Y, similar to the hyper-
elliptic integrals of § 159, 160, by means of substitutions of
the second, third, and higher orders.

Now denoting by a, 8, v, d the roots of the quartic X =0,
and by o, 8,7/, &' those of Y=0; so that, resolved into factors,
X=a@—a)(z—B)z—y)x—7),
V=A(y—d)y—B)y~v)y—9);

then A(U—d' VY U—-BVYU—yTVYU-8V)

=al* (e~ a)a—B)e—y)e—3);
and now a factor, such as U— 'V, must be composed of linear
factors, such as & — a, and of the squares of factors of T.

In the expression y=U/V there are at most 2n+1 arbitrary
constants ; and in determining U and V so as to satisfy relation
(19) we determine 2n—2 of these arbitrary constants; thus
there remain at disposal three arbitrary constants, correspond-
ing to the three constants involved in an arbitrary linear
transformation, such as that obtained by writing (§ 139)

(le+m)/(l'e+m") for «,
as exemplified in §§ 153, 160, where the constants [, m, I, m’
are chosen so as to make X and Y quadratic functions of a?
and %2
-~ When X and Y reduce to quadratic functions of « and y,
the elliptic functions degenerate into circular and hyperbolic
functions: and now there is no Theory of Transformation,

except for the change from circular to hyperbolic functions, as
in § 16.
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287. Jacobi, in his Fundamenta mova, works throughout
with the differential relation for the sn function (§ 35)
Md da
JaA—. 21/—x2y2)=~/(1—x2. =)y~ s - (20)
connecting  @=sn(u, ¥) and y=sn(u/M, \).
Now, if y="U|V,
then, since =0 makes =0 and y=0, y and therefore U
must be an odd function of #, the other, V, being an even
function ; so that for an odd order of the transformation
U=ax+ax+...+a”, V=0b,+ba?+...+b,_ 1271
Since =1, y=1; =1/, y=1/X; etc.,, are simultaneous
values of = and y, the relation connecting 2 and y may be
written in any one of the following forms,
1+ y=0+ 2)A42|V, or V4+ U=(1+ 2)4?;
1— y=1Q—- 2)4%V, V- U=(1- x)d?;
L y=(1+xx)C? [V, VAU =(1+x2)0?;
1-Ay=1—=«kx)0?V, V-AU=1—kx)0?;.....(22)
where 4 and C are rational integral functions of x, of the
1(n—1)th degree, which become changed into A’ and ¢’ when
« is changed into —a; so that we may put
A=P +Qu, A'=P —Qx,
C=P+Qw, C=P—-Qu,
where P, (), P, ) are even functions of «; and therefore
1—y=1—x<P—Q§>2 1—)\y=1—xm(P’—Q'w>2,
1+y 1+42\P+Qx/’ 14Ny 1+ka\P'—Qa/’

2 202 o P2 704 2,9
giving y=wP +2PQ 4@ o D +2PQ,+KQ e ..(23)

When the order n of transformation is even, we put
U=ax+amd+...+dy_ 12", V=0y+byx?+...4+ba";
and now V4+U=Q1+4a)14+2)B2, V+AU=D?
V—-U=1—-a)1—xx)B? V-AU=D%;........ (24)

where B, D are rational integral functions of «, of the (}n—1)th
degree, changing into B” and D" when @ is changed into —u;
so that we may put

B=R 48z, B'=R—8x;

D=R+8% D=R-Sz;
where R, S, R/, " are even functions of z.
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288. The number of independent constants represented by
the o’s and b’s in U and V can be immediately halved by
noticing that a change of u into u+ K" has the effect of
changing  into 1/kz and ¥ into 1/Ay (§ 239); and therefore of
interchanging U and V.

An algebraical simplification is thus introduced by writing
@/ /x for & and y/ /N for y, as in § 143 ; the differential rela-
tion now becomes of the form (Cayley, American Journal of
Mathematics, vol. 9)

oly pdx

7a OB = = Rad R (25)

and 2a=k+1/k, 2B=A+1/N\, .cccooiiiiiiin (26)
. _sn(u, k) _sn(pw, \).

connecting = N =N 5

and now, if y=UlV,

U=B,_w@w+..Ba" 24+ Bg*, V=B,+Bx*+...B, 12"}
for an odd order n of transformation, involving only n co-
efficients B, B,, ..., B,_;, and therefore n —1 arbitrary
constants in ¥ ; also B, ,=pB,

It follows then that, in the original relation y=U/V, con-
necting x=sn(u, ) and y=sn(uw/M,\), if 2—2a? is a factor
of U, then 1 —«%%? must be a corresponding factor of V'; and
we thus obtain the expression of y as a function of a given in
equation (8), and in addition the relation

A=MUTTa2, e e (27)
50 that we may write
y=M eIl W= (28)
A wz _ 1/K2a2' ......................

Professor Cayley writes equation (25) in the form
A+ S+ Syt+..0)dy=p(1+ Ra*+ Ra*+...)dw,
y+I8 Y +HESy°+ ... =p@+ iR+ IR+ ),
where the R’s and S’s are the zonal harmonics of a and 8.

289. Writing this equation (28) in the form

A w 1
2 2 _an( -2 2 )=
2 I1(x? — o?) S < P 7\) II <oc K2a2> 0,
which is an equation of the nth degree in @, the roots of which
are z=snu, sn(u*lw), ..., sn{uwx(n—1)w},
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where w=2K/n or 2K"i/n for the two real transformations, we
find that the sum of the roots

Man(20)="5" sz 29
TN -—sz_%(”_l)sn(u-{- SW)y verrrreneninnanes (29)
or combining the equal positive and negative values of s,
A <u _ 2 snw cn 2sw dn 28w
I\IP >\> =snutI «?sn?2sw sn’y
)\y _ ' 203J(1 - Clz .1 —K2a2) 30
or ‘K-‘M.— x + 2 - 1 _ x2a2m2 gt (' )

the expression for ¥ when the product in equation (8)is resolved
into its partial fractions; and similar expressions hold for the

cn and dn functions (Jacobi, Werke, L, p. 429; Cayley, Elliptic
Functions, p. 256).

290. We need not therefore confine ourselves, with Jacobi,
to the Transformations of the sn function; but we may some-
times find it preferable to seek the relations connecting

z=cn(u, ) and y=cn(w/M, \),
when (§ 835; Abel, Guwvres, L, p. 363)
Mdy dz .
A= NN (A=, K’2+K2x2)=d“ s ee(31)
or the relations connecting
x=dn(w, ) and y=dn(w/M, \),

Md, dx o
T .?@//2-—%’2)=~/(l——x2 oy = (32)
relations already given in (4), (5), (13), (14) of §§ 282, 284,

But Prof. Klein points out (Math. Ann., XIV., p. 116) that
it is the differential form of § 38 (really Riemann’s form),
connecting  z=sn%u, ¥) and t=sn*(u/M, X),
and leading to the relation, on writing & for «* and [ for A2,

Mdt dz
S 1=t 1=0) = f(ae T—z. 1=T) e (38)

which is the most fundamental in the theory of the elliptic
functions sn, en, and dn; the periods now being 2K-and 2K,
instead of 4K and 2K"i, etc. (§ 239); the quadric transforma-
tions (of the second order)

z=a% 1—z% or 1—x%? ‘

t=12% 1—9% or 1—-A%%............... (34)
leading immediately to the preceding transformations of the
sn, cn, and dn functions.

when
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291. The Theory of Transformation may be developed en-
tirely from the algebraical point of view ; but Abel has shown
how the form of the transformation of the mth order may be
inferred from the elliptic functions of the mth parts of the
periods, called by Klein, modular functions.

Thus taking the first real transformation connecting

z=sn%u, ) and t=sn*(w/M,\)
in relation (33), then

= Lu(1-2) +p,

1= t=(1—2) 11(1-3>2 =D,

B
1—-t=1—kz)IL (1 —kB2)*+D,
D= (1 —kaz), ccoveeiniiiiiennn(35)
where a=sn%2sK/n, B=sn%(2s—1)K/n,

and the products extend for all integral values of s from 1 to
t(n—1).

The form of the factors is inferred by Abel from the con-
sideration that

(i) when t=0, u/M=2sA+25A%,
where s and & are integers; and, from equation (3),
w=2sK[n+2s K",
: z=sn22sK[n=0, or a;
(ii.) when t=1, w/M=(2s—1)A+2s'A%,
u=(2s—1)K/n+25K",
z=sn?2s—1)K/n=0 or 1;
(iii.) when t=1/l, u/M=(2s—1)A + (25— 1)A’4,
w=(2s—1)K/n+ (28 —1)K",
z=sn}{(2s— 1)K /n—K'i} =1/kS3 or 1/k.
(iv.) when t=00, w/M=2sA+ (28— 1)A’%,
w=2sK/n+ (28— 1)K,
z=sn%2sK [n— K'i)=1/ka, or .
Similarly the relations can be inferred connecting
z=cn¥u, «) and t=cn(u/M, N),
or z=dn*(u, ) and t=cn¥(u/M, N),
not only for the first real transformation, depending on equa-
tion (3), but also for the second real transformation, depending

on equation (11), and also for any one of the imaginary
transformations of the nth order.
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292, In Weierstrass’s form the relation is
Mdy da

= =d’b(/
NEP =y —vy) (@ — g —gs)
connecting x=gp(u; g, ¢;) and y=gp(u/M; ')’2’ vs),
by a relation of the form

y=U|V;
and this must be equivalent to relations of the form
y—eu=(@—e) A%V, or (w—ed)BYV, or @—e;)C*|V, (36)
for a transformation of odd order; giving
40—y — s =(4a® — gy — g5 ) (ABCOY[VE; ... 37)
so that V must be a perfect square; thus leading to the
requisite number of equations for the determination of the
arbitrary coefficients in U and V, and an equation over, which
relation may be made to connect the absolute invariants J
and J', and corresponds to the modular equation.
For a transformation of even order, we shall have
U
9= w—eyr®’
equivalent to relations of the form
2 - 2 —e. (2
Y= (a:—Aea)Ti’ or 2% f,z, or f;—_—e—z 7 +++(38)
and therefore

428 — @ — v, (ABO)?
4P =y —vs= (wf’_zea)4 7 ( 7 Lo (39)

293. In the Weierstrassian form we determine the relation
connecting x=p(u, J) and y=gpw/M, J).

But without altering J’ we may write (§ 196)

{J(@L/M, J)= MZSO(% J);

and now, if w, o’ denote the real and imaginary half periods of
p(u, J) or pu, we may take w/n, o as the periods of p(u, J”) in
the first real transformation of the mth order; and w, o'/n as
the periods in the second real transformation (Felix Muller, De
tramsformatione functionwm ellipticarum ; Berlin, 1867).

The first real transformation, of odd order m, may now be

written
N s=n -l 28w 28w
p(u, J)=pu+ 32=1 {ga(u— ;n—> -9 } ......... (40)

similar to equation (80) for the sn function, and obtained in a
similar manner.
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By integration of this equation (§ 195)
s=y(n-1) ,

{(u, J)=2Gu+fu+ %)1 {(uw—2sw[n)+ {(u+ 2s0/n), (41)

s=n-1 s=}n-1)
where (=% 2 ¢2sw/n)= 2 @(2sw/n);
s=1 s=1
and integrating again,
log o(u, J)=Gu?+1og ou I o(u — 2sw/n)o(u + 250/1),
a(u, J') = Ce g TL ¢ (1 — 280/ 7)o (w4 2800/ 1) & oo (43)
The constant (' is determined by putting «=0, when

_ _G1u2o'(’£b, J/) 1
O=lte ou Ha(u— 28w/n)o(w+ 2sw/1)
1 .
- IIO'(— 2sw/1)5(250[1)’

and now Yoot
s=}n-1 b o
o(u, J I)=6G1“20'u sl;[l a-(28w/77/o-2('b2bl)gz(/if)w /'IL-I—'LL)
= ¥ (gu ) TP — 28w[N), cooviviiiiiiiiii (44)
by formula (K) of § 200.
Thus, for instance, with n=3,
o(u, J)=e ¥ au)P(pu—=GF), «oovvvrnnnnen (45)
where G =pio=pto,
and therefore satisfies the equation of § 149
QG — (G2 + 390"+ 29,04 :
V4GP — 0,00~
or Gt —10,G.2— 9500 — %92 =0. .ooevrinn, (46)
Denoting by (G, and G, the transformed values of g, and gs,
they are found by a comparison of coefficients in the expansion
of both sides of equation (44) in ascending powers of u (§ 195).
Thus, if J=0, or g,=0, then G4;,=0 or /g,; and taking the
value G =0, then J'=0, G,=0, G3=—27g,; and
a(w; 0, =27¢,)=(cUPPU. ceovvrvenrrieninnnn, (47)
Employing the principle of Homogeneity of § 196, this
equation may be written

o(Uin/3) =1in/3(aUPPU, eviirrinnnn, (48)
leading by differentiation to
In/38(win/3)=3Cu+pu/pu, ...ooouviinn (49)

. _ @”u_@/zlw_ B .(/3
and 3p(win/8)= —3pu+ ou o= pu+—2— (50)
since g,=0, as in § 47.
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Thus, if g, is positive, and w,, w, the real and imaginary
half periods (§ 62), then w,’/w,=1,/3; and if we take u=3w,,
then pPu=g, (§§ 166, 233); so that p3w, =0.

Again, putting w4 =w, in equation (49) gives

N Ua/B =81 wervnrrnrriiiiiiininiin (51)

Making use of the last equation of § 202, we find

a0y = 1150y = a/3.

As a numerical exercise the student may construct the
following table, and also fill in the values for u=wy w,, tw,,
1wy, 0y, S0y, ... ; taking g,=0, g,=1; these numerical results
are useful in the problem of the Trajectory for the Cubic Law
of Resistance, discussed in § 227-234.

u Pu ©'u . {u ou
3 A3
Top | HE2HLP | —1uB(2+) | g OVEEDY T asys o 1pe10s
3392 s
. R 7 T3
dof | =2 -3 0y - 31 J/4 AN
30, 1 - W3 3ma+3a/3 L7
%/3
e
2wy 0 ~1 30y z'e-%/é
3/2 T3
Wo | sevveeevenennes | seresienniieiniinennn | ciireiiiiisiiiiinee ?—ge 12

The Linear Transformation.

294. In Chapter IL the general elliptic differential da//X
has been reduced to Legendre’s standard form

(L—isin®p) ¥de
and to Jacobi’s, or rather Riemann’s standard form (11) of § 38,
dzl/(42 . 1—2.1—kz)

by various substitutions, in § 39, 40, 41, 42, 48, etc., which are
practical illustrations of the Linear Transformation.

In § 160, the six linear transformations are given which,
according to Mr. R. Russell, reduce

da//X to the form dz/,/(Az*+6C22+E).

In determining the linear transformations, of the form

y=UlV=_(ax+B)[(yx+3), «.coeverreirrirr (52)
which satisfy Riemann’s differential relation

Mdy _ dee p)
Ny 1=y 1=ly) S l—x.1—kx) -
connecting a=sn%u, x) and y=sn¥u/M,N),
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we notice, by § 139, that the absolute invariant J is unchanged;
so that, according to § 68, there are six values of [, given by

k1 1 1 -
l=k, ]C T E, *14:76, ].—'k, 1—E’ .........(03)
and six corresponding linear transformations, in which
A v _aK+bK'G 4.
cK+dK" and be—ad=1; .......... (54)

a,b 01(j10[j10]j11

e I e
295. But if we change to Jacobi’s form by the gquadric

transformation, which changes « into 22 and ¥ into 22, then

‘ Mdy B d B

NA=2 1= (L= 1—%?)

and now, forming according to § 75 the invariants g,, g,, A, and

J of the quartic 1—a?.1—k%?
_l4 Ukl 1-33k—331-33K | _R(1-Bt
O PR L 216 S
(14 14k +k2)3
alnd J —1—()—870(]-—16)4 ------------------------- (56)

Professor Klein writes #* for k£ or «2, and calls 5 the Octa-
hedron Irrationality ; and now the absolute invariant being
unaltered by a linear transformation,

J= (1+14.‘Z+l2)3 (1+14!174+;78)3

= T0SI(L=1)* = 1081 =yg%" o (57
and the roots of this equation in [ are found to be
vy (50 (55 '
=t — g S eereereiieienas
l n 174: 1 ¥ 7 ’ 1 T i b (08)

giving the six corresponding linear transformations of Abel
(Euvres, 1, pp. 459, 568).

In the reductions of Chapter IL that linear transformation
has been chosen which makes & or I positive and less than
unity, and also gives a real value to the multiplier M.

The corresponding values of the multiplier are given by

1/M2= 1) 772: l(]- 77)4 - %(l x 7:77)4:
the linear transformations being, as may be verified.
1i711—17£6 +1i’in1i’ina)
1F9 159  1Fip L Fup

y:iw, + 2&}, +
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Landen’s Transformation of the Second Order.

296. The point L (§ 28) in figs. 2 and 8 has been called
Landen’s point, because of the use made of it by Landen
(Pril. Trams., 1771, 1775) for his transformation, important
historically as the first case investigated of the Tramsforma-
tion of Elliptic Functions, being the Quadric Transformation,
or of the second degree.

The ratio AD/AE being sin’}a or «% while HL/EA=cosa
or ¢ ; therefore, if C is the middle point of 4D,

LC AL—AC AE—-EL—}AD

04~ 40 ~ 14D
_1—cos a— $sin’a_ (1 —cos 3a)’ _1—cosja_ tan®le.
1 sin%q sin’*fa 1+4cos }a ¢
The ratio LC’/CA is denoted by A ; so that
)\_l—x' ool 23/A >\_2,JK

T+« 1+>\’ =riv Mo GFA0EN=2

A= =)k, K =1=N)/N, and X =2/(K'7), ...(69)
different forms of the modular equation of the second order.

Still denoting the angle ADQ in fig. 2 by ¢, we denote the
angle ALQ by vr; and now (§28) since the velocity of @
is n(1+«")LQ, perpendicular to O, therefore the component
velocity of @, perpendicular to L),
LQ d/dt=n(1+«")LQ cos LQC,

or dyr/dt =n(1+«")cos LQC.

But since %1;;130 = 10_;% =), therefore

sin LQC=\sinv), cos LRC=,/(1—=Asinp)=A(Y, N);

and dyrjdt =n(14+«)A(, N),
or Y=am{(1+&)nb A} ooiiieiiiiii (60)

Now, since the angle LQC'=2¢ —1}, therefore

sin(2¢ \//) ASIAY S e (61)
, 11— sm(2¢ W) —sina) _tan(p—) .
and = 1+)\ sin(2¢ — ) +sin x[/ tang 7 (62)
(1+«)tan ¢ o

or » tan \[/‘ = Tﬂzqf) .............................. (63)

sin yr = (14«")sin ¢ cos /A,
as in equation (92), § 67.
Putting nt=wu, (1+«’)nt=v, then sin p=snu, sinyr=snv;
and we obtain the formulas (90) to (98) of § 67.
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297. Landen starts with the relation (61); so that, differen-
tiating logarithmically,
cot(2¢ — ) (2d ¢ — drf) = cot Y difs,
2 cot(2¢p — ) = {cot(2¢p — V) +cot Y }dyr
_ sin2¢dy
sin ) sin(2¢ — \b)
2d¢ dr
sin 2¢ cosee cos(2¢ \p)
Now c08(2 =) = /(1 = Nisin) = A(Y, N);
while sin 2¢ cotyr—cos 2¢p =17,
cot Yr=cot 2¢+A cosec 2¢,
cosechlr =1+ (cot 2¢p+ A cosec 2¢),
sin%2¢ cosech)r =sin? 2¢ +(cos 2¢+\)?
=142\ cos 2¢+A?
= (14+X)2— 4\ sin%¢p,
or sin2¢ cosec\r=(14+N)/(1 —«Zinp) = (1 +N)A(gp, k),
where k=2,/A/(1+X); so that, finally,
dg__3(1+NdY dy  _(1+K)dg

3gon” AN T BN A O
so that, if ¢p=am(nt, «), then Yr=am{(1+«")nt, A}, and the
angle 1» may be made to represent pendulum motion on the
circle CRL, on CL as diameter, L) meeting this circle in R.

The velocity of B will then be due to the level of L', a point

on CE produced, such that CL'=CL/A?; and now we find that
EL'=CLl'—CE=EL,
after reduction, so that L and L' are the limiting points of the
circle AQD with respect to the horizontal line through £; but
now the value of ¢ in the motion of R on the circle CRL must,
in accordance with § 20, be reduced to 1g(1—«')%
LQ_ID_BL+ED_¢+x*_l+x.
LQ LD EL—ED K —«? 1—¢’
so that (§ 28) the velocity of @ is
n(1+&)LQ, or n(1—kL'Q. ...oevvvnial. (65)
The period of R in the circle CRL is half the period of @ in

the circle AQD; so that, if A denotes the real quarter period
of the elliptic functions of modulus A,

=31+«)K, or I+NA=K. .............. (66)

Again,
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298. Conversely, as in § 123, we can express the elliptic
functions of modulus « and argument (14A)v in terms of the
elliptic functions of modulus A and argument v; or starting
with the motion of R, we can deduce the motion of Q.

But considering the motion of @ as defining in a similar way
the motion on a larger circle, to a larger modulus y, we change
A into « and « into y, where

=13 Yige v M+,

Nie=A=Y)ly, JyY=01=n/c, and ky=2ky); (67)

and now, from § 123,

dn(Lbs. v, )= )
sn(l+x. u, y)= -+ K)Sn (u, K) (68)

e s [
en(u, k)dn(u, ),
)= 1+« sn(u, «)
called Landen’s Second Transformation.
With @=sn(u, ), y=sn(l4+«.u,vy), where y=2,/k/(1+«),
1+ lc)x
then Y= Fipe
1+ y=A42)(1+kx)=7,
1= y=(l—a)(l—xa)+ 7.
14+yy=>10+2/6)?> =7,
l—yy=Q1—z/cp? =+,
V=1+4«x?
dy (I4k)da
A= I= )~ J—a. 1=
Or, with 2=dn(w, x), y=dn(l 4+« . u, k),

en(l4«.w, y

and

14y =2 =7,

l—y =2(1—2? <7V,

Y4y = 2’ = V(1 +«k),

Y—y =2 =)+ V(1 +),

Valde—a?; i (70)

leading to the differential relation, (3) of § 35,

dy (I +x)da

JA=g =y (=" =
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299. Denoting by T' the real quarter-period of the elliptic
tunctions to modulus v, then =1 makes y=1, or u =K makes
(I14+k).u=T; so that

(1+0)K=T,
or (66) A4+MNA=K=§1+y) e (71)

Also, A’, K/, T" denoting the corresponding quarter periods to
modulus \’, ¥, 9/, the imaginary transformations of § 238 show
that, with u=v,

sn(l4+. ¢, \')= (}1 frzzi;;g Z;
_(L4«k)sn(v, «)en(v, )
N dn(w, «) ’
_en(v, «)dn(v, k')

T 14«sn¥(v, «)

—_ 2 !
en(l4k v, y)= L (l(i;&)ft,gw' K),
1 —«'sn2(v, ')
1+«'sn(v, )
1—(1—«k)sn?(v, £)

sn(l4+« .o, 7))

en(l4+«". v, \)

dn(1+ K., ?\/) =

dn(l4« . v, y)= (o, ©) HETR (72)
su that AN=0+HK, I'= 10+ K)K',
or TA4HMNA =K =Q+y) 5. (73)
) 1A K TV
and therefore S ATK" QT. .......................... (74)

An inspection of Landen’s formulas shows that the dn func-
tion has always a rational Quadric Transformation.
Mr. R. Russell shows (Proc. L. M. S.,, XVIIL) that the
general rational quadric transformations which reduce
da//X to the form dz/ /(Az*+6C22+ L)
are always of the form » P
m Ly+n )
z=q—ﬁ,ﬁz o Pi, BLC. erniiire e (75)
P, P, P, denoting the quadratic factors of @, the sextic
covariant of X (§ 160).
Thus if X=1—0a?.1—«%?
the sextic covariant may be written
G =x(1 —kx?)(14«a?),

leading to Landen’s transformations, given above.
G.E.F X
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300. Landen’s Transformation is useful, as employed by
Gauss, for the numerical calculation of K ; for if we put (fig. 2)
LA=q, LD=b; and CA=a,, CL=,/(a*=b*)=%a—"b);
then a,= l(a+b) b,=4/(ab); and «'=bfa, N'=b/a,. ...(76)

Now, denoting by ¢ and X\ by «;, equation (64) becomes

2d¢ de, (77)
(@Pcos?p+bsin?ep)  of(a,2cosPp, 4 by sinep, )
while ¢,=m, when ¢p=1%r;
so that
il dep " 1dg,
J (a*cos’p+ bzsm"’q)) & (a%cos?p, + b, *sin’p,)
i de,
~/(al?cos%q[)l +0,%sin’¢,)’
or K=K la,/ccl K (4K oiiniviiiinennnnn (78)

Continuing this process with ¢,, a,, and b;, so as to obtain a
continuous series, given by (§ 296, equation 62).

by,
tan(gn,— pp41)= ﬁ; tan ¢,

App1= %(an'{- bn), bn-l—l = J(a,zbn) Y eereereeiense (79)
then a, and b, tend to equality ; so that, putting

a,=b,=p, and ¢_ =1,

i d‘i’ _ i Olqbn
N (@2c0s?¢ +0%sin%p) _/ o/ (an2cos p,+ bAsine,)
g 9
_ [ dyr 3T
S N (pPeosh +uPsind) - p
0 .
K K, i
or = — =,
a4 Ay ® )
K=K, H(1+,<,,). 2711(1+K,,) ................. (80)

Denoting the modular angle of x, by 0y, then
Knr1=8In 0, =tan? 16, ;
€08 0,11 =sec? 10,4/ (cos 6,),

and 14k, =sec? 10, = E;?C?):Jg) ;
so that
K =17 sec 04/(cos 0 cos 6, cos 6, cos O ...), ...... (84)

a formula suitable for the logarithmic calculation of K.
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The Transformation of the Third Order, and of higher
Orders.

301. According to Jacobi’s method, the transformation may
be written

l—y 11—z 1——aa;>2 .
T-,I‘-Ty —_ i_-i;?'c(’]‘-’:l:a_m PR R (82)
connecting z=sn(u, ) and y=sn(uw/M, \); and then
_20+14a%*  x 1—a?/a’
Y=oy, (@ 2a)a? = M L g (83)
so that 1/M=2a+1,
1-Ay 1—xx/a—«x
d L=
an a= +w<a +Km>, ............... (34)
leading to the differential relation
dy _ Qa+Ddex 85
NA =y =N (=t L=y T (85)
We shall find that, expressed in terms of q,
4 3 3
o @ +2a® o (at2
SR P | w=agth):
p_ (=0 +af o, (+a(l-a)
and LR i P A i

: 2 — 2
so that J(Kx)=31%%, SN = 114__2‘10‘ :
leading to the Modular Equation of the Third Order.
NN S ENY=T0 (86)
We shall also find that this transformation may be written
1—en(u/M, >\)=1—cn ufa+1+4acn u)’Q 87
T4ecn(u/M,\) 1+cnul\a+l—aecnu/’ e (8T)
1—dn(n/M,\) 1—dn u<a+1+dn u>2
1+dn(w/M,A)" 1+dnula+1—dnw/’
As a numerical exercise the student may work out the case
of a=1(/3-1).
In Legendre’s notation, with @=sin ¢, y=siny, he finds
that these relations are equivalent to
tan H(p+y)=(a+1)tan¢. .......o.ooonii. (89)
The Transformation of the Third Order was the highest to
which Legendre attained, until it was pointed out by Jacobi
in the Astronomische Nachrichten, No. 123, 1827, that Trans-
formations exist of the fourth, fifth, or any other higher order,
as already explained.

.......... (88)
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Thus the transformation of the fifth order may be written
1—y 1—90(1 —aac+,8m2>2

RSt e ) PR (90)
and of the seventh order
1=y 1-/1—ax+ Ba?—ya®\?
1+y_1+w(1+ax+6w2+w3>, ............. 1)

and so on.

302. When the transformation of the third order in § 157 is
employed for the reduction of the integral in equation (6),§ 227,

then SP==K3P% i (92)
where P=p>—3p%in2a+3p, ..ooovviiiiiininnnnn, (93)
and K =picosta+psina—1, ....ooooeiiiiinni (94)

as in equation (27),§233; so that K =0 and s=0 at the points
of minimum velocity.

Now, with this substitution of § 157,
s=p(ge/w?; 0, —A), .o (95)

where A=4—=35in2a=2T¢, ....ocoevvviiiinininnn (96)
(§ 228); and denoting

ﬁs/ JES+A) by Q, 0, by H,;
e
then p3Q), =\6, 9'3Q,=— /A, and H,Q,=}7/3 (§ 293).
Again (§157),  ¢'(gw/w?)=J/P,
where J=p%3sin a—2 sin®a) — 3p%(2 —sinZa)+ 3p sin a — 2,
and J+PJA=2{i(sina+/A)p—1}3,
J=PJA=2{}(sina— /A)p =1} cooovee.. 97)
Now from § 233, :
A = cosa(tan B+ cot 3),
1(sin a+ 4 /A)=1 cos a(tan a+tan B+cot B)= cos a tan 3,
I(sin a— z/A)=1% cos a(tan a—tan B —cot 8)= —cos a cot 3,
sin 6

while P= o 6)'

Therefore
{ga’(u 3 0, —A)— g@%QZ}% _ (J—I— NAPNE_(sin ad-4/A)p—1
@' (w; 0, —A)+ 9'2Q, J—AP)  L(sina—/A)p—1
__cosgtan Bsin f—cos(a—0) tan(5—6) tan¢
T —cosa cot B sin B—cos(a—0)  tanB  tan 3
_9(w; 0, 95)— '3,
=ow; 0, AEREET or Xeveenons (98)

(§ 234) a curious result of this transformation.
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Again, since p'2 By = —@'4w, We may put
X= Piw,+ g u
T ey —¢ w

and then, making use of relation (17) of § 229,
Yo _o($wy+ u)o (0w, + w)o(fw’w, + w)
T ol = w)e($ew,—w)o(fele,— )
_o($wy+ W) (Gw,— WP(Fwy—u)
o ($wy—)o (G0 +w)p(F0y+w)
by means of (K) § 200, and the relation pZw, =0; and this
again, by equation (CC) § 279 and by § 293, reduces to
_v 3wy —w) (3w —w) P
o¥(Fwy+u) (3 wz""“’)
0-(3('02 U/LN/'?’) 3;’172 1124/3
T o(Rwy +uiy/ 3)
(3 —w; 0, =A)
O’(gQ_‘"i-U/ 0 —A)
The Tramsformation of the Theta Functions.

303. Taking the 6 function, as defined in §§ 263, 265 in the
factorial form,

6—3H2“,

Oz, q)= ¢(q)rﬁo (1—2¢%-tcos 2z4q*~%), ...... (100)
r=1

where ¢(q) is a certain function of ¢ which § 264 shows can be
written Q) =TIA =), coreeviiiiiiiiiiiiiiiin (101)
then changing x into nz, and ¢ into ¢»,

6(nw, ") = ¢(q™)IL(1 — 2¢**" ~"cos 2na+ ¢+ =)

r=w s=n-1
=¢(q") IL I {1—2¢*cos(2w+2sm/n)+q* %}
r=1 s=0
(by Cotes’s Theorem of the Circle of § 270)

¢( n\ s=n-1
= (op L 0@+ Q) (102)

Similarly, with u=1, 2, 3

( s=n-1
Ou(nz, q*) = {ZZ(Z)}” I_I Ou(48T/1, @) vvniiiiiianin (103)
Forming the quotients, and writing « for fru/K, then (§ 263)
_ 1 oo /K O
sn U= N/ 0 ) - A\/K 0 > )

and thence we obtain the formulas for the Transforma,tion of
the Elliptic Functions of § 283.
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Similar considerations will show that, when ¢ is changed to
qlfn or 62p7ri/nq1/n’

. 2pTi[n, 1/n)3=%(n—1) 2 7'._,510 o

0. (x, epTilnglin =¢-———~(6 : 6 <w+s——p gq), 105
W ") {$@)I" o= 0" n (105)
where u=0, 1, 2, 3; this is left as an exercise (Enneper,

Elliptische Functionen, § 38).

ExXAMPLES.

1. Prove that a transformation of the fourth order is
11—y 1-= l—xa"(l wa)
14y 14a 14ce\l+a/c
and prove that the relation between A and « is then
K
1-8= (1 + ://K>
and M=>1+./ /)2,

2. Prove that, by means of the substitutions
cosh 3 sinh ¢

1
tan 30= &/ (cosh w+sinh  cosh ¢)
- cosh Ju sinh ¢
or sin $0= sinh Ju+cosh wcosh ¢
dg

&/ (cosh w+sinh w cosh ¢)
y
= —1—2 ,/l—T{i‘G =sech fuF (sech Lu)
N y &/ (cosh v +cos 6)

® cosh m¢ dep
./(‘COSh w~+sinh w cosh ¢ )"+
v
_ 1.3.5...2m—1 1 = (sinh w)™cos nf dO
T 2n—1.20—-3..2n—2m—1 /2 (cosh u+ cos 0)* %
0

8. Prove that, with the homogeneous variables x;, x, of § 155,
and writing X, for 0X/ox,, X, for 0.X/ox,, the general cubic
transformation which reduces dx/,/X to the form

dz/n/(A2*+ 6022+ F)
is of the form z=(X,+mX,)/('X,+m'X,) (ex. 8, p. 174).

Prove also that the general quartic transformation may be
written =X +mH)|X +m'H),
where H denotes the Hesslan of the quartic X (§ 75).

(R. Russell, Proc. L. M. 8., vol. XVIIL.)
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4. Prove that (Cayley)

_ pr+Tat4 2pab4-a”
y= 1+2p902+ 7w4+pw6

satisfies the relation

dy _ pda
Nd= 2o+ YY) S A+ Epr o)
Modular Equations.

304. In the Transformations of the mth order, which con-
nect the Elliptic Functions of modulus A with those of
modulus «, and make »=g?, or ¢g'/*, or w?q*" (§ 285),

Ni Ki 1Ki 20K+K'% aK+ DK
N =N O, g Ot T g or generally;rc- K+ dKi" (106)
where be—ad=mn,

the Modular Equation, which determines A in terms ot «, is of
the (n+1)th order, as already stated, when m is prime, and
has two real and n—1 imaginary roots.

We shall content ourselves with merely stating the Modular
Equations of simple order, connecting «, A and «', \’, adopting
the form.and classification employed by Mr. R. Russell in the
Proc. London Math. Society, Vol. XXT.

Crass I. m=15, mod. 16;
P=/(N)+ & (&N)+1,
Q= &/UN N+ &/ (kN) + &/ (N),
R=4. (XN, ,
n=15, P3—4PQ+ R=0.
n=31, (P*—4Q)?2— PR=0.
n=47, P?—4Q—P(R)—2(R)!=0.
Crass I m=7, mod. 16;
P=Y N+ &/ (kKN)—1,
Q= /(KA N) = &/ (X) =/ (KN),
R=—43/(\ '\).
n=7, P=0, or &/(N)+ &« N)=1, (Guetzlafl).
n=23, P—R:}=0, or J(\)+ & (KN)+(256k\ Nz =1.
n="71, P’—4RNP?—Q)+2PRi—R=0.
n=119, PS— R¥(TP5—28P3Q+16PQ* + R(...)...=0.
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Crass III.  m=3, mod. 8;
P=/N)+/(N) =1,
Q= /(AN = N (N) = (KN,
R=—16,/(Ac'\).
n=3, P=0, or /(kN)+/(k\)=1, (Legendre).
n=11, P—R¥=0, or /(x\)+/(KN)+(2566) N )E=1.
n=19, P°—7P!R+16QR=0.
n=35 P*—RN5P*—16PQ)+2REP?— RP— Rt=0.
n=43, P14...=0.
n=59, P°+...=0.
n=83, PT4..=0.

Crass IV. m=1, mod. 4;
P=\+&N -1,
Q=k\ kN —kA—«'N\,
R=—=382kA '\
n=1, P=0.
n=9, PS—14P*R+64PQR—3R2=0.
n=17, P3—R¥10P?—64Q)+26R5P+12R=0.
M=AL, o
n=5 P—=R=0, or i\ +KN+(B2AN)E=1.
n=13, P¥P’+8R)+ R}11P2—64Q)=0.
n=29, PYP:*+17R:P—9R%)

+ RY9P2—64Q—13REP+15R%)=0.

n=>53, P3P+ R¥413P3—29PQ)+...} £ R¥{35P%. .} =0.

305. According to Professor Klein (Proc. L. M. 8., X.; Math.
Anm., XIV.) these Modular Equations, are replaced by relations
between the absolute invariant J and its transformed value J7,
by the intermediate of quantities = and +, such that J is a
certain function of +, and J’ the same function of +'; and now,
n=2; J:J=1:1= 47=10:(+—1)(8r+1)2: 27,

Tr'=1 (§ 60).
n=3; J:J=1:1= (+—=1)O97—1)%: (27+?— 18+ —1)*: —64r,
=L
n=4; J:J-1:1= (P+14r+1)%:
(78 —8372—=3837+1)%: 108+(1 —7)},
T+ =1
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n=5; J:J=1:1= (2—107+5)®
v :(72—227+125)(TZ—47-1)2:—17287,

T =125.

n="7; J:J—=1:1= (+?+13+4+49)(r>+5++1)*

: (7'4+ 14346372470+ — 7)2 11728,

7' =49,

n=13; J:J—-1:1= (2 + 57+ 13)(T4+7T3+20T2+197+1)3

S (267 +18) (74 107°4+ 4674+ 10813+ 12272+ 38+-1)%: 17287,

T =13,

The Multiplication of Elliptic Fumctions.

306. If we perform the second real transformation upon the
first real transformation, we obtain a transformation of the
order m?, leading back again to the original modulus « ; because
the first real transformation changes ¢ into ¢?, and the second
real transformation changes ¢® back again to q.

We then obtain the elliptic functions of argument

w/MM =nu, since M=K/n—A, M =A/K,
in terms of the elliptic functions of argument u, by a trans-
formation of the order m? and thus obtain the formulas for
Multiplication of the argument.

Thus multiplication by 2 or 3 can be obtained by two suc-
cessive transformations of the second or third order ; and so on.

Knowing that the order of the transformation is m? we
infer in Abel's manner the factors of the numerator and
denominator of the transformation, involving the modular
Jfunctions, the elliptic functions of the nth part of the periods.

Thus we infer, with the notation of § 258, that, for an odd
value of m,

snnuw=U/V, . (107)
i snu
where U=nsnull'l (1 ————SHZQ/’ﬁ>’
J— sn2y
V= i <1 - sn“Qg/h>
= T (1 — k?sn?u sn?Q/n),
where m, m =0, +1, £2, 3, ..., +i(n—1);

the simultaneous zero values of m and m’ being excluded,
as denoted by the accents, so that the number of factors is
3n2=1).
2
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Combining the factors by formula (7) of § 137,
snnu=A snu II'Tsn(u+Q/n)sn(u—Q/n), (108)
where A is a constant factor; and this may be written
snnuw=A4 TTILsn(uw+Q/n); cecveevrinninnn. (109)
where m,m' =0, £1, +2, .. +(n-1);
the simultaneous zero values of m and m’ being now admissible.
Similar considerations will show that
ennu=BTITen(w+Q/n), covvvviviniininninnn, (110)
dnnu=CIIIIdn(uw+Q/mn). «ooovviniiiin (111)

To determine the constant factors, change w into w+ K or

w+ K'i, when we shall find (Cayley, Elliptic Functions, § 368)
A=(=1)0-Dd2-D B (/02D Oz (1/)ir-D,

By taking in § 259 a rectangle 04,B,C,, in which 04, =mna,
OB,=mnb, and therefore containing n? elementary rectangles,
we obtain a physical representation of the formulas (109),
(110), (111) for Multiplication of the argument by =.

Writing w/n for u, and making » indefinitely great, we
deduce in a rigorous manner the doubly factorial expressions
for snu, ecnw, dnu in (1), (2), (3) of § 258.

Again, by putting k=0 or k=1, the student may deduce as
an exercise the trigonometrical formulas for the resolution of
the circular and hyperbolic functions into factors.

(Hobson, Trigonometry, Chap. XVIL)

The Complex Multiplication of Elliptic Functions.

307. When K'/K=,/D,and D is an integer, we may sup-
pose the multiplier n resolved, by the solution of the Pellian
equation, into two complementary imaginary factors, so that

n=(a+1by/D)a—1iby/D)y=a?*+b>D;
and now the multiplication by n can be effected by two sue-
cessive multiplications by the complex multipliers a+1iby/D
and a—1iby/D, each leading to an imaginary transformation of
the nth order, not changing ¢ or the modulus «.
(Abel, Guwvres, L., p. 77 ; Jacobi, Werke, L, p. 489.)
 The first requirement then in Complex Multiplication is a
knowledge of the value of x for which K'/K=,/D ; and this
is found by putting xk=X\’, =X in the corresponding Modular
Equation of the order D (§ 304).

The equation is now, according to Abel, always solvable

algebraically by radicals ; so that, returning to the question of
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the pendulum in § 15, it is possible to determine by a geometri-
cal construction the position of two horizontal BB’, b, as in
fig. 1, cutting off arcs below them, such that the period of swing
from B to B’ is o/D times the period from b to b".

Thus the Modular Equation of' the second order being
written A==/ +K),
we find, on putting «'=A2,

N4+20=1, or A=,/2—1, when A'/A=,/2.

Putting «=X\, K=\ in the Modular Equation of the third

order (§ 304),
2/ (k) =1, or 2k’ =} =sin}m, when K'|K=./3;

so that the modular angle is {7 or 15°

When K'/K =2, k=(/2—1)?% §71);
obtained by putting I'/T'=1, y=9'=4,/2 in § 298, 299.

When K'[K=,/5, 2'=a/5—2, /Cxx)=%(/5—=1),
or (2K’ ) — (2 Y =1,

When K'/K=,/7, 2¥k)=1, 2u'=1%, /(2c)=3%.

Collections of these singular moduli required in Complex
Multiplication are given by Kronecker in the Berlin Sitz.,
1857,1862, in the Proc. L. M. S., XIX,, p. 301 ; also by Kiepert
in the Math. Ann., XXVI, XXXIX., and by H. Weber in his.
Elliptische Functionen, 1891.

308. In the expression of y=sn(a+iby/D)u as a rational
function of x=sn u, leading to the differential relation
= ;2[??1/%292): Ta — ey Where 1M =a+iby/ D,
Jacobi finds (Werke, t. L.; de multiplicatione functionum
ellipticaruwm per quantitatem imaginariam pro certo guodam
modulorum systemate) that we must restrict @ to be an odd
integer, and b to be an even integer; but these restrictions.
disappear if we work with the cn functions; and we can
even suppose that 2a and 2b are odd integers.
Let us determine then the relations connecting
z=cnuw and y=cn(—1+1i /D,
s0 that 1/ M= —%+%i /D,
leading to the differential relation
dy _(=i+bin/De
A= )~ JA—at.at o)
where ¢=«'/x, the cotangent of the modular angle.
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If D=4n—1, and we denote (K+K7)/n by w, we shall
then find that, when n i% odd,

1— — =D /g —cen 2re
1— y__“/(w I —— <w+cn27(})>
ic
@
1+
14y N {m cn(27—1)w}
l+:1_ “/(w)?_% I x+cn(2r—1) ~(112)
i i
but, when n is even,
@
14+,
1—y L 1= " T ger=intl /e —en 2rw\?
1_32-" “~/(w)’1‘+“55 = <a}—|—cn2m>>
ic Toae
1+y { —cn(2r— 1)0)}
1+_._ =/ Ge) II e on(2r—Tye) T (113)
i

The arithmetical verification for the simple cases of D=3,
7, or 15 is left as an exercise for the student (Proc. Cam.
Phil. Society, Vol. V.).

Formulas (112) and (113) are inferred by putting

1) y=1
when I(—14i/Dyu=2mK+2m'K4 (m-+m’ even);

and then w=4m'K —(m+m)w, x=cn2re.
H=141/Dyu=2mK+2m'Kc (m+m’ odd);
and then z=cn(2r—1)w.
®) y=ic

W =1+i/Dyu=2m+1)K+(2m'+1)K" (m+m odd);
w=>{4m' +2)K-(m+m'+1)w, = —cn 27e.

¢ y=—ic,
=144/ Dyu=2m+1)K+2m+1)K'c  (m+m’ even);
and then x=—cn(2r—1Dw.

309. When D=4n+1 or 1, mod. 4, the relation connecting
a=cnw and y =cn }(—1+74/D)u cannot be rational ; but Mr.
G. H. Stuart has shown (Q. J. M., Vol. XX\) that it may be

written in the irrational form

Y= J(zc)\/ w—i—m = ”cn(‘lr Do—2

ic—a , 1cn(2r Dow+a’
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where o=(K+K7)/2n+1),
a transformation of the order n+4%; and this is equivalent to

1-—,y2=(1—ic)(1——x)ﬂ<1——@w>2—:— 14

' cn 2rew ’
1+%2=<1+%>(1+m) < +E_2?~;,> =V,
- (1-F )H{ch (f—l)wr ...... (114)

this is inferred in the same manner as formulas (111) and (112).
For instance, with n=0, D=1, and «=14,/2, c=1

en §(—1+iyu= @)\/ (senm)

i —cn u
equivalent to, with w=(1+1%),
. 1—14 en?
cn(l - ’L)’U = ’?xm’

With n=1, D=5, 2 =,/5—2, c=4/5+2+2/(a/5+2),
A5+l \/N/5+1_
,\/C— 9 + 5 >

1+2\1-%
and en (—14i4/5)u=/(ic) R
@x X
- J1+-
a
where a=cn LK+ K'7).

310. Generally in the expression of y=pu/M as a function
of x=gpu, where
o/w or K'i/K=,/(—D),
and the multiplier 1/M is complex, of the form
1/M=a+bs/(—D),
it is convenient to consider four classes of D.
Class A, D=3, mod. 8;
Class B, D=7, mod. 8;
Class C, D=1, mod. 4;
Class D, D=2, mod. 4;
the class for D=0, mod. 4, not requiring separate consideration.
It is convenient also to consider the diseriminant D (§ 53) as
negative,; a change to a positive discriminant being effected by
the method of § 59 ; now w'y/w,=1./D.
* We can also normalize the integrals (§§ 196, 252) by taking
9.2 —279.2= —1, so that g,=J/(—=J).
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Crass A, D=3, mod. 8=8p+3 or 4n—1, if n=2p+1.
1/ M=3(—141/A).
The relation connecting @ and y can be written in one of
the three equivalent forms

y—e = M*x— leIp {x—p(w,+21r0,/n) 2+ T,
r=1

y—ey=M*x—e;) I {@—p(w;— 2rwy/n)}2+V,
y—ey=M¥x—e,) II {x—p(w,+ 2rwy/n)}2 =V,
V= 1T {& — p(2rwy/n)} ;
leading to the differential relation
Mdy _ da )
NP =gy —g0) N (427 =gz —g5)
This verifies in the particular case of p=0, when
D=3, J=0, ¢,=0, 1/M=%1(—1+1/3)=m;
and then e, =mMme, e;=mo,

This is the simplest case of Complex Multiplication,
mentioned in §196, and employed in § 227 in the determina-
tion of the Trajectory for the cubic law of resistance.

The form of the general transformation is inferred from the
consideration of the series of values of w which make

y or p(u/M)=e, e, e, and .
(i) When y=e,,
w|M=(2q9+1)w, + 270,
= (¢+ 5N oy—wy)+7(0, 4+ 0,)
= (q+r+deo—(g—r+ie,;
w={{g+r+Ho—(q—7r+Hw,}[(—1+1in/D)
=52 {(@+r+ D) — (=7 +Di/ DN(=1~iy/D)
_—q-r—3~(q-r+3)(4n-1) g+r+i-g+r-%
- 2n @ on 2
= —2qwy+ 27w, — wy— 1{(wy+ wy) /10
= — 2w, + 270, — wy — 2704/ 7,
80 that @ or pu=e, or P(w,+ 2rwy/n).
(i) When y=e,,
w/M=2q+ Do, + (2r+1)w,
=(g+r+1Deo,—(g - ey,
U= —2qwy,+ 27w, — (27 + 1)wy/n,
pu=e, or P27+ 1)wy/n=p(ws— 2rwy/n).
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(iii) When y=e¢,,
/M =2qw,+ (274 1w,
=(q+7r+Hw,—(g—r—"1)wy,
W= — 2qw,+ 21w, — w, — (21 — 1)wy/n,
pu=e;, or P{w,+ (2r—1)wy/n} or p(w,+ Lreyn).
(iv.) When y=w,
w/ M= 2qw, + 21w,
=(g+ 7)o, —(q— 7)oy,
U= —2quwy+ 21w, + 21wy M,

and pu = p(27w,y/1).

Hence the form of the Transformation is inferrved.

By addition, we find

" — A4 A2
(ooP—-G xP-14 Gur-2..)%

where n=2p+1 ; and we shall find that 4,=2G,; and the
A’s and G’s are symmetrical functions of e, ¢y, ¢, and there-
fore functions of g,, g, or J; while &, has the same significa-
tion as in § 293.

By employing the Modular Equations given above, or
employing Hermite’s results (Theorie des equations modu-
lavires), we find

D =3, J=0, 9:=0, J(g+1)=1 g,=1J3.

29 8 711

D =11' J=—§3, g2=§’ g3=‘—%/777;
. _114-72/11 114144
A,=26,=—3(/11+4), A 774+1g~/ , A3=-—5/ ;

D =19, J=—2, g,=8, St =5, gym19)

A =20=—J19—1, 4,=5(25+5i4/19), A;= —1(/19461),
=121 +9i/19), A= —}(/19+114);

these values of 4, A, A, A, were calculated by Rev. J.

Chevallier, Fellow of New College, Oxford, who has also

verified the case of D=11.

D =27, J=-2"x5%+3% ete.

D =35, g,=3/5(l(/3+D), gt 1=3{3(/5+D)"

D =43, J=—22x5, ¢,=80, J/(g+1)=5
95=3X% T X /43 (Hermite).

A =26, = —6(/43+17), G,=3(279+114,/43),
A,=1051473i,/43, ete.
D =51, J=—64(5+/170(J/17+4)? (Kiepert).
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D =67, J=—22x5x113 g,=440, /(g,+1)=3x%7T,
95="T X 31 x /67 (Hermite).
D =163, J=—212x 5%%x 235 x 293, (g +1)=38xT7x11,
gs=Tx11x19%x 127 x /163 (Hermite).
Crass B. D=7, mod. 8=8p+7=4n—1,if n=2p+2.
The relations connecting ¥ =p(u/M) and == pu, where
1 M=—%+%i/D,
are found, in a manner similar to that employed in Class A ;

y—e, =M x—e)(x— ez)rf—lp {&— p(wy+ 2rwyfn)} 2+ TV,

Y —ey= M271=I {x— ga(m3—21"w3/n)}2
Y—e= M 71:1 {w— f"(wl"' 2rwym)} =+
V= (x—e,) fI {m P(2rwy/n)}2

As simple numerical apphcatlons,

D=7, 2i=f, J=—0 %= ggz%l

8 20
=8 —/T+1), e=1J7, e=§—/T—9).
D=15, k' =sin 18° (Joubert).

" In these cases the Jacobian notation is almost more simple,
as given in § 308.

Crass C. D=1, mod. 4=4n-41.

The relations connecting x=gpu and y=p(u/M), where

M= —}+1}i /D,
cannot now be rational; but, according to Mr. G. H. Stuart,
we can express the relations in the irrational form
4r 41 >

y—p b _ <ac——e >“II"“ @<“’2 1%

- r—e) - 4 41 ’
T e gnyes)

Y= bw,
a relation which may be sald to be of the order n+74; and
this is equivalent to

o < 47« > 2
(y—e)ly—ey) _ M(a—e,) ’ﬁ” P\onF1%s ]

Yy—e, -
e le—slgiare)
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Crass D. D an even number.

In this class the simplest function to employ is the sn func-
tion ; for instance, with

K'|K=,/2, then k=,/2-1;
_sn’y
DY) — 9 P coclink..
and sn(l+i/2)u=1+1i/ )Snul—ﬁanQwsn?u
where o=3K—-iK");
leading to the equations
1- 2\
1—y_1+/<oc( “snow
14y 1—Kﬂ7\1+i

sn w

k]

l—xy_],~x<],+;<m snw>2

14y 14+a\l—kzsnow
connecting z=snu and y=sn(l+i/2)u.

— — 2 _\/2—-5/
Also snw=,/(—1), sn2w—-——~/2_1.

These transformations show that it is not possible to express
en(14i,/2)w in terms of ecnw, or dn(l+1i4/2)w in terms of w,
by a rational transformation.

With K'/K =2, then «x=(/2—1)* (§71),
and the relation connecting x=snw and y=sn(l+2i)u may

be written
a? x?
(20 (1~ ) 1 )
v= (1 —k%e%0220)(1 — k%r*sn?4w)
where wo=YK—1iK");
equivalent to the relations

. 2 2
1—y=1—,<x{/1“£7, +§_ﬁ@;w )
My e ) e
l—ky_1l-2 l_sTm’fd) 2 1+;nﬁ4¢5 2;
e 1+snw2w/ _snxtlsw

so that en(1+2i)u has a factor dnwu, and dn(142/)u has a
factor cn w.
G.E.F. Y
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When K'/K =,/6, then k=(/3—/2)(2—a/3);
and the corresponding relation between snw and sn(1+i4/6)u
to be written down is left as an exercise.

(Proc. Cam. Phil. Soc., Vols. IV, V.)

It can also be shown, in the preceding manner, that the

relation connecting x=gpu and y=gp(u/M) where
1/M=—-1+414/D,

and D is an even number 2m, can be expressed by the relations

r=m p—1

2’;
—e, = M2 —
y—e =M 62)};[1 x—g 7m+1w2>}

%
Y—ey= M(cc—e)H{x oo g o )} =7,

2r—1 )2
Y—eg= MZ(m—-ea) II {ﬂ’) @7(0)1 QZZ‘;Twz )} —Z-V,

V= H {m_gJ(__Q_,r____w ')}2.
2m+1 2
As numerical exercises, we may take

(1) D=2, when g,=30, g,=28, G;=—1+4%i/2;
(i) D=4, when g,=11, g,=7, G;=—2+7.

311. In conclusion we may quote from Schwarz some
general remarks on doubly periodic fanctions.

Every analytic function ¢u of a single variable « for which
an algebraical relation connects ¢p(w+v) with pu and ¢v is
said to have an Algebraical Addition Theorem; and then ¢'u
must be an algebraical function of ¢u (Chap. V.).

Every such function is then an algebraical function, or an
exponential function (circular or hyperbolic function), or an
elliptic function, which can be expressed rationally by pw and
pw (Chap. VIL).

Elliptic functions are doubly periodic. A function of a
single variable cannot have more than two distinct periods,
one real and one imaginary, or both complex. For if a third
period was possible, the three sets of period parallelograms
obtained by taking the periods in pairs would reach every
point of the plane, so that the function would have the same
value at all points of the plane, and would therefore reduce to
a constant (Bertrand, Caleul intéyral, p. 602).
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Abel, in generalising these theorems, was led to the discovery
of the hyperelliptic and Abelian functions.

Thus if X in § 169 is of the fifth or sixth degree, we obtain
functions of 2 variables and 4 periods; if of the 7th or Sth
degree, of 3 variables and 6 periods; and generally, if X
is of the degree 2p+1 or 2p+2, there are p variables and
2p periods; but this would lead us beyond the scope of the
present treatise, and the reader who wishes to follow up this
development is recommended to study Professor Klein’s articles

“ Hyperelliptische Sigmafunctionen,” Math. Ann., XXVIL,
XXXIIL, ete. '



APPENDIX.

1. The Apsidal Angle in the small oscillations of a Top.

The expression given by Bravais in Note VII of Lagrange’s
Mécanique analytique, t. IL, p. 852, for the apsidal angle in
the small oscillations of a Spherical Pendulum about its lowest
position is readily extended to the more general case of the
Top or Gyrostat, if we employ the expression on p. 261, § 242,
as the basis of our approximation.

We divide the apsidal angle ¥ into two parts, ¥, and P,

such that W =y — o, a,
1¥,= by —w,Cb;
and now put 4 =wy—8w;, b=w,+qu,,

where ¢ and s are small numbers; so that, expanding by
Taylor’s Theorem as far as the first powers of ¢ and s, we may
put o+ swgpwy =13+ Swyes,
{OWR g — qgpo, =1y — quogey ;

and now, by means of Legendre’s relation of p. 209,

T R (05— Swg)m — wy(ny+ Swye5) = fim — swy(; +eg0,),

T, 2 (o) +qwy)n, — wy(n; — qoge) = qes(ny + €,0).

But, from equation (B), § 51,
2 o, Ul e
dn?/(e;,—e)u Py 1 pu—c,
=1 _p(utoy) —63=e1_8"’(u+"’32;
61— ¢—es

so that, integrating between the limits 0 and w,,

ey + {(w; + wg) = g = (6, —¢5) d‘112~/ (e, —eg)udu,
]

or mtew = J/(e—e)E (Schwarz, § 29).
Also (§51)  (e,—e)w= J(e,—e)K;

so that e = — (¢, —e K —F);

and therefore W, = dim 4 swy0/ (e — e (K — E),

W= g/ (e, —eg) k.
340
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But, from § 210, when a and B are very nearly =, their
approximate values are given by
ey —pa
cottle="3"F
2 pb—ey
102, 294
O3 Tl T 38 0P Wy
2 97
1~ ¢+ $ ¢ g’ o
W —S2w2(e, — €)W — kS%w,2(e, — ¢5)

since 0" wy=2(e; —e5)(eg—e,),
Cy—¢€ 61— 6 ¢ x
and K2=62—-€3’ K/2=el—462 § 52);
3 1 3
2
01 —P0 ., L=l K
O = e, e — 0=
2 2
K/2
2 2w
and therefore (e,— 63)8 g IR = cot?§a cot? 4 8.
Also (§ 210)
’ ’
G=0r__ ¢b_  ¢(etqey

G+0r — gp'a T = (w,— swy)
wqwaf" “’3 261—32=§1’Sf
Swap'w; 8 a—ey 8 Kk*

so that = (e;—eg)q%w? W — (g;g’) —;5 cot?fa cot? £ 3.

>

Therefore Pound 27r+££:< cot Ja cot £,
G- C’r *E
ZM<G+OT> = cob La cot 3.
But, ultimately, when =0 and «'=1,
then E=1m, and (K — E)/K2=i7r (§ 11, 170);
so0 that W, wdw + 4 cot facot 53,

\P2m(g+g.r>27" cot La cot 13.
This reduces for the Spherical Pendulum, in which Cr=0, to
W tr(i43 cot facot 1B) W twr(1+ £ sin asin B),
when « and B are nearly =, thus agreeing with Bravais’s result.
When a=7 and G+ Cr=0, this approximation fails; but
the student may now prove that the apsidal angle is

%7’{1 \/ <4 gi V%l)}

This will be the apsidal angle when the Top is spinning in
the vertical position with small angular velocity 7, and is then
struck with a slight horizontal blow.
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"~ IL The Motion of a Solid of Revolution in infinite friction—
less liquad.

The reductions of the Elliptic Integral of the Third Kind
in § 282 in consequence of the relation

a+b=w,
in connexion with the Top and Spherical Pendulum, are useful
also in constructing degenerate cases of the motion of a Solid
of Revolution in infinite liquid, as mentioned in § 211.

We refer to Basset’s Hydrodynamics, Vol. I, Chapters
VIIL, IX, and Appendix IIL, also to Halphen’s Fonctions
elliptiques, 11, Chap. IV,, for an explanation of the notation;
and now 7 the Kkinetic energy of the system due to the
component velocities u, v, w of the centre O of the body along
rectangular axes 04, OB, OC, fixed in the body, OC being the
axis of ﬁgure, and to component angular velocities p, g, » about
04, OB, 0C is given by

T=3Pui+v?)+ iR+ 1A(pP+ ¢+ 502 ...... (A)
(to which the terms
Pup+vq)+Pwr
may be added in the case of a body like a four-bladed screw
propeller, or like a rifled  projectile provided with studs or
spiral convolutions on the exterior).
Then the Hamiltonian equations of motion are
d oT BT oT

Tiou" —I—q =X, (1)
%gg. pa_[.+ gg Y, e )
%%_q%w%: e (3)
%%—r%—i—ggg—wgf—kv%zl), .......... (4)

dol oI oI o 2T

dt @—pﬁ +/rap —u%+w5d= [ (5)
dor_ or, ol oI of .
Tior ~Top TPoq ~Vou T =N e (6)

When no forces act, so that X, Y, Z, I, M, N vanish, then
equation (6) shows that Cr or r is constant.

Multiplying equations (1) to (6) by w, v, w, p, g,  in order,
adding and integrating, shows that 7' in (A) is constant.
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oT oI o7
2 -
Multiplying (1), (2), (3) by w30 B adding and in
tegrating, proves that

O\ aT2
G +G
132(q,bz+q;2)+132u;2 F2 oo, (B)

F being a constant, representing the resultant linear momentum
of the system.
Similarly, it is shown that
ol'or | oT'oT ol of'; is constant ;
duop v oq ' ow v

APup+vq)+CRwr=G, .............ov.. ©

where G is a constant, representing the resultant angular
momentum of the system.

From equations (A) and (B),
A(p* 4y =2T—0Or2— R102 — P(u?+?)
=27 —Cr?— i + F Z(

and, from equation (3),

2
> is constant; or

B P)(I” Reu®),

B Prug — up) = P ) ) — PHup+ g

2
G o
FAF?—RPu?  (G—CRwi\?
+{o1= 0 )= (2 2MY (D)
so that w or Rw is an elliptic function of ¢

Taking the axis Oz in the direction of the resultant impulse

F, and denoting by +,, v, v, the cosines of the angles between
0Oz and 04, OB, OC, so that

Pu="Fy, Pv=Fy, Rw=Fy,,
then, with Euler’s coordinate angles 6, ¢, 1,

y,=—sinfcos ¢, y,=sinfsin¢g, vy,=cos6,

P(up+vq)=Fsin O(—p cos p+gsin ¢) = qugeoll;b
so that

dyy _G—CFrcos @
dt —  AFsin20
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G+CFr 1 + G—CFr 1  dyy i dr,
24F 14cos@ 2AF 1—cos@ dt
suppose ; and then

de Ay C CFr—@ cos 0
df =T b= ( ) T AT
_ iy
“< Z> tae TdE
The equations given by Kirchhoff (Vorlesungen wiber mathe-
matische Physik, p. 240) for a, 8, v, the coordinates of O with
respect to fixed axes O'a, 0’8, O'y (O’ parallel to Oz) are

oT oT oT
Fo= Bléﬁ +8, 5q + B‘%T’ .................. (7
oT oT oT
FB = alap (128(1 (13,67" .................. (8)
Fc_l% = ?.T_I. a[-|- BT ............ vee(9)

where «;, a,, a; denote the cosines of the angles between O'a

and 04, OB, 0C; and B,, B, B, the cosines of the angles
between 0’8 and 04, OB, OC.

Expressed by Euler’s coovdinate angles,
a,= cos f cos ¢ cosr—sin ¢ sin,
a, = — 05 0 sin ¢ cos Yr —cos ¢ sin r,
ag= sin Ocosr;
B,=cos 6 cos ¢ sinr+sin ¢ cos
B,= —cos 6 sin ¢ sin -+ cos ¢ cos ),
,83 sin @ sin - ;
while =sin ¢ H—sin fcos ¢ x,b
—cos¢ G+sin O sin ¢ g[/,
r= P+cosOyr;
so that, after reduction,
Fa=A oosx,{r 6)+(C’r A cos 6 \b)@ln 0 sin,
FB= A sin, §—(Cr— A cos §)sin 6 cos J,

FC ly I sm26+ F— cos?0.

Writing Foc for F cos 6 or R'w, equation (D) becomes
dac? ) FNa2—1  /COrFa - Q\? '
e e e e ~ )j=rx
21

1\
W 2=" - — ),
suppose, where n ( R P>
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- Denoting the roots of the quartic X=0 by =, 2, 2,
we may put, according to §§ 151, 152,

X — Ly = —P9
PuU—pc
P LA Ll
1‘gou-—gac pc —e,
—gp'c pU—ey
—w2 —— —
pu—gpc pc —ey
iy PU=C,
PU—PC PC — €3
and now, when « oscillates between x, and a,,
w="nt+ v,

The letter u has been used here in two senses, to agree with
the ordinary notation ; this need not however lead to confusion.
Differentiating,
JX do (@s’;%g;i)z__ pu—c)—putco);
e=¢u+c)—{(u—c)—{2¢
_1g'(u—c)—p"2
“Tpu—g—p2
1 =)+ g uto)
T2 w—c)—p(ute)
a?=p2¢+p(u—c)+p(u+c);
_so that we must write v for 2¢ and u for w—¢, to agree with
Halphen’s notation:
Now, to determine -,
Fd'y ﬁ_’z <F I

dt R ID“)COSZG

F
=p T An*{p2e+p(u—c)+pluto)l,

72
Fy= (——+An‘2go2c)t —An{{{(u—c)+{(u+c)}
F? g
2 -
( P+Ango?c>(u —wy)—2Anfu—4 rbgm gac
s0 that, in a complete period 2w, of the motion, the point O
will have advanced parallel to 0"y a distance

< P+Anga9c>2wl—4~Amh ;
also (§ 152) 6p2¢ = coeflicient of —x? in X.
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We now suppose that w=¢ makes z=1, and v =0 makes
= —1; then

__—gc(pu—pa) _ —pepb—pu)
1= toa—peygu—pey 1T (b= pe)gu—poy
pagec  .G-CFr g@bp'c .G+CFr
(pa—gop~ " AFn (gab—gw)g_%w}l'ﬁ"ﬁ_'
Then

diny, _ —}g'a(pu—po)
du  (pa—pc)pu—pa)
_—ipa  —ipa
T pa—gpc ' gu—pa
=—1{a—c)—i{a+o)+{o
—}iu—a)+ (u+a)—u;

i =~ Hia— 0 + et Obut Llog 2t

and similarly

inry= = GO =0+ {0+ o)) ut-} log 2T
and therefore

. o(u+a)e(b+u)
Wr=—1Putilog > (v —a)o(b—u)

where
P={a—o)+iato)+i{b—0)+{b+e
Also
sinff=1—a?=(1+2)(1—x)

_ ¢ clpu—pa)(pb—pu)

(e — pe)(pb — po)(pu — pe)*

o2¢a(u — a)o(u+ w)o(b—w)o(b+u)
= (@ —c)o(a+ Yo (b — )a(b+ ) (U — ¢) 2 (u~+¢)’

so that ;
. W . T+ d)o —l—u)

sin Qe = Ce-3P —L(ﬁ?c%agu oy
giving the projection on a plane perpendicular to Oz of the
motion of a point on the axis OC, relatively to O; also

P(u+wvi)= —Fsin fe- ¥,
Pp4qgi=(—sin Oy +i 9.

We find also, as in § 224, that if the values a, and b, of u

correspond to

x?=14 <2T —Or? —%)}gm,

then a,—b,=a—>b.
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But now introduce the condition
a+b=we,
when, according to § 282, v, becomes pseudn-elliptic.

Putti tari-1 e . pu—e,
utting g£=tan pEa——

R 1+ag. 1+w7 x—x,.r— a,>
or =tan-! 0_* a
¢=tan \/< 14y . 14+, x—2g. x—2y
and, employing b instead of @, this may also be written
l—ag.l—x x—=x .a;——wa>
—tan-1./( — . 0 .
¢=tan \/< 1—zy. 1=y 2—ag.0—2y/'
1+ag.14+2y 1l—ag.l—a
that 8 v B8 v
50 tha THw, 1tz l—z,. -
and therefore each is equal to —1, and
Xy, + gy 4+ 2=0,
since T+ xat+ag+24=0;
and, changing to the complementary angle,

£=tan-1 x/“__”?ﬁ_@‘r

€Xr— wo XL — Lg
—sin-! \/Wﬁ L LTy \/@,:?EQ; Za—10

b

— 22 2 — 202
with @e > ag > 2 > 2, > @,
Differentiating, ‘
dé _ (zg+ay)(1+a*) — 2(1 +agmy )
da (2 ")‘112)~/X s hlle - _q@JY
» d ag+xy — (1 +ugey)
so that d—f BT Ly . (—9(;2 i) — ya(ptan)
=in(ey+x.)— —n +%a ; (1;‘ wowa)a,
Then df d‘/’ = Jn(a, +@a),

provided that «(z, -[—wa) = G/AF, n(1+ayw.)=Cr/A.
The quartic X must therefore break up into the two
G Gz Or

3 2 __ 2 11 and
quadratics % — AFn + A -1 and 24— AFn " 4 1; anc
—CrF
— (2 2
A=(@-1y- ( Akn > ’

so that the requisite relation when a+b=wq, is

P G — O
o+ _ A v L .
27T —Cr BT T T e e (1)
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Now

sin 6 cos £= f_"_%)““_ Lo \/ {%(1 _or 4 Gio 2@— cos?0 }

An
. s e [TB—X . T—Ry Or G‘E"Ef)_. 2 }
sin @ sin = BT ‘\/{ < T AT Afm T 6
S0 that Sin?e Sin 25: ~/X’ Sin20 CcOoSs 25: qﬁ%ﬁj,
and g=mt—,
where m=yn(zy+xa) =L G/AF.

Also, from (7) and (8),
Flacos Jr+Bsin) =40
=An,/X/sin 6 =Ansin O sin 2£;
Fla sin yy— B cos ) = (Cr— A cos r)sin 0

CrF—G cos 9 .
=g = — An sin 0 cos 2¢.

Therefore  Fa=An sin 6(sin 2£ cos \» —cos 2£ sin )
= An sin O sin(2£—)
= Amn sin 0 sin(2mt—3) ;
FB=Amnsin 0 cos(2£—r)
= Amn sin 0 cos(2mt — 3r).
Now in the motion of a point on OC, relative to O,

sin @ ¢¥ =sin 0 cos(mt — &)+ sin  sin(mt — £)

! n — — —
_ eim‘( L=y La—@ (XL Ty
N 2 )

where @ =cos 6.
When b—a=wa, and ,—y, or ¢ is pseudo-elliptic, we
shall find that G and Cr are interchanged, and
(2, +xa)=Cr/A4,
n(l4xwe)=G[AF;

2
and then 27— Cr? «R-—O N (F)

80 that PAu?+ %) = F?sin?0,
' P4 q*=nsin%0.
As a numerical exercise, we may take, in addition to (IF),
G=4A4Fn, Cr=2,/TAdn;
then X =at—3022+16,/T2—15
=2,/ T+ 3)(a?+2,/Tx—5);
=142, wy=—JT+2/83, 2y=0/y—2, &= —/T—=23;
9,=60, g,=88, e,=14+2./3, e,=—2, e;=1-2,/3;
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pa=—3, pb=1; a=3u, b=aw,— o, (§225);
pe=2/T+3, pe=—8/7—20, p2c=5, p'2c=4,/T.
Now we shall find that
nt—r=1%cos -1<95’i——-;7£2>7 =ete.
$in%0 cos 3(nt— ) =(— 2+ /7 cos 0 — } cos?@)E,
sin®0 sin 3(nt —r)
=(3/7T—2 cos O+ 1 /T cos20) /(5 — /T cos O —1} cos?6).

MISCELLANEOUS EXAMPLES.

1. Construct a Table exhibiting the connexion between the
twelve elliptic functions

sn au, ns u, de u, cdw;
cn u, ds u, ne w, sdw;
dn wu, csu, SC U, nd w.

2. Construct a Table of the values of the sn, en, dn of
u+mK+nK'i in terms of snu, ecnw, dnw; also of the elliptic
functions of {(mK +nK'7), for m, n=0,1, 2, ....

3. Prove that, accents denoting differentiation,

@) snu dn"y—sn"u dnu=snu dnwu, ete.
| (snw)’, snwsn'u, (snu)|
(i) (ecnw)? enw en'y, (en'w)? |=«Zsnucnudnw.

| (dnw)?, dowdn'u, (dn'u)?
(G. B. Mathews.)
4. Denoting by (m, n) the function
SN (U — W) D (U + U
cn (’me - un)sn(um + un),

prove that
(4, 1)(4, 2)(4, 3)(2, 3)(3, 1)(1, 2)+(4, 1)(2, 3)+(4, 2)(3, 1)
+(4, 3)(1,2)=0.
Denoting by 4, B, € the functions
sn(t—a)sn(y —2z) sn(t—y)sn(z—z) sn(t—z2)sn(z—1y)
sn(t+x)sn(y+2) sn(E+y)sn(z+2) sn(E+z)sn(z—y)
prove that ABC+ A+ B+ C=0.




350 THE APPLICATIONS OF ELLIPTIC FUNCTIONS.
5. Prove that
. 2u
(1) ﬁ sn vdv =2 tanh ~(x sn’u).

0

(ii.) /,:;n(2u+ a)dw = tanh -« sn w sn(u+a)}.

0
K

(iii.) /iog ns udu =37 K’ — LK log 1/k.

< .
6. Determine the orbit in which

P =h*(u3+a®u’), the apsidal distance being a.

7. Rectify 8= afeos30.
8. Prove that the perimeter of the Cassinian Oval of § 161

2 A 9
is either QBK, K=%\/ 1_‘_:(12 _%\/ 1_:%’

a

1
or $a K, IC—-:‘\/ 1+,32 2\/

and draw the corresponding curves.

9. Prove that the length of the curve of intersection of two
circular cylinders, of radius « and b, whose axes intersect at

1 /1 — 2sintaN\d
right angles, is S(f/ <HT:$_.%> dg, 2=a2fb?;
0
and verify the result when «=>b.
10. Prove that K and K’ satisfy the differential equation

dK X
dk{k(l B } 1K =0.
Deduce the relation

K, AK  x
ab X g T ma =’

and thence deduce Legendre’s relation (§ 171).

11. Prove that @, and @, of § 252 satisfy the differential

. dw 4-7Jdw ©
equation JJ - Dyt < a7 1=
12. Deduce the Fourier series for snu, enw, dunw of §§ 266,
267 from the series for Zu of § 268, making use of Landen’s

Transformations and of equations (28), (29), (30) of § 264.



MISCELLANEOUS EXAMPLES. 351

13. Prove that

iy F P k) ko) o)
pu g (uto) ¢ (ute) ¢ (ute)

oy LptuNE o o

(@ii.) 47(5’70) =p2u+2pu;

(i) gm—go(u+a+b) ou — @p(u - —b) _ {mgm—ga(a+b) }2
7 plu—a)-p(u—b) pluta)y-p(u+b)  pu-pa)pu—pb)
14. Prove that, if a variable straight line meets the curve

Ax®+ By*+Ce+ D=0

in (), ¥;)(@y Yu)(Ty Ys), then (§ 166)

da,  dx, dz,
s WG B )
Y + P + Ys

15. Denoting the integral

@ gyda
Yyt —awx

by fw,
0
where ¥ is given as a function of & by the equation
x¥ 4y —3Baxy =1,
prove that, for three collinear points,
fae, + foey + for, = Ba.
16. Prove or verify that, with g,=0, the solution of Lamé’s
differential equation
.\ 1 d?
(1.) 5 E’l,%/é
. 1 dPy . o
(i) g du= bpu+/(3gs) 18 y=pu—{d/(3s)5

=2pu 18 y:{go'lbi,\/(—g?))}%;

aes 1 dly 3 . 1 11—k
(111.) :& E&?:Ig"u 18 @/=(A+BS’32%)(KJ ?u) %

(Halphen, Mémoire sur la réduction des équations différen-
tielles, 1884.)

17. Determine, by means of elliptic functions, the motion of
liquid filling a rectangular box, due to component angular
velocities about axes through the centre parallel to the edges.

(Q J. M, XV, p. 144; W. M. Hicks, Velocity and Electric
Potentials between parallel planes, p. 274.)
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18. Prove that, with 2 =47u/w and 4 ={»/w (§ 278),

_ o 0 - 40205 _auBs _ 420,
U= e T e T ey T g

and thence convert the formulas (M) to (T) of §249 into
Jacobi’s notation.

19. Prove that (§ 264, 20%)
Q= TL(1—g")= = g+,
r=1 m=0

N (6m+1)2
qe/Q=2q .

20. Prove that

. _ % 1 +q2r 4 .
(1.) K -—4‘(] H(mﬁ) ’
. . 1— q2r—1 4 .
(11.) K = II 17%) 5
oy K tanh?r7K'|K
(ifi.) T Hta,nh2(7'—- DK |K

21. Prove that, in Appendix II., p. 346,
G2
{020 — gJ(CI/ + b) = :}:ZQF—?/,—"?
_ 22
p2c—p(a—D) =A%
, WG (@E—-C22F? 27 —Cr?— 2[R\
s e ]
, oOr 2T —Cr2—F?/R
o=V
Work out the case of
27— Or*—F?|R=0,
G=24Fn, Cr=2,/2A4n.
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