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Preface

The work presented in the ensuing pages began some 17 years ago

with the direction of a dissertation on the nonlinear integro -differential

equation introduced by Vito Volterra in his theory of population

growth . Although the limited progress made at that time was

achieved mainly by the use of linear processes, it was an auspicious

moment to begin the study of such nonlinear problems. The great

computing devices of the present day were then being developed .

These gave great promise of being able to unlock secrets in nonlinear

problems which had hitherto baffled the most skillful analysts.

It is a matter of considerable historical interest to observe that by

the middle of the 20th century the astronomers had been struggling

for more than 250 years with the nonlinear system of equations which

describes the motion of the planets . The first edition of Newton's

Principia was published in 1687. Euler's Theoria motuum plane

tarum et cometarum appeared in 1744. Since the publication of these

critical works, incredible ingenuity has been exhibited by a sequence

of some of the most brilliant analysts in the history of mathematics

Lagrange, Laplace , Gauss, and their distinguished colleagues. Equa

tions which required in excess of 170 pages to print one of them had

been produced by C. Delaunay in his attempt to mathematize the
motion of the moon. G. W. Hill had introduced an infinite determi

nant in his theory of the lunar perigee . The problem of the stability

of the solar system presents baffling difficulties even to the present

day . For the only tools then available were those that belonged to

the linear algorithm . But the problems to be solved were those that

belonged to nonlinear mathematics . Substantial progress could be

made only when clever transformations had reduced the nonlinear

problems to linear ones, or to problems asymptotic to some linear

algorithm .

But the advent of the machines has altered the picture. These

great tools have made it possible to achieve progress where none was

possible before and in the development of the present volume generous

use has been made of them . But the powers of the analytical method

are not to be disregarded in favor of the powers of the machine. The

solutions of nonlinear equations still possess singularities , which only

the analytical method can discover and describe .

In preparing the present volume the author has made full use of

the achievements of a number of distinguished analysts, who , in the

last years of the 19th century and in the early years of the 20th ,
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discovered much about the stability of solutions of systems of equa

tions , explored the mysteries of limit cycles , and made attacks upon

the problems of periodicity. Most prominent among these was H.

Poincaré and A. Liapounoff, whose achievements remain a corner

stone in the history of the subject .

From another and quite different point of view we find the important

discoveries of P. Painlevé , B. Gambier, and their colleagues with

respect to a class of differential equations of second order with fixed

critical points . Their work was perhaps the most important advance

made during the early years of the present century in the resolution

of some of the mysteries of nonlinear equations and the problem of

the classification of equations .

In his admiration of these studies , however, one should not dis

regard the history of the development of existence theorems, which

were largely the product of that same period. Although the problem

finds its origin earlier in the work of Cauchy, the modern form for

these theorems was achieved principally by the investigations of

E. Goursat and E. Picard, and their colleagues , who made fundamental

use of conditions introduced in 1876 by R. Lipschitz.

During the last 20 years there has been an explosive interest in the

problem of nonlinear equations . An abundance of memoirs and

treatises has appeared in the current literature of mathematics. By

referring to the appended Bibliography the reader can see for himself

the direction in which the subject has moved and note those who have

contributed to its development .

The present work has made an attempt to attain a modest measure

of completeness in defining the field of nonlinear problems and to

indicate within its scope something of the progress that has been

attained . The needs ofthosewho are requiredto apply such equations

to the problems of the physical world have been kept constantly in

view. Physicists and engineers , in fact all who work in the natural

sciences, are continually challenged by these equations . Something

must be done to show them how to attack their problems .

The contents of the present volume can be summarized as follows.

After a general survey of the problem presented by nonlinear equations ,

the differential equation of first order is studied . Classical theories

of integration , the integrating factor, particular equations, and the

problem of singular solutions are discussed . This is followed by a

systematic study of the Riccati equation . This equation was specifi

cally chosen because of its wide application , the interest which it has

had for many mathematicians, its connection with the linear problem ,

and the fact that it illustrates in a simple way many of the differences

between the linear and the nonlinear problem . It forms a kind of

bridge between the two domains .

Following this introduction , existence theorems are presented and

the algorithms, which they contain , are critically examined . Cauchy's
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calculus of limits, in spite of the restrictions which its assumptions of

analyticity impose, is found to suggest the method which the author

discovered was his most useful tool in probing the great problems of

the subject.

Before proceeding to more general matters, the book considers two

particular problems, which serve to illustrate much of the content of

later theorems. The first of these is Volterra's theory of the growth

of conflicting populations, which is an example both of á vortex cycle

and of a periodic solution defined by nonlinear equations . The

second , the problem of pursuit, illustrates on the one hand the useful

ness of graphical methods in a solution of certain types of nonlinear

equations , and on the other , provides an excellent example of a limit

cycle . Both problems are later analyzed with respect to more general

theories of such phenomena .

It was found necessary to introduce a chapter on elliptic integrals,

elliptic functions, and theta functions , since these are fundamental to

any understanding of the problems of nonlinear equations . They

provide , for example , the background for such a significant domain as

that of the Painlevé transcendents . They are also essential in explor

ing the complexities of the celebrated Duffing problem, that is to say,

the problem of the pendulum subjected to the influence of a periodic

forcing function .

A general classification of nonlinear problems was found useful in

the demarcation of fields, which have been more or less explored.

This leads first to a description of methods useful in studying the

elliptic equation. The more general problem of second order equa

tions of polynomial class follows as a natural consequence and thus to

a study of the Painlevé transcendents.

Although the book contains an introduction to various classical

methods of numerical integration of nonlinear equations , these were

abandoned in favor of a new tool designated as the method of contin

uous analytic continuation . This is an iterative process based upon

Cauchy's method of limits. Basically the method is not new since

it is founded upon analytic continuation , which has been used for many

years in the solution of difficult problems . One noteworthy example

is that of Emden's equation, which is described in Chapter 12. The

classical application is to develop a Taylor's series using as large a

number of derivatives as possible. These computations are always

arduous and a practical limit to the number of terms is soon reached .

The series thus attained is then employed over as large a range as

possible , this range being limited by the requirements of accuracy .

At the end of the interval a new series is then constructed from the

derivatives of the first and the solution is analytically extended over

a new range .

The method of continuous analytic continuation is a variation of

this , since the new center of the series is constructed at each infini
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tesimal step . Like a turtle, the continuation carries its house with it .

The method was found to have astonishing efficiency and many of the

computations in this book were made by introducing terms involving

derivatives of not more than fourth order . Upon comparing the

digital results with those obtained by use of a differential analyzer ,

it was found that the errors were of the same order . In fact , the

method of continuous analytic continuation appears to be the mathe

matical analogue of the analogue computer. But it has the advantage

that the error can be reduced to any desired size by the introduction

of higher derivatives , while the computer's accuracy is limited by its

mechanical parts .

A systematic study of the errors has been made and these are found

to increase very slowly in the case of periodic functions . Probes as to

the efficiency of the method in computing values into the very heart of

a polar singularity showed a remarkably small error even in this ex

treme case. The method is also readily adaptable to computations

around a singular point in the complex plane. In fact, both its versa

tility and its ready adaptation to high speed computers, make the

method superior , in the opinion of the author, to the classical ones

which he has applied in the numerical integration of nonlinear equa

tions .

The phenomena of the phase plane (the plane of y and y ' ) is studied

as an introduction to the problems of nonlinear mechanics. Curiously

enough the essential phenomena were found to be produced by the

solutions of a linear differential equation with constant coefficients to

which has been added a forcing function . This greatly simplified the

presentation of difficult matters . But the mystery of such behavior

is readily explained if we write

L(y) = 2, M (2 ) = 0 , ( 1 )

where L(y) is a linear operator and M(z) is a nonlinear equation de

fining the forcing function z . The phenomena of the phase plane are

thus after all determined by what is essentially a nonlinear system .

The contents of what has been called nonlinear mechanics is given

in Chapter 11 , together with numerous illustrative examples . One

of the principal contributions of this chapter is a study of the system

y ' =P(x ,y ) , x ' = Q(x ,y) , (2 )

where P(x ,y ) and Q( x ,y ) are polynomials of second degree. Although

no claim to an exhaustive treatment of this complex problem is made,

considerable understanding of the phenomena of such a system may

be gained , especially with respect to the question of when the solu

tions are periodic.

In order to show the application of various techniques, a number of

classical equations are introduced and their solutions discussed .

1
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Lord Rayleigh in 1883 presented an equation which, rediscovered in

another form by B. Van der Pol in 1923 , has been a classical example

of nonlinear oscillatory phenomena. This equation has been thor

oughly examined and a set of tables provided for the limit cycle which

it defines . Perhaps the most important contribution of this chapter,

however, relates to the Duffing problem and the " jump phenomena"

which belong to it . Nearly 150 solutions of this equation have been

made from which it has been possible to separate the regions of reso

nance from those of stability . Numerous examples are given to illus

trate the phenomena presented by the solutions of this equation .

No work on nonlinear operators can pretend to completeness which

does not survey the problems presented by nonlinear integral equa

tions . Unfortunately, progress in this field has been limited . Enough

examples exist, however, to show the manner in which nonlinear prob

lems differ from the linear; and existence theorems have been given

for general equations of both the Fredholm and the Volterra type . A

preliminary study has been made of the integro - differential equation ,

which Volterra introduced as an essential part of his theory of heredi

tary mechanics, and the case where the hereditary factor is constant

has been solved .

Since the calculus of variations has been a large contributor of

problems in the field of nonlinear differential equations, a chapter

showing this connection is given . The Euler equation in its various

forms now assumes primary importance and we are interested more

in the first variation , which produces the problems , than with the

second variation , which is of such fundamental importance in answer

ing the question of whether or not the integral does, indeed , attain its

extremal value. For this reason only a superficial treatment of the

complex problems associated with the second variation has been given .

In conclusion we wish to make certain acknowledgements of the

help received in preparing this volume . No work of this magnitude

can be brought to completion without the assistance of a number of

people . We mention first Dr. Zenon Szatrowski, who, as a courageous

graduate student, assailed the heights of the Volterra integro -differ

ential equation and thus began the attack upon the nonlinear prob

lem . Several grants in aid were made by the Graduate School of

Northwestern University to assist in the study of the Painlevé prob

lem and these investigations were finally brought to a successful con

clusion under an Ordnance Research and Development Project carried

out at the University from November 24 , 1953 , to March 1955. This

long study of the Painlevé problem was initiated by the investigations

of Richard C. Paxman and Arthur Pancoe . The arduous computa

tions of the fractional linear transformation were made by Mrs.

Hugh (Elizabeth) Rowlinson and Mr. Mykola Marchenko and the

final construction of tables by IBM calculators was supervised by

Robert D. Lowe, who had previously worked on the project .
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During a summer course given at the University of California in

Berkeley in 1952 , the author was assisted in the application of the

differential analyzer to nonlinear problems by Dr. John Killeen . This

method of analysis by analogue computers was continued at North

western University by Dr. Endrick Noges and the study of both the

Duffing problem and the problem of system ( 1 ) above was initiated

at that time .

In the summer of 1957 the author was invited by Dr. Mark Mills

to deliver a series of lectures on the nonlinear problem at the Lawrence

Radiation Laboratory of the University of California (Livermore

branch) and the unparalleled facilities of that Laboratory became

available. He is deeply indebted for this opportunity to Dr. Ivan

Weeks, at that time a group leader in the Theoretical Division, who

has maintained a deep interest in the project. This contact with the

Laboratory was resumed for 15 months from June 1958 to September

1959 , and as a member of the Theoretical Division , at that time under

the administration of Dr. Sidney Fernbach , the author was able to

bring the work to its present state of completion .

Among those to whom he is especially indebted is Dr. James E.

Faulkner, who took great interest in the system defined by (2 ) above .

The theorem on vortices given in Chapter 11 was proved by him and

he contrived many of the examples presented there .

Devoted interest was given to the project by Norriss Hetherington,

an expert in the operation of the differential analyzer , who solved

problems too numerous to mention . Among his special achievements

were the trajectories for the Volterra integro -differential equation,

the solutions for special cases of system ( 1 ) , the analytic continuation

around a singular point of the first Painlevé transcendent, and trajec

tories and curves for the Duffing problem . This work would never

have been completed without his constant interest and help .

Exceptional assistance was also given at various stages of the work

by C. Douglas Gardner, an expert in the operation of the IBM

machines. He computed various tables for the Van der Vol equation,

but his principal achievement was his application of continuous

analytic continuation to the computation of the solution of a non

linear differential equation around a singular point in the complex

plane .

Among others who assisted in the work was Dr. Roger L. Fulton ,

who undertook a systematic computation of the solutions of the

Duffing problem for small values of the parameter in the forcing

function and represented these solutions graphically. He also fitted

least-square polynomials to the boundaries between stable and un

stable solutions. Robert E. Shafer and Alfred E. Villaire also assisted

in various parts of the project , the latter supplying the graphical

representations given in Chapter 12 of the various cases of the gen

eralized Emden equation . The author is also indebted to H. Wayne
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Hudson , who produced copies of the manuscript and assisted its

completion by numerous other services .

And finally the author is indebted to some of his colleagues at

Northwestern University, who assisted him with council and infor

mation at various stages of the project , particularly, Dr. Walter

Scott , Dr. W. T. Reid , and Dr. Ralph Boas. And last, but by no

means least, is Miss Vera Fisher . Her ability to make arduous com

putations , to produce excellent graphs of complicated material, and

to manufacture a manuscript better than any one else , was utilized

at every step of the work .
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Chapter 1

Introduction

1. Nonlinear Operators

IN ANOTHER VOLUME the author has developed a theory of linear

operators, which contains within its scope a considerable domain of

analysis . That such a work should include within its limits a large

area of mathematics is readily understood from the fact that the

assumption of linearity in operational processes underlies most appli

cations of analysis to the problems of the natural world . It is for

this reason that a theory of linear operators, in contrast to a theory

of nonlinear operators, is comparatively easy to develop. The latter

is beset by many difficulties. There are relatively few algorithms

which can be applied and the powerful existence theorems of the

linear case must be replaced too often by those of special application .

But in spite of the difficulties of the general problem , there exists

need for a systematic treatment of nonlinear equations . Nature , with

scant regard for the desires of the mathematician, often seems to

delight in formulating her mysteries in terms of nonlinear systems of

equations . The theories of elasticity and hydrodynamics are espe

cially rich in such systems . Mechanics, relying as it does upon the

calculus of variations, Euler's equation , and Hamilton's principle ,

provides a wealth of other examples . The mathematician , however,

with his rich store of linear algorithms, must usually attack these

mysteries from the point of view of linear operators. His problem

thus becomes that of reducing the equations through various analyt

ical devices to a linear system . Failing in this , he must then try to

approximate the solution by some asymptotic process which brings it

within the scope of functions which have been defined and studied

by linear methods.

The purpose of this work is to set forth some aspects of the prob

lem of nonlinear equations, to exhibit transformations which lead to

equations that can be solved by classical methods, to collect the

results obtained in certain special cases, and to attempt some useful

generalizations of a few problems.

By a nonlinear operator we shall mean one that is not linear , and

1
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by a linear operator L we shall mean one that has the following

properties :

L ( 0 + V = L ( 0 ) + L (V ), ( 1 )

L (ko ) = L (0 ),

where $ and ¥ are arbitrary functions and k is a scalar quantity .

The difference

A (0 , \ ) = L (+++) - { L (0 ) + L (x ) }, (2 )

we shall call the linear deficiency of the operator L.

For example , L = dº /dx2 is a linear operator , but L= (d/dx) 2 is a

nonlinear operator , since we have

2

?

[dot vsJonas +to present
do , dy

dxdx

+2

do dy

dx dx+ days)
dy2

dx

The linear deficiency of (d/dx) ? is seen to be

do dy

A ( 0 ,V ) = 2
dx dx

Some common forms of nonlinear operators in one variable are the

following:
du

( 1 ) L ( u ) =de + Q (x)u + R (x)uº;

d’u 1 du2 du

(3 ) L (U ) = -f(x) dx- g(x);
dx² u ldx

(2)L(u)=( x) –a(z)—b(a)u=c(a)u –d(a)nu";

(

(4 ) L (u) = [°K (2,8)u (s)u(8 + x)ds;S

SK(2,8)u(s)ds.
1 du

(5 ) L (u) = + A ( x ) + B (x )u + K ( x ,s) u (s )ds.
u dx

As in the case of linear operators, we may also have nonlinear

operators in more than one variable . The following are examples:

du )

+

(6 ) L(u)= C )

( 7 ) L (u) = u(x ,y ) + .K(x , y ; s, t ) u²( 8 , t ) dsdt ;

0

Q

( 8 ) L ( u ) =

dau , ou , ou
+Keu

ду?
dra

t
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2. Nonlinear Equations

When a nonlinear operator is equated to zero or to a given function ,

we have a nonlinear equation . Thus, confining our attention to oper

ators of a single variable, we see that the equation

L (u ) = f(x ), ( 1 )

is a nonlinear equation if L (u) is a nonlinear operator.

In the case where L(u) is a linear operator it is customary to distin

guish between the equations : L (u) = 0 and L (u ) = f(x ), by referring to

the first as a homogeneous equation and to the second as a nonhomoge

neous equation. In the case of nonlinear equations the term homogene

ous no longer applies . We shall thus introduce arbitrarily the term

null-equation to refer to L (u) = 0 , when L (u) is a nonlinear operator ,

and the term complete equation when we have L (u ) = f(x ).

If there exists a function u (x) which satisfies equation ( 1 ) , then we

say that the equation has a particular solution . If one or more

functions satisfy the equation, then the equation has several solutions .

The general solution is the totality of the particular solutions .

For example , the equation

dy

( x2 + ya) ( 2)* dx = xy,

is a nonlinear equation , which has as its general solution the function

y defined by the following implicit function :

2y2 log cy — x = 0, (3 )

where c is an arbitrary constant.

On the other hand , the equation

[(2 ) +1] = )
> (4)

has as a particular solution the two-parameter family of circles ,

( x - a )2+ (y - 6 ) = ra, (5 )

and also the singular solutions: y= + ix . These functions comprise

the general solution of the differential equation .

3. The Solution of Nonlinear Equations

In the preceding section we have given two particular nonlinear

equations and have exhibited their solutions , implicitly in one case

and essentially explicitly in the second , in terms of elementary func

tions. In general, however, it is impossible to attain such results.
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When it is possible to obtain such solutions, however, the advantages

are obvious.

In the first place , it is then often a relatively simple matter to define

the points of singularity in the solution and to characterize them . In

the second place , it is usually possible without undue effort to exhibit

the solutions numerically by means of a table of values , or graphically .

Such a table or graph can be computed by some one of the many

methods available for such problems and the use of one or more of the

ever-increasing number of tables of special functions . In the third

place, the arbitrary parameters of the solution appear explicitly and

their relationship to the variables is thus immediately observed .

It is thus apparent that the first objective in the study of a nonlinear

equation is to ascertain whether or not a solution can be obtained

either explicitly or implicitly in terms of classical functions . The

procedure in such a study is to discover a transformation which will

reduce the equation to some type that is known to have a solution of

the desired kind . Failing this, one seeks a transformation which will

reduce the equation to one that is asymptotic to a form solvable by

known functions .

A simple example of what is meant by the last statement is furnished

by the linear differential equation :

xéy '' + xy' + ( 202 — n ) y = 0 , ( 1 )

which has as its general solution the function

y = AJn (x ) + B Yn (2) ,

where Jn (x ) and Yn (x ) are Bessel functions of first and second kind

respectively.

By means of the transformation :

1

y = 2 , ( 2)

V3

equation ( 1 ) is reduced to the form

z"
z ' ' +11

+ (1–4971)
4n2-1

4.72

2=0 . (3)

But as x becomes large , the coefficient of z approaches 1 as a limit

and the differential equation (3 ) approaches the equation :

z ' ' + 2= 0 , (4 )

as its limiting form . This equation has the general solution :

2 =K cos (x+ b) , (5)

where K and b are arbitrary constants.



INTRODUCTION 5

It is reasonable to assume that any solution of ( 1 ) will be asymptotic

to the proper specialization of (5 ) . This is , indeed, the case , but the

proof is not readily given . Some of the difficulties are exhibited by

considering the case where we write z = vāJn (x ). It can than be

shown that z has the following formal representation :

--V {P.«P. (a) cos( -1-----)-2.(a)nin (3-3---+-) };, (6)

where Pn (x) and Qn(x) have the following expansions :

(4n2-12) (4n2-32)

Pn(x ) = 1 ti :

2 ! (8x) 2

(4n2-12) (4n2—12 ) (4n2—32) (4n2—52)

Qr (2 ) = +

1 ! (82) 3 !(8x )
(7 )3

It is an interesting and curious fact that neither Pn(x) nor Qn (2)

converges for any finite value of x . Nevertheless , it can be proved

that 2 , as represented by (6 ) , is the solution of the differential equation

(3 ) in the sense of semiconvergent, or asymptotic, series .

A second example is furnished by the following nonlinear equation :

dy
=y?+2,

da
(8)

upon which we make the following transformation of both the depend

ent and the independent variables :

3-C )
y = Vrw . (9)

Equation (8) is then reduced to the following :

dw , 1w

+ =w2+ 1 ,
dt ' 3t

(1
0
)

( )

which , as t increases , is asymptotic to the equation :

dw

=w2+ 1 . ( 11 )
dt

The solution of equation ( 11 ) is the function w= tan (t - to) and we

can infer, therefore, that w, the solution of equation ( 10 ) , is asymptotic

to this function , that is ,

w~tan (t- to) , ( 12)

where the symbol ~ means " is asymptotic to."

Although it may not appear so, the example which we have just
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To see this,presented is equivalent to that given in the first case .

let us make in equation ( 10) the transformation :

u'

W = ( 13)
u

from which we obtain the equation :

dau , 1 du
t + + tu = 0.

dt ? ' 3 dt
(14)

By means of a second transformation ,

u= t1 /3y( t) , (15)

equation ( 14 ) becomes

together on+ (+2–5)- =y = 0, ( 16 )

which is equivalent to ( 1 ) in which n= 1 /3 .

But since we obtain by simple computation

1tº gº

y +
3
ť

y ' 2 ' 1

y
2t2'u 2

and since , by the arguments in the first example, we have the asymp

totic values :

2~K cos ( t- to) , 2 ' ~ -K sin ( t - to) ,

we thus see that

sin ( t - to)
W~ = tan (t- to ) .

cos (t- to)

One of the major difficulties encountered in the solution of nonlinear

equations , in contrast to the solution of linear equations , is the

manner in which the arbitrary parameters enter. The solution of a

linear equation appears in the form of a function linear in the arbitrary

constants . But this is not the case for nonlinear equations as one sees

from the following example :

XyY '' =yy' + xy '?

which has the general solution : y=A exp ( Bx2 ). The arbitrary param

eters A and B enter nonlinearly in the solution .

In the domain of linear equations an essentially complete theory

exists for differential equations which possess solutions that have at

most singularities which are poles and branch points. Although this

is not the case for linear equations for which the solutions possess
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essential singularities, even here considerable progress has been made

and a large body of information has been assembled for equations of

this class . But in the category of nonlinear differential equations, the

situation is very different. Satisfactory information exists in general

only for certain restricted types of equations and for a limited number

of special cases . Part of the reason for this is to be found in the present

status of the theory of functions , which has been developed largely

around classes of functions in which the linearity property is an essen

tial factor. A further examination of this point may prove instructive.

As we have already said above, given a nonlinear equation, the first

step in its solution is to attempt to find a function ,

u (x ,y ) = 0,

involving one or more arbitrary constants , which satisfies the equation

and which can be expressed in terms of the classical functions . These

functions have been divided into algebraic and transcendental categories.

The classical transcendental functions , although now a numerous

collection , are still inadequate for the solution of most nonlinear

equations . They embrace the exponential , hyperbolic, and circular

functions with their inverses; the families of functions derived from

linear differential equations of second order such as the Legendrian

functions , the Bessel functions, the Laguerre, Hermite, Chebyscheff ,

and Jacobi functions, with their numerous relatives ; the elliptic

integrals, the elliptic functions , the elliptic modular functions, and the

theta functions ; the gamma, beta , psi , and Riemann zeta functions ,

together with a growing class of similar functions defined by integral

transforms. Numerous other functions have been defined in various

ways in recent years and their properties partially explored , so that

an impressive collection now exists from which one can attempt to

construct the solutions of nonlinear equations either directly or by the

asymptotic method .

But for the most part these functions are derived in one way or

another from linear properties . The most notable exception is found ,

of course, in the elliptic , elliptic modular, and theta functions, which ,

as we shall show later , are derived from nonlinear equations . They

are very useful , therefore, as spearheads into the unknown region of

functions, which provide solutions for a certain class of nonlinear

equations.

The classical transcendentals are conspicuous for the tractable

character of their singularities. These singularities , in general , are

either isolated branch points or poles in the finite plane. Essential

singularities, such as the point r= 0 in the function sin ( 1 / x ), are

usually referred to the point at infinity. Natural boundaries, such

as the unit circle for the function

f(x ) = 1 + x + x2 + x4 + 208 + x16+
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are rarely found in the classical transcendentals , although such

boundaries exist for the elliptic modular functions . *

For the most part the solutions of nonlinear equations do not pos

sess the functional simplicity of the solutions of linear equations .

Functions with essential singularities are the rule rather than the

exception . Highly restrictive conditions must be imposed if such

singularities are to be excluded . Thus the general solution of the

equation :

( 1 - y ?) (arcsin y ) = x²y '?,

is the function : y = sin (c /a) together with the two singular solutions :

y=+ 1 .

In contrast to the linear case , the solutions of nonlinear equations

will sometimes have movable singular points. For example , the

equation

y' + ya = 0

has the general solution : y = 1 /( x -- C ), where C is arbitrary . Thus

any point in the plane, by proper specialization of C , can be a pole

of the solution, a phenomenon which is absent from the solution of

linear equations.

PROBLEMS

1. Show that x'y2 + 70 = C is a solution of the differential equation

2x’yy' + 3x2y2 + 7 = 0 .

2. Prove that the general solution of the equation

(x2 + y2) y ' + 2.4 ( y + 2x) = 0,

is the function : 7: + 4x3 + 3x²y = C.

3. Show that the general solution of

y ' + 3y+ y= 4

is the function : y = ( e53 — 4k) / (e5z + k) .

4. Show that for the transformation : u ( x ) = y ' + y ?, the equation

cy ' ' + ( 2.ry + 2) y ' + 2y + 2 = 0 , ( 17 )

reduces to : qu ' + 2u = -2 .

5. Referring to Problem 4, solve the equation : qu ' + 2u = -2, and thus obtain

the function : u = c /x2 – 1 , where c is arbitrary . Setting c = 2, verify that the

function

(x2 - 1 ) cos ( x + k ) -x sin (2 + k )
y =

x? sin (x + k ) +x cos (x + k )

where k is arbitrary , provides a particular solution of ( 17 ) .

* For a discussion of this example see Whittaker and Watson : Modern Analysis, p . 98.
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6. Show that for the transformation : t = 435/4 / 5 , y = vxz, the equation

day
dx² = 6y² – 6x ( 18 )

becomes

daz

+
dt2

1 dz

t dt

4

25t2

= 622—6.

Knowing that the equation : 2 ' = 622—6 has a real solution with a real period ,

what might one conclude about the solution of ( 18) for large values of x?

7. Show that the transformation

wz = 1/ (2x + 1 ), 4w2 = 2.x2 – + 1/ 4 ,

where z is the dependent and w the independent variable , leaves the following

equation unchanged :

y ' + (8x3 - 2.x )y3 + 3y2 = 0 .

4. The Origin of Nonlinear Equations.

As we shall see in the subsequent development of our subject ,

nonlinear equations originate naturally in many different ways. The

mathematical description of natural phenomena, such as elastic

systems, problems in stress and strain , optical systems , and the like ,

lead to such equations .

SBA

m

M

g

©

FIGURE 1 .

As a simple example, let us consider the vibration of the pendulum

shown in Figure 1. The force acting in the direction BM is seen to

equal –mg sin 8. Since this force is also

d's

т

dt2

d20

ml
dt?

where L is the length of the pendulum , we obtain the differential

equation :

de , 9

L
( 1 )
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This is a nonlinear equation , which , when displacements of B are

small , is approximated by the linear equation :

d20 g

+ A=0.

dt? L
(2)

The general solution of ( 1 ) is attainable only through the use of

elliptic functions.

Nonlinear equations are also frequently obtained when parameters

are eliminated from a set of parametric curves . Let us consider the

doubly infinite family of curves represented by the function

f (x ,y , a ,B ) = 0, (3 )

where a and B are independent parameters.

A second equation is obtained by differentiation, namely,

of , of dy

dx' dy da

20 , (4)

and a third equation , by means of a second differentiation , as follows :

of

dre
ta

2mm by die
d'f dy , 04f (dy

dx dy² dxдх ду (da )+
of day

= 0 .
dy dr ?

(5 )

If the parameters a and B can be eliminated between equations (3 ) ,

(4 ) , and (5 ) , a second order differential equation is obtained , which is ,

in general, nonlinear.

The following examples will illustrate this method of obtaining

nonlinear equations :

Example 1. Find the differential equation of the central conics,

2x2 + 2hxy + by = K , (6)

where b and h are variable parameters.

Solution : Taking two derivatives of this function , we obtain ,

together with the original equation , the following set for the elimina
tion of b and h :

22 + 2hxy + by = K ,

x + hy + (hx + by)
de
dy = 0,

1 + 2h outtoCamb*+(ha +by)
dạy

=0 .

dr2

( 7 )

Eliminating b and h from these equations, we obtain the following

nonlinear equation :

Kyy '' + Ky'?(xy' -Y) + (y - xy ') 3 = 0 . (8 )
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Example 2. Find the differential equation for y, where we write

y =

a (x ) + kb (x )

c (x ) + kd(x )'
(9 )

in which a (x) , 6 (x) , c (x) , and d (x) are given functions and k is an

arbitrary constant .

Solution : Differentiating y , we get

y'
(c + kd )(a ' + kb') _ (a +kb)(c' + kd'),

( c + kd ) ( c + kd )

>

which can also be written

y' =
(

a ' + kb '

ctkd

a ' + b '

c

' a + kb c ' + kd'

\ c + kd

'c ' + kd '

y

ctkd

)

Cena d') ( 10)

Solving for k from (9) , we get

a ryc .

6 - yd'
( 11 )

and solving also for k from ( 10) , we find

a ' -yc' -Y'c
k

B ' - yd ' -Y'd
( 12)

Equating these two values of k and clearing fractions, we obtain

(a - yc) (b'- yd' -Y'd) = (6 - yd ) ( a ' - yc ' - y'c ).

From this we derive the equation :

(bc - ad ) y ' + (a'd - ad ' + bc' --b'c) y + (cd ' --c'd ) y = a'b --ab', ( 13 )

which can be written in the following form :

y ' + Q (x ) y + R (x ) y = P (x ) , ( 14 )

where we use the abbreviations:

Q (x) _a'
d

- ad ' + bc '
-6
C

, R (2 )= cd ' -c'd

D D P (x) =
a'b -- ab '

- , D = bc - ad .

D

The assumption is now made that D is not identically zero, for in

this case the coefficient of y ' in equation ( 14) would be zero and the

equation would reduce to a quadratic in y . Equation ( 14) is called

a Riccati equation , which will be discussed in some detail in Chapter 3 .
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PROBLEMS

1. Find the differential equation which has as its general solution the function

y = ( 1 + kx) / (x + 2ka ?) .

2. Show by the elimination of a and b that the function

yข

1 1

+

La 2 b

>

is the general solution of the equation

y " + 3yy ' + y = 0.

3. Determine the differential equation which has the solution

(2 - a ) : + ( y - b) : = ra, -

where a and b are arbitrary constants and r is a given quantity .

4. Find the differential equation which has the general solution :

( y + a) =( x+ b),

where a and b are arbitrary constants .

5. Given the functions : 2 = x2 + 2hxy + by?, where b and h are arbitrary, form

the partial derivatives 2, and 2 , and eliminate the parameters . Show that in

this manner one obtains the partial differential equation : 22=22x+ yzy.

5. The Problem of Nonlinear Equations

Having now observed some of the difficulties which are presented

by nonlinear equations , we shall survey in a general way a few of the

areas in which special progress has been made in developing this field

of analysis.

In the first place , it will be necessary to examine the general

differential equation of first order , namely,

dy = f(x, y) , ( 1 )
dx

,

where f(x ,y) is a function which must be properly defined . This

equation has been the subject of much study . Existence theorems

have been given and general algorithms have been provided by means

of which solutions can be approximated. A number of particular

cases have been investigated and for some of these, special methods

of solution have been discovered .

Upon the threshold of this subject appears the Riccati equation ,

dy

+ Q (x) y+ R (2) y = P (x ),
dx

(2 )

to the discussion of which a surprising number of papers have been

devoted. This equation appears in numerous problems. Since the
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cross-ratio of any four of its solutions is a constant , it has interested

the geometers. It appears in the theory of Bessel functions , and it

has applications in mechanics. For this reason it has received much

attention from analysts .

In one sense a general solution has been achieved for the Riccati.

It is customary to regard a linear differential equation as solved, if its

solution can be reduced to the quadrature of a known function , even

through the quadrature cannot be expressed simply in terms of the

classical algebraic or transcendental functions. In the same sense

we shall regard a nonlinear equation as solved , if it can be reduced to

the solution of a linear equation, even though the solution is not

explicitly reducible to the classical functions . Since the trans

formation :

u '

y = Ru ( 3 )

leads to a linear equation of second order in u, equation (2 ) can thus

be regarded as solved in the sense just mentioned. The Riccati

equation , because of its intrinsic interest and its importance as an

example of a nonlinear equation for which many special results have

been attained , will be discussed in some detail in Chapter 3 .

Difficulties increase greatly when one considers the problem of the

nonlinear differential equation of second order , namely,

day

= f(x ,y , y ').
dxa

(4)

We shall not attempt at this place to enumerate the various classes

of this equation which have proved to have special interest , but will

merely describe a few typical examples. One of these is found in the

theory of biological and population growth, to which V. Volterra

( 1860–1940) devoted major attention . In developing a theory of the

conflict of species , he was led to the following system :

dr

= a (z— xy) ,
dt

dy

dt
-c (y - xy ), (5)

where a and c are positive constants.

When z is eliminated, a nonlinear differential equation of second

order in y is obtained , which has a periodic solution . Since system

(5 ) provides an interesting example of a problem in the domain of

nonlinear mechanics, it serves as an instructive introduction into the

phenomena of this subject and will be discussed in considerable detail

in a later chapter.

In connection with his study of the problem of individual growth,
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Volterra also introduced nonlinear integro -differential equations of

which the following is a typical example :

1 dy

=A+By+S+K <t, 8 ) y($)ds. (6)
y dt

Another classical problem , which illustrates some of the difficulties

encountered in the solution of nonlinear differential equations of

second order , is that of the curve of pursuit. One is required to de

termine the path of an object A , which pursues an object B, moving

along some prescribed curve , such that A's direction of motion is

always toward B. This problem leads to a differential equation of

type (4 ) which , in general, is not integrable in terms of classical func

tions . But this problem has one conspicuous advantage over other

nonlinear problems in the fact that the curve of pursuit can be repre

sented approximately by graphical methods and the more formal anal

ysis can thus be guided.

Notable among the classical functions from the point of view of

nonlinear equations are the elliptic integrals and their inverses, the

elliptic functions , since these provide solutions of the general equation :

dạy

de = A + By + Cy2+ Dy, ( 7 )

where A, B, C , and D are constants. Chapter 6 is devoted to the

definition of elliptic integrals and elliptic functions and an enumeration

of some of their most important properties . Since any knowledge of

these functions is imperfect without an introduction to the Theta

functions and the elliptic modular functions as well , these are also

defined and a few of their properties described .

A natural generalization of the elliptic functions was provided by

P. Painlevé ( 1863–1933 ) and his collaborators in the early years of the

20th century through the solutions of a certain class of nonlinear

differential equations of second order . The unique property of these

functions was found in the characterization of their singularities , which

admitted movable poles , but only fixed critical points, that is , branch

points and essential singularities . Within this class of equations six

were discovered , which defined new transcendental functions . Such ,

for example, is the equation

ddạy

drt ,= 6y? + λα, (8)
dx²

the solution of which is called the first Painlevé transcendent . A large

number of memoirs has been devoted to the properties of these in

teresting equations .

The calculus of variations has contributed its share to the store of

nonlinear differential equations . In its simplest form, the problem
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of this calculus is to determine a function y (x) , which will minimize

(or maximize ) an integral of the form :

I=

S°F(8,1.8%)dx. (9)

The first necessary condition imposed on y (x) is that it shall be a solu

tion of Euler's equation :

OF d OF

dy dx dy'

= 0 . ( 10 )

In general , for an arbitrary F(x ,y ,y ' ) , this equation is a nonlinear

differential equation of second order . The great importance of the

problem may be inferred from the fact that the subject of dynamics ,

from the point of view of the principle of least action and its generali

zation by Hamilton , is founded on the techniques of the calculus of

variations.

In addition to these general classes of problems, there exist in the

literature of nonlinear equations a number of special equations, which

have received considerable attention . Among these , for example , is

the following :

R(t ) = ( 11 )= S" y() y(8+ e ) ds,

which plays an important role in the theory of integral equations .

Numerous special differential equations have been the object of

much study , since they have appeared in connection with applications

of various kinds . A few of these are listed below as follows :

Emden's differential equation :

dºg , 2 du

dz2+xdx+y"=0; ( 12)

Rayleigh's equation :

ddạy
+ K

dx2 dy +m( %)*+n*y=0);
( 13 )

Van der Pol's equation :

day -E(1–42)dy ,

ay = 0;
( 14)

dx²

Duffing's equation :

dy
dri + ay + by = K sin wt; ( 15 )
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The Generalized Blasius Equation :

dx+ y = [(* ) -1] ( 16 )

The White-dwarf equation :

1 d

XP dx

zdy
) + (y2 - C )3/2 = 0;

dx ,

( 17 )

The Thomas -Fermi equation :

dạy 1

yol2 ;dx2 ( 18)

Langmuir's equation :

39 +4y + y = 1;
dx

( 19 )

Kidder's equation :

V (1 —ay) Daca
dạy dy

+ 2x = 0 , 0
dx

(20)

6. Systems of Nonlinear Equations

Stimulated originally by the needs of the astronomers and in more

recent years by the development in electrical communication , which

has introduced nonlinear elements into its circuits, analysts have

devoted extensive study to the problems presented by systems of

nonlinear equations . Such a system , for example , is the following:

dx

= A + BX + Cy + Dx² + Exy + Fy? + Gx3 +
dt

dy

= A ' + B'x + C'y + D'x + E'xy + F'ya + G'x + ..
dt

(1)

where the multipliers of the variable terms are constants .

When the coefficients are independent of t , the system can be

reduced to an equation of first order in x and y, that is ,

dy

= f (x, y ).
dx

( 2 )

The problem of finding the integral, F(x , y) = 0 , of this equation has

been the object of much study, since many of the problems concern

ing the stability of dynamical systems are thus formulated. The

equation , F(x ,y) = 0 , is said to define a system of trajectories in
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phase-space, that is to say, a one -parameter family of curves in the

plane .

The methods used to determine the nature of the solution of such

a system as ( 1 ) constitute the subject matter of what has come to

be called nonlinear mechanics. H. Poincaré, commenting on the prob

lem thus presented, made the following remarks : *

" Considering x and y as the coordinates of a variable point , and t

as the time , one seeks the motion of a point to which one gives the

velocity as a function of the coordinates . Thus , in the motion which

we have studied , we have sought to answer such questions as these :

Does the moving point describe a closed curve? Does it always

remain in the interior of a certain portion of the plane? In other

words, and speaking in the language of astronomy, we have inquired

whether the orbit of this point is stable or unstable.”

Differential equations of second order , which do not contain terms

in which the independent variable appears explicitly, can be reduced

to a system such as ( 1 ) by the simple device of replacing dy /dt by 2 .

Thus the equation of Van der Pol ,

day dy

+ag=0, (3 )
dt dt

-e(1— y ) di

can be replaced by the system :

y' =x, ' = (1 - ya) x - ay. (4 )

If one equation is divided by the other , the following equation of

first order is obtained :

dy X

(5 )
dx €(1 - y2)x - ay

The integral of this equation , F(x ,y) = 0, defines the phase tra

jectories of the original differential equation (3) . As we shall see

later, if a and e are both positive , these phase curves consist of a

series of spirals , which are asymptotic to a fixed closed curve called

a limit cycle .

System ( 1 ) is readily generalized by the following :

dfu = X ,( C1,82, .. Xn), i = 1,2 ,... ,
n. (6)

dt

Since t appears only as an intrinsic variable, it can be eliminated

and the following system then defines a set of phase trajectories in a

phase -space of n dimensions :

dxi dxz
(7)

XX2

dxn

Xn

* See, for example, H. Poincaré: " Sur les courbes définies par les équations différentielles," Journal des

Mathématiques, Vol. 1 (4) , 1885, pp . 167–244. Also E. Picard : Traité d'analyse , Vol . 3 , Paris , 1896 , p . 217
et seq .

556037 0-61 3
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The n- 1 integrals of this system of equations ,

F1(x1,42, . . . , xn) = 0 , i = 1,2 , ... , n - 1,

define a complex of hypersurfaces in phase -space, which depend

upon n- 1 independent parameters. The phase trajectories in

n -space are the intersections of these surfaces.

7. Nonlinear Partial Differential Equations

Although we shall be concerned only superficially with a few

nonlinear partial differential equations, the subject should not be

entirely neglected. Such equations are the breeders of ordinary

differential equations, which often provide the most useful solutions

of them . We shall thus give a short introduction to the subject.

By a partial differential equation of first order in two independent

variables we shall mean an equation of the form

F(x ,y , 2,2,0) = 0 , ( 1 )

where we use the customary abbreviations:

Dz Dz

P = Ox'qoy

(2)

Equation ( 1 ) is called linear if it can be written in the form

fo (x ,y ) z + fı (z ,y ) p + f2 (x ,y ) q = R (x ,y ),

(3)

and homogeneous if R (x ,y ) = 0 .

The following form of equation ( 1 ) is called quasilinear:

fi(x ,y ,z ) p + fz (x , y ,z) q = R (x ,y ,z ), (4 )

provided it does not reduce to (3 ) .

All forms of ( 1 ) which cannot be subsumed under (3 ) and (4 ) are

called nonlinear equations .

Thus the equations

ap+ bq= c , z=x+p+ yʻq , (x2 - y2 ) z = xyp- 3x’y , (5 )

are linear ; the equations

(12+ y) ?= y’p +rʻq , ( 1-2)p + ( 1 + z) g = 0 , (6 )

are quasilinear ; and the following are examples of nonlinear equations :

paraq + bz + er + dy, pq +up+yq = z . ( 7 )
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A partial differential equation of second order in two independent

variables is similarly written as follows:

F (x ,y ,z, p , q,7,8 ,t) = 0, (8 )

where we use the customary abbreviations:

022
re

de '
s =

daz

dxdy'

Oaz

dy ?
(9)

An equation in which 2 ,p ,q , r , 8 , t are linearly connected is called a

linear equation , and all others are nonlinear .

Thus, Poisson's equation,

r+ t= p (x ,y) , ( 10)

is linear , but the equation

p + t = 2, ( 11 )

is nonlinear.

The intrinsic difficulty in the solution of partial differential equa

tions is readily seen from the long history of the subject . Since the

initiating of the study of such equations near the close of the 18th

century by Lagrange and Laplace, there has been an increasing in

terest in the problems presented by them . The method of Lagrange

was followed by the theory of Cauchy, who introduced the idea of

characteristic strips associated with partial differential equations .

The " problem of Pfaff ” , initiated by J. F. Pfaff (1765–1825) , was

that of determining the integral equivalent of the equation

P (x ,y ,z) dx + Q (x, y,z )dy + R (a ,y ,z)dz = 0, ( 12)

and its generalization to n variables. This problem was investigated

by C. G. J. Jacobi (1804–51 ) and R. F. A. Clebsch ( 1833–72) among

others and has stimulated intensive research in recent years .

A large group of analysts was attracted during the second half of the

19th century to the various problems presented by partial differential

equations , especially to those of second order . For these equations

were found to be essential to the development of the theory of surfaces

on the one hand and to the solution of physical problems on the other .

In a certain sense these two domains of mathematics were connected

by the bridge of the calculus of variations. Various aspects of the

subject were studied in particular by J. G. Darboux, A. M. Ampère ,

C. F. Gauss , and G. F. B. Riemann and by many of their contem

poraries. Some of the earlier work of G. Monge ( 1746–1818) was

found to be illuminated by these later investigations .

During the latter half of the 19th century we find a wealth of papers

on the subject . Conspicuous among these was the work of Madame



20 INTRO. TO NONLINEAR DIFF . AND INTEGRAL EQUS .

Sophie Kovalevski (1850–91), which gave an existence proof for a

general system of partial differential equations in n independent and

p dependent variables.

Among the attractive problems derived from the calculus of vari

ations was that of minimal surfaces, which led to a special type of

nonlinear equation which can be reduced to the form

( 1 + q*) r - 2pqs + ( 1 + p ?) t = 0. ( 13)

This equation has received considerable modern attention . The

problem of Plateau , so called from the investigations of J. Plateau

( 1801-1883) , is that of finding a continuous minimal surface , which

passes through a continuous curve . We shall return to this problem

in Chapter 14 .

The general theory of partial differential equations was set forth by

A. R. Forsyth in the fifth and sixth volumes of his Theory of Differ

ential Equations ( 1900–02) and by E. J. B. Goursat ( 1858–1936) in

his Cours d'analyse mathématiques, Vol . 2 , 1918, and in his Leçons sur

l'intégration des équations aux dérivées partielles , Vol . 1 , 1891 (equa

tions of first order ), Vol. 2 , 1896 ( equations of second order) . A not

able contribution both for its intrinsic merit and for the abundance

of research which it has stimulated was E. Cartan's Leçons sur les

invariants intégraux , published in 1922. The contributions to more

recent literature of I. M. Janet , J. Horn , J. M. Thomas, T. Y. Thomas,

J. A. Schouten , Harry Bateman , and E. Kamke should be men

tioned .

But in spite of this abundance of material, the battlements of the

nonlinear partial differential equation still present great difficulties to

their surmounting. One of the most cogent remarks of Lamb in his

Hydrodynamics, a work replete with nonlinear problems, is his

simple statement : " The exact equations of steady motion are hardly

tractable ."

Among the more tractable equations, however , one finds the following

Daz , 022

= kea ?,
ду?

( 14)dr
it

.

which is called Liouville's equation after J. Liouville ( 1809-82) , who

discovered a general integral for it .

This remarkable solution assumes the following form :

ear = 2a

* CS )[ + )]/(w +8 +1)
( 15 )

where u and v are defined by the equation : utiv=f(x + iy) , in which

f (u ) is an arbitrary analytic function .

The equation of Liouville has a surprising number of applications .

It is a special case of the equation derived by Lagrange for the stream
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function y= +(x ,y) in the case of the two -dimensional steady vortex

motion of an incompressible fluid , that is,

ovo

=F(1) , (16)
dy²

where F (x ) is an arbitrary function of y. * Liouville's equation is

obtained by the obvious specialization : F ( H ) = key.

This equation also appears in the theory of thermionic emission

and in the problem of the isothermal gas sphere . Both of these appli

cations will be discussed in Section 6 of Chapter 12. Because of the

intrinsic mathematical interest in the equation , it has been the object

of a number of studies prominent among which are the contributions

of H. Poincaré, E. Picard, L. Bieberbach , L. Lichtenstein , and G. W

Walker. (See Bibliography ).

The most prolific source of nonlinear differential equations has

been the problems of hydrodynamics. This we can immediately

observe from the equations themselves. The general equations of

two-dimensional flow are the following known as the Navier-Stokes

equations:

ди ди ди 1 др . и 70° u , д ° u
tu tv X +

dt ду p Ox? dy?

OP + Con
OX рде

до де ди

dttu
+ v

дr ду

1 OP + рM

= Y

Come on
dav , dav

dx²
at Jy ( 17 )

р ду

where u and v are the velocity coefficients and X and Y the body

forces per unit volume in the x and y directions, p the pressure per

unit area , e the mass density , and u the coefficient of viscosity . To

this system must also be added the equation of continuity :

δρ_δρυ ,δρυ, ( 18)
dt дх ду

No general solution exists for these equations , but many special

examples have been studied . One of these we shall examine in

Section 10 of Chapter 12 .

We have indicated in the preceding how nonlinear partial differ

ential equations are obtained from physical problems . Another

fruitful source is found in the more purely mathematical problems of

geometry. A few illustrations of this may prove instructive .

Thus, let us consider the following equation of a surface in three

variables , which depends upon two parameters a and B :

f(x,y, 2,2,B) = 0 . ( 19)

*See II . Lamb : Hydrodynamics, p . 244. See also H. Bateman : Partial Differential Equations of Mathe

matical Physics, Cambridge, 1932, pp . 166-169.

Named after L. M. H. Navier (1785-1836) and G. G. Stokes ( 1819–1903) , although they were also dis

covered in a somewhat simpler form by S. D. Poisson .
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Differentiating partially with respect to x and y, we obtain the

following equations :

fr + fp = 0, fv + faq = 0. (20)

We now have three equations, the two just given and equation ( 19)

from which a and B are to be eliminated. The resulting equation

will be a partial differential equation of first order , usually nonlinear.

For example, if z= (x- a) ?+ (y - B) ?, the resulting differential equa

tion is

42 = pº + q ? (21 )

A second method for obtaining a partial differential equation is

found in the elimination of the function symbol from the equation :

(u,0) =0 , (22 )

where u and v are given functions of x , y , 2 and ¢ is an arbitrary

function.

To achieve this we now differentiate (22) with respect to x and y

and thus obtain the following equations :

Qu(Uz + puz) + po(vz + pvz) = 0 ,

(23)

du(Uy + quz) +0,(vtqv,) =0 .

Since these equations form a homogeneous system satisfied by ou

and do , it is both necessary and sufficient for the existence of nonzero

values of pu and , that the determinant of the system be identically

zero .

We thus obtain the following equation :

(Uz+puz) (v, + qv2) = (vx + pvc) (Wy + quz), (24)

which can be arranged in the form

Pp + Qp = R (25)

where P , Q , and R are the following Jacobians :

P =
( u , v)

O (y , z)'

d ( u, v )

0(2 , 2 )

d(u, v )

R=

(x, y)
(26)

Although equation (25) is quasilinear , the attainment of its general

integral, that is to say, the function defined by (22) , usually leads to

the solution of a system of ordinary equations which are nonlinear.
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To show this, let us find the system of differential equations which

have as solutions the functions:

u=a, v= b, (27 )

where a and b are arbitrary constants .

Forming differentials of these functions , we get

Uzdx + Wydy + uzdz = 0, v.dx + vdy + vzdz = 0 , (28 )

and from these we have

dx_dy_dz

Р QR
(29)

where P, Q, and R are the Jacobians defined by (26 ).

From this we see that to solve equation (25) we first find solutions

u and v of (26 ). Then any arbitrary function of u and v equated to

zero provides a solution of (25) . In other words , the quasilinear

problem is equivalent to that presented by the system (29) which is, in

general, nonlinear.

PROBLEMS

1. Find the differential equation of which the following function is a solution :

2 = ax + By + f ( a , b ).

Use your results to solve the equation

p ( 5p2+ x ) + (67a + y ) q = z.

2. Find the differential equation for which the following function is a solution :

Iz = 2v Ax + Ay + B.

3. Verify that the function

2 = avc? + y + f ( y /x ),

is a solution of the following equation :

xp + yq = avra + y

4. Compute the functions u and v from the equation : u + iv = ( x + iy ) 2. Sub

stitute these in ( 15) and find the corresponding particular solution of Liouville's

equation . Verify that the function thus obtained is indeed a solution .

5. In his original study of equation ( 14) Liouville introduced the equation :

02 logº

Os Ot

φ

2a2

with the corresponding solution :

$ = (4a ?f' ( 8 ) g' ( t) e ( ) + 6 )/( 1 + el ( ) + (0) )?.
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Use the following transformations :

az = log 0,8 =A (x+iy ) , t = B (x - iy ) ,

to transform ( 14) and determine A and B to obtain Liouville's results.

6. Show that the function

2 =a + b cosh- ( p /b ) , pe = x2 + y2 ,

is a solution of equation (13) .

-



Chapter 2

The Differential Equation of First Order

1. Introduction

IN THIS CHAPTER we shall consider methods for the solution of the

differential equation

F (x, y , y ' ) =0 , ( 1 )

where F (x ,y ,y ') is a function that is continuous and possesses con

tinuous first derivatives with respect to each of the variables in a

certain domain R of values of x , y , and y' :

If Po = (x0,40,y ) is a point in R which satisfies ( 1 ) and if the deriva

tive Fy (x,y,y' ) does not vanish at Po, then by the theory of implicit

functions there exists a unique function, y' , of the variables x and

y , which is continuous in the neighborhood of P, and which assumes

the value y when x=x, and y=yo. Let us write this function as

follows:

dy = f(x, y ), (2 )

dx

which is a convenient representation of the general differential equa

tion of first order .

We shall now assume that this equation has a solution in the

domain R, which depends upon an arbitrary parameter c , and which

can be written in the form

u (x ,y ,c) =0 .

( 3)

For every point (x,y) in the domain R, equation (2 ) defines the

slope of the tangent to every curve represented by (3 ) . Since the

explicit determination of (3 ) is generally a matter of much difficulty,

considerable information about the form of the integral curves which

it defines can often be obtained if a field of elementary tangents is

constructed in the domain R by drawing short tangent lines at a

selected number of points.

This preliminary investigation can be readily understood from an

example . For this purpose we shall consider the nonlinear equation

dy

dr
=xy(y- 2) , (4 )

25
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which has the following general solution :

2

y = (5 )

1 + cem ?

If the parameter c is determined in such a manner that the integral

curve passes through the point (Xoyo) , then this solution can be

written :

y = (6)

yo + (2 - yo) exp (2 - x )

2yo

It is clear from (6 ) that if yo is any real number less than 2 , then

the solution has no singular point in the finite real plane . If yo= 2 ,

the solution reduces to y=yo . If, however, yo is any real number

greater than 2 , the y becomes infinite at the points defined by

v = x8 + log ( )
( 7 )

This situation is shown in Figure 1 , where the following six integral

curves are represented together with a system of elementary tangents .

6

I. ( 2o, yo)= (0 , 3) , vY=دید =

4.08

II . (Lo, Yo) = (0, 2.04 ), y =
2.04-0.04 er?

3

III . ( 20, yo) = (0, 1.5) , y =

1.5 + 0.5 ex2

2

IV . (Xo. Yo) = (0, 1 ) , y =

1 teta

V. (20, yo) = (0,2) , y = 2

2

VI . (20, yo) = (0 , -1 ) , y=
1-3e= ?

The graphical method which we have just illustrated is often the

most practical way to obtain a solution if high numerical accuracy

is not desired . The method has been described in some detail with

a number of illustrations by S. Brodetsky. He described his proce

dure as follows : *

" Draw the locus of all points at which the required family of curves

are parallel to the axis of x : it is of course f(x ,y) = 0 . Draw the locus

of points where they are parallel to the axis of y , i.e. , 1 /f(x,y) = 0 .

* S . Brodetsky: " The Graphical Treatment of Differential Equations," Mathematical Gazette, Vol . 9,

1917–19 , pp . 377-382; Vol . 10, 1920–21, pp . 3-8, 35-38, 49-59.
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FIGURE 1 .

One or other or both of these loci may not exist in the finite part

of the plane ; but in any case we get the plane divided up into a

number of compartments : in some the required curves have positive

dy /dx, in others negative dy /dx. Now calculate day /dx* from the given

differential equation . This can always be done . Draw the locus

of points of inflection, i.e. , d'y/dx = 0. We now have a number of

compartments, in some of which the curves are concave upward , viz

dạy /dx2 positive, in others convex downward, viz d’y /dx? negative .

We have thus divided up the plane into spaces , in each of which the

curves satisfying the differential equation have one of the general

forms

( 1 ) ) , (2 ) /, (3 ) \ , (4 ) , .

Now draw a number of short tangents at a convenient number of

points, and the geometrical solution of the differential equation is

obtained .”

The conditions on the first and second derivatives which lead to

the four general forms just given may be tabulated as follows :

y' <0, y '' < 0 , \ ( 1 ) y '> 0 , y '' < 0,7 (2 ) , (8 )

y " > 0, \ (3 ) y ' > 0, / (4 ) .
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To illustrate this analysis, we shall consider the example given

above . We first observe that when dy /dx = f(x ,y ), the second deriv

ative is readily computed from the following formula provided / (x ,y)

has first derivatives with respect to each of the variables:

ofd²y_of , of dy_of

da dutdy dx dx dy
f. (9)

Since , in the example, we have dy /dx = xy ( y - 2), we readily compute

day

dx = y(y - 2) (1 + 2x*y – 2x2). (10)

Setting xy (y - 2) equal to zero , we obtain the three lines :

x= 0, y=0, y= 2 ,

which divide the plane into the six areas shown in Figure 2 .

y'so y' > 0

N

y ' > 0 y ' < o

0

y ' < o y ' > 0

FIGURE 2

Similarly, if we equate y (y - 2 ) ( 1 + 2x +y - 2x ) to zero , we obtain

the seven areas shown in Figure 3 , along the boundaries of which

dạy /dx? is zero . " If the areas in these two figures are superimposed

y " > 0

2 .

y " < 0

y " > 0y " > 0

< V2

y " < 0

wy " >
Slav

a

y " < o

FIGURE 3
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and the signs of y' and y' ' combined , then from table (8) it is possible

to show the characteristic form of the integral in each of the areas.

The combined picture is shown in Figure 4. If this figure is compared

with Figure 1 , which shows six integral curves, the nature of the

2

.

A D

в с

FIGURE 4

analysis and the help which it affords in sketching the solutions of

the original differential equation is readily seen . Along the lines

AB and CD the integrals have points of inflection .

2. Isoclines and Curvature

In the preceding section a graphical analysis of the equation ,

dy
= f(x ,y ),

da
(1 )

has been described . This analysis can be supplemented , and the

actual construction of integral curves aided, by the use of isoclines

and circles of curvature, as we shall now show.

If dy /dx is replaced by a constant m , then the equation ,

f(x ,y) =m , ( 2)

defines a curve along which the derivative is constant and equal to

m. Such a curve is called an isocline. In Section 1 isoclines cor

responding to m=0 and m=0 were used in defining areas of the

plane within which the derivatives remained of one sign .

A field of isoclines is shown in Figure 5 , wherein are graphed ten

isoclines for the illustrative equation ,

dy
= xy (y - 2 ).

ds

(3)
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The relationship of these curves to the integrals of (3) is shown in

the figure by the three solutions which pass respectively through

the points (0,1 ) , (0,1.4) , and (0,2.5) .

a : m =
-2 ,

b'm

c' m : -1,

dm= Ź

e ' : m =

a : m = 2,

bima

c : m : 1 ,

d : m :

.a

6

e : m =

a

b

с

d

e

2

d

с

0

O

6

a o

FIGURE 5.— Isoclines corresponding to the equation : y' =ay(y- 2) .

If , in addition to a pattern of isoclines, we also know something

about the curvature at a series of points, an integral curve can be

readily drawn . To illustrate, let us assume that we wish to construct

a solution of ( 1 ) which passes through the point P= (20,40) . We first

compute the slope yo and the second derivative Y. From these two

values we can now compute the radius of curvature (R) at P by means

of the formula

( 1 +y'2) 3 .
R2 (4)

y " ?

and, if we so desire, the corresponding center of curvature : Q= (a ,b )

from the formulas

a = X - Yon , b =

b=yo+ D = 1 + 2 (5)
D
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FIGURE 6

Knowing y . and Ro, a length Ro perpendicular to the tangent at P

can be laid off, or, if more accuracy is desired , the coordinates of the

center of curvature can be computed. An arc of the circle of curva

ture is now drawn, and at a suitable distance, depending again upon

the desired order of approximation, a new point is chosen and the

corresponding slope and radius of curvature determined . This process

is continued until an approximate graph of the integral curve has been

constructed .

In some cases it may be more convenient to use trigonometric

functions in computing R. * The procedure in this case can be

described as follows: Since dy /dx = tany , where is the slope angle,

we have

d'y

(6 )drž = f(x ,y, tan y) .y

Differentiating y ' = tany, we get

dły dy
= secdrž = secaysec de

dy de 1 1

ds dx cos Y R'
(7 )

since R = dsdy and dx /ds = cos .

*This is the method suggested by H. Levy and E. A. Baggott: Numerical Solution of Differential Equa

tions. American edition , New York , 1950, viii + 238 pp . In particular, p . 51 .
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Equating (6) and (7 ) , we thus obtain

1

R
= cos f (x , y , tany). (8)

As an illustration we return to equation (3 ) . The details of the

computation for the integral curve which passes through the initial

point: x = 0, Yo= 1 are shown in Figure 6. Successive elementary

tangents are drawn together with the directions of the radii of curva

ture . Three centers of curvature are shown at the points Q, Qı , and

Q2, the corresponding radii being the lengths PQ, P.Qı , and P2Q2.

Arcs of curvature, AA ' , BB ', and CC are drawn from these centers

and their observed departures from the integral curve provide a

graphical estimate of the magnitude of the error involved in this

method of approximation. The point P' is an inflection point where

the radius of curvature becomes infinite .

Unfortunately the method which we have just described does not

provide a numerical estimate of the error in each successive step of

the approximation . It must be regarded , therefore, merely as a

means of sketching the integral curve. But in Chapter 9 we shall

return again to the problem . A better analytical formulation will

then be given and an estimate of the error involved in each successive

step will be provided .

3. The Integrating Factor

In certain special cases the integration of the equation

dy = f(x, y) , ( 1 )
da

can be accomplished by the introduction of what is called an integrat

ing factor. To illustrate this method of solution , let us assume that

equation ( 1 ) has a solution which can be written in the form

u (x , y) = 0 . ( 2 )

Forming the differential of u (x, y) , we have

ди ди

dxt
dy = 0;

дх ду

(3)

from which it follows that we can write

ди

дх

f(x , y) = (4 )
ди

ду
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Let us now introduce two functions P (x , y) and Q (x, y) and write

f (x, y) as the following quotient :

P(x, y)

f(x, y ) =

Q(x , y )

In this case equation ( 1 ) takes the form

P(x , y) dx + Q (2 , y) dy = 0 . (5)

Upon comparing equation (5) with equation (3) and observing that

o du д ди

dy dx da dy"'

we see that equation (5 ) is immediately integrable provided P and Q

satisfy the following condition :

OP Q

dy дах

(6)

In this case we say that equation (5 ) is exact and the solution is

obtained by writing : du /da = P and du /dy = Q . We thus obtain the

function u (x , y) by either of the following integrals :

u(s , y)= S P( ,y) dz +$(y)= SQ(x, y) dy+4(e) ,
(7 )

where the symbols dx and dy are used to indicate that the integration

is partial with respect to x in the first case and y in the second .

In order to determine the functions o (y) and y (x) , let us first sub

stitute

U(8,9) =SP( ,y) dx+®(9)

in the equation

ди

= Q (x,y).
ду

We thus obtain

{ SP(x,y)dz + } =Q(2.1).

from which we have

do ( y)
= Q(x,y)

dy
(8)

556037 0/61 4
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Since the left side of this equation is a function of y alone , it follows

that the right side must also be a function of y alone . We thus have

dome Qcz,y)- SP(3.9)ox } =0,

which is merely a statement of condition (6) above .

Therefore , upon integrating (8 ) , we obtain $ (y) from the equation

06 )= S{Q7:9) . P(3:39)dz }dy
( 9 )

A similar argument shows that y (x) can be obtained from the

equation

o

( 3 ) = da. (10)
дах .

As an example , consider the equation

(3x2 - 8xy + 6y ) dx + (12xy - 4x2 --6y ) dy = 0.

Writing P= 3x2- 8xy+ 6y ?, Q= 12xy-4x2-6y ?, we see that the equa

tion is exact since OP /dy = -8x + 12y = 0Q / dx.

Making use of (7) we get

u(2,4)= f(3x2–8xy+ 6yº)dz +o( ),

= 23—4x+ y + 6xy + (y ).

From (9 ) we then obtain

(y)= dy,

S{112.04–489–602 . ( –48 +6 y)}de

= S -6yºdy= —2 *+ C.

The solution of the equation is thus

23 — 4x+y + 6xy? — 243 + C = 0 .

The same solution is obtained if we compute u (x ,y ) from the second

equation in (7 ) and determine y (x) by means of ( 10 ) .

In general, equation (5 ) is not exact . In this case , however, it is

theoretically possible, and in some examples it is practical, to make

the equation exact by introducing as a multiplier a function u(x ,y)
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called an integrating factor. This function must then satisfy the

equation :

d (uP ) _ ] (MQ ),
ду дах

that is to say, the following partial differential equation :

아 P
e -

On
th

Conte--
OQ OP

дх ду
-0 . ( 11 )

дх ду

That there exists an infinite number of integrating factors is easily

seen from the following considerations, provided there exists at

least one solution of equation (5 ) . Let u be any solution of equation

(11 ) , let u (x,y) = 0 be a solution of equation (5 ) , and let F(2) be

a function which possesses a derivative F' (z) , but which is otherwise

arbitrary. Then the function uF (u ) is also an integrating factor.

To prove this, we substitute uF(u) in equation ( 11 ) for and thus

obtain

Q
du

F

дх
tuF '

Ох,

du

ду ,

OQ OP

дах)–P (roup" +F«( )

=P[ ele )]+27"( (12))

The expression in the brackets is zero from equation (11 ) . More

over, since u (x,y) =0 is a solution of equation (5) , it follows that

du /du_P(x , y)

dx/ dyQ (x,y)'

and thus the multiplier of uF' in ( 12 ) is also zero . Consequently

uF(u) is an integrating factor of (5 ) since it satisfies equation ( 11 ) .

In spite of the fact that the integrating factors of (5) are thus

infinite in number, it is usually impossible to determine even one of

them and other methods must be used to solve the equation . Certain

special cases exist, however, where the integrating factor can be

found and these will now be discussed.

PROBLEMS

1. Show that (x2 + y2) –? is an integrating factor for the equation :

(x2 - y2) dx + 2xy dy = 0 .

2. Solve the equation :

(x8y4 +xy2) dx + ( x + y + xºy ) dy = 0.

3. Show that (x2 + y2) -1 is an integrating factor for y dx —æ dy =0 .

4. Prove that cos x cos y is an integrating factor for the equation :

( 2x tan y sec x +y sec y) dx + ( 2y tan x sec y + m2 sec x) dy = 0 .
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5. Solve the following equation :

( 2 + y )dz + (2 -xiya) dx=0.+

6. Given the equation

[p (x) + yq (x ) ]dx + y dy = 0,

where g (x) = k p (x) , k arbitrary, show that the following is an integrating factor :

u = exp [-k(y + Sqdx ).

7. Show that

ureS D(z)dz

is an integrating factor for the equation :

(y p ( x ) -9(x ) ]dx + dy = 0 .

Use this fact to solve the linear differential equation :

g + pv = q.

8. Prove that u = 1 / (x? + ya) is an integrating factor for the equation

( y + 20 )dx — (x - yo) dy = 0 ,

where $ = $ (x2 + y2 ) .

4. The Homogenous Case

A function F(x,y) is said to be homogeneous and of degree n provided

it satisfies the condition

Fax, y) = X" F(x ,y) . ( 1 )

A fundamental property of such functions is found in Euler's

theorem, which states that if F= F(x,y) is a homogeneous function of

degree n , then it satisfies the following equation :

OF

nF= X

дх
ty

OF

ду

(2)

Euler's extended theorem states that if

F=F(x,y; U ,V) (3)

is a homogeneous function of degree m in x and y and of degree n in u

and v , then F satisfies the equation :

OF OF

и to

дr ду

(4 )

Returning now to the equation

P(x ,y) dr + Q (x ,y ) dy = 0 , (5)
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we shall assume that P(x,y) and Q(x,y) are homogeneous functions of

the same degree n. We shall now prove that the function

1

+(2,4)= zP +yQ (6)

is an integration factor for equation (5) , provided xP+yQ+ 0 .

To establish this , we first compute

ОРO ( P ) ОР

= M

ду ду
+ P

du
El

ду dy--P ( +you+Q)

-40( +ve+P).
D (uQ ) OR

=M + Q
дх дх

du

дх
M

OQ

дх

The condition that

D (MP )__( Q )

ду дх

( 7)

reduces to

--P ( ) e+y =--Q (z ove дх

Multiplying by the reciprocal of , that is , by «P+yQ, and simplify

ing the resulting equation , we get

olty ১০ОР

Q1 2
Dx+y=P (

ОР

ду

X

дх

(8 )
Dy

Since P(x,y) and Q(x,y) were assumed to be homogeneous functions

of degree n, they both satisfy Euler's identity (2 ) ; that is, we have

ОР

*

дх

OP
-=nP,ty

dy

OQ=nQ:OQ

2+y
ду

2

дх

When these values are substituted in (8) , there results: Q (nP ) =

P (NQ) . This identity carries with it the proof of the equivalence of

the two members of equation (7 ) and thus u (x ,y) is shown to be the

integrating factor for equation (5 ) .

The solution of equation (5) is now readily made by means of the

transformation :

y = ry . (9 )

Substituting dy = x dv+ v dæ in (5 ) , and observing that both P(x,y)

and Q (x, y) are homogeneous functions of degree n, we get

P (x ,y ) dx + Q (x ,y )dy = P (x ,xv )dx + Q (x ,xv) (v dx + x dv)

= r " P ( 1,0)dx + x " Q ( 1,0) (v dx + x dv ) = 0.
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This equation reduces to the following:

[P ( 1,0) + v Q ( 1 , v) ] dx + x Q( 1,0) dv = 0 . ( 10)

If we use the abbreviation : G(v) = P( 1 ,v) + v Q( 1,0) , then equation

( 10) can be written :

da
Q 1

G(0)
( 11 )

and its integral is

' Q( 1,0)
log kx = dv .

( 12)
G(v)

X

-S610,

PROBLEMS

Solve the following equations :

dy
2xy = 4x4 — x2y2+ 2y.

dx 2. Skær+ Vys– .
dy_y + Vya - 22

dx 2

dy 2x2 + y2
3. 4. ( xy-y8) dx+ (xy2-22)dy = 0.

dx - 2y + 3y2

5. Prove Euler's theorem by taking derivatives with respect to i of both sides

of equation ( 1 ) .

6. If u = f(a1,22, .. an) is a linear homogeneous function , that is , n = 1 , prove

that

02u 0241 024

а2 tan
da ,? da, da , da ,daz da , dan,

02u
--

[
tas

+

da,

7. Use the proposition of Problem 6 to compute the second partial derivative

with respect to x of the function : u= ack yl-k .

5. The Equation: (Ax + By + E )dx = (Cx + Dy + F) dy

As an application of the theory of the preceding section we shall

consider the equation :

dy_Ax + By + E
( 1 )

dxCx + Dy + F '

where the coefficients are constants , subject only to the restriction

that : AD-BC+0 .

Equation ( 1 ) can be reduced to the form

dy_Ax + By

dxCx + Dy
(2)

by means of the linear transformation :

T = ” + h, y = x + k.
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For if these values are substituted in ( 1 ) there results :

dy'_Ax'+ By' + Ah + Bk + E

dx'cx' + Dy' + Ch + Dk + F

Since we have assumed that AD-BC+0, values of h and k can be

determined such that

Ah+Bk+E=0, Ch + Dk + F = 0 .

Equation (2 ) will prove to be of great interest to us in connection

with the problems of nonlinear mechanics . For this reason we shall

give a somewhat detailed description of it . In particular , we shall now

describe two methods for its solution , the connection between the

two methods , and some special examples .

First Method of Solution . Since the right hand member of equation

(2 ) is a homogeneous equation of degree zero , we can apply the method

of Section 4 to solve it . Thus , making the transformation : y = vx , and

observing, in the notation of Section 4 , that we have

G (v) = A + ( B - C ) o - Dv?,

we obtain the solution of (2 ) in the form :

log kx =SA + (B + C)0– Du
dv. (3)

Although this solution assumes the nonvanishing of AD - BC, this

condition can be removed with little difficulty with respect to ( 1 ) in

the following manner :

The condition AD=BC implies the linear dependence of the terms

(Aa + By) and ( Cx + Dy) and we readily show that

Ax + By= 4 (Cz + Dy).

Hence , if we introduce the function

u = Ax+ By ,

we shall have from equation ( 1 ) :

=A+B dy
du Ax + By + E

dx
= A + B

dx Cx + Dy + F '

=A+AB
A [ ( B + C ) u + AF + BE )

Cu + AF Cu + AF

u+E
(4)

The variables are thus separated and the equation is integrable.
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Second Method of Solution . Introducing an auxiliary variable t,

and using the abbreviations : U = Cx + Dy + F , V = Ax + By + E , we

can write

dt

t

dx dy dx_dy_pdx + qdy.

Cx + Dy + F Ac + By + E U V pU + qV
(5 )

where p and q are arbitrary constant parameters.

In order to integrate (5) we now seek to determine р
and

(5) can be written in the form :

9 so that

dt
pdx+q dy

(pr + ay + r

(6)
t

For the determination of p and q , we then obtain the equation :

(7)

pC+ A=ip,

pD+qB= lg,

in terms of which we can then write

r = pF + E . (8 )

Since (7 ) is a homogeneous system in p and q , nontrivial solutions

will exist for values of a which satisfy the following quadratic equation :

C A

=X2- (B+C)X+BC-AD= 0 . (9)

D B

Let us denote by 1, and 12 the roots of (9) , where \, and 12 are

assumed to be different from one another, and neither is zero , that is,

BC - AD + 0 . Let us also denote by P1,91 and P2,92 the values of p

and q which correspond respectively to 1, and 12 and by r, and r , the

values of r obtained by substituting in (8 ) the values of p and q .

Returning to (6) we now integrate the equation for each set of

parameters and thus obtain :

t=K,[1 ,(pix +q1y )+rijai ,

t = K [̂ 2 (p2x + q2y ) + ra] 'As. ( 10)

Equating these values of t and simplifying the resulting equation, we

obtain the solution of equation ( 1 ) in the following form :

11(21x + q1y) + ri = K [12 (P2x + 2y) + r.] i^ , ( 11 )

where K is an arbitrary constant.
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If BC - AD = 0, then one of the roots, let us say 11 , is zero , and some

modification is necessary . In this case equation (6) becomes

dt 1

= ( pdx+ q dy ).
t

The first equation in ( 10 ) is thus replaced by

t = Ke( x + 218)/n .

The resulting solution thus has the form :

Pix + qiy = (r1/12) log [12(p2x + q2y ) + r2] + K . ( 12 )

Relationship Between the Two Methods of Solution . As we shall see

later the second method of solution has some advantage over the first

in certain applications , since it introduces the characteristic equation

(9 ) . This advantage can be restored, however, by making in equation

(3 ) the transformation :

=
Dy.

(13)
2

Equation (3) then becomes

w dw

log kx =
-

W2— ( B + C ) w + BC - AD-Swo

= -S

w dw

( 14 )

( w — 11) (w — 12)'

where , and 12 are the roots of equation (9 ) .

Assuming that BC - AD # 0, we first integrate the right -hand mem

ber of (14) . By substituting the value of w as given by ( 13 ) in the

resulting function , we obtain , after some simplification, the following

function :

Cx + Dy - 12x = K (Cx + Dy - 1 /2 )̂ 1.12. ( 15 )

This function can be shown to be equivalent to ( 11) in which rı and

ry are equated to zero . Thus , we see by (9 ) that 12 + 12=B+C, and by

the second equation in (7 ) that

1 ,-B CC - 12

91 ,Pi =
41 = DD

and P2=D 22.

When these values of pı and p2 are substituted in ( 11 ) and the

arbitrary constant K is replaced by

[D /(1292)J î (1191/D) K,

equation ( 15) is obtained .
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Special Cases. It will be convenient in a later place in this book to

have on record a few special cases for ready reference . These are as

follows:

CASE 1. - The characteristic roots are pure imaginaries: 11 = li ,

12= -di, BC - AD > 0.

Substituting these values of the roots of (9) in ( 11 ) , and assuming

that ri = ry =0, which means that we are solving equation ( 2 ), we

obtain after some simplification the following equation :

Ax? +2Bxy - Dy = K . ( 16)

The solution is thus a conic section . But since B = -C, and

BC - AD = -B2- AD > 0 , the conic is found to be an ellipse.

CASE 2. — The roots are real and equal: li = 1 = .

In this case the coefficients of ( 1 ) satisfy the equation

( B - C ) = - 4AD. ( 17 )

If B = C , then either A or D must be zero , and if B = -C, then

BC-AD=0 . We shall first consider the solution when neither of

these conditions hold . In this case we obtain from ( 14 )

log kx =
-S

wdw

( W - X )2
-log (w- 1) +1(W-1) -1 . ( 18)

Replacing w by its value from (13 ) , we get

log [k (Cx + Dy - 4x)] = ^ x / (Cx + Dy - 2x), ( 19)

where 1= (B + C).

If B= C and A=0 , we obtain the solution most readily from (3 ) .

It is found to be

Bx = Dy log ky. (20 )

Similarly , if B=C and D=0 , the solution becomes

By = Ax log kx. (21 )

If B= C and if both A and D are zero , equation (1 ) becomes

dy By + E

dxBx + F ' .
(22 )

the solution of which is the straight line ,

By + E = K (Br + F ). (23 )



THE DIFFERENTIAL EQUATION OF FIRST ORDER 43

If B= -C and BC - AD = 0, the solution is reduced to equation (4) ,

which can be written

A (AF + BE )dx = ( - Bu + AF )du.

The solution is found to be

A (AF + BE ) x = -Bu? + AFU + K ,

which reduces to the parabola

( Ax + By)2 +2A (Ex- Fy) = K '. (24)

CASE 3. — The characteristic roots are complex numbers : 1 , = 1 + ui,

λα=λ- μι.

It will be convenient in this case to use the form of the solution given

by ( 15) , which, however, will be written in the form

12 log ( Cx + Dy - 122 ) = 1, log ( Cx + Dy - 12x) +k, (25)

where k= log K.

Making use of the abbreviations:

u = Cx + Dy - 2x, v = ux, paruº + v?,

we observe that we can write (25) as follows:

( ^ ui) log (utvi) = (a + mi) log ( u - vi) + k ,

(1 [
-ui) log r + i arctan

]=(1+wi) [log r– i aretank ]++ .

This equation readily reduces to the following :

2i ( 1 arctan

U(1 -- log r)=k.

Since k is arbitrary and may, in particular, contain 2i as a factor, we

obtain finally the real solution :

V

u log r=1 arctan -+k.= ( 26 )
น

The following examples will illustrate the theory given above :

Example 1. Solve the equation

dy_2x + 2y .

dc 52-y
(27)



44 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

Solution by the First Method . By means of the transformation :

y = vx, equation (27) reduces to

X

dv 2-30 + 02

dc 5-V

from which we get by (3 )

log kr=S2_$25
5-V

dv =

2-3v + 22 S[=1 +] de13 ] do = log [ = 1)

Replacing v by y/x and simplifying, we obtain the solution in the

form

(y- 2x) : = k (y-2) * . (28)

Solution by the Second Method. Writing equation (27 ) in the form

dy dr

2x+ 2y 52 - y

we identify the coefficients : A=2 , B=2 , C= 5 , D= -1 , and from

them obtain equation (9 ) : 12—71+ 12 = 0 , with roots 1, =3 and 12= 4 .

The first equation in (7) becomes : 5p + 2q = p. Assuming arbi

trarily that p = 1, and replacing by 1 , =3 , we get qu = -- 1. Similarly,

assuming p2= 2 and replacing 1 by \2=4, we find qa = -1.

Substituting these values in equation ( 11 ) , and observing that

ri = r2 = 0, we obtain the solution in the form

3 (x , y ) = K [4 (2x − y )]3/4.

This equation can also be written

(y- 2x) :=k(y-2)* ,

in agreement with (28) , if we write k = -347 ( K *43).

Example 2. Solve the equation

dy

3-y +y

( 29 )

Solution : In this case equation (9 ) becomes: 12–2x+2=0, with

roots respectively equal to 1 + i and 1-2 . The equation is thus in

cluded under Case 3 above, where = u = 1. Since u= -y, v=X, we

have ra = ? + y

The solution as given by (26) thus reduces to

2

log (x + y ) = - 2 arctan -+k:

y

(30)
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Introducing polar coordinates , r and 0 , where x=r cos 0 , y=r sin ,

and observing that x/y= cot = tan we reduce (30) to the

form

(6--0),

log rø = -2 (4-0)+k +20+k";

which can also be written :

T2 = Ke26. (31 )

PROBLEMS

Solve the following equations :

1 .
dy x+ 2y+ 3

dr3x + 2y + 4

dy_3x + by + 5

2. dx = 2x - 3y - 2

dy_10x – 3y + 3
3.

dx 6x + 7y + 2

dy_2x – y +10
4.

dxx+ 2y + 12

5. Show that the solution of the second illustrative example can be written

( x2 + x2 ) (utix)'
=constant .

6. Special Cases for which the Integrating Factor is known

Returning to the general equation :

P (x ,y ) dx + Q (x ,y )dy = 0, (1 )

we shall consider certain special cases for which the integrating factor

is known .

Case 1.—The differential equation

f ( y / )dx - dy = 0, (2)

has as an integrating factor the function

u = 1/[y - æf (y /2 )). (3 )

This is readily verified by direct substitution in the equation

D (uP) _0(4Q)
ду

(4)
дх

but is more easily proved by observing that P = f (y /w ) and Q= -1 are

homogeneous functions of degree 0. The integrating factor is then

obtained from (6) of Section 4 .
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CASE 2.—The function

1

u=

22 + y2

(5 )

is an integrating factor for the equation

( y + xF )dx— ( x - yF )dy = 0, (6 )

provided F = F (x + y ).

The proof follows by direct substitution in ( 4 ).

CASE 3.-If P and Q are functions such that

1 OP
OQQ

дх
= 9 ( 2 )

(7 )

where g (x) is a function of x alone, then an integrating factor is fur

nished by the function

u = KeS &(z)dr. (8 )

Proof: If u is assumed to be a function of x alone , then equation ( 4 )

reduces to the following:

OP OQ

ду дz
(9 )

Q

du

dx Tu

But u cannot be a function of x alone unless the multiplier of u in

(9) is also a function of x alone , let us say , g ( ) . In this case (8) is a

solution of (9 ) and the theorem follows as a consequence .

CASE 4. - A similar result is obtained if we assume that

Co - op content
OP Q

дудх

дф

Dax

-P

дф

dy)=g(6) ,
( 10)

where ø=$ (x ,y) is an arbitrary function of x and y, subject only to

the conditions (a) that its first partial derivatives exist and (b) that

the denominator of the left-hand member of ( 10) does not vanish

identically .

Under these assumptions the function

u = Ke S (*) ( 11 )

is an integrating factor of ( 1).

Proof: If u is an integrating factor , then the identity (4) must hold ,

which in this case reduces to the following equation :

ОР

เวป
+ P

du od Q

= u
do dy Ox

+ Q
du do

dф дх
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This equation can be written :

din[p doen om doenom ]
that is,

du.

do
= ug ( ),

the solution of which is ( 11 ) .

CASE 5 .— (Goursat). The differential equation

y (a + axmy")dx + x (b + BxMyn) dy = 0, ( 12)

has as an integrating factor

u=xPy?, ( 13)

provided (ba - Ba) 70. The values of p and q are determined from

the equations

bp - aq = a - 6, Bp - aq = ain + 1 ) -B (m + 1). ( 14 )

The proof is immediate if we substitute

P = axPye +l + axm + Pyn + a+ 1, Q = bxP + 149 + Bum + o + lyn +e,

in (4) and equate to zero the coefficients of the terms xpyl and

zem + p ynta .

The case where ba - Ba = 0 is trivial , since ( 12) then reduces to

aydx + Budy = 0.

CASE 6.—If P = yp (xy) and Q=xq (xy) , then the function

u = 1 /(zP - MQ) ( 15 )

is an integrating factor of ( 1 ) .

Proof: Substituting up and Q in (4) , we obtain after simplifica

tion the following equation which must be identically satisfied :

P (xQz -- YQv - Q ) = Q (2P , -YP , + P ), ( 16 )

where P., P , Qz, Qy are the partial derivatives of P and Q with respect

to 2 and y.

When the following derivatives :

P , = yềp ', P , = xyp ', Q==xyq' +4, Qv = x *q ',

are substituted in ( 16) , each parenthesis is reduced to zero .
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CASE 7.-1f P and Q satisfy the following equations :

Pr= Qv , Py= -Qı , ( 17)

then an integrating factor of ( 1 ) is the function :

u = (P2 + Q2) -1. ( 18 )

The proof follows without difficulty by appropriate substitution in

equation (4) . Of more interest is the observation that ( 17) are the

Cauchy -Riemann conditions which are satisfied by P and Q defined

as the components of an analytic function of a complex variable , that

is ,

f(x+iy) =P(x ,y) + iQ (x ,y) . ( 19)

Both P and Q are solutions of Laplace's equation :

d²u du

=0 .
детду?

(20)

PROBLEMS

1. Solve the following equation :

(-3y + 2.cʻy )dx+ (4r- 3c"ya)dy = 0 .

2. Show that u = u ( x ? y?) is an integrating factor of ( 1 ) provided P and Q satisfy

the following :

P ,PuXY(verb ) +(x+ ya),

where $ (2) is an arbitrary function .

3. Find the solution of the following equation :

(ox2 + 2Bxy + yy2 + ax + By)dx + (Bx + vy) dy = 0 .

4. Determine the integrating factor for the equation :

log (22 + y2)dx + 2 arctan
ข
dy =0.

2

Use this factor to obtain its solution .

5. Determine a condition similar to that given in Problem 2 which must be

satisfied by P and Q in order that the equation

P dx + Q dy= 0

should have as an integrating factor : u= u (x/y) .

6. If P and Q are functions such that

P ,-Q = P f(y ) - g ( x ),

show that equation ( 1 ) has as an integrating factor u= u (t) v (y) , where u and v

are solutions of the following equations:

u ' + gu = 0 , v ' + fv = 0 .
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7. Some Particular Differential Equations

There exist a number of special cases of differential equations ,

which are of interest either because they can be integrated by simple

devices, or because they throw light upon special aspects of the

problem of integration. A few of these will be discussed below .

(a) Bernoulli's Equation . This equation , studied by Jacob Bernoulli

( 1654–1705) in 1695 , has the form :

y ' = f(x ) y + g (x) ya . ( 1 )

If we make the transformation : y= 28 , this equation becomes

z $' = f() 2+ 9 ( 2) 2012–13 +1 (2)

Setting Bla- 1 ) + 1 = 0 , that is , b= 1 / ( 1-a) , we obtain the following

linear equation :

z ' = f (x ) ( 1 - a) z+g (2) ( 1 - a) , (3 )

which is integrated by a single quadrature .

( b) Clairaut's Equation. This equation , solved by A. C. Clairaut

( 1713–65) , has the form :

y = xy' + fly '), (4 )

where we shall assume thatf(y ' ) has a first derivative .

Special interest attaches to Clairaut's equation , since it has both a

general solution and a singular solution . The latter is not contained

in the general solution . To understand the situation , let us take the

derivative of ( 4 ) from which we obtain :

y ' = xy'' + y '+ f' (y ') y ' ' . (5 )

Since this equation can also be written

y' ' (x) [x+f '(y) ] = 0 , (6 )

it follows that solutions of (4) should be contained in the solutions

of one or the other of the equations :

(A) y '' (2 ) = 0 ; (B) x + f' (y ') = 0. (7 )

The solution of equation (A) is clearly : y = cx +d, whence y' =c .

Substituting this value in (4 ) , we obtain what is called the general

solution of Clairaut's equation , namely,

y = cx + f (c ). (8)

556037 0–61-45
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If , now , we substitute y' = c in equation (B) of (7 ) and eliminate c

between it and equation (8 ) , we obtain what is called the singular

solution .

The reason for this is readily found in the theory of envelopes of a

one -parameter system of equations, which we can conveniently

represent as follows:

F(x ,y , c ) = 0 . (9 )

If an envelope exists, then it is obtained by eliminating c between

the equations :

F(x , y , c)= 0, õc F (x , y , c)=0 . ( 10)

The result of this elimination is called the c -discriminant equation .

у
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FIGURE 7

It is clear that equation (8 ) is a one -parameter family of non

parallel lines and that the envelope of the lines is obtained by eliminat

ing c between (8) and the second equation of ( 10) , which in this case

reduces to

x + f '(c ) = 0. ( 11 )

But this equation is the same as ( B) in (7 ) in which y' has been

replaced by c .

The situation is illustrated by the following example:

Example. Discuss the solution of the equation

y = xy' + cos y ' . ( 12)

Solution : The general solution is the family of lines :

y= cx+ cos c . ( 13)
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The singular solution is found to be

y= x arcsin x+ cos (arcsin x) ,

= x arcsin x + v1-2?. ( 14)

That the singular solution is the envelope of the family of lines is

immediately seen from Figure 7 .

An interesting generalization of Clairaut's equation is furnished by

the following system :

y = xy'tf(y ',2') , z=xz' +g (y' , 2 ' ) , ( 15 )

where f and g are assumed to be functions with first derivatives in

both variables.

If we take derivatives of equations ( 15) , we obtain the following

system :

(x + fv.) y '' + fzz'' = 0 ,

(16 )

9z'Y" ' + (x +92') 2 '' = 0 ,

where fu', $ z', Iv ' , and 92 denote partial derivatives of f and g with

respect to y' and z ' .

It is clear that equations ( 16) are satisfied if y ' = z '' = 0 , whence

y' =a and z' = b . We thus obtain as the general solution of ( 15) the

following two families of lines :

y = ax + f(a ,b), 2 = bx + g (a ,b ). ( 17 )

But it is also seen that nonzero values of y' ' and z' ' will satisfy ( 16)

provided the following equation is satisfied identically by y' and z' :

(x + fv ) ( x + gz') - $29v = 0. ( 18)

If y' and z ' can be eliminated between ( 15) and ( 18) the resulting

equation, let us say , F (x ,y ,z ) = 0, is that of a surface to which the

lines ( 17) are tangent.

( c ) Chrystal's Equation . The equation

( ) +43
dy + By + Cx = 0, ( 19 )
dr

was discussed in some detail by G. Chrystal ( 1851–1911 ) in 1896 .

Like Clairaut's equation , under certain conditions it may have a

singular solution .

We first solve ( 19) for y' and thus obtain :

y!== A== } (A’r – By–4Cx2)11.

(2
0
)
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By means of the transformation :

4By=(A2—40–22) x2 , (21 )

equation (20) reduces to the following form :

xzz ' = A + AB - 4C + B2-22, ( 22)

which can be written

( A ? + AB - 4C + B2— 22) -1 z dz = dx/x . ( 23 )

If a and b are the roots of the equation

22FB + 4C - AB - AP = 0 , (24 )

1

that is, a , b= + ; B + Q, where Q2 = (2A + B )2–16C, then (23) can be
2

written

dx

( 25 )

( 2 - a ) (2-6)

z dz

X

If a #b , the solution of (25) is found to be

x ( 2-a) m ( z - .b ) " = c , m= a/(a− b) , n = -b /(a − b ), (26 )

where c is an arbitrary constant.

If a = b , that is , if Q = 0 , equation (26 ) is replaced by

x ( 2- a ) exp [a/ (a− 2) ] = c . (27 )

Thus the solution is no longer algebraic but transcendental. Hence

the analytical character of the solution depends upon Q. If , for

example, Q is a rational number, then x and y are connected by a

rational function .

A parabolic solution is obtained if one of the roots is zero , which ,

by (24) , is the case when we have

A + AB - 40 = 0 , (28)

or what is the same thing : Q= B.

In this case we have

x (2 + B = C, (29 )

from which we obtain as the solution of ( 19) the parabola :

4By = - ABr - (c + Br)? (30 )
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If we compute the c -discriminant corresponding to this family of

parabolas we find that its envelope is the parabola

4By = -ABx?. (31 )

If we now substitute this function in the original equation (19)

to see whether or not it is a singular solution , we find that it is a solu

tion provided the coefficents of the equation satisfy (28) .

That this should be the case is not surprising, however, for it will

be observed that when the coefficients of ( 19) satisfy (28) , equation

(22) reduces to the Clairaut form .

PROBLEMS

1. Show that the singular solution of y = zy' + 1 /Y ' is a parabola .

2. Find a curve such that the product of the distances from two fixed points

F and Fl to any of its tangents is always equal to a constant b2. Hint: Let the two

points be (c,0) and ( -0,0) and P (x , y ) the point on the curve through which the

tangent passes. Show that the conditions of the problem lead to the differential

equation :

(y-xy ') 2 = b2 + aży ' ,a ? = b2 + c2.

Hence , show that the solution is an ellipse with semi-axes equal respectively to

a and b .

3. Find a curve such that the coordinate axes cut off from any tangent a

constant length a . Show that the problem leads to the differential equation

( 1 + y ) ( y - xy ') = a'y ' ,

and that the singular solution is the astroid:

x2/3 + 42/3 = 22/3.

4. The equation

y = xf ( p ) + g ( p) ,

where p= y ' is called d'Alembert's equation . Show that its solution in parametric

form is obtained by combining it with the solution of the following equation :

dx , xf' (p ) + g ' (p )
f -0.

f(p) -Pda
x

.

Hence , solve the equation : y = ( 1 + y ')x + y '?.

8. Singular Solutions

The problem of the existence of singular solutions of differential

equations of first order has been the subject of numerous investiga

tions since Clairaut exhibited the first example. Both A. Cayley and

J. G. Darboux contributed independent papers on the problem in

1872–73 . Extensive memoirs were published by W. P. Workman in

1887 and by M.J. M. Hill in 1888 and 1918. G. Chrystal investigated

the problem in 1897 in a paper which contained the equation discussed
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in the preceding section . A. R. Forsyth , E. Goursat, and E. Picard

have all given extensive attention to the problem in their respective

treatises on differential equations . An especially lucid treatment of

singular solutions will be found in the treatise of E. L. Ince . *

Since there exist a number of convenient sources where the reader

may find an adequate discussion of the problem, we shall limit our

treatment here to a review of a few salient features of the subject .

Let us consider a differential equation of first order in the form

f(x, y , p) =0 , ( 1 )

where p = dy /dx. Let us first designate by fo(x , y , p ) the partial deriva

tive of (1 ) with respect to p .

Then the equation

fo (x , y , p ) = 0 , (2 )

together with ( 1 ) forms a system from which p, in many cases , can

be eliminated. The resulting equation , which we shall denote by

g (x , y) =0 , (3 )

defines a curve which is called the p-discriminant locus .

This function does not necessarily furnish a solution of (1 ) since it

may contain loci of singular points called tac- loci, cusp-loci , and nodal

loci , which will not satisfy the equation . Examples of these loci are

shown in Figure 8 .
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If a singular solution , namely, the envelope of the integral curves ,

exists it will be found in both the p -discriminant and the c-discrim

inant loci .

If we now differentiate ( 1 ) with respect to x , we obtain the equation

dyfetfuda

dp

+ , - .dx

* For the specific references to these works see the Bibliography.
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which , by virtue of (2 ) , reduces to

f: (x ,y ,p) + pf, (x ,y ,p ) = 0 . (4 )

The fundamental criteria for the existence of a singular solution can

now be stated as follows :

(a) A necessary condition for the existence of a singular solution of

equation ( 1 ) is that the three equations:

f = 0 , fo = 0, fr + pfv = 0 , (5)

shall be simultaneously satisfied by a continuous function of u and y .

( 6 ) A sufficient condition for the existence of a singular solution is

that , in addition to satisfying equations (5 ) , the function of x and y must

be such that

fu+0 . (6 )

Thus, referring to Chrystal's equation [ ( 19 ) , Section 7 ) , the singular

solution must satisfy the following three equations :

p ? + Apr + By + Cx2 = 0 , 2p+Ar= 0 , Ap + 2Cx + Bp = 0 . (7 )

From the first two equations we get

4 By = ( A - 4C)x ?, (8 )

and the third equation is satisfied only if AP+AB=4C, which reduces

(8) to 4By = ABx2. The condition , fu + 0, introduces the assumption

that B+ 0 . If this is not the case , then the solution of the original

equation degenerates into the parabola :

1

4
Azº+ c,

and there is no singular solution .

If we refer to Figure 8 , we find the representation of three types of

loci . In figure (a ) we observe a nodal locus , where the nodes form a

series of singular points along the integral curve AA' . Since the

nodal loops are not tangent to AA' , they do not form an envelope

and thus the nodal locus does not provide a singular solution of the

equation . But in (a ' ) the situation is different. The nodal loops are

now tangent to AA' and thus, since they form an envelope , the nodal

locus is a singular solution .

The same situation is shown in (b ) and (b ' ) , where in the one case

the cusps are not tangent to the integral curve BB' , but in the second

case are tangent to it . Since the cusps in (b ' ) form an envelope the

cusp -locus provides a singular solution for the equation .
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A tac -locus DD ' is shown in (c ) together with an envelope CC ' and

a nodal locus EE '. The tac-locus , when it exists, may be found in

the p -discriminant. A necessary condition for this , but not a suffi

cient one , is that the following four equations should be simultaneously

satisfied :

f (x ,y ,p ) = 0 , fp = 0 , fr = 1, fu = 0. (9 )

A classical example illustrating this situation is provided by the

equation :

A’xp2 = (Bx - a )?,

the general solution of which is readily found to be

9A ?(y + c)2 = 4 . (Br - 3a ) ?

The p-discriminant and the c - discriminant are respectively the

following:

X (Bx - a )2 = 0 ,

x (Bx - 3a ) = 0 .

Three loci are now observed , namely ,

X =0, B.t - a = 0 , Br - 3a = 0 ,

the first of which is common to both discriminants. This is the

envelope of the general solution and , noting that p is infinite, we see

that it is a singular solution of the equation . The second equation is

that of the tac-locus and the third that of the nodal-locus.

The obvious intricacies of the problem of finding singular solutions

and extraneous loci of singular points led E. B. Wilson to make the

following general comment: * "Many authors use a great deal of time

and space discussing just what may and what may not occur among

the extraneous loci and how many times it may occur . The result is a

considerable number of statements which in their details are either

grossly incomplete or glaringly false or both . The rules here given

for finding singular solutions should not be regarded in any other light

than as leading to some expressions which are to be examined , the

best way one can , to find out whether or not they are singular solu

tions."

* Advanced Calculus, New York, 1912, p. 233.

-



Chapter 3

The Riccati Equation

1. The Riccati Equation

IN THE FIRST CHAPTER it was shown that the elimination of the ar

bitrary constant k from the function

y =

a (2 ) + kb (2 )

c (x ) + kd (x ) '

leads to a nonlinear differential equation of the following form :

dy

x+Q (x) y+R ( r ) y2 = P ( x ). ( 1 )

This is called a Riccati equation , named after Jacopo Francesco,

Count Riccati (1676-1754 ) , who published what is equivalent to the

following form in 1724 : *

dx + ay = bx? ". (2 )

This special equation is frequently referred to as Riccati's equation

and ( 1 ) is then called the generalized Riccati equation . We shall

not recognize this distinction , however, since we wish to refer to a

second order equation as the generalization of ( 1 ) . Riccati does not

appear to have contributed essentially to the solution of his equation .

The particular case

dy +y*+*, (3)
dx

was first considered by John Bernoulli ( 1667-1748 ) as early as 1694 ,

but he confessed his inability to solve it.f Some 9 years later in

1703 his brother James Bernoulli ( 1654–1705 ) obtained a solution

in the form :

F ( 2 )

y = Ğ ( 20)

* Acta Eruditorum , Suppl . viii , 1724 , pp . 66–73 .

† In a letter to Leibniz . See Leibniz : Gesammelte Werke , 1855, Vol . 3 , pp . 50-87.

57
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where F (x ) and G(x) are power series in X. Dividing F(x) by G(2 )

he succeeded in obtaining the following formal solution : *

v =j++3+72 +3.3.11
x11 +

13

34.5.72.11

2015+
(4)

Daniel Bernoulli ( 1700-1782 ) made the first essential contribution

by publishing in 1725 a solution of (2 ) for those values of n for which

a solution can be obtained in finite terms.t

Stimulated by these early researches , mathematicians turned with

much interest to further study of this equation . Its intimate con

nection with the general linear homogeneous differential equation of

second order gave it importance. It was found to have an application

in the theory of Bessel functions and it made its appearance in a sur

prising number of problems. Among the important mathematicians

who have studied it we find the names of L. Euler, A. Cayley , C. J.

Hargreave, J. Liouville, L. Schafli, J. W. L. Glaisher, A. G. Greenhill,

and numerous others. Its bibliography is extensive and reference to

a number of these contributions will be found in the Bibliography at

the end of this volume.

Returning to equation ( 1 ) we shall assume that P(x) , Q (x ) and

R (x) are given functions defined , together with their derivatives,

within a region D. We shall also assume that P ( x ) is not identically

zero , for in this case we obtain the null equation :

dy + Q (x) y + R (x) y2= 0 , (5 )

dx

which is immediately reduced to linear form by means of the trans

formation :

(6)

We thus obtain the equation :

dv

dx
Q ( x ) v = R ( 2) , (7 )

which has the general solution :

v= Cesate sousfr(t)e-SQ dt .
( 8 )

* See Leibniz : Gesammelte Werke, Vol . 3 , p . 75 .

† Acta Eruditorum , 1725 , pp . 465-473.
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2. Relationship Between the Riccati Equation and the Linear Differential

Equation of Second Order

The importance of the Riccati equation in the theory of differential

equations is due in part to the following relationship between it and

the general linear differential equation of second order .

Thus , given the general Riccati equation ,

dy
+Q(x)y+R( 2)y2=P(x) ,dz

( 1)

let us make the transformation :

1 du u'

Y = RudaRu (2 )

The resulting equation is the following linear differential equation

of second order :

dau du

R ( R ' -QR) -PR ? u = 0 . (3 )
dx2 dx- R

Conversely, there corresponds to the general homogeneous linear

differential equation of second order a Riccati equation . Thus ,

given the equation

dłu du

A ( 20) + B ( x )
dæ + C (x )u = 0,d x²

(4 )

we make the transformation :

du

diz = (Ry) u, (5)

from which we obtain the following Riccati equation :

'R ' B

+

R AA
y+Ry-=

С

AR
(6 )

Comparing this with equation ( 1 ) we can then write :

Q (2)

R ' (x) , B ( 2 )
+

R ( 2) ' A (20) P (x)=

C (2)

A (x ) R (2 )

(7 )

Since R (x ) is an arbitrary function we can determine it so that

Q (2 ) is zero . In this case (6) assumes the simpler form :

dy + Ry? =
С

AR'
(8 )

dx

where R=exp

exp [-f(Bayda]
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3. The Motion of a Body Which Falls in a Medium Where the Resistance

Varies as the Square of the Velocity of the Body

A simple example of the application of the Riccati equation is

provided by the problem of a body of mass m which falls under gravity

in a medium which offers resistance to its motion proportional to the

square of the velocity of the body.

If s is the distance passed over by the body in time t , then the

motion is defined by the equation

d's

m

dt2
= mg-K= ( 1 )

which can be written

du

m

dt
= mg - Kv2, ( 2 )

where v is the velocity .

This is a Riccati equation , the solution of which is readily found to

be

rm e " -ke - 11

(3 )
K e" + ke - 1

V =

where we use the abbreviation : pe = Kg/m .

Let us observe that as t becomes infinite the velocity v approaches

the limiting value

mg

V = (4 )
K'

from which we have : V= g/ r= rm/K. Therefore , we can write (3) in

the form

le " -ke

v = V ( 5)

If v = vo when t =0 , and if we use the abbreviation : U = vo / V , then

k in (5) has the value : k = (1-30) / ( 1 + u ).

Introducing this quantity into (5 ) , we see that v can be written in

the form

cuo + tanh rt
(6 )

( 1 + cu tanh rt
V =-Vv (14 7.tanh're

Assuming finally that s= 0 when t=0 , we can now determine s as

follows:

' t

v(t)dt= log (cosh rt +u, sinh rt ) ,
--SS.' oce)dt

which, when r is replaced by g /Vand , by vo/ l ', becomes

S

V2 gt , Vo
log ( cosh + sit

9
V

( 7)
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It is a matter of some interest to test this formula against actual

fall in the atmosphere of the earth where the resistance appears to

follow rather closely the law assumed in deriving it . The computa

tions given below are based upon the free fall of six men from altitudes

varying from 10,600 to 31,400 feet to a terminal altitude of ap

proximately 2,100 feet . The average weight of the men and their

equipment was 261.2 pounds.*

In a previous study a terminal velocity as low as 164 feet per second

( = 112 miles per hour) had been reported, but this was for a low

altitude fall. Other studies indicated velocities of the order of 202

feet per second (= 138 m.p.h.) and higher. The long drop from

31,400 to 2,100 feet on which the following analysis is made showed

an average velocity of 251.4 feet per second (= 171 m.p.h.). The sta

tisical analysis of the drop was made by Dr. R. A. Fisher of the Physics

Department of Northwestern University. The authors of the study

stated that four factors are involved in free fall, namely, (a) the

altitude , or air density, (b ) the weight of the body , (c ) the position

of the body , and ( d ) the amount of spinning and tumbling. Of these

probably the air-density factor is the most important, since the average

velocity appears to increase with elevations .

The following analysis is based upon the single observed fact that

the fall from an altitude of 31,400 to 2,100 feet was accomplished

in 116 seconds. The computation is made from formula (7 ) . To

find the value of V corresponding to a drop of s = 29,300 feet in t= 116

seconds, we set v = 0 and gt/ V = x in equation (7 ) and write the

equation as follows:

V2 1 V2 1

X-1 +

9 9

Since x will have a value of the order of 15 , it is clear that this equa

tion can be replaced by the approximate one

s = Vt- (log 2 ) V / g. (9 )

SES

.).(8)

When this is solved for V for s= 29,300 , t = 116 , g= 32.2 , we find the

value V = 265.7 feet per second , which is somewhat larger than the

average value of 251.4 given above .

Introducing this value into equation (8 ) , we have

S= 2192.4 log cosh (0.12119t) ~ 2192.4 (x- 0.69315 ) , ( 10 )

where x = 0.12119t. From this equation the following table of values

of H- 8, H= 31,400 , is computed and compared with those estimated

from the barograph carried by the jumper. They are graphically

represented in Figure 1 .

* A.J . Carlson , A. C. Ivy, L. R. Krasno , and A.H.Andrews: " The Physiology of Free Fall Through the

Air : Delayed Parachute Jumps," Quarterly Bulletin , Northwestern University Medical School, Vol . 16 ,

1942, p . 254 .
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COMPARISON OF OBSERVED FREE FALL WITH ESTIMATES FROM

FORMULA

t H-8H - 8

(Obs . )

H - 8

(Comp. )

H-8

( Obs . )

H - 8

(Comp. ) ( Obs. )

H-8

(Comp . )

0

9.9

14. 5

19. 1

23.7

28.3

32.9

37.5

42.1

31 , 400

30 , 780

30, 200

28 , 850

27 , 700

26 , 150

24, 600

23, 200

21,750

31 , 400

30, 099

29 , 003

27 , 823

26, 616

25, 397

24, 146

22, 955

21 , 734

46.7

51. 3

55.9

60.5

65. 1

69.7

74. 3

78. 9
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20 , 550

19, 400

18, 100

16, 600

15, 150

14, 070

12, 800
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10, 400

20, 511

19, 289

18.067

16 , 845

15, 623

14 , 401

13, 178

11 , 956

10, 734

88. 1

92.7

97.3

101.9

106.5

111.1

116.0

9, 400
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7,080

5,700

4 , 450

3, 170

2, 100

9, 512

8, 289

7,067

5, 845

4,623

3, 401

2, 100

The value of K in equation (2 ) can be estimated from (4 ) . The

average weight of the jumpers with their equipment was 261.9 pounds .

Hence, setting m = 261.2 , g = 32.2 , and V = 265.7 , we find K= 0.1191 in

foot-pound units .
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4. The Cross-Ratio Theorem for the Riccati Equation

In certain applications , notably in differential geometry, the Riccati

equation has been found to have usefulness because of what is called

its cross -ratio property.
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By the cross-ratio of four points on a line (A , B, C, D in Figure 2 ) ,

the coordinates of which we denote respectively by x1 , 22 , 23 , and Xa,

we mean the following ratio :

R =
AC | AD_ (AC) (DB ) _ ( 21— x3) (22— )

CBDB (CB )(AD ) (2 ,-2 )(x2-23)
( 1 )

We have seen that the general solution of the Riccati equation can

be written

y = 91 + k 92,
9z+k g4

( 2)

where the g: are functions of x , and k is an arbitrary constant . We

now consider four particular solutions, let us say, yı , ya, ya , ya , which

are linearly independent of one another, and which are obtained

from (2 ) by letting k assume the four values : ki , k2 , ka , ka.

Denoting by Ge the function 9z+k194 , we compute

Yi- Yo
gi + kt 92_91+ k ; 92,

9a + ki 94 93 + k , 94

(ke - k ;) ( 92 93-91 94).

GiG

(3)

Making use of (3 ) we now evaluate the cross-ratio R and thus

obtain :

( 41-43) (y2 - y ) (kı -k) (k2-ka)
R= (4)

(Yı - y.) (42-43) (kı - ke) (k2 - K3) '

which is thus found to be a constant .

It is from this fact that we derive the cross-ratio theorem : The

cross ratio of any four linearly independent solutions of the Riccati

equation is a constant .

5. Integration of the Riccati Equation

As we have seen in Section 2 , the complete solution of a Riccati

equation is attained in general only by the integration of a linear

differential equation of second order, or by some equivalent algorithm .

However, if any particular solution is known , then a great simplifica

tion results , for it is then possible to obtain the complete solution by

means of quadratures .

To show this , let us consider the equation

dy

+ Q (2) y+R (2) ye=P(2) ,
da

( 1 )
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and let us assume that y = U is a particular integral. We now write

1

y=
и + U. (2)

When this function is substituted in ( 1 ) , we get

dU1

u2

du

dx + Qu + R + 2U RU)+ 2x + QU +RUP= P,

which , since U is a solution of ( 1 ) , reduces to the linear equation

du

dx
(2RU + Q ) u = R . (3 )

Since this equation is linear and of first order, it can be solved by

two quadratures. Its general solution can be written : u = kuo + un,

where k is an arbitrary constant. Therefore, the general solution of

( 1 ) can be written

1 + UU + KUU
y = (4)

utku

Similarly, if two particular solutions are known, the general solution

of ( 1 ) can be obtained from a single quadrature. To show this , let

us assume that the second particular solution of ( 1 ) is V , and let us

write , as above,

1

(5 )y = - + V .
= +

For the determination of v, we now have the equation

dv

- (2RV + Q ) v=R .
dx

(6 )

Multiplying (3 ) by v and (6 ) by u , subtracting, and dividing the

resulting equation by uv, we get

1

(
du

dx

u

do)–2R ( U = V ) = R u-5 ( 7 )
UV u

But since we have 1 /u =y - U and 1 /v = y - V , so that 1 /u- 1 /v=

V - U , the right-hand member of (7 ) reduces to R (V- U) . Finally ,

multiplying (7 ) by ulv, we see that it can be written in the form

d

dx (3. -RU-V) =0.
(8 )

This equation can be solved by a single integration and we get

u

=k ef R (U - V) di = k 0(2) .

(9)
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Since we thus have

U_y- V

U ==kºv),*- = ( 10)

we solve for y and thus obtain the desired solution in the following

explicit form :

V-køU

( 11 )y = 1– kº

If three solutions: y= U, y = V , y = W of equation ( 1 ) are known,

then the general solution can be obtained without any quadrature.

This follows from the cross-ratio theorem of Section 4. For if in

equation (4 ) of that section , we replace yı by y and ya , ya , and ya

respectively by U, V , and W, we get

(y - V ) (U-W)
= k .

(y-W) (U - V )

Solving for y , we then obtain the desired solution in the form

y =

V (U - W ) -KW (U - V ).

(U - W ) -k (U - V )
( 12)

6. Solution of the Original Riccati Equation

We shall now return to an examination of the original Riccati

equation , which we stated in Section 1 as follows:

dy + ay+= bx". ( 1 )
dx

This equation has been the subject of many investigations , since it

has several unusual properties . Let us first make the transformation :

y=u' / (au ) . Equation ( 1 ) is then reduced to the following linear

form :

dru

-cr" u=0, where ca=ab . (2)
dr2

By means of a second transformation ,

U= V AIP

( 3)

equation (2 ) becomes

dav dv

dz2 + 24pxD- + [Ap(p - 1)xD-2 + A²p2,2(p -1) — c+x ]v= 0 .

556037 0461 6
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When A and p assume the following values :

1

A = c/p, p= i+än, p 0 ,
( 4 )

this equation reduces to the following:

d²v

dz2 + 2cxo -1 (5 )

do

dz +c (p - 1)29–? v=0 .

If we now assume a solution of the following form :

v = dota, XP + Q2 22P + Qz 203P + . .tam . (6)o

the following relationship between the coefficients am + 1 and am is

readily obtained :

c [(2m + 1 ) p - 1 ]
Qm+1= (7 )

(m + 1) [ (m + 1 ) p- 1 ]

am

If a, is set equal to 1 and m is then given successively the values

0 , 1 , 2 , the following series results , which provides a formal

solution of equation (5 ) :

.

•

V (x, c ) = 1 - p - 1 (p- 1 ) (3p- 1 )
CXP + c2227

p(p- 1) p ( p - 1 )2p (2p - 1)

(p- 1 ) (3p- 1 ) (5p- 1 )

p ( p - 1 ) 2p (2p - 1) 3p (3p - 1)

c3.2038 . (8)

Thus, one formal solution of equation (2 ) can be written :

Un = eCP/p V (2 , c ). (9)

But since it is possible to replace c by -c in (2 ) without changing

the equation , it is clear that a second solution is given by

Un = e - cr /PV (2 ,-2). ( 10)

The solution of equation ( 1 ) thus assumes the form

ui+kus
y =
a (ui + kuz)'

where k is an arbitrary constant.

We now observe from ( 7 ) that both V(x,c ) and V (x , —c) terminate

when p is the reciprocal of a positive odd integer, that is , when

p = 1 / (2m + 1 ) , m = 0, 1 , 2 , etc. From this it follows that equation (1 )
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has a solution expressed in terms of elementary functions, when n has

the form :

-4m

n =
- m (11 )2m + 1'm = 0, 1, 2, 3, ... ,

that is , for the sequence of values: 0 , -4/3 , -8/5 , - 12/7 , etc.

But equation ( 1 ) also has a solution in terms of elementary functions

when n has the form

-4m

m = 1 , 2, 3 , ... ,
2m - 1'

(12)n=

that is , for the sequence : -4 , -8/3 , -12/5, —16/7, etc.

To obtain this second result, let us transform equation (2 ) by

introducing the new variables:

U=w/t , x = 1 /t,

from which we get

daw

-cat - n - 4 w=0 .
dt?

This equation has the same form as (2) , and if we let n= 29-2 , then

expansion (8) is replaced by the series:

9+ 1

W (t , c ) = 1 +
(9+ 1 ) (39+ 1 )

ct - e+

919 + 1) 9(2+ 1 )29(29+ 1 )

cºt - 29 + ....

This series terminates when q is the reciprocal of a negative odd

integer, that is , when q= -1/ (2m- 1 ) . Substituting this value in

the equation : n=29-2, we obtain (12 ) .

The importance of the original Riccati equation defined by (1 ) is

found in its relationship to the theory of the Bessel functions, J , ( )

and Y ,(2 ), which are solutions of the equation :

d’U dU

L(U) =x dx2 + xdx+x dx+ (x2 — v? ) U = 0. (13)

In order to show this connection between the two equations , we

first employ the transformation : t = (x /2 ) , by means of which ( 13 )

becomes:

d’U dU

MU) = t tit U=0 . ( 14)
dt

dt
at
t

Transforming the, dependent variable by writing: U = t8W , we

obtain

d2W dW

dt ?
+ t ( 1 + 28 ) B2 W = 0 .

dt
( 15)12
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If B2 is now set equal to (v /2 ) , that is , if ß= įv , then ( 15 ) reduces to

the simpler form

d2W dW

N ( W ) = t + ( 1 + 0) +W=0 .
dt ?

( 16 )
dt

We can now write solutions of ( 13 ) , ( 14 ) , and ( 16 ) as follows :

L ( U ) = 0 : U = AJ,(x ) + BY,(x ) ; ( 17 )

M ( U ) = 0: U = AJ,(2-7) + BY,(2,1) ; ( 18 )

N ( W ) = 0: W = t-P[AJ,(216) + BY,(2/7)], B= + {v . ( 19 )

Returning now to equation ( 1 ) , we let y = ux , and thus obtain

du

X -u+au+=b2", h=n+ 2 .
dr

( 20)

The further transformation : s = gx ”, reduces (20 ) to the form :

du U au2 b

+
ds hs hsgh

(21 )

If u is now subjected to the transformation :

hs w'

u = (22)
α ω

equation (21 ) becomes

8

de +(1- ) 。

dw ab

W=0.

ds gh?

Defining g so that ( -ab/gha) = 1 , that is , g= -ab/h?, we then have

ve +
dw

-+w=0.
ds

(23)

If h is set equal to 1 /v , then the solution of (23 ) , as shown by ( 19 )

above , is the following function :

w=50/ 2 (AJ, (215) + BY , (218)]. (24 )

When v is not an integer, J , ( r) and J- , (x ) form a fundamental set

of solutions of Bessel's equation, so in this case we can replace Y ,(218)

by J -, (28) in (24 ) and thus write the solution of (23 ) as follows :

w=sv/ 2 [AJ, (215) + BJ-, (215)]. ( 25)
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It is well known that when v is equal to eitherį(2m – 1) or
1

2

- 2m +1), where m is a positive integer, then J , (x ) can be expressed

in finite form in terms of sines and cosines . A few of these functions

are given below as follows :

J12 ( x) =P (x) sin 2 , P (x ) = V2/TX,

sin x

-COS X

Jax( x ) = P (x ) [sin e]

Jun(2)=P(-)[( -1)sin 2 sin ]

J - 1/2 (x ) = P (x) cos x,

J-312(x)= P (x) -sin r–- [ -com ]

J -wa(z)=P(4)[ sin x+(3-1 ) cos z]

Since h= 1 /v= n + 2 , whence v = 1/ ( n + 2 ), and since J , (x ) can be

1

=
2 2

that the solutions of equation ( 1 ) can be expressed in finite form when

we have

4 ( 1 - m)
n=

2m- 1

4m

or n =

1—2m
- , m a positive integer .

For the sequence of values : m = 1,2,3 , etc. , we obtain the same values

of n given by ( 11 ) and ( 12 ) .

As an example, let us consider the following equation :

dy + y2= 1.da

Referring to equation ( 1 ) , we see that a= b= 1 , n= 0 . Hence h= 2

and v= Thus,equation (23 ) reduces to

+(1-5) +w = 0,
daw

S

d32

the solution of which is

w = As:/4Jyrz(2x®)+ B5114 J-72(2/3)= 1 (A sin (218 ) + B cos ( 218) ].
TT

From this we get , referring to (22 ) ,

w'_2V5 [ A cos (215) – B sin (216)).

A sin ( 2/5) +B cos (2/3)

U = 2s

W
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Since s and x are connected by the equation : 48 = -x?, whence

2Vs = ix, and since Fix cos ( + ix ) = + ix cosh x and Fix sin ( Eix )

x sinh x, we have finally

y

U A' cosh x+ B sinh x

2C A ' sinh x+ B cosh x

It should be observed , however, that our equation is readily solved

without the introduction of Bessel functions, since the associated

linear differential equation of second order is merely

4-1 = 0 ,

which has the solution : u=A cosh x+B sinh x . But the intricacy of

the relationship between the Riccati and the Bessel equations is

instructively illustrated by this simple example.

PROBLEMS

Find the solutions of the following equations :

1 .
dy

dx
+ y = x –8/5

2 .

dy

dx
+ y2 = 2-4/3

dy
3. + y = x - 4

dx

dy
4 . + y = x –8/3.

dx

5. Show that equation ( 1 ) can be reduced to the following :

dz

+ aze = bt - n - 4,
dt

by means of the transformation : y = t/a- zt?, x= 1 /t .

6. Show that the transformation : y= 1 /2 , 2n+ 1 = (n + 1 ) t , reduces ( 1 ) to the form

dz

+ bze = a ( n + 1)mém , mr - n/ ( n + 1 ) .
dt

7. Observing that equation ( 1 ) can be solved in terms of elementary functions

for n = 0, make use of the results of Problems 5 and 6 to show that it is also

solvable by elementary functions when n = -4m /(2m + 1 ) , m= 1 . 2. 3. etc.

7. Solution of the Riccati Equation by Means of Continued Fractions

An ingenious method of solving the equation

dy

detay? = bx ", ( 1 )

has been devised by the use of the technique of continued fractions .
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We first make the transformation

U

y=; (2)

which carries ( 1 ) into the following form :

( 3)

du

X -4 + au? = bzP,
dx

where p=n+2 .

We now make a second transformation as follows :

ар1

U =

a

+ (4)
U1

by means of which (3 ) becomes

X

du

dx
- ( 1 + p )ui + buirax ". ( 5 )

Following this with a third transformation ,

U=

= 1+ 2 +
-P ,XP

(6)
U2

we obtain the equation :

duz_ (1 + 2p)uz+ auz= bXP. (7)
dx

Continuing this through m transformations , we have finally

*

dum

dx
- (1 + mp)um + Amun = BmQCP. (8)

where Am= a and Bm= b, when m is even , and where Am= b and

Bm=a, when m is odd .

Combining the transformations, we see that the solution of equation

(3 ) , and thus, by means of (2 ) , the solution of equation ( 1 ) can be

written as the following continued fraction :

U = XY

1

+
a

(9)

1 + P + 1 + 2p + 1 + 3P +

хр х xхр

a b

If, in equation (8) , we set p = -2/ (2m - 1 ) , where m is an integer ,

then this equation reduces to the following:

2

1

pum + Amu=BP.
2

( 10 )
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But this equation is solved by a quadrature, since its variables are

separable . For if we make the transformation : Um = xP /2, then it

becomes

dv

+ Amue = Bm , ( 11 )
dx

X - P /2

and the solution of ( 1 ) is obtained in finite terms in agreement with

what we found in Section 6. The expansion of this solution as a

continued fraction is given by (9 ) .

A second solution of equation ( 1 ) , also expressible as a continued

fraction , is obtained by another sequence of transformations . These

transformations, beginning with (3 ) , and the equations which result

from them are given below as follows:

хр

U =

U1

Xd-- ( p - 1)ui + bui = axP,
dx

duz

U1

p- 1 XP

+

U2

X

dx
( 2p-1 ) uz+au;= bx", ( 12)

2p - 1 R ? duz

U2= + X

dx
- (3p - 1)uz + burax”,

a U3

After k such transformations , the resulting equation is the following :

dux

X - (kp - 1)Ux + Axu = Bxx",
dx

-

( 13)

where Ax=a and Bx= b , when k is even, and where Ax= b and Br=

a, when k is odd .

Combining these transformations we obtain the solution of equation

(3 ) , and thus, by means of (2 ) , the solution of equation ( 1 ) , as the

following continued fraction :

U = xy = ( 14 )

XP хр XP

P - 1 , 2p - 1 3p - 1
+ +

6 b

+

a

As in the previous case , we set p = 2/ (2k - 1 ) , and equation ( 13 )

becomes

dux 1
( 15)

de
pux + Axu = Bxx" ,X

which can be integrated in finite terms as already explained above .

Since n = p - 2 = -4(k— 1)/ (2k - 1) = - 4m / (2m + 1 ),where m=k- 1 ,

we see that we have the sequence defined by ( 11 ) in Section 6 .
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8. The Character of the Singularities of the Riccati Equation

y + ,

If one contrasts the solution of the eq vation : y ' + y = 0, with

1

that of the equation : y't5 y = 0, namely , y= 1 / (x+k ) in the first

case with y= (x+k) -t in the second , he will observe that the solution

of the first equation has a movable pole, while that of the second has

a movable branch point . This difference in the character of the critical

points in the two solutions is not an accidental one, but is associated

with the fact that y appears as a square in one equation and as a cube

in the second .

We shall now show that if an equation has the following form :

dy P(x,y), .

du Q (x ,y )"

=

( 1 )

where P (x ,y) and Q (x ,y) are polynomials in y , then if its solution

is to be free of movable branch points the equation is necessarily

a Riccati .

If Po= (20,4 .) is a point such that

Q (20,9 .) = 0, P (20,40) +0 , (2 )

then Po is a singular point of equation ( 1 ) .

On the other hand , P, is a regular point for the equation

dx_Q (x ,y )

dy P (x,y)
(3)

in which x has now been advanced to the role of the dependent variable .

Hence , in the neighborhood of P, the solution of (3 ) can be expanded

as follows:

2 — & o = A1(y - yo)+ Az (y-yo)2+ ( 4 )

But we see that Ay=0, since Q (x0,90) = 0, and thus the expansion

becomes

2—2=A ,(y—yo) ' ,
(5)

where some value of A,, let us say when r=n22, will be different

from zero . If, then, we invert series (5 ) to obtain the solution of the

original equation (1 ) , we see that y-y, is expanded in a power series

in (2 - x ) ". We thus reach the conclusion that x, is an n -fold branch

point . Moreover, since X, can be chosen arbitrarily, subject only

to the existence of a Yo which satisfies conditions (2 ) , it can in par

ticular move along an arbitrary curve C and is thus a movable branch

point .
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From the argument just given it is evident that if the solution of

equation ( 1 ) is to be free from movable branch points , Q (x ,y ) must

be a function of x alone. That is to say , equation (1 ) must have

the form

dy = x= P .(2 ) + P / (2) y+P/ (2) ya + ... +Pm(x) ym. (6)
dx

That m in (6 ) cannot exceed 2 is readily shown if we make the

transformation : y= 1 /2 . We then obtain .

dz

dx = ?- 22 (Po+ P1/ 2 + P2/ 22 + ... + Pm /2m ). (7)

The right hand member of this equation must necessarily be

a polynomial in z , but this is not possible unless P,= 0 for all values

of r which exceed 2 . We thus reach the conclusion that equation

( 1 ) must be a Riccati if its solution is to be free of movable branch

points .

9. Abel's Equation

A natural generalization of Riccati's equation is the following :

dy
= f(x ,y ),

dædx = f ( 1 )

where f(x ,y) is a polynomial in y . If , in particular, f (x ,y ) is a cubic

polynomial, that is ,

f (x ,y ) = A , + Aiy + A2yº + Azyº, (2)

where the Aq are functions of x , equation ( 1 ) is called Abel's equation .

Abel's original equation * was written in the form

dy

(y+ 8) +p+ay+ry=0 ,
dx

(3)

where p, q , r, and s are functions of z . This equation is converted

into ( 1 ) by the transformation : yts= 1 /2 , which yields

z = rz + (9-8' - 2rs)22 + ( p - q8 + rs ?) 23. ( 4 )

If in (2 ) the Aq are constants, so that f(x ,y ) = f (y ),it is obvious that

the roots of the equation f (y = 0 are themselves solutions of ( 1 ) .

More generally, the solution has the form :

(y - yı )" (y- y2) ( y-ya)' = K Aza , (5 )

where y1 , yz , and yz are the roots of f (y ) = 0 , a , b , c are fixed constants ,

and K is an arbitrary constant.

* Oeuvres, Vol. 2, No. 5 .
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The case where A=0 is seen from (4) to be the one actually con

sidered by Abel. If A= 0, A , 70, then the transformation

y= 1 / (B2) , where B'= -A,B, (6 )

reduces ( 1 ) to the following form :

dz

-Bºz dz = A ,Bz+ A3, (7 )

which can be written :

z dz + ( P + Q2)da = 0, (8)

where P = A3/ B4, Q=A2/B.

It can be shown without difficulty that the function

$ = e - k (2+ S Q dm ), k a constant , (9)

is an integrating factor of (8) provided : Q=KP, that is, A,B=kAz.

Equation ( 1 ) can be put into the canonical form

dz

di = + P(x),

(1
0
)

by means of the transformation :

y = A ( x ) 2(0 ) + B (2 ), t=S* A ' (x ) Asdx, (11 )

where we write

A ( z ) = exp Q(x),Q(x)= S*(4,- A3/4,) da, B (x) ==} (4./A3). (12)

Under this transformation P (x ) has the following value :

P(p)=224,[ 4.-} (44 )+2 (41)+ ( )]

PROBLEMS

1. Reduce equation ( 1 ) to canonical form when all the Ai are constants .

2. Making use of the results of Problem 1 , solve the following equation :

y ' = ay + bx - 3 / 2.

3. Solve the following equation :

dy = y + xy? —3y3.
dx
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10. The Generalized Riccati Equation

Some of the theory of the Riccati equation , which we have given

in earlier sections , can be extended to what we shall call the generalized

Riccati equation . This generalization was introduced by E. Vessiot

in 1895 and by G. Wallenberg in 1899 .

Such an equation is obtained by the elimination of the parameters

in the fraction

ki vit kaVat

( 1 )
tknWn

tkn Vn

y = knwitka w2+

where the ve and we are arbitrary linearly independent functions of x

and the ke are arbitrary constants .

The resulting equation is a nonlinear differential equation of nth

order, the solution of which, by a proper transformation , can be ex

pressed in terms of the solutions of a linear equation of order n+ 1 .

The case n =2 obviously reduces to the ordinary Riccati equation ,

which we have just discussed .

It will be sufficient here for us to consider the generalized Riccati

equation of second order. Thus in (1 ) we set n = 3 . We now multiply

y by the denominator of the fraction and then take two derivatives

of this equation , thus obtaining the following system of equations :

Šk(wy-v.)= 0,Ś . ,Š ?–vkr (Wiy- V1) = 0 , ki[(wžy )' — vi] = 0 , ki[(way )'' -v4'] = 0 . (2)

Since this is a homogeneous system in the ks , it is both necessary

and sufficient for the existence of values of the ki, other than zero ,

that the determinant of the system shall vanish , that is ,

wiy - 0 W2Y - 02 W3y-V3

= 0 . (3)(wiy ) ' — ví (way )' - vs (wzy ) ' - vs

(w.y) " — v1 ' (way) ' ' - vý'(way ) '' -ve ' (wy)" - v '

If we make use of the following abbreviation :

ai bı C1

(a ,b ,c) = az b2 C2

a , b, c,

( 4 )

it will be found that equation (3 ) reduces to the following:

( A , + A1y ) y '' + ( B , + Biy) y '—2A (y ' ) ' + D.+ Diy+ Daya+D3y8= 0 , (5)
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where we have

A.= (v, v ' , w) , A = ( w , w' , v) , B,= 2 (v, v' , w' ) - (v , v' ' , w) ,

B = 2 ( w , w' , v' ) = (w, w' ' , v) , Do= - (v, v' , 0' ' ) , Dz = (w , w' , w' ' ) ,

Di= (v, v' , w' ' ) + (v' , 0' ' , w) — (v, v' ' , w' ) ,

D2= - (w, w' , v'') – (w' , w' ' , v) + (w, w' ' , v' ) . (6)

By means of a transformation of the form :

a- ( A / A )?
y=

9

(7)

2

where a is an arbitrary function of 2 , it is possible to reduce equation

(5 ) to the following form :

dz

P. dx + (Qo+ Q.2) dz+Ro+ R12 + R922+ R928=0, (8)

in which , it will be observed , the term in y ' has disappeared .

But it is also possible to achieve the same result if A, is zero .

This can be accomplished without loss of generality if , in equations

(6 ) , we replace vi by rwi, where r is an arbitrary function of x .

If we adopt the following abbreviations :

W= (W, w' , w ' ), W2= (w , w ', w ( )),

Wy= (w ,w '',w13 ) , W . = ( w ', w' ' , w 8) ),

then the coefficients are seen to reduce as follows:

A . = (rw ', rw '' + r'w ', w) = rº (w' , w' ' , w) =rW1 ,

Ai= (w, w' , rw' ) = 0, B . = — p2W -2rr'W1,

B= 3rW1 , Do= –23W4, D , = (2r|2 — pp !' )Wi + rr'Wz + r2W3,

D2 = - W ,-3r ' W., Dz = W . (9 )

Since W , is the Wronskian of a set of linearly independent func

tions , it cannot vanish identically and thus A, is not identically zero .

Noting this fact , we now substitute the values from (9 ) into (5) , and

replace y by 2. Equation (5) then reduces to (8 ) , where we have the

following explicit values for the coefficients:

W
4:

2 .

Q = , Ror-rr W'

2r ' W ,

Po = 1, Qo=
W

W.27'2 - rr "

p2

W 3r' ,
RI +

pi W.

rW

R2
rW , ; Rs= ( 10)

go2
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It is to be observed that the following identities exist between these
coefficients :

9R = Qi, QoQ1 + Ri = 3Rg. ( 11 )

Since , moreover, rQı =3 , whence

r /r = -Qi/Q1, p " /r= -QI'lQ1 +2 (Qi/Q. ) ?,

the ratios W/W, can be explicitly evaluated in terms of the coefficients

of (8 ) . We thus obtain the following:

W Qi 1Qi ' .
-Qo + 2

W
RO=R,- QoX + 2

W Q1 =W 3

With these ratios we are now in a position to reduce the solution

of equation (8) to the solution of a linear equation of third order .

For if w1 , W2, and wz are the linearly independent solutions of a linear

differential equation of third order , then the equation can be written

as follows :

W

W1 wi wa w , 8)

= 0 .

Wa wa w (3)

W3 w WS W8)

But this equation can also be written in the form :

dw W , d ? w , Wz dw , WA

dx W ,dz + w, dx+ w, w–0,
( 14)

or explicitly in terms of the values defined by (12) as follows:

d’w Qi)d?w Qi'7dw , 1

dri
+ Qo - 2

Q. dx² + R ,-Qo 8.+ Qi Jdx

w w W ( 3 )

(1
3
)

W2

Since the solution of equation (8 ) can be written

rw ' 3 w'

Q. W

1 (16)
W

it is thus seen that the Riccati equation of second order can be solved

by the solution of a linear equation of third order.

A special case of (5 ) of some interest is obtained if we let v = 1 ,

which, of course, is a degenerate case since the v, are no longer linearly

independent . We thus obtain the equation :

Aiyy ' ' + Biyy ' — 2A (Y ') ? + Day? + D3y3 = 0 . ( 17 )

By means of the transformation : y = 1 /w, this equation reduces to

the following nonhomogeneous linear equation of second order:

Aqw2+ Bw'— Dzw = D :. (18)



Chapter 4

Existence Theorems

1. Introduction

IN PRECEDING CHAPTERS we have discussed particular devices for the

solution of the equation

dy

dx = f(x,y), ( 1 )

where the function f(x,y) had special properties , which simplified the

integration of the equation . We have also investigated certain

equations, such as that of Riccati , where the structure of f(x ,y) was

sufficiently simple so that the question of the existence of an integral

was not of major importance, and where the solving algorithms were

essentially formal ones .

But it is clear that the definition of a domain within which we may

be sure that a solution of equation ( 1 ) exists is a matter of great

importance in many problems . The definition of such a domain

necessarily involves also the definition of an algorithm from which

the construction of the solution is at least theoretically possible,

however difficult its actual accomplishment may be . With these

fundamental matters this chapter will be concerned .

Three essentially different types of existence theorems have been

devised , which are usually referred to as (a ) the Calculus of Limits;

(b) the Method of Successive Approximations; (c ) the Cauchy-Lipschitz

Method . We shall discuss these in the order named.

2. The Calculus of Limits

The name " the calculus of limits” has been given to an existence

theorem originally contributed by A. L. Cauchy ( 1789–1857 ) , which

marked the first systematic and rigorous examination of the problem

of the solution of differential equations . " The name (calcul des

limites), " says Picard , " was not a very fortunate one, but the idea is

highly fruitful." The proof as given by Cauchy was quite compli

cated , but it was modified later by Briot and Bouquet and their

ingenious analysis has been the basis of most modern demonstrations.

79
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The theorem may be stated as follows for the case of a differential

equation of first order :

Let us assume that for the differential equation

dy = f(0,4), ( 1 )
dx

the function f (x ,y) is analytic in the neighborhood of the point Po = (xo,yo).

The differential equation then has a unique solution y (x) , which is

analytic in the neighborhood of X, and which reduces to yo when x=xo.

The solution can be represented explicitly by the series:

(3)

93)

y = 8 + 46(0–2 )+31 (2–1o) + (2—20) 3+ (2 )

3 !

where the derivatives, evaluated at the point x=xo , are determined from

successive differentiations of equation (1 ) .

The difficulties at once become apparent when we compute the

successive coefficients in (2 ) , since these rapidly increase in complexity .

Thus, for the first three derivatives , we have

2

dy = f(x,y), d= c+oy de octöy
dạy_of ,of dy_of of

dr
fi

døy of daf dy , daf dy of dºg
+de drata

dxdy dx dy? (dx

daf d²f of of
2+ 2 +

д ? ftov? f +дхду:

+ 2overy Cable
(3)

dy dz2

dx dy

In view of the complexity of these coefficients, it is clear that we

cannot assume the convergence of (2) in the neighborhood of P.

without establishing some measure of the magnitude of the deriva

tives . For convenience we shall assume that Po= (0,0 ) .

With this object in view we introduce the equation :

dz

=F(x, 2 ) ,
dx

(4)

where F(x , z) is a majorante (or dominating function ) for f(x ,y) .

To explain this term , let us assume that f(x ,y ) has been expanded

as follows :

f( x ,y ) = {Qmnanya. (5)

Then the function F(x,y) , defined as follows:

F (x ,y ) = Amnamy", (6 )

-
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is a majorante for f(x ,y ) provided the coefficients Amnare positive real

numbers such that ſamnl <Amn for all values of m and n.

Let us now assume that when the values of x are limited to the

interior of a circle C in the complex plane of radius a and that similarly

when the values of y lie within a second circle C” of radius 6 , then

series (5) converges. Let us assume further that the maximum value

assumed by f(x ,y) within the prescribed domain is M. Under these

conditions the function

M

F (x ,2 ) = (7 )

(1-2) (1-1)

is a majorante of f(x,y) .

If F ( x , z ) as thus defined is introduced into equation (4) , the equation

is readily solved and we thus obtain

2—2*/(26) = - AM log ( 1 - x /a ),

or, explicitly in terms of z:

2=6–0[1+24M 10g (1-3)
(8)

If the positive sign is chosen for the square root, then 2= 0 when

x= 0 . When the function under the radical is zero , that is, when

x=21 ,
where

Xi = a (1-2-6/20M ), (9)

then z= b .

We thus see that if x lies within a circle ( ""' of radius X1 , the function

24M 10g (1-3)

is less in absolute value than 1. Hence, the expansion of the radical

in (8) will be a series convergent within C " . It is also readily seen

that all the coefficients in the expansion of z are positive . Thus,

if x has a value such that ( xl <x1 , then the absolute value of 2 will be

less than b .

Since F(x, z) is the majorante of f (x , y ), it thus follows that when x

lies within the circle C " the absolute value of y will be less than b .

Therefore, if y is replaced in f(x,y) by its Taylor's expansion about

Po = (0,0 ), the resulting function G (x) will be analytic within C " .

From its mode of construction the function G (x ) is seen to be identical

with dy /dx, an identity which is preserved for their successive deriva

tives . Thus we have established the convergence of equation (2) for

values of x within (' ' .

556037 0-61-7
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As an example of the application of this theorem , let us seek the

solution of the equation :

dy = xy(y - 2),
du

( 10)

subject to the boundary condition : y= 1 , x=0 .

Writing the equation in the form : y ' = xy ? — 2xy, we take successive

derivatives . Denoting the nth derivative by Dn and observing by

the rule of Leibniz for the nth derivative of a product that

D " (zu ) = xD "u + nDn- lu , ( 11 )

we obtain the following sequence of values :

y ' = xy? — 2xy,

y '' = xDy2+y2—2(xy' + y) ,

g3) = rDºgº + 2Dg ” –2( ”' + 2y^),

y (4) = xD3y2 + 3D’ya - 2 (xy (3) + 3y' ' ) ,

y (6) = xD *y2 + 4D3y2–2(xy (4)+4y (3 ) ) ,

g6) = cDuº + 5Dg” –2( c ) (5) + 5y 2̂). ( 12 )

Similarly, we next compute

Dy=2yy' ,

Dły-=2 (yy' ' ty'y' ) ,

Düy2=2 (yy (3 ) + 2y'y' ' + y''y' ) ,

D'ya = 2 (yy (4) + 3y'y (3 ) + 3y''y' ' +y (3 )y ' ) ,

Døy2= 2 (YY (6) +4y'y (4 ) + 6y''y (3 ) + 4y3) ; "' + y (4)y '). ( 13 )

Finally , we set r = 0 , y = 1 , and from ( 12) and ( 13) compute in

succession : y = 0, y = -1, 46 ) = Y64) = y " = 0, y ) = 30.

When these values are substituted in (2 ) , we obtain the following

expansion :

22 206

+ ( 14)
2 24

Unfortunately the algorithm which we have used does not provide

any ready way to determine the radius of convergence of the series .

But we do know from Section 1 of Chapter 2 that this series is the

expansion of the function

2

y =

Ite ? '



EXISTENCE THEOREMS 83

V (1+i). The radius of
conwhich is observed to have poles at x= .

vergence of ( 14) is thus virV.

Several comments should be made about the calculus of limits.

In the first place it can be extended essentially without change to

systems of differential equations of first order and to differential

equations of second and higher orders. This extension will be de

scribed in Section 4 of Chapter 7 .

An essential limitation in the method is found in the assumption of

the analyticity of the functions involved . For most of the classical

equations this is not a significant restriction, but would be for an

equation of the form : y ' = vy in the neighborhood of the point (0,0) .

This limitation will not be imposed in the methods which we shall

describe in subsequent sections.

The most serious difficulty with the method , however, is found in

its solving algorithm . As we have just seen in the relatively simple

example given above , the computation of derivatives soon becomes

very laborious . We have also observed that there is , in general ,

no ready method by means of which the radius of convergence of the

series can be established . Except for points in the immediate neigh

borhood of Po, the reduction of the solution to numerical values

rapidly becomes one of great difficulty. However, in Chapter 9 , we

shall describe a method of continuous analytic continuation which

enormously simplifies the whole problem . From this point of view the

alogrithm of the calculus of limits provides us with one of the most

useful and powerful methods for numerical calculation .

3. The Method of Successive Approximations

Although this method is frequently referred to as the Method of

Picard , in recognition of the fundamental contribution of this great

analyst, its origin can be traced to a much earlier period . Thus the

method was applied in 1838 by J. Liouville to the case of linear differ

ential equations of second order and was extended in various direc

tions by J. Caqué in 1864 , L. Fuchs in 1870 , G. Peano in 1888, and

M. Bôcher in 1902. But it was E. Picard ( 1856–1941 ) , who, in 1890,

gave to the theory its most general form * and later made it an

essential part of his treatment of differential equations in the second

volume of his Traité d'Analyse. †

* "Mémorie sur la théorie des équations aux dérivées partielles et la méthode des approximations succes

sive, ” Journal de Mathématiques, Vol . 6 (4) , 1890, pp . 145-210 . In particular, Chap. 5, pp . 197–210 .

tVol. 2 , pp. 301-304 ; 2nd ed ., p . 340.
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Beginning with the equation

dy = f(x,y), ( 1 )
de

we seek a solution which reduces to Yo when x= xo . For this purpose

we write equation ( 1 ) in the form

y= y + f; 5(8,4) da,
(2)

which is an integral equation , since the unknown function appears

under the sign of integration . In the general case this will be an

integral equation of nonlinear type .

A first approximation to the solution will be the function y, defined

as follows :

x =y + S; 5(2,4) dr.

Similarly, we get the following sequence of successive approxi

mations:

yx= y + f;*5(0,9.) da,

ys = yo + $,$$(8,9) da, (3)

* * * *

Yn+z= y + f; f(0,4m)dx.

We shall now consider the following series :

y=yo +( y - yo) + (y2-y ) + ... + (yn+ 1 -Yn) + ... , (4 )

for which we shall determine conditions under which it will converge

and represent the unique solution of the original equation.

We now introduce conditions as follows :

( a ) Restricting x and y to the rectangular region R defined by

\ r— xol Sa, ly- yol 56 , (5 )

we assume that f (x ,y ) is continuous in R and has an upper bound ,

which we shall denote by M. We shall further assume that a < b/M.

As a matter of convenience, we shall say that x lies in A if it satisfies

the first inequality in (5 ) and that y lies in B if it satisfies the second

inequality .
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(b ) If (x ,y) and (x ,y ' ) are any two points in R with the same abscissa ,

then there must exist a positive constant such that

\ f (x ,y ) -f(x,y ') } < Kly - y'l. (6 )

Condition (b) is called the Lipschitz condition after R. Lipschitz

( 1832–1903 ) , who introduced it in 1876. *

Returning now to a consideration of series (4 ) , we first show that

when 12—2,1 <a, then \ Yn- yol <b . For this purpose we write

\ xn —yols S* 18(3,9)|da,
to

SM |2—20) S Ma < b, (7 )

and thus we see that y , lies in B. As a consequence of this \ f (x ,yı) }< M ,

which allows us to repeat the argument thus showing that y, also lies

in B. We now have the elements of an induction by means of which

the general proposition is established .

We are now in a position to establish the convergence of (4 ) for we

can write the following inequalities:

ly yıls S*18(2,1)= f(2,99)da

SKS* 1 – yold.x

SMK |* is – Rojda,

SMK ( 2) MK2

By mathematical induction one then establishes the inequality

(2-x) *+1_MK"a"+1
lyn + 1 - Yr SMK $ (8 )

(n+ 1 ) ! ( n+ 1 ) !

We thus reach the conclusion that series (4 ) converges absolutely

and uniformly when x is in A. Therefore, the limit function y exists

and is continuous in B.

That y, as defined by (4 ) , is indeed a solution of equation ( 1 ) is

established by the following argument:

We first observe the following limit:

y = lim yı(a) = yo +lim S* $10,3 = ()]de,

= y + s,lim f(2,3n-1)dx=yo+ f* (2,y)dz.to n - c0 TO

*See Bulletin Sc . Math ., Vol . 10, 1876 , p . 149 .



86 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

The legitimacy of the inversion of the two limits proceeds from the

fact that we have

Si*18(2,3)= f(7,9»-)Įdaskſ*\v = Y -ılda,

MK**[1+,** + on+26*+2+...]la-zol,
$

which approaches zero as n 0 .

Therefore, since the function f(x ,y ) is continuous in the interval ,

the derivative of each Yn exists and is continuous. We can thus

differentiate (4 ) term by term , and thus obtain :

demande si f(x,y)dx= f(0,4).
TO

It remains to be proved that y is the unique solution of equation

( 1 ) . To establish this, we assume that z (x ) is any other solution ,

subject to the restriction

12 - y < b.

Hence we have

z=yo+ S*+(2,2)dx,

Yn + 1 = yo + S;*f(2,9wdx.,
from which it follows that

|2–Y +l=S 18 (3,2 ) = f (2.9") do< Kſ* z yalde.

By the same argument used above it is readily shown that

6 (26—20) "
12 - yn|SKM

n!

Since the right-hand member approaches zero as n0, we see that

2=lim Yn=y,

n-

and the following theorem results :

If f(x ,y ) is a function which is subject to the conditions (a ) and (6 )

stated above, then the differential equation ,

dydx= f(x,y)

1
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has one and only one solution which assumes the value y=yo when

X=X0 . This solution is defined by the series (4) , which converges within

the region R.

4. An Example and Critique of the Method of Successive Approximations

As an example illustrating the application of the theory given in the

preceding section , we shall consider the equation

=xy(y- 2) ,
dæ

( 1 )

which we shall solve subject to the initial condition : Yo= 1 , Xo= 0 .

In this case we have

f (x, y ) = xy (y - 2 ),

which satisfies conditions (a) and (b) of the theorem throughout any

finite region R.

Observing that f ( ,y ) = - *, we compute the following sequence

of values :

2² 26

- +
224

v =w + S)–zda=1-1

v =w + S'(-s+ *)d =1

y = y + *--(1-

Ya= 9 + %

210 214at x8 212

4 16 576
+

3)dra
dx= 1

x² 26

2
+-1 24 240 + 8064

:) da,
28 17212

+
4 24 2880

x² 26 x10 17214

+
2 24 240 ' 40320

= 1 + (2 )

This expansion is exact to the last term , as one can verify with some

effort by expanding the appropriate solution of the differential equa

tion ( 1 ) , namely ,

2

(3 )

1 + ez?

It is clear from this, as has already been observed in Section 2 , that

the radius of convergence of series (2 ) is V, since the solution (3 )

V ( 1 + i)
has poles at X = ( 1 + i ) and x = 1 ( 1-1) . There is no way to

V2 2

ascertain this fact from the existence theorem , but it serves to indicate

the significance of the assumption in condition (a) of Section 3 that
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a sb/M. For as x approaches x , y increases without limit, and , in

particular, will equal 6 however large this has been chosen . There

fore, within R, M ~ 2,162, and b/ M ~ 1/ (2/6 ). Since a sb/ M , 2 is

contained within a safe interval about xo .

The significance of the Lipschitz condition , namely, condition (b)

of Section 3 , is readily shown by the following example:

4xydy

dxx2 + y2'
(4)

the solution of which we shall consider in the neighborhood of the

origin , that is to say , the solution for which y = 0) when x= 0 .

The function

4cy

=
y ??

is defined to be 0 when x= y= 0 . One can then show without diffi

culty that it is continuous in a region R, which contains the origin .

We now compute

4x (x2 - yy ')

f(x,y') - f(x,y) = (22 + y'?)(x2 + y?) (y ' -y) .

If in the first factor of the right member we let y ' = AX, y= Bx , then

we have

411 - aß ! gº - g|

|$(0,9%) = f(x,y)) = (1 + Q®)(1+ 82
)

from which it is evident that the Lipschitz condition is violated in any

region R which contains the origin .

The significance of this is at once evident from the solution of equa

tion (4 ) , which can be written :

( 3x2 - y2)2 = cy ,

where c is an arbitrary constant . This function, for any value of c ,

satisfies the initial condition : x=y = 0. Thus, by violating the Lip

schitz condition , we have sacrificed the uniqueness of the solution .

5. The Cauchy -Lipschitz Method

The method which bears the name of Cauchy and Lipschitz is an

extension to differential equations of the limiting process by which

an integral is defined . The first proof was devised by Cauchy some

where between 1820 and 1830 and appeared in summarized form in

1840 in his Exercices d'analyse. A more extended development was
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given by F. Moigno ( 1804-84 ) in his Leçons de calcul published in

1844. The introduction to the theory of conditions which attached

the name of Lipschitz to the method was made in 1876. A definitive

presentation of the proof , which kept in view the principal objective

of extending to the general differential equation of first order the

existence theorem for the Riemann integral , was made in 1908 by

E. Goursat in the second volume of his Cours d'analyse mathématique.

In order to understand the basis of the method, let us consider the

equation :

dy
(1 )

dx

the solution of which , subject to the condition that y = yo when x = xo,

is merely the integral :

(2)

y=x + S; (ade.

But this solution can also be written as the limit of the following

sum :

Y,=yo+ f (xx)Ali, (3)

where the increments Axt cover in some prescribed manner the range

from x = x , to x=x, and X , is any point within the interval Axt .

It is the generalization of this idea that is involved in the method

of Cauchy-Lipschitz . Thus , let us consider the equation

dy

dx

=

f (x ,y ),

(4)

and let us divide the interval ( x ,x ) into n parts:

AX= X1 — XO, Ax { = Xit1 - Xi, Axn- 1 =X— X7-1 ,

where X < Xi + 1, Xx =x.

If we now form the following sequence ,

Yi+ 1 = Yi + f(x1,41)Axi, i = 0 , 1, 2 , ..., n - 1 , (5 )

then the series :

Yn = yo + f(x0,4o) Axo + f (x1,91)Axı+ . . . + f (xn - 1,Yn- 1)AXn - 1,

n- 1

= 40+ 2.1(21,9:)Ac;
(6 )

is the analogue of (3 ) .
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We can now state the following theorem :

Let x and y be restricted to the region R defined as follows:

z- | Sa, lg- vo | < b .

Let f (x ,y) be a function which satisfies the following conditions when

x and y are in R :

( 1 ) f (x ,y ) is uniformly continuous, that is to say , given an arbitrary

value e , there exists a quantity 8 , independent of x and y, such that

\,f (x ,y ) -f(x ,y)Ke, when [ — x'K <8 .

(2 ) ] f (x ,y ) | has a maximum value M.

(3 ) f (x ,y) satisfies the Lipschitz condition , that is to say , if (x ,y) and

(x ,y' ) are any two points in R with the same abscissa, then there exists

a constant K such that

\f (x,y ) -f(x ,y ') } < Kly - y'l.

Under these conditions and with the added restriction that

a<b/M,

yn defined by (6) will converge to a limitfunction y (x ) , which is the unique

solution of equation (4 ) satisfying the boundary condition y= yo when

X= X0 .

The details of the proof of this theorem are considerably more

complicated than those which establish the theorems given in Sections

2 and 3 and will be omitted since adequate accounts are given else

where. * But an outline of the general argument is readily provided

and is instructive.

The proof follows closely that by means of which the convergence

of (3 ) is established . Thus, if Mi is the largest value of f (x ) in the

interval Ax, and m , the smallest , then Yn will be some value between

the sums

Sn = M ;Axi and sn = miAli ., ( 7 )Ση,Δαι.i = 0

Under the broad assumption that f (x ) is a function of limited variation

in the interval x , Susb, it can be shown that both Sn and en converge

uniformly to a common limit Sas Axt → 0 . From this fact the existence

of a unique integral is thus established.

* The original proof of Goursat will be found in Section 30 , Vol . 2, of his Cours d'analyse ( English translation ,

pp . 68-74 ). Another proof following the same general argument, but extended in some details, is given by

Ince in his Ordinary Differential Equations, pp . 75-82 .

| The difference 0 ;= M;-mi is called the variation of S ( r) in the division Ii . The function f(r) is said

to be a function of limited variation in (a, b) iſ the sum Evi remains less than some fixed value K for any mode

of division of (a, b)
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In order to obtain the analogue of (3 ) , we first compute the following

sequence of values:

Yı = yo + $ (20, Yo) Axo,

ya = yı + f (21,41) Axı,

* * * * *

Yn = Yn - 1 + f (xn - 1, Yn - 1 ) Axn- 1 . (8 )

The sum of these quantities then gives series (6 ) , the limit of which

is now to be sought for. A triangular region (PQR) is first established

enclosed between the lines :

x = xo + a, y = yo + M (x– xo), y = yo - M (x - xo),

as shown in Figure 1 .

In the small triangle PQ'R' the function f (x ,y ) will have an upper

bound M , and a lower bound my which satisfy the inequality :

-M < m , SM , < M .

Lines with slopes equal respectively to M, and my are now drawn

from P to form the triangle Ppıcı. Similarly , lines are next drawn

from p, and qı with slopes equal to M , and m2, the respective upper

and lower bounds of f(x , y ) in the next segment . In this way con
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tinuous arcs C and C , are constructed which , with the line x =x+ a ,

enclose an area that lies entirely within the triangle PQR.

The following sums are now constructed :

Y , = yo + M , 4 + M ,Ax + ... + M , A ( n - 1,

Zn = yo + m Axo + m2Art ... +mnAXn- 1 , (9 )

which are seen to be the analogues of series (7 ) .

The kernel of the proof is now to show that the conditions imposed

by the theorem are sufficient to establish the uniform convergence

of Yn and Zn to a common limit function y (x ) and that this limit

function is a unique solution of the differential equation satisfying

the given boundary conditions. The graph of this function is a curve

C which lies between the bounding arcs C and ( 2. The details of

the proof are quite intricate and will be omitted .

Since this theorem , as in the case of the other two, contains a

solving algorithm it will be instructive to examine its efficacy as a

method for solving equations. For this purpose we shall apply it

to the equation which we have used previously ,

dy = xy (y - 2), ( 10)
da

subject to the boundary condition : y= 1 when x=0 .

For this purpose the series of value defined by (8 ) is now computed

over the range 0 SxS for the three cases (a ) Ax = 0.1; ( b ) Ax=0.01 ;

(c) Ax = 0.001. When each of these series is added to obtain the

sum (6) , we obtain the following values :

(a ) y1 = 0.572042 ; ( b ) 9100 = 0.541086 ; (c ) y 1000 = 0.538205,

which are to be compared with the value correct to six places:

Yo =0.537883 .

If we take cognizance of the fact that the estimate of the value of

an integral defined by (3 ) for equal values of the increment can be

improved by subtracting from Y , half the sum of the first and last

values , of the series, and if we apply this correction here, we shall

obtain for ( c ) the improved estimate 0.537811 . But it is clear from

this example that the algorithm provided by the Cauchy -Lipschitz

method will not, in general, converge rapidly to a solution . The

graphic representations, the curves ( 1, C2 , and C, for this example for

the case n = 10 are shown in Figure 2 .
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Chapter 5

An Introduction to Second Order Equations - The

Problems of Conflict and Pursuit

1. Introduction

BEFORE CONSIDERING MORE GENERALLY the problem of the solution

of nonlinear differential equations of second order , we shall find it

instructive to investigate two problems which, arising in application ,

exhibit a number of the difficulties of such equations and some of the

methods that have been devised to overcome them . These problems

are interesting for their own sake and furnish , therefore , a pleasing

introduction to a subject which will engage much of our attention in

the following pages.

The first of these problems concerns the growth of two populations,

which conflict with one another. Although this problem had its

origin in earlier studies relating to the growth of collections of indi

viduals , its recent development is due largely to Vito Volterra ( 1860–

1940) , one of the founders of the modern theory of integral equations .

This mathematician considered the problem of competition between

species, the growth and recession of populations one of which preys

upon the other , or , in other words, the problem of the prey and the

predator. In its general form the theory was stated in terms of

several nonlinear integro-differential equations of special type. The

details are set forth in a work , notable for its originality and depth ,

published in Paris in 1931 under the title : Leçons sur la theorie mathe

matique de la lutte pour la vie.

The second problem is concerned with the curve of pursuit , that is

to say , the path generated by a point P, which moves in such a

manner that its direction of motion is always toward a second point

P' , constrained to move along a prescribed path. This problem

appears to have originated with Leonardo da Vinci in the 15th cen

tury , but its curious difficulties have intrigued the fancy and strained

the ingenuity of modern mathematicians . A more detailed history of

this problem will be given in a later section .

95
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2. The Logistic Curve

ܙܙ

The growth of human populations, as well as that of crystals ,

plants , animals, and lower organisms, presents a characteristic pat

tern , which suggested that they might be described by a single equa

tion . The first of the studies of this problem appears to have been

made as early as 1844 by P. F. Verhulst , a contemporary and col

league of L. A. J. Quetelet (1796–1874 ) , Belgian statistician and

astronomer. Quetelet had made the observation that “ when a pop

ulation is able to develop freely and without obstacles , it grows

according to a geometric progression ; if the development takes place

in the midst of obstacles of all kinds which tend to arrest it , and

which operate in a uniform manner, that is to say, if the social state

does not change, the population does not increase indefinitely, but

tends more and more to become stationary." It was to discover a

curve which would meet this requirement that Verhulst initiated his

investigations. The curve thus found is called the logistic, a term

which appears to have been used first by Edward Wright in 1599 to

describe an S -shaped curve .

The modern theory and application of the logistic to biological and

population studies were initiated by Raymond Pearl and L. J. Reed

in 1920 and these subjects are extensively treated in their work on

Studies in Human Biology published in 1924. More recently the same

methods have been applied to the description of certain growth curves

observed in economic time series .

As an introduction to the more complex problem of Volterra , we

shall discuss the problem of single -population growth. Let us assume

that the population has an initial size equal to Yo and that after the

elapse of time t, it has increased to a size which we denote by y (t ) .

The simplest assumption , that of Quetelet's uninhibited growth , is

that the rate of increase is proportional to the size of the population ,

that is to say ,

( 1 )

dy

==Ay .
dt

This simple equation yields: y=yo exp (At ) as the law of growth ,

a law which may hold in the initial stages of population increase,

but obviously cannot hold over an indefinitely long period .

The assumption made by Verhulst, and later by Pearl and Reed ,

was that in the normal growth of a population an inhibiting factor

appears, which is proportional to – y ? Thus , we can replace ( 1 ) by

the more realistic equation

dy

dt
=AY- By ?, (2)
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which, for convenience , can also be written :

dy
=ay

dt

(3)

This is a simple null form of the Riccati equation , the solution of

which is readily found to be

k

y = 1 + Ce -ar'
(4 )

where C is a constant of integration. The S-shaped curve obtained

from this equation for positive values of C is called the logistic curve .

y

Upper asymptote

1

1

Р 1

Inflection Point
I

O 11

FIGURE 1

It possesses an upper and a lower asymptote , the upper asymptote

being the line y=k. It has one point of inflection , namely, P= (t1,41 )

where

t = log C , y = k
k . (5 )

These features are shown in Figure 1 .

A natural generalization of equation (3 ) is found in the following:

= " (t )y ( y - k ), (6)
dt

556037 0–61_S
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which can be shown to have the solution :

y=;

k

1 + Cerait
(7 )

where we write

g(t)=kf $(t)dt.
(8)

If g (t ) is a function which varies continuously between – and

too as t varies along a segment of the real axis between t =a and t = b ,

then horizontal asymptotes exist , which are the lines y= 0 and y=k .

Maxima and minima of the curve are given for values of t which

satisfy the equation :

d' (t ) = 0 , (9 )

provided at such values y # k/2 .

If we form the second derivative of y by differentiating (6 ) , we

obtain the equation :

d -g

dt2
= [d ' (t) + $ (t) (2y — k) ] y (y-k) . ( 10)

Such points of inflection as y may have are thus found for values of t

which satisfy the equation :

d ' ( t) + $ ' (t) (2y- k) = 0. ( 11 )

Equation ( 7 ) belongs to a class of curves defined by the differential

equation

dy
G (t ) F (y /k ) y, ( 12 )

dt

where F (2) is a function such that F ( 1 ) = 0. The logistic curve and

its generalization given above are derived by setting F ( 2) = 2-1.

Another specialization of equation ( 12 ) is obtained from the choice

F(x) =log z , G( t ) =log b . The solution is then the Gompertz curve ,

y = kC6",

where C is an arbitrary constant and b is assumed to be less than 1 .

The curve is named after Benjamin Gompertz ( 1779–1865 ) , who used

it to graduate the data of the mortality table . The curve resembles

the logistic in form .
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3. The Problem of Growth in Two Populations Conflicting With One

Another

Having now considered the problem of single -population growth,

we shall concern ourselves in this and subsequent sections with the

problem of two populations conflicting with one another. Although

our objective is thus specific, the general problem which is suggested

is much broader. In many applied problems one is frequently con

cerned with the mutual behavior of two variables x and y, both func

tions of an independent variable t,which are connected by a system of

two differential equations:

dx

dt= P (x, y), dx = 2(x,y). ( 1 )

If it happens that cyclical variations in x cause cyclical variations

in y, and if the changes in y lag behind those of x , then it is customary

to say that there is hysteresis in the relationship between them . This

term arose actually in the theory of magnetism , where the magnetism

induced in a piece of iron by an imposed field was found to exhibit

hysteresis, that is to say, a lag, and the curve which described the

phenomenon formed a closed path in the x , y -plane.

This problem can be illustrated in a simple manner by the following

system :

dr dy

=ax-by, =CX-ay, (2 )

dt dt

where all the parameters are positive quantities , and where

A= bc-a >0 .

These equations state that the growth of both variables is stimu

lated directly by the magnitude of one of them, but is adversely

affected by the magnitude of the second . Although the system is

linear and its solution readily obtained , it will serve to illustrate the

more complex problem which follows.

In order to find the relationship between 2 and y , we observe the

following equation between the two variables :

cxx ' - a ( xy'+yx' ) + byy ' = 0, ( 3 )

where x' and y' indicate the derivatives of x and y respectively .

Integrating (3) , we obtain the equation

cx2—2axy + by : = K , (4 )

where K is an arbitrary constant . From the condition that a>0 ,

we see that (4 ) is an ellipse. This result, of course , we have already
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obtained earlier in another manner (See (16) , Section 5 , Chapter 2) ,

since (4 ) is the solution of the equation :

dy_cx - ay

dx ax - by
(5)

But still another derivation of (4) is provided by system (2) . If we

differentiate the first equation and eliminate z' and y' by substituting

their values as defined by the system , we shall obtain

d '

d12 + 4x = 0. (6)

y12 3

у y = A cos (42-44 41

5

12

པ་
0/12 O 6

oľ 2 3 4 5 6 7 8 9 10 11
1314

74

HO

x = B cos (42 - ) ---- 8

9

FIGURE 2 .

This defines the harmonic

x=A cos ( VĀt + p ), (7)

where A and p are arbitrary constants . In a similar manner we also

obtain

y=B cos (VĀt + q). (8)

Eliminating t between (7 ) and (8) , we obtain

B ?x ? — 2 AB cos (p- 9) xy + A’y- = APB2 sin? (p- 9) . (9 )

This equation is observed to be equivalent to (4 ) , also defining an

ellipse . If p = q , then the ellipse degenerates into two coincident lines.

In Figure 2 the two curves defined by (7 ) and (8 ) are shown for special

values of the parameters. The corresponding ellipse is also graphically

represented , the numbers on it agreeing with the numbers on the

graphs of the two cosine curves and thus indicating both the position

and the direction of motion of the point P = (x ,y ) as t moves through a

complete cycle of y . As we shall see later, the ellipse will be called a
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phase trajectory of the motion , which will itself be described as a vortex

cycle about the origin as a singular point.

The problem of Volterra , namely that of the growth of two con

flicting populations , is a generalization of the one which we have just

described . The pertinent system of differential equations is derived

by the following argument.

We consider two variables N, and N2, which measure respectively

the number of individuals in two populations that are assumed to work

in opposition to one another . We shall assume that N , measures the

population of a species (A) , which preys upon a second species (B) ,

whose population is measured by N. If N , is large, then (A) , in the

presence of so much prey , will flourish and N , will increase . But as

N , increases , the prey will diminish , that is to say, N , will decrease ,

and a period of starvation will set in . Then, as N , diminishes, the

prey will again begin to increase, and the cycle continues .

The situation which has just been described can be formulated in

terms of the following system of equations:

dN

= aN ,-6N ,N2,
dt (1

0
)

dN2

E - cN2 + dN N2,
dt

where a, b ,c , and d are positive numbers .

These differential equations are derived by reasoning as follows .

In a bounded environment the number of encounters of the members

of the two species will be proportional to N ,N2, that is , there will be

kN , N , encounters per unit of time . If , for every encounter there re

sults an instantaneous diminishing of B, members of the first species

and a corresponding increase of B, members of the second species , then

the resulting equations will be

dN

= aN,-kB, N ,N2,
dt

dN ,

= -cN2 + kB, N ,N2,
dt

=

where a and c are the growth coefficients that species (A ) and (B)

would have respectively , if they existed alone . We observe that c is

negative, since (B) by assumption depends upon (A ) for its source of

food . If we let kB, = c and kB , = d, then system ( 10 ) is obtained .

We also observe that if N2 = 0 , then N , will increase exponentially,

since the predator has disappeared ; but if N , = 0, then N , will decrease

exponentially , since the source of food of species (B) no longer exists .

This formulation of the “ struggle for life " is the work of a number of

people , foremost among whom must be mentioned A. J. Lotka and
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Volterra . The reader will find an excellent account of Lotka's theory

in his useful work : Elements of Physical Biology, published in 1925 .

A comprehensive discussion of the problem , not only from the mathe

matical point of view, but also from that of the origin and significance

of the problem , will be found in Volterra's treatise, to which we have

already referred . This work extends Volterra's original investigations ,

which were first published in the memoirs of the Academia dei Lincei

in 1926. Actual application of the mathematical theory to biological

material was made by G. F. Gause in The Struggle for Existence, pub

lished in 1934 .

4. Solution of the Problem of Growth of Two Conflicting Populations

We shall now obtain the solution of system ( 10 ) of Section 3 , which ,

by means of the transformation : Ni = cx /d, N2= ay /b, reduces to the

following:

dy

= a (x– xy) , -c (y- xy) . ( 1 )
dt dt

-

If both equations are differentiated and if y and y ' are eliminated , the

following nonlinear differential equation for the determination of

X (t ) is obtained :

der

X

dt ?= (di)'+ acze
dr de

-CX tor² - acxl.
dt dt

(2 )

A similar elimination of x and x ' yields the following equation for the

determination of y (t ) :

din - Caly )+ acy ' + ay
dy away - acy '.

dt
Y (3 )

dt

Unfortunately, neither equation ( 1 ) nor equation (2 ) can be inte

grated in terms of elementary functions. On the other hand , however,

it is possible to obtain the equation of the phase trajectories, that is to

say , the solution of the equation :

dy c (y - xy)
(4 )

dx a (x– xy)

To achieve this , we observe that, since x and y satisfy equations ( 1 ) ,

we can write

cr ' + ay' --cx '/ x - ay'y = 0 . (5 )

Integrating this equation , we obtain

cx+ ay - c log x a log y=K, (6 )

where K is an arbitrary constant.



AN INTRODUCTION TO SECOND ORDER EQUATIONS 103

This equation can be written in the somewhat more useful form

X-C1=Cyºe-ay, C= ek. ( 7 )

We now have a functional relationship between x and y , from which

the graphs of the phase trajectories can be constructed . Since, how

ever , the relationship between the two variables is a complicated

transcendental equation, the determination of points on the trajectories

can be most easily accomplished by a graphical method devised by

Volterra . Thus, let us write

n = (x -' * ) ' , $ = (ye- ) . (8 )

These two functions are now graphed and the values of x and y are

obtained from the linear relationship: n = C .

As an example of the construction , let us examine Figure 3. * In

the second and fourth quadrants of the diagram we have represented

the functions:

n= e*/x , = yée-20 , (9 )

which are merely (8 ) corresponding to c= 1 , a= 2 .

ๆ
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у

FIGURE 3

*The example and the figure are taken from Volterra's treatise . ( Loc . cit . )
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Now let tangents be drawn from A and B, the minimum and maxi

mum points of n and ţ respectively, and let these tangents intersect

in P. The line n = Cť is now drawn and if C exceeds the slope of

OP, then (9 ) will represent a real locus . The points Q and R deter

mine the points 91 , 92, and rı , r'a respectively of the desired locus by

the simple construction given in the figure. Other points are similarly

determined by means of an identical construction originating from

the variable point M in the interval RQ.

If one desires greater accuracy than that possible from the graphical

methods just described, a relatively simple numerical approximation

is available . To illustrate , let us consider equation (7) in which

a= 2 , c= 1 , and let C be determined by the initial condition : x= 1 ,

y= 3 . We thus have

ex=121.84812 ye-24. ( 10 )

Let us now assume that y= 1 , and let us determine the corresponding

values of x . We thus wish to solve the equation : e */x = 16.49035. In

order to find the smallest root of this equation , we make use of the

following theorem :

If k is a number less than 1 /e , then the smallest root of the equation

ce-f=k, ( 11 )

is given by the convergent expansion :

3 8 125

x = k + ka + ku + k +
3 24

25+
n - 1

+ kat : ( 12)
n!

Since k= 1/16.49035= 0.06064, which is less than 1 /e, we readily

find that 2=0.06469 .

To obtain the second value of x corresponding to y= 1 , an approxi

mation is found either graphically or from a table of values of es .

Let us denote this value by z and write: x= z +d. When this quantity

is substituted in ( 11 ) , we obtain the equation :

( 2 + 8 ) e- s = ke? ( 13 )

Since d is small, if z has been properly chosen , the left-hand member

can be written approximately : (2+ 8) ( 1-0) ~ 2+ 8 (1–2) . Equating

this to the right -hand member of ( 13 ) and solving for 8 , we have for

the determination of the following :

o =

2-ke ?

1
( 14)

This formula can be used as an iterative device in which z is replaced

by successively determined values . If we choose z= 4 as our first
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approximation, we get by ( 14) : 8= 0.230 and x=4.23 . Using this

value as a second approximation , we then obtain : 8=0.0195 and

x=4.2495, which is in error by only one unit in the last place . We

thus see that by successive applications of formulas (12 ) and (14 ) as

many points on (7 ) as may be desired and to any specified accuracy

can be obtained . The complete graph of the phase trajectory is

shown in Figure 4 .

The next , and considerably more difficult step , is to construct the

curves

I=X (t ) , y=y(t) . ( 15 )

The inherent difficulties of the problem are readily seen , since we are

in effect finding specific solutions of equations (2 ) and (3 ) .

In order to do this we first observe that by means of equations

( 1 ) we can write

[(0–1). –(0–1 ) d' ]=[c(0–1)+y+a(y –1)*2).
( 16)

Let us now change to the polar coordinates (0,w) , referred to the

point ( 1,1 ) , that is , let us write

x- 1 = p Cos w, y- 1 = p sin w . ( 17 )

Equation ( 16 ) then assumes the form

dw

= axsinº wtcy cos? w .
dt

(18)

The value of wis thus defined by the integral

-= S6wdt,
( 19)

where we employ the abbreviation :

$ ( w ) = ax sin w+cy cos? w . (20 )

We now seek values of ( w ). These can be obtained either graphi

cally, if not too much accuracy is required , or by ready computation

from ( 17 ) if numerical values of x and y are available. If the graphical

method is employed , we first observe from Figure 4 that ED = x sin w

and hence FD = x sin’w. Similarly, we have HI = y cos w and HG=

y cos? w . Multiplying these values respectively by a and c and adding

them together, we obtain the value of $ (w) for the assumed value

By continuing this graphical process for a sufficient number of

values of w in the interval between 0 and 2 , we can construct the

graph of $(w) .

of w .
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TABLE 1. COMPUTATION OF $ (w)

3 T y sin ' w cos 2 w I sin ? y cos ? w $ (w)

1. 000°

12

21

31

40

50

61

70

80

1. 53

1. 70

1. 62

1. 41

1. 07

0. 64

0. 33

0. 09

0.00

1. 00

1. 87

2. 60

3. 22

3. 61

3. 79

3. 66

3. 27

2. 71

2. 0090

100

119

129

140

149

159

169

180

192

201

211

220

230

250

270

300

319

327

337

347

360

0.09 1. 39

4. 25

3. 90

3. 47

3. 03

2. 67

2. 32

1. 97

1. 66

1. 35

1. 00

0. 67

0. 22

0. 15

0. 12

0. 10

0.09

0.08

0.06

0. 08

0.09

0. 13

0. 20

0. 36

0. 71

1. 00

1. 46

1. 94

2. 26

2. 75

3. 61

4. 25

1. 00

1. 60

1. 95

2. 21

2. 41

2. 59

2. 74

2. 86

2. 95

3. 00

2. 95

2. 40

2. 05

1. 76

1. 55

1. 37

1. 18

1. 00

0.80

0. 65

0. 47

0. 0000

0. 0432

0. 1284

0. 2653

0. 4132

0. 5868

0. 7650

0. 8830

0. 9698

1. 0000

0. 9698

0. 7650

0. 6040

0. 4132

0. 2653

0. 1284

0. 0364

0. 0000

0. 0432

0. 1284

0. 2653

0. 4132

0. 5868

0. 8830

1. 0000

0. 7500

0. 4304

0. 2966

0. 1527

0. 0506

0. 0000

1. 0000

0. 9568

0. 8716

0. 7347

0. 5868

0. 4132

0. 2350

0. 1170

0.0302

0.0000

0. 0302

0. 2350

0. 3960

0. 5868

0. 7347

0. 8716

0. 9636

1. 0000

0.9568

.8716

0. 7347

0.5868

0. 4132

0. 1170

0. 0000

0. 2500

0. 5696

0. 7034

0. 8473

0. 9494

1. 0000

0.00

0. 17

0. 45

0. 80

1. 10

1. 36

1. 51

1. 47

1. 31

1. 00

0. 65

0. 17

0.09

0.05

0.03

0.01

0.003

0.00

0.003

0.01

0.03

0.08

0. 21

0. 63

1. 00

1. 10

0.83

0. 67

0. 42

0. 18

0.00

0. 56

0.81

1. 03

1. 14

1. 19

1. 14

1. 00

0. 77

0. 57

0. 35

0. 19

0. 10

0.02

0.00

0.04

0. 10

0. 14

0. 21

0. 39

1. 00

0.90

0. 99

1. 13

1. 20

1. 21

1. 15

1. 00

0. 78

0. 59

0. 41

0. 35

0. 52

1. 28

2. 00

2. 24

1. 76

1. 48

1. 05

0.75

1. 00

0. 24

0. 18

0. 17

0. 16

0. 17

0. 20

0. 25

0. 41

1. 00

The details of the computation of (w ) are shown in Table 1 .

Except for a few critical points, the values of x and y were estimated

from the graph of the phase trajectory (Fig . 4 ) drawn to a sufficiently

large scale . The graphical representation of the function ( w ) is

shown in Figure 5 .

The final step in the computation is to find x and y as functions of t .

Since these variables are now expressed as functions of w, as shown in

Table 1 , the problem is to determine t as a function of w also . To

accomplish this, we note from (19) that dw /dt = $ (w ), and that t= 0

when w= 0 . Hence, for the determination of t , we have the integral

t =

= S.**6wda,
( 21 )

where (w ) = 1 / ( w ).
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TABLE 2. COMPUTATION OF E

n 3 (w ) Ev (w) t 2 y n 3 (w ) Ev (w) t V

0

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0.00

0.17

0.35

0.52

0.70

0.87

1.05

1. 22

1. 40

1. 57

1.74

1.92

2.09

2. 27

2. 44

2.62

2. 79

2.97

3.14

1.00

0.58

0.40

0.32

0.28

0.26

0.27

0.31

0.37

0.50

0.72

1.05

1. 11

1.00

0. 88

0.83

0.83

0.88

1.00

0.00

1. 58

1. 98

2. 30

2. 58

2. 84

3. 11

3.42

3. 79

4. 29

5. 01

6. 06

7. 17

8.17

9. 05

9. 88

10.71

11. 59

12. 59

0.00

0.14

0.22

0. 29

0.34

0.39

0.43

0.48

0.54

0. 62

0.72

0.88

1.07

1. 25

1. 42

1. 56

1. 71

1. 86

2. 02

4. 25

3. 96

3.52

3. 07

2. 67

2.32

2. 03

1. 66

1. 35

1.00

0.67

0.37

0. 21

0.15

0.12

0.10

0.09

0.08

0.06

1.00

1.50

1.91

2. 18

2. 41

2. 59

2. 71

2. 86

2.95

3.00

2.95

2. 70

2. 36

2. 02

1. 76

1. 53

1. 35

1.16

1.00

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

3.14

3. 32

3. 49

3. 67

3. 84

4.01

4. 19

4. 36

4. 54

4. 71

4. 89

5. 06

5.24

5. 41

5. 59

5. 76

5. 93

6.11

6.28

1.00

1.22

1. 64

2. 33

2. 86

1.92

1.15

0.78

0.61

0.50

0. 46

0. 43

0.45

0.50

0.57

0.74

1.04

1. 25

1.00

12. 59

13. 81

15. 45

17. 78

20. 64

22. 56

23. 71

24. 49

25. 10

25. 60

26.06

26. 46

26. 94

27. 44

28. 01

28.75

29. 79

31.04

32. 04

2.02 0.06

2.22 0.08

2. 47 0.09

2. 81 0.13

3. 26 0. 20

3. 68 0.36

3. 95 0. 55

4. 12 0.71

4. 24 0.86

4. 34 1.00

4. 42 1.15

4. 49 1. 27

4. 57 1. 46

4. 66 1. 65

4. 75 1.99

4. 87 2. 35

5. 02 2. 93

5. 22 3. 82

5.42 4.25

1.00

0.83

0.67

0.49

0.33

0.24

0. 20

0.18

0.18

0.17

0.17

0.17

0.17

0.17

0.17

0.20

0.29

0.52

1.00

Expressing w in radian measure at intervals of Aw= 27/36 =0.1745 ,

values of t are computed from (21 ) by numerical integration. In the

present case, sufficient accuracy is obtained by means of the trapezoidal

formula , that is to say ,

tr =Aw

{ { #w)– (wow)+ (w.)]}
(22)

The details of the computation are given in Table 2 , and the graphs

thus obtained of the functions x = 2 (t) and y= y (t ) are shown through

two cycles in Figure 6 .

It is evident from the table that the initial values of x and y , namely

1 and 3 respectively , are not attained at t = 0 , but correspond to
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t= 0.62 . A linear translation of this value to the origin will correct

this discrepancy . It is also observed that the derivative curves for

X and y are readily computed from the original system of equations .

The four curves, y=y (t ) , y' =y' (t ) , x= ä (t) and x'= x' (t ) , are shown in

Figure 7. These graphs were obtained from a solution of the system

of equations by means of an analogue computer, but of course they

can be readily computed numerically.

%, and y

Ly(1) x ( t)

2+

8 9 10 11

FIGURE 6

5. A Generalization of Volterra's Problem

The problem which we have just studied is a special case of the

following more general system :

dx

= F + Cx + Dy + Gx? + Hxy + Ky?,
dt

dy = +
dt= E + Ax + By + Lx? + Mxy + Nya. ( 1 )

Although the theoretical basis for the study of this equation will be

given later in Chapter 11 , some anticipation of those results will not

be out of place here since they throw light upon the phenomena

which we have presented.

In the first place , we have observed that the variations in the phase

trajectory were referred to the point ( 1,1 ) . In the second place , the

trajectory is a closed path and as a consequence the integral curves

x= x ( t ) and y = y ( t ) are periodic. The motion may therefore be

characterized as stable and periodic .
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We shall first impose upon system ( 1 ) the linear transformation :

x=w+p, y= z+ , (2)

from which we obtain the following:

dw

= F + Cp + Dq + GpP + Hpq + Kq2 + (C + 2Gp + Hq) wdt

+ ( D + Hp + 2Kq)2+ Gwa+ Hwz + Kza,

dz

= E + Ap + Bq + LpP + Mpq + NqP + ( A + 2Lp + Mq) w
dt

+ ( B + 2Np + Mq)2 + Lw2 + Mwz + Nzº (3 )

In general there will exist a set of four points, called the singular

points of the system , which we shall denote by Pi = (P1,91), i= 1,2,3,4 .

These are determined from the intersections of the following conics :

Gp2 + Hpq + KqP + Cp + Dq + F = 0 ,

Lp + Mpq + NqP + Ap + Bq + E = 0. (4)

As we shall see later in Chapter 11 , the character of the solution in

the neighborhoods of these singular points is determined by the roots

of the equation :

12- ( B ' + C ' ) x + B'C " — A'D ' = 0 , (5 )

where we abbreviate :

A ' = A + 2Lpz + Mq1, B ' = B + Mpi + 2Nqi,

C ' = C + 2Gp : + Hq1, D ' = D + Hp + 2Kqi. (6 )

If, in particular, the roots of (5 ) are pure imaginaries , then the cor

responding singular point is called a vortex point . If certain additional

criteria are satisfied by the coefficients, then the phase trajectories

are closed paths and the motion is periodic .

In the case of the Volterra system , equations ( 1 ) of Section 4 , we

obtain the following degenerate conics from equations (4 ) :

-apq + ap = 0, cpq - cq = 0 ,

which intersect in the points : P , = (0,0 ) and Py = ( 1,1 ) .

The point P , is a vortex point , since (5 ) reduces to the equation :

12 + ac = 0. We have seen by direct analysis that the motion is

cyclical about this point .
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6. The Hereditary Factor in the Problem of Growth

= a+by+SK<t,8)y(8)ds.

A natural extension of the problem of single -population growth

which we discussed in Section 2 is found in the following integro

differential equation

1 dy

( 1 )
y dt

This equation was suggested by Volterra as a device to take account

of the " hereditary influences” which may exist in the problem of

growth .

The introduction of such an inheritance factor in nonbiological

phenomena was made by Volterra near the beginning of the present

century. Unfortunately little progress has been made since then in

the development of this attractive idea , although it has been used to

a certain extent by mathematical economists. The name of "heredi

tary mechanics” was applied to it by E. Picard , who wrote as follows : *

" In all this study (of classical mechanics) the laws which express

our ideas on motion have been condensed into differential equations,

that is to say, relations between variables and their derivatives .

We must not forget that we have, in fact , formulated a principle of

nonheredity, when we suppose that the future of a system depends at

a given moment only on its actual state , or in a more general manner,

if we regard the forces as depending also on velocities, that the future

depends on the actual state and the infinitely neighboring state

which precedes. This is a restrictive hypothesis and one which , in

appearance at least , is contradicted by the facts . Examples are

numerous where the future of a system seems to depend upon former

states . Here we have heredity. In some complex cases one sees that

it is necessary , perhaps, to abandon differential equations and con

sider functional equations in which there appear integrals taken

from a distant time to the present , integrals which will be , in fact ,

this hereditary part . The proponents of classical mechanics, how

ever , are able to pretend that heredity is only apparent and that it

amounts merely to this, that we have fixed our attention upon too

small a number of variables. But the situation is just as it was in

the simpler one , only under conditions that are more complex.”

The following example from Volterra † will help to clarify this idea .

We know from elementary physics that the relation , to a first approxi

mation, between the couple of torsion , P , and the angle of torsion ,

W, is given by the linear equation

W = KP (2)

where k is a physical constant.

* " La mécanique classique et ses approximations successive.” Revista di Scienza. Vol . 1 , 1907, pp . 4-15 .
In

p . 15 .

† Leçons sur les équations intégrales et les équations integro -differentielles. Paris, 1913, pp . 138-139 and 150.
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It is reasonable to suppose , however, that W does not depend

merely upon the present moment of torsion, but upon all preceding

ones as well . The elastic body has experienced fatigue from previous

distorsions and , in this way, has inherited , as it were , characteristics

from the past.

To express this analytically, the hereditary part must be represented

by an integral which sums the various contributions to the inherited

characteristics from some initial time to to the present time t. Thus

we replace equation (2 ) by the integral equation

W (t)=kP(+)+SK(1,5)P(s)ds,
(3)

where K(t , 8 ) is the coefficient of heredity.

Assuming that W(t ) and P (t ) are both periodic functions of the

time with the same period , Volterra shows that the coefficient of

heredity is then of the form

K(0,8) =K( t -8) , (4)

a kernel which Volterra characterizes as belonging to the class of the

closed cycle .

The problem proposed by Volterra's integro -differential equation

( 1 ) is one of considerable difficulty, even when the kernel assumes the

realtively simple form of the closed cycle. We shall, however,

return to it in Chapter 13 and for several cases show how it , and its

extension to two variables, give patterns which differ significantly

from those which we have discussed in the preceding sections.

7. Curves of Pursuit

As we have said earlier , a second problem which may be formulated

in terms of a nonlinear differential equation of second order and which

exhibits some of the peculiar characteristics of such equations, is that

of curves of pursuit . In Figure 8 we show two curves the first of

which (AB) is traced by a point P which moves in such a manner

that its direction of motion is always toward a second point P' , which

moves along the second curve (CD ). The velocities of P and P' are

usually assumed to be constant, although this is not a necessary

assumption. The curve of pursuit is the arc AB and the path of the

pursued is the arc CD . The problem thus proposed is to construct

AB, when CD is given and the velocities of P and P' are known .

The simplest problem of this type is that for which the path of P'

is a straight line . A second, and much more difficult one , is that for

which CD is a circle . The point P can be taken initially either inside

or outside of the circle . This problem has been extensively studied .

556037 04619
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Although, as we have said earlier , the problem of pursuit appears

to have originated with Leonardo da Vinci , the interest of mathema

ticians was not awakened until 1732 when Pierre Bouguer (1698

1758) , French hydrographer, published a paper in the Memoires of

the Histoire de l'Académie Royale des Sciences under the title: " Sur

de nouvelles courbes ausquelles on peut donner le nom de Lignes de

Poursuite.” In this paper Bouguer proposed and solved the problem :

“ To find the curve of pursuit, that is to say, the curve by which a

vessel moves in pursuing another which flees along a straight line ,

supposing that the velocities of the two vessels are always in the same

ratio . "

A history of the problem was given in 1921 by R. C. Archibald and

H. P. Manning from which the following notes are taken . * According

to these authors the paper of Bouguer was followed in the same work

by a shorter solution by P. L. M. de Maupertuis ( 1698–1759 ) , origina

tor of the principle of least action , who also proposed the problem :

“ The curve CE being given , to find the curve BM, such that its

tangents MEcut upon the curve CE arcs proportional to the arcs BM .”

The first reference to the problem of pursuit, where the curve of

the pursued is a circle , appears to have been in an anonymous article

published in 1859 in the Mathematical Monthly (Vol . 1 , p . 249 ) , where

the path of the pursuer is discussed for the case where the velocities

are equal . No analysis is given . The problem was again proposed

by H. Brocard (1845-1922 ) , discoverer of the “ Brocard circle ” , in

Nouvelle Correspondence Mathématique (Vol . 3 , 1877 , p . 175 ) . Since

no solution was presented , he asked for the differential equation in

Mathesis (Vol. 3 , 1883 , p . 232 ) , and this was given by Keelhoff in

1886 in the same journal ( Vol . 6 , p . 135 ) .

Various formulations of the problem appeared in the literature be

tween 1886 and 1906. In thatyear L. Dunoyer presented an extensive

* American Mathematical Monthly , Vol . 28, 1921, pp . 91-93.
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exposition in Nouvelle Annales de Mathématiques (See Bibliography) .

Setting up the differential equation in convenient coordinates , he

discussed its integration by means of methods based upon the

general theory of Poincaré.

A. S. Hathaway in 1920 again proposed the problem in the American

Mathematical Monthly (Vol. 27 ) as follows: " A dog at the center of

a circular pond makes straight for a duck, which is swimmimg along

the edge of a pond . If the rate of swimming of the dog is to the rate

of swimming of the duck as n : 1 , determine the equation of the curve

of pursuit and the distance the dog swims to catch the duck .” An

extensive discussion of this problem was made by Hathaway himself

the next year in the same journal and also by F. V. Morley. (See

Bibliography .) The latter used graphical and numerical methods in

obtaining the integral curve defined by the differential equation .

The original problem as proposed by Bouguer, namely, where the

curve of the pursued is a straight line , is readily solved . It was in

cluded by George Boole in his Differential Equations, London , 1859 ,

(4th ed . , 1877, pp . 252–253 ) .

8. Linear Pursuit

We shall now consider the problem of the curve of pursuit where

the path of the pursued is a straight line . Let P= (x,y) be a point on

the curve of the pursuer and P' = ($ . n) a point on the path of the pur

sued . Let the curve traced by P' be represented by the equation

f ($, n = 0 . ( 1 )

Since the tangent through P passes through P' , its equation can be

written as follows:

dy

(5-3) . (2)n - y = dx

If we now assume that the ratio of the velocity of P to the velocity

of P' is k , then we have ds /dt = kdo /dt, that is , ds = kdo, where ds

and do are the elements of the arcs of the pursuer and the pursued

respectively . We thus obtain the equation

dx ? + dy = k ? (dę? + dm2); (3 )

or since y , š , and n are functions of x , we can write ( 3) in the form :

1+(**)*=* [C + 2 )]
(4 )
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Two other equations are obtained by taking the derivatives of ( 1 )

and (2 ) with respect to x. We thus get

of děof dn
(5)

De da on de

20

dn_day dy dę

(5—2) +
dx dx² dx dx

(6)

We now have four equations , namely, ( 1 ) , ( 2 ) , ( 5 ) , and (6 ) , for the

determination of dɛ/dx and dn /dx as functions of x , y , dy /dx, and

d'y/dx? When these values are substituted in the right -hand member

of equation (4 ) , the differential equation of the curve of pursuit is

obtained . It is clearly a nonlinear differential equation of second

order .

As an example we shall now apply this theory to determine the

curve of pursuit , where the pursued moves along a straight line. For

convenience , let us assume that the path is along a line parallel to

the y-axis and at a distance a from the origin as shown in Figure 9 .

Equation ( 1 ) then has the simple form

&= a ,

and dɛ/dx = 0.

Y

Capture

Pointk = 1 ,

k = N
u
l
w

0

X

FIGURE 9

1
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From equation (6 ) we get

dn _d²y
(a—x) ;

dx dx²

and when this is substituted in equation (4 ) , the following differen

tial equation is obtained :

1+
dy )²

= k ? a - 22
dx

If we now write: p= dy/dx, this equation can be written :

kdp dr

vi + p2 (a — x )'

from which we obtain by integration

dey =y[cca—2)=11_? (0–2))x]
(7 )

where c is an arbitrary constant.

A second integration yields the equation

y=[ IK (0–2)1–18+(0–2)1–28+c2 4.6)(a–2)****]te',
(8)

where c' is arbitrary and k# 1 .

Since both dy /dx and y are 0 when x= 0 , we find from (7 ) and

(8) that

c = al/ , c ' = ka /(k ? –1 ).

Hence we can write (8 ) as follows:

v- 1)[ - 1)( 1-3)*-- (8+ 1)(1-3)***]1-2 (9)

If k= 1 , then the integration of ( 7 ) gives the following solution :

»- [(1-2)'–10g(1-3) -1]
( 10)

If k> 1 , then point P finally overtakes P' , the point of capture

being attained when x= a . The value of y is thus found to equal

ka /(k - 1 ). When k=3/2 , 2 , and 3 successively , the corresponding

ordinates of the capture point are respectively 6a/5 , 2a/3 , and 3a /8.
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In Figure 9 the curves of pursuit are graphed for k= 1 and k= 3 /2 .

The values of the ordinates for various values of x/a are given in the

following table:

k = 1 k = 3 / 2 k= 1 k = 3 /2 k = 1 k = 3 / 2

I / a ya yla Ila yla y / a Ia y / a yla

0 0 10

0.1 0.00518 0. 00345

0.2 0. 02157 0. 01435

0.3 0. 05084 0. 03370

0.4 0.09541 0.06290

0. 5 0. 15907 0. 10394

0.6 0. 24815 0. 15994

0.7 10. 37449 10. 23618

0.8 0. 56472

0.9 0.90379

0.95 1. 24849

1. 0

0. 34331

0. 51022

0. 64943

1. 20000
O

We have an interesting variation to the problem just given if the

condition that the velocities of the two points are proportional to

some constant k is replaced by the condition that the two points

remain a fixed distance apart , let us say a. In this case the assump

tion that

(n-y) ²+ (5—2)2= a?, ( 11 )

takes the place of the assumption: ds= k do .

For the case of linear pursuit, as given above , we have from (2 ) ,

where š= a,

(n — y)? =(2Com)<a —2)=

weWhen (n-y) 2 is eliminated between this equation and ( 11 ) ,

obtain the differential equation:

( ) =
a ?

-1 ;

( a - x )?
( 12)

dx

which, upon integration, yields the solution

y = -va? - ( a – 3 ]++ alog[2+12= 44-9 ]+c, ( 13)

where is an arbitrary constant. Since y = 0, when x = 0, we find

that C= 0 .

Equation ( 13 ) can be reduced to the following form :

y= -avl- (1 — < /a) + a sech- ( 1 - x /a ), ( 14)

which is recognized as the equation of the tractriz. The tractrix is

defined to be the path of a weight which is dragged along a rough
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horizontal plane by a taut string one end of which is attached to the

weight and the other moves along a straight line .

9. Pursuit When the path of the Pursued Is a Circle

Let us now consider the problem where the pursued , P, is moving

with constant speed v along a circle of radius a . Referring to Figure

10 , let Q be the position of the pursuer who moves with velocity kv,

where k is a positive constant . The constant k can be less than ,

equal to , or greater than unity , and the point Q can lie within , upon ,

or outside of the circle .

Р

P
o

Ро

w e

-X X

"
p'

M

M

FIGURE 10

Let us assume that pursuit starts at the point Po where OX inter

sects the circle . Then , when P has moved through an arc , Q will

have moved through a distance: s = kab. Let PQ be the tangent to

the curve of pursuit, and let PQ make an angle w with the line OX .

Let OP' be drawn perpendicular to PQ and denote by p the distance

OP '. The line OP' is extended to M so that OM = ka . If k> 1 , then

Mis outside of the circle; if k= 1 , M is on the circle ; and if k< 1 , then

M is inside of the circle .

Let us also denote the distance PQ by p and consider e as positive

when Q is inside of the circle , but negative when Q is outside of the

circle. Finally, we shall denote by ¢ the angle OPP ' and by the

angle QMP'.
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The following relationships between the variables can now be veri

fied from Figure 10 :

(a ) w= $+0 ; (b) OP = a sin ; (c ) PP= a cos ;

(d ) P'M = ka - a sin ol ; (e ) P'Q=a cos $-p ;

PQ a cos -p

( f) tan i
PM ka - a sin |

( 1 )

It is clear that if we know 0, 0 , and p the point is determined .

We shall now derive the differential relationships which exist between

these three variables . To determine these let us first observe that

the equation of the tangent PQ can be written as follows:

x sin w- y cos w=p=a sin (w- ) . (2 )

Similarly, the normal to the tangent through the point Q has the

following equation :

x cos wty sin w=a cos (w- 0)- p . (3 )

We shall now consider the following differentials :

sin w du- cos w dy = 0, ( 4 )

cos w dx + sin w dy = kado. (5 )

The first of these is merely a statement of the fact that dy /dx

= tan w= sin w/cos w. To establish (5) , we observe that

dx= ( 1 + tan’ w) dx = secwdx = kado,
ds=[1+( ) ]

(dy ) ]* dy = (1 + cotºw)* dy = cse wdy=kado.
ds

1s= [
1+

Since dx = ka cos wdo and dy = ka sin wdo , (5 ) is seen to follow as an

immediate consequence .

Observing that w is a function of x and y , we now form the differ

entials of equations (2 ) and (3 ) and thus obtain :

sin wdx - cos wdy + ( cos wty sin w)dw=a cos (w— 0) (dw - do), (6 )

cos wdx + sin wdy- (x sin w y cos w)dw

- a sin (w- 6) (dw- do) -de. (7 )
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Making use of (2 ) , (3 ) , (4 ) , and (5 ) , we reduce (6 ) and (7 ) to the

following simpler forms:

pdw= a cos ( w - 0)do, (8 )

kade = a sin (w - 6 )do - dp. (9 )

Introducing the variable p= w— 0, we get

p (do + do ) = a cos odo,

kade = a sin ode - dp,

equations which can now be written

do

P = a cos - p
do

( 10 )

de

= a sin 0-ka.
do

( 11 )

These equations form a fundamental system, comparable to the

system of the Volterra problem defined by ( 1 ) in Section 4. As in

that problem , differential equations satisfied separately by © and p

can be obtained without difficulty . If both equations are differen

tiated once, it will be found that the variables can be separated .

In the first case (the elimination of p) , we obtain the equation :

do do
cos o + (3 sin 0-2k ) + ( 2 sin

do2 do 0–k) (db + sin 6–k= 0 .+sin o-k= 0 . ( 12 )

If we make the transformation : y = sin 0 , 0=x , then this equation

assumes the form :

(1–ya (34–2k) x1 – you opt (3y=k)(dl )*+y-k=0. ( 13 )

In the second case (the elimination of o) , the second equation is

found to be

d²p

texã–s--0, where ----- [6 ) -ka ]
( 14 )

These equations are obviously difficult to solve, but fortunately the

interest in this problem is not in attaining values of $ and p as func

tions of 0, but rather in the determination of the curve of pursuit

itself. The differential equation of this curve , in terms of the vari



122 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

ables p and ¢, is obtained by dividing equation ( 11 ) by ( 10) , from

which we get :

de a(sin 6-k) .
( 15)= p

do a cos 0-2

We thus see that the curve of pursuit is the phase trajectory of the

system defined by equations ( 10 ) and (11 ) . But simple as equation

( 15 ) appears to be , it presents unusual analytic difficulties. Its

solution cannot be obtained in terms of elementary functions . In a

later chapter of this book we shall return to it from a more advanced

point of view after the proper analysis has been presented .

Fortunately , however, in the problem of pursuit we are able to

surmount some of the difficulties in a very simple way, since the nature

of the problem itself provides a means for obtaining graphically an

approximation of the actual curve. This is illustrated in Figure 11 .

Equal increments are marked off on the curve of the pursued. A

line is drawn from the initial point of the pursuer to the initial point

M
U

Pi

o
i Qit1

Qi

P2

Q1 Qż P1

Ро

QO Q2

FIGURE 11
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of the pursued , that is , from po to Po . On this line a distance QeQi =

k (POP ) is laid off. The line formed by all the increments thus ob

tained by a continuation of this process will form one bound to the

desired curve of pursuit. In order to obtain a second bound the first

increment is laid off on the line Q.P1, the second increment on the

line Q.P2 , etc. The curve of pursuit lies between these two bounds

and the error in its construction clearly depends upon the size of the

initial increments.

The complex nature of the problem of pursuit in a circle is shown in

Figure 12 , where in (a ) the pursuer is initially at the center, and (b)

where the pursuer starts outside of the circle at a radius distance from

the pursued and on a line which connects both with the center . In

each case k = %. We see that the pursuer does not achieve a capture ,

but in each case the curve of pursuit is asymptotic to a circle of

radius ka , which is concentric with the circle of the pursued. This

example thus presents us with a phenomenon, which is often present

in nonlinear systems, namely, that of a fixed curve toward which the

motion tends asymptotically. To such a curve Poincaré gave the

name of limit cycle . We shall encounter other examples in later

chapters.

10. Conditions of Capture

We shall now consider the problem presented by the question :

When does the pursuer capture the pursued ? Limiting our discussion

to the case of circular pursuit, we shall now prove that the pursuer

catches the pursued if k> 1 , but that capture is not achieved if k 1. *

For this proof, we make in equation ( 11 ) of Section 9 the transfor

mation : ds = ka do and thus obtain :

ds

k

-de .

sin o-k

Integrating from the initial arc length so , we then have

-ro- Savoin
k

sin 6-k

dp . ( 1 )

If k is greater than 1 , the integrand is continuous . By the theorem

of mean value we can then write

$ —807

k (pop)

k - sin '

1

where “' is some value between 0 and21.

* In this proof we follow arguments given by A. S. Hathaway. (See Bibliography.)
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From this equation we derive the inequality

k po
S - S <

k - 1

Therefore, since the distances that the pursuer can go from so is less

than a fixed value , the pursued must be captured.

If k is less than 1 , the integrand of ( 1 ) becomes infinite when

1

sin ø= k . Since o varies between 0 and į T , there will exist one value

for which the infinite value is attained . That the order of the infinity

of the integrand is at least as great as 1 , is shown from the derivative

deentscos o dº_cos o dø dp_cos º (cos $ ),
kds k do ds K-2

which remains finite when sin ø=k .

It follows from this that the integral ( 1 ) is infinite . Hence, when

k< 1 , 8-80 is infinite and there is no capture .

If k = 1 , we consider the inequality

S - 80

pop

1 - sin do

>

where do is an initial value corresponding to do. The inequality is

seen to hold for all values of s except so , since the integrand of ( 1 )

has been replaced by its smallest value .

Let us now make the assumption that capture takes place in a

finite distance . As s approaches the capture point , p=0 and the

inequality becomes

S -

Ро

1-sin do

.

But we have

Ро a cos do

1 -sin do 1 - sin po

a cos do - poa( 1 + sin o)

1 - sindo cos Φο

-a tan yo, (2 )

where tan y is the angle QMP' of Figure 10. In this case , when

k= 1 , M lies on the circle and moves toward P as its limiting position .

If we assume that -So is finite , we can choose the initial point

( po,to) as near to the pursued as we wish . But under these conditions
1

4- - + , So remains finite is seen
2

to be contradicted from (2 ) . Hence, it follows that there is no

capture .
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A
А.

B

B

Qo
Po

Po
Qo

la ) ( b )

FIGURE 12.-A is path of pursued ; B path of pursuer ; C the limit cycle .

of speeds (k) is 2/3 .

Ratio

11. General Pursuit Curve

It is evident from the discussion given above of the two special cases

of pursuit, namely , where the path of the pursued is either a straight

line or a circle , that the general problem is one of great analytical

difficulty. The differential equation which determines the path of

the pursuer , if it can be explicitly determined , is a nonlinear equa

tion of second order. That these analytical difficulties are inherent

in the problem is readily seen from the existence of double points

and nodal points in pursuit paths derived from relatively simple

paths taken by the pursued. It is also readily observed that these

singularities are functionally connected with the initial points from

which pursued and pursuer start .

Under these circumstances, we see that the problem for general

pursuit is most readily solved by the graphical method described

above in Section 9. We first trace the curve of the pursued. This

curve can be defined in any convenient set of coordinates, usually

Cartesian or polar, denoted, let us say, by 5,9 . The curve is then

represented by the equation :

f ( $, n ) = 0, ( 1 )

as in Section 8 .

Upon this curve an initial point , Po, is chosen from which the pur

suit starts . Another point, Qo, is similarly designated for the initial

position of the pursuer. Two conditions are now imposed : (a ) that

the pursuer always moves toward the pursued , and (b ) that the dis

tance from Po to the pursued measured along the curve defined by

( 1 ) is a fixed ratio of the distance of the pursuer from Po as measured

along the curve of pursuit. Now , using the graphical technique

described in Section 9 , the curve of pursuit is traced .
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To illustrate the curious patterns thus obtained two examples

are given . In Figure 13 the curve of the pursued is the parabola :

y = 4x, the initial point being the origin of coordinates . Two pursu

ers A and B start respectively at the positions (0,4 ) and ( 1,0) . All

speeds are equal. It is seen that both curves of pursuit become

asymptotic to the parabola and no capture is achieved . The effect

4 Pursuer A's initial position

3

Pu
rs
ue
d'
s

cu
rv
e

y2 : 4x

Pursued leads

pursuer A

Pursued leads

pursuer B

2H

All speeds are equal .

-Pursuer B's initial position

+

2 3

Pursued's initial position

FIGURE 13.-Pursuit curve in which the path of the pursued is the parabola :

ya = 4x. The ratio of the speeds (k) is 1 .
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of the choice of different origins of pursuit is shown in the lead which

one pursuer gains over the other .

In the second example, Figure 14 , the curve of the pursued is the

spiral : p= 10 0 and the origin is at the point (0,0) . Even though the

pursuer starts at the advantageous point where the curve of the

pursued crosses the Y - axis, and thus need not move at all to achieve

capture, the curve of pursuit never again touches that of the pursued,

but is asymptotic to it, when the ratio of velocities (k) is 1. If k is

greater than 1 , the pursued is captured , but if k is less than 1 , the

curve of pursuit finally becomes asymptotic to the spiral p = 10k 0 .

2

3

рP
А.

X

о | Po

4

B

5
3

5

6

2

7

-1

7

FIGURE 14.—Pursuit curve in which the path of the pursued (A ) is the spiral :

p= 100. The initial point of (A) is Po. The path of the pursuer begins at Qo.

The ratio of the speeds (k) is 1 .





Chapter 6

Elliptic Integrals, Elliptic Functions, and Theta Functions

1. Introduction

ONE CANNOT PROCEED very far in the theory of nonlinear equations

before he encounters solutions that are expressed in terms of elliptic

integrals or elliptic functions . Elliptic integrals are the natural

generalizations of the inverse circular functions and elliptic functions

are similar generalizations of the direct circular functions . In order

to understand this relationship , let us consider the following nonlinear

equation :

dy
= a + by + cy? ( 1 )

If the discriminant : A = h* — 4ac, is a positive number, then the

solution of equation ( 1 ) is expressed in terms of the circular sine, and

if A is a negative number, the solution is expressed in terms of the

hyperbolic sine . Explicitly we have for the two cases the following

solutions :

A
b

Y= 2+ c<0,
2c 2c܂.ܕܬܘ

6
-A

2c

sinh ( Vcx + p) -2.y =
c>0 . (2 )

The natural generalization of equation ( 1 ) is the following nonlinear

equation :

dy

=a+ by+ cyé + dy + ey , (3 )
dx .Camiseta

which introduces the elliptic functions in its solution .

If the roots of the quartic equation

a + by + cy ? + dy + ey * = 0, (4 )

are denoted by a , b , 7 , 8 , then equation (3 ) can be written in the form :

(CZ) — 9 y v
dy

dx
=ely-a) (y-B) (y-7) (y- 8) . (5 )

556037 0–61 ---- 10

129
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If, in particular, erk? and if the roots are respectively 1 , -1 , 1 /k ,

and – 1 /k , then we have the canonical form

dy

dx
= (1 - y?) (1 - k’y ). (6)

In this case , if y (0) = 0 and y' (0 ) = 1, the particular solution of the

equation is the function y = sn (x ,k ), where sn (2,k) is the elliptic sine

of Jacobi , which we shall examine in detail later.

The following differential equation of second order :

dạy
= A + By + Cyé + Dye,

dx²
( 7)

is also solved by means of elliptic functions . To show this we differ

entiate equation ( 3 ) and thus obtain

2y'y' ' = by' +2cyy' + 3dy'ya + 4ey'yº,

which reduces to (7 ) when the factor y' is removed and the constants

are properly equated .

It will appear later that the following differential equations are also

solved in terms of elliptic integrals:

1 - Y

Che)=1 - k?y '
(8)

2

Cente
dy

dx
= ( 1 +nya) 2 ( 1 -y ) (1– k y ?). (9 )

If we take derivatives of both sides of equation ( 8 ) and reduce the

resulting equation , we find that it is equivalent to the following :

ddạy

( 1 - k’y?)
dx2

-ky

( )+
dy

dx
+y=0. ( 10 )

Finally, if we make the transformation : y= sin 0, in equations (6 )

and (8 ) , we obtain the following equivalent equations respectively :

do 2

= 1 - k sin ? ,
dx

( 11 )
Carol

( =
do

dx

1

1 - k2 sin ? 0

( 12 )
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2. Elliptic Integrals

By an elliptic integral of the first kind we shall mean the function

dx

(1- x ) (1 - k222)

( 1 )

or its equivalent,

F (ok)-Sv1-bol into * < 1

(2)

where x in the first form is connected with o in the second form by

means of the equation

x= sin d. (3 )

The parameter k is called the modulus of the elliptic integral and the

quantity k' , defined by the equation : k = 1 - k ”, is called the comple

mentary modulus with respect to k . It is often convenient to write

k = sin a, (4 )

in which case we have : k ' = cos a.

The quantity,

K = F(1,k)= F ( +,-)
(5 )

is called the complete elliptic integral of first kind, and the quantity,

K' =F ( 1 ,k' ) =F ( 6)

is called the complementary complete integral of first kind .

By an elliptic integral of second kind we shall mean the function

E(mk)= S."
1 - kar?

dx,

1-72

k < 1 ,

( 7)

or its equivalent

E ( k ) =
S*

V1 - k sin odo, k<1 , ( 8 )

where, as in the first case , x and $ are connected by means of equa

tion (3 ) .
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The functions ,

(9)E=E ( 1,2 )=E (3)

E =̒ E(1,4")--E ( *** ) ( 10)

where k` = 1 - k ”, are called respectively the complete and the comple

mentary complete elliptic integrals of second kind .

By an elliptic integral of third kind we mean the function

dx

II (2,0 ,k)= $*(1+ new)/(1– 29)(1–2**)>
ka<1 , ( 11 )

or its equivalent form

do

II ( 0 ,n ,k ) = > k < 1 , ( 12)

lo ( 1 +n sin 0) 1 - ka sin ? 0

where, as before, x and 6 are connected by <=sin o .

In some problems, such , for example , as the rectification of the

hyperbola , one requires the value of the integral

8=

ESSvet Brda,where A > B >0.
( 13)

This integral can be expressed in terms of both F and E as follows :

SE

ta F($,V(A –B)(A)– VAE(4,V(A – B)/A]+ tan 0 A0, ( 14)
VA

where we abbreviate :

tan ø = vĀx and Ap = 71 - [( A , B )/ A ] sin d .

PROBLEMS

1. Show that the length of an arc of the ellipse : b2x2 + a’ya = a²b2 , measured

from the end of the minor axis , is a F(d, e) , where e is the eccentricity.

2. Show that the length of the arc of the hyperbola : b2x2 — a’ya = a2b2, measured

from any point (x, y) , is given by

62

S =

ae
F (0,1/e) - aeE ( 0,1/ e) + ae tan $40, ( 15 )

where tan ø=aey/b?, Ap = V1 - sin ? plez and e is the eccentricity .

3. Show that the length of the arc of the lemniscate : p = a2 cos 20, measured

from its vertex to any point (0,0) , is given by

1

( 26),
8 v2aF

2

( 16 )

where sin? o = 2 sin? 0 .
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4. Show that when y= sin £ 2 , the equation : 7 " ' + ka sin 2=0, is transformed into

the following:

y' ' = ay + bys .

5. Given the transformation :

==( - ) = 9).- = ( - 1)

establish the following identity :

dz

✓ (1-22 ) ( 1 - k2z2)
V(B- 0) ( )[ viena)

dir

T( -a) (2 - B ) (x - 7 ) (x - o ...x

6. Given the transformation :

z ? = ~ = ?, k? = B - Y

ข - Y ay

prove the following:

dydz

V (1— 22) ( 1 – k2z2)

vla - r )
[ vceV( -a)(928)(9–0).1

3. Expansions of the Complete Elliptic Integrals of First and Second Kinds

For convenience we introduce the notation

Af= V1 -k2 sin? 0. (1 )

Since the reciprocal of Ao is the integrand of the integral which defines

F($,k ) , we first obtain the following expansion :

1 1.3 1.3.5

taka sin 6+ k4 sinº 0+ ko sin 0+
2.4 2.4.6

(2 )A(0)= 1 +į kº sina0+

Integrating this series term by term and observing the integral

sinan Ado =
1.3.5 . . . (2n - 1 ) +

2.4.6 2n 2'

(3 )

we obtain the following expansion for K=F

S."

( ,k )

k =)-[1+C )** +(13 )*x + (135)***

+( 942012)*R**+.... ( )
+
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Similarly, if we expand A (0) and integrate the resulting series term

by term , we obtain the following expansion for E=EE ( +,k):

E = "[1- C1)*x-(1.4)*65-(2.4:6)***

(2n) !
2

(2n)!
22n (n !) ?

kan

( 2n- 1 )
(5)

In both expansions (4 ) and (5 ) , k-< 1 .

If we introduce the customary notation of the hypergeometric

function ,

a.B ala + 1 ) (B + 1)
F ( a ,b ,x; x ) = 1 + x+ 22+ : (6)

1.2.7(6+ 1 )long

which satisfies the differential equation,

dạy dy
2( 1 —x) dz? + [r- (a + B + 1)x] -a-By=0,

dx

( 7)

then K and E can be expressed as follows :

K = FF ( 2 1 ; k'), E = F (4-5 1;k').
(8 )

The expansions of the complementary integrals K' and E' are given

as follows :

+

+

. ) (9 )

K'= log(*)+(*)** [ los (1) -1 ] +( )***[log (1)-1-4 ]

+(3:36)***[log(1)---3-3_]+.

E’ =1 +(3) - [108(*)_H_]+C )*** [log (1)-12 1 ]

+(93)* * [108(1)-12-34- ]+....
+ ( 10)

The quantities K and E , as functions of k , are connected by means

of the following equations :

dE 1 dK 1

E - K ( E - k ' K ). ( 11 )
dk k dkk.k'a

The four functions , K, K' , E and E' , satisfy the following remark

able identity originally due to Legendre:

K E'+K' E-K K ' (12)
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PROBLEMS

r / 2

J ” 0
1. Derive the first equation in ( 11 ) by differentiating: E= ( 1 - k2 sin? 0 ) 1/2de

with respect to k .

2. Derive the following formulas:

dE k dK' 1

(K'- E ') , (k2K ' -E' ) . ( 13 )
dk K'2 dk k.k'2

=

'

3. Show that K E ' + K ' E- K K' is a constant by differentiating with respect

to k .

4. Prove that K and K' are solutions of the following equation :

dau

k (1– k2)

du

dk2 + (1-3k2) - ku = 0 .
dk

( 14 )

5. Prove that E and E' – K' are solutions of the equation :

( 1 – k? ) at (en anyte)one ( ) +ku = 0. ( 15 )

6. Show that the general solution of the Riccati

dy

+y ?[k ( 1 - k2 ) ] = k,

is the function :

( 16 )

y = [c ( E - k '> K ) + c' (k'K ' - E ' ) ] / [cK + c'K ' ), ( 17 )

where c and c' are arbitrary constants .

7. Show that the function

y= [c (E- K) + c'E'] /CE+ c ' (E' - K') ] , ( 18)

where c and care arbitrary constants, is the general solution of the Riccati

dy

dk + ya/k + k /( 1 - k ) = 0. ( 19 )

4. Expansions of the Elliptic Integrals of First and Second Kinds

The functions F ( 0 , k ) and Ed, k ) can be expanded in terms of K and

E and functions of sin and cos d . To obtain such expansions we

define San ( o ) as follows:

S2n ( ) = ( 1 )= S* sinºn odo,
and observe the values :

S. (O) =0,

S,(-)= 0 - sin cos ¢,

=

3 1

S. (0 ) sin o cos 0 (3+ 2 sin o) ,

5

S. (o) = φ

1

sin o cos $ ( 15+ 10 sinº 6+ 8 sin* o) .
48

(2)
16
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Functions of higher order can be computed by means of the iterative

formula :

1 2n- 1

Sen ( = $ cos 0 + S2n - 20) . (3)
2n 2n

sin 2n - 1

When the series expansion of 1/4 (0) given by (2 ) of Section 3 is

integrated term by term between = 0 and 0= 0, we obtain :

1 1.3 1.3.5

S , + S2 0 ) : k* S4 (0) + kø Sø ( 0 ) + ....
2.4 2.4.6

(4 )

When the explicit values of S2n ( ) are substituted , the following series

results :

* ਢਿੱTT

2K 1.1 1.3 1.3.5

F(d,k) =k 0-sin cos ka + Aqk4 + Asko
2.2 2.4 2.4.6

1.3.5.7 (2n) !

+ Agk8 + ... + Aank2n +
2.4.6.8 22n (n !)

where the coefficients A2n have the following values :

1 3

sin? 0+
4

Anet

5 5.3

sin* o * sin ? +

6.4 6.4.2'

1 7 7.5 7.5.3

sin 0+ sin* $ + sina 0+
8 . 8.6 8.6.4 8.6.4.2'

A 107

1

10

sin +

9

10.8

sin +
9.7 9.7.5 9.7.5.3

sintot sina 0+
10.8.6 10.8.6.4 10.8.6.4.2'

(6 )

* * *

The expansion of E (0 , k ) is similarly accomplished and we obtain

2E

E(d,k )= $+ sin $ cos 0

1 1

K2 +

2.2 2.4

1.3

2.4.6
Asko

7

+

1.3.5

Agk8+ ...
2.4.6.8

( 2n) !

+220 (n !)?(2n - 1)
A2n kan+

..), (7 )

where A4, A6 , etc. , are defined as above .
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5. Differential Equations Satisfied by the Complete Elliptic Integrals

The complete elliptic integrals K , K' and E , E' , regarded as func

tions of the parameter k , can be shown to furnish solutions of certain

linear differential equations. The derivation of these equations fol

lows readily from equations ( 11 ) and ( 13 ) of Section 3 and proofs

will be omitted.

Thus the differential equation

d2Y 1-3kº dY

+ -Y = 0,
dk k dk

( 1 )

has for solutions the functions K and K' .

Similarly, the differential equation

d’Z , 1 - k dZ

M(Z) = (1-2) + + 2 = 0 ,
dk k dk

(2)

has for solutions E and E' .

Nonhomogeneous linear differential equations of second order are

also readily constructed for which F(°, k) and E (0, k ) , regarded as

functions of k, provide particular integrals . Thus, let us define the

function

sin o cos

G (0 ,k ) = (3 )
A3 (0)

and write the differential equation :

L ( Y ) = - 6 (0 , k ).

This equation has the solution : Y=F(ºk)+ AK+BK' , where A and

B are arbitrary constants .

Similarly, the equation

M(Z) = G(0,k) , (5)

has the solution : Z=E(0,k ) +AE+BE' .

6. The Computation and Tables of Elliptic Integrals

The computation of elliptic integrals is in general most easily

accomplished by means of what are called Landen's transformations

after their originator J. Landen ( 1719-90 ). *

" An Investigation of a General Theorem for Finding the Length of any Arc of any Conic Hyperbola by

Means of Two Elliptical Arcs, etc." Philosophical Trans., Vol . 65, 1775, p . 285 ; also , Math . Mem . , Vol . 1 ,

London, 1780 , p . 33.
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The transformation for the elliptic integral of first kind is given in

the following form :

F ($ ,k ) = kn v (kıkz.kz...kn - 1)/k F (on,kn) ,

( 1)

where we use the abbreviations :

ko=k , ko 2Vkp-1, 6o = , sin (262-02-1) = kp-1 sin 09-1
1 + kp -1

(2)

If k is less than 1 , then kn>1 as n → . This may be proved from

the following equality :

1 - kn+ 1 = pn ( 1 - kn) , (3 )

where we have

1 - vkn 1
Pn (4)

1 + vkn 1 + kn

It is evident that en is always less than 1. Therefore, if ko=k is less

than 1 , we shall have : 1 - k = pol1 - k ) < 1, 1 - k2= pi ( 1 - k) =

Popi(1 - k ) < 1 , and thus

1 - kn= POP1P2 Pn- 1 ( 1 - k) , (5 )

which approaches zero as n → .

As kn diminishes , one can show from (2 ) that ºn also diminishes, but

approaches a limit different from zero, let us say . Thus, for the

limiting value of Fløn,kn) in ( 1 ) we shall have

lim FCO. ,km ) =F(0,1 ) =S.
do

= log tan

1 - sin ? $

++ = (6)

Formula ( 1 ) thus assumes the following useful form :

F ($ ,k ) = v (kyk2 ks ...)/k log tan

1

+-0

2

(7 )

The above form of the transformation can be used effectively in

computing the value of F (0 ,k ) provided k is sufficiently large, that is

to say , when k is close to 1. In the contrary case , when k is small,

the following form of the transformation is more useful since the

convergence is more rapid :

F ( 0 ,k ) = ( 1 + K ) (1 + K2) ... ( 1 + Kn ) F ($ n,Kn)/ 2", (8)
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where we employ the abbreviations :

K=k, K ,= 1 - v1 -K3-1, 6=e, tan (+, - ,-1)= v1 – K ;-,tan 5,-1
1 + v1 - K3-1

(9)

Since in the limit , Kn>0, we have

lim F (On,Kn) = F ( 0,0 ) = do= ; ( 10)
1-00

and thus formula (8) becomes

F (0 ,k ) = lim (1 + K ) (1 + K ) ... ( 1 + Knº/2" . ( 11 )
n- >

Similar formulas hold for the elliptic integral of second kind :

k [
+

2 22 2n- 1

E (0,k ) = F ($,k) 1 +k ( 1+ - + +

ki kąka kaka...kn - 1

2"

k sin 0+ 2 sin $1_22 sin $2 +
+ ...

kika...kn -1 VE Ekki

2n -1 sin on - 1 2" sin on

Vk ki...Kn- 1 kkz...kn-1.

+ ( 12)

where we employ the abbreviations given in (2 ) .

Formula ( 12 ) is useful for computation when k is close to 1 ; in the

contrary case , when k is small, the following series converges more

rapidly :

E
E($.k)=F(8,4)[1–3 **(1+2K + K,K:+3K,K,Ks+ ...)]

+ ( vK sin 8,+2VK,K,sin øs+ VK,K ,K, sin Bet ...), ( 13)

where we use the same abbreviations as in (9 ) .

The complete integrals K and E can be computed from the follow

ing series, derived respectively from (8 ) and ( 13 ) :

K = F ( 14)

= F ( ", )= (1+ K;)(1+ K.)(1+ K.) ... ,

E = E( +4)=P ()« )[1-_* (1+kk,

+ K,K + ,KK,K«Ks + ...)]' (15)
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E (0,1 )

Extensive computations of the elliptic integrals are found in the

classical tables of A. M. Legendre ( 1752-1833 ) , which appeared in

Volume 2 of his Traité des fonctions elliptiques et des intégrales Eule

riennes avec tables pour en faciliter le calcul numériques, published in

Paris in three volumes between 1825 and 1828. These tables include

9 or 10 place values of F($, a) and E(0, a) ,k=sin a , at intervals of 1 °

1

, and
4

1 1 °

to 12 decimal places for • between 0 ° and 90 ° at intervals of 2

1

and for log10 F( 0,27 E
4

to 12 decimal places for between

0 ° and 90 ° at intervals of 0.1º .

Numerous other tables of elliptic integrals have been computed ,

descriptions of which will be found in An Index of Mathematical

Tables by A. Fletcher , J. C. P. Miller, and L. Rosenhead, London ,

1946. A short table of both F (ok) and E(0 ,k) , based on Legendre's

tables , is given below .

1

In order to find values of the functions beyond $=3*, for values

of k” S1 , we make use of the following formulas :

F (na + 0,k ) = 2nK + F (0 ,k ), E (na + 0 ,k ) = 2nE + E (0 ,k ), ( 16 )

Finn- 0 ,k) = 2nK-F(0 ,k ) , E (na - 0,k ) = 2n E - E (0 ,k ). ( 17 )

It is possible to find real values of the integrals for values of k?> 1 ,

provided k is less than csc 0. The region for which real values of

the elliptic integrals exist is shown in Figure 1 .

TT

k = csc

4 짜
Region of imaginary

values

k

FIGURE 1
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In this case we make use of the following transformations:

dt 1

( 18 )

1

F (0
F (0 ,k ) =

S *
F ¢ ', 1 /k ),

-k
VI – (1/k2) sin ? t

E ( 0 , k ) = ( 1 - K ? ) F (0 ,k ) + k) – $ * V1- (1 /k”) sin tdt,

(7") F (o ,̒ 1 / k ) + kE ( 0 ",1 / k ),
( 19)

where we abbreviate: 6' = arc sin (k sin o ).

PROBLEMS

ܙ

2. Given F V3 ) = 0.5422, find the value of E of ( 12) .

Answer : 05841 .

1. Use formula ( 11 ) to compute P (á ).

( 3v3)= ( avg) by means

3. Evaluate the integral: S " 119Sin e

2. S. 18(1 –2)(1–222)les= F (sin -1 Va,k ), 0<I< 1 .

5.Given that F19(2),£]= S: [(1+32)(1+k"232)p8

11 P (4 , K ).

1

4. Show that

dx

find g (x) .

6. If K =
2v sin 24

and tan o =

1 + k k + cos 24
prove that F (0,k )

7. Prove the identity :

(1– k2) 11 ( 0 , -1,k ) = (1– k2) F ( 0 ,k ) – E ($ ,k ) + tan $A$.

8. If k = (v2–1 ) / (12+ 1 ) , prove that K*(5,4) =2K(7.k) .

=S" = S"
do,

= S "
do ,

9. Given the following integrals :

pr / 2 sina $ poil cos? p= / 2 (sin • cos )?
A= dd, B= C=

Δή 40 (40) 3

show that : A = ( K – E )/ k*, B= K- A , C= (A - B )/k2.

10. Given the identity :

* V ( 1 - y-) ( 1 - k2y2) + yv (1-22) ( 1 - k2x2)

F ( x , k ) + F ( y,k ) = F
1– k ? r? y?[ V(1—y)(1–k? k]

show that for k = 0, this reduces to the formula for the addition of sin- 1 x and

sin-1 y , and that for k = 1 , to the formula :

tan-12 + tan- ' y = tan-1

( 1 + % ).
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TABLE OF F ( o, k)= S* 17–k? sin?edo
k= sin a .

a = arc sin k

Ø

0° 10° 15° 30 ° 45° 60 ° 70 ° 80 ° 90 °

1 °

2 °

3 °

4 °

5 °

0.0175

0. 0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0699

0.0873

0.0175

0. 0349

0.0524

0.0699

0.0874

0.0175

0.0349

0.0524

0.0699

0.0874

0.0175

0.0349

0.0524

0.0699

0.0874

6°

7 °

80

gº

10 °

0.1047

0.1222

0.1396

0. 1571

0. 1745

0. 1047

0.1222

0.1396

0. 1571

0. 1746

0.1047

0. 1222

0.1397

0. 1571

0. 1746

0. 1048

0. 1222

0.1397

0.1572

0.1748

0. 1048

0.1223

0. 1399

0. 1574

0. 1750

0. 1049

0.1224

0. 1400

0. 1576

0.1752

0. 1049

0. 1224

0. 1400

0. 1577

0. 1753

0. 1049

0. 1225

0.1401

0. 1577

0. 1754

0. 1049

0. 1225

0. 1401

0. 1577

0.1754

15 °

20 °

25 °

30 °

35 °

0.2618

0.3491

0.4363

0.5236

0.6109

0.2619

0.3493

0.4367

0.5243

0.6119

0.2620

0.3495

0.4372

0.5251

0.6133

0.2625

0.3508

0.4397

0.5294

0. 6200

0.2633

0.3526

0. 4433

0.5356

0.6300

0. 2641

0.3545

0.4470

0.5422

0.6408

0.2645

0.3555

0.4490

0.5459

0.6471

0.2647

0.3561

0.4504

0.5484

0.6513

0. 2648

0.3564

0.4509

0.5493

0.6528

40 °

45 °

50 °

55°

60°

0.6981

0.7854

0.8727

0.9599

1. 0472

0.6997

0.7876

0.8756

0.9637

1. 0519

0.7016

0.7903

0.8792

0.9683

1.0577

0.7116

0.8044

0.8982

0. 9933

1.0896

0.7267

0.8260

0.9283

1.0337

1. 1424

0.7436

0.8512

0.9647

1. 0848

1.2125

0.7535

0.8665

0.9876

1. 1186

1. 2619

0.7604

0.8774

1. 0044

1. 1444

1. 3014

0.7629

0.8814

1.0107

1. 1542

1.3170

65 °

70 °

75 °

80 °

1. 1345

1. 2217

1. 3090

1.3963

1. 1402

1. 2286

1. 3171

1. 4056

1. 1474

1 , 2373

1.3273

1. 4175

1. 1869

1. 2853

1.3846

1. 4846

1 , 2545

1. 3697

1. 4879

1. 6085

1.3489

1. 4944

1. 6492

1.8125

1. 4199

1. 5959

1. 7927

2. 0119

1 , 4810

1. 6918

1. 9468

2. 2653

1. 5065

1. 7354

2.0276

2. 4362

819

82°

83 °

84 °

85 °

1. 4137

1. 4312

1. 4486

1. 4661

1. 4835

1. 4234

1. 4411

1. 4588

1. 4765

1. 4942

1. 4356

1. 4536

1. 4717

1. 4897

1. 5078

1. 5046

1. 5247

1. 5448

1. 5649

1. 5850

1. 6328

1. 6572

1. 6817

1.7062

1. 7308

1. 8461

1.8799

1. 9140

1. 9482

1. 9826

2. 0584

2. 1057

2. 1537

2. 2024

2. 2518

2.3387

2. 4157

2. 4965

2. 5811

2. 6694

2. 5421

2. 6603

2. 7942

2. 9487

3. 1313

86 °

870

1. 5010

1. 5184

1.5359

1. 5533

1. 5708

880

1. 5120

1. 5297

1.5474

1. 5651

1. 5828

1. 5259

1. 5439

1. 5620

1. 5801

1. 5981

1. 6052

1. 6253

1. 6454

1. 6656

1.6858

1. 7554

1.7801

1. 8047

1. 8294

1.8541

2. 0172

2.0519

2.0867

2. 1216

2. 1565

2. 3017

2. 3520

2. 4026

2. 4535

2. 5046

2. 7612

2.8561

2. 9537

3. 0530

3. 1534

3.3547

3. 6425

4.0481

4.741389 °

90 ° CO
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TABLE OF E(€, k )
S * v1 –k? sinºdo,k = sin a

o

0° 10° 15° 30 ° 80 ° 90 °

1 °

2 °

3 °

4 °

5 °

0.0175

0. 0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0698

0.0873

0.0175

0.0349

0.0524

0.0698

0.0872

0.0175

0.0349

0.0523

0.0698

0.0872

0.0175

0.0349

0.0523

0.0698

0.0872

6°

7 °

8 °

gº

100

0. 1047

0. 1222

0.1396

0. 1571

0. 1745

0. 1047

0. 1222

0. 1396

0. 1571

0. 1745

0. 1047

0.1222

0.1396

0. 1570

0. 1745

0.1047

0. 1221

0.1395

0.1569

0. 1743

0. 1045

0.1219

0.1392

0.1565

0.1737

0. 1045

0. 1219

0. 1392

0.1564

0. 1736

15 °

20 °

25 °

30 °

35 °

0.2618

0.3491

0.4363

0.5236

0.6109

0. 2017

0.3489

0.4359

0.5229

0.6098

0.2616

0.3486

0.4354

0.5221

0.6085

0.2611

0.3473

0.4330

0.5179

0.6019

0. 2589

0.3422

0.4230

0.5007

0.5748

0.2588

0.3420

0.4226

0.5000

0.5736

400 0. 6966

0.7832

0.8698

0.9562

1.0426

a = arc sin k

45° 60 ° 70 °

0.0175

0.0349

0.0523

0.0698

0.0872

0.0175

0.0349

0.0523

0.0698

0.0872

0.0175

0.0349

0.0523

0.0698

0.0872

0. 1046

0.1220

0.1394

0.1568

0. 1741

0. 1046

0. 1220

0.1393

0. 1566

0. 1739

0. 1046

0.1219

0.1392

0. 1565

0. 1738

0.2603

0.3456

0.4296

0.5120

0.5928

0.2596

0.3438

0.4261

0. 5061

0.5833

0.2592

0.3429

0.4243

0. 5029

0. 5782

45 °

50 °

55 °

60 °

0.6981

0.7854

0.8727

0.9599

1. 0472

0.6947

0. 7806

0.8663

0.9517

1.0368

0.6851

0.7672

0.8483

0.9284

1. 0076

0.6715

0.7482

0.8227

0.8949

0.9650

0.6575

0.7282

0.7954

0.8588

0.9184

0.6497

0.7171

0.7801

0.8382

0.8914

0.6446

0.7097

0.7697

0.8242

0.8728

0.6428

0.7071

0.7660

0.8192

0.8660

65 °

70 °

75 °

80 °

1. 1345

1. 2217

1.3090

1. 3963

1. 1288

1. 2149

1. 3010

1.3870

1.1218

1. 2065

1. 2911

1.3755

1. 0858

1. 1632

1. 2399

1. 3161

1. 0329

1.0990

1. 1635

1. 2266

0.9743

1.0266

1. 0759

1. 1225

0.9397

0.9830

1.0217

1.0565

0.9152

0.9514

0.9814

1.0054

0.9063

0.9397

0. 9659

0. 9848

819

82°

83 °

84 °

85 °

1.4137

1. 4312

1. 4486

1. 4661

1. 4835

1. 4042

1. 4214

1. 4386

1. 4558

1. 4729

1. 3924

1. 4093

1. 4261

1. 4430

1. 4598

1.3312

1. 3464

1. 3616

1.3767

1 , 3919

1. 2391

1. 2516

1. 2640

1. 2765

1 , 2889

1. 1316

1. 1406

1. 1495

1. 1584

1. 1673

1. 0630

1. 0695

1. 0758

1. 0821

1.0882

1.0096

1.0135

1. 0173

1.0209

1.0244

0.9877

0.9903

0.9925

0.9945

0. 9962

86 °

87°

899

89 °

90 °

1. 5010

1.5184

1.5359

1. 5533

1. 5708

1. 4901

1. 5073

1.5245

1. 5417

1. 5589

1. 4767

1. 4936

1. 5104

1. 5273

1. 5442

1. 4070

1. 4221

1. 4372

1. 4523

1. 4675

1. 3012

1. 3136

1. 3260

1. 3383

1. 3506

1. 1761

1. 1848

1. 1936

1. 2023

1. 2111

1. 0944

1. 1004

1. 1064

1. 1124

1. 1184

1.0277

1. 0309

1. 0340

1.0371

1.0401

0. 9976

0.9986

0.9994

0.9998

1.0000
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7. Gauss's Limit

Closely related to the methods of Landen is a limit due to K. F.

Gauss, * which we describe as follows:

Given k'=v1 –k?, a = ( 1 +k” ) , b = v1.k', an= 3(an-e+bm-1 ) ,

bn = van - bn -1, then we have as limits :

lim an = lim bn=M(1 , k ' ) =T/2K, M( 1 , k) =T/2K' .
n = 00 n= 0

As an example , let us set k ' =
We then obtain

a = 0.750000 ,

an=0.728553

Az= 0.7283955 ,

b = 0.707107,

b=0.728238 ,

b = 0.7283955.

: 60° ,
2

the value K= 2.15651 5648. Dividing a= 3.14159 2654 by 2K

we obtain

TT

=0.72839 5515 .

2K

This remarkable limit of Gauss has been further investigated by

H. Geppert, who has shown that similar limits exist for the arithmetic

harmonic means of 1 and k' , and for the geometric -harmonic means

of 1 and k' .

Thus , in the first case , let us write :

1 2k'

ai ( 1 +k ' ) , b . = is ( the harmonic mean of 1 and k ' ) ,
2 1 +k'

1 2an -101-1

an n - 1tbn - 1 ) ,
2 an - itbn - 1

It can then be shown that

lim an=lim bn = vke.

bn=

n = 0 n = 0

In the second case , let us write

ay = v1.k , b , =

2k '

1 + k ”

20n -1.6 . - 1.
an = van - 1.bn - 1, b ,

an - tbn -1

We then have the limits

lim an=lim bn = 2k'K /T.
n = 60 n = 0

* Werke, Vol . 3, pp . 361-387, in particular, 370.

t "'Über iterative Algorithmen ," Mathematische Annalen, Vol . 107, 1933, pp . 387–399.
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ELLIPTIC FUNCTIONS

8. The Elliptic Functions of Jacobi

The elliptic functions described in this section were first defined

simultaneously, but independently, by C. G. J. Jacobi ( 1804–51) and

N. H. Abel ( 1802–29) in 1827 , although K. F. Gauss ( 1777-1855 ) had

developed many of their properties as early as 1809. The theory of

these functions, as well as that of Theta functions, was exhaustively

set forth in Jacobi's great treatise Fundamenta nova theoriae functionum

ellipticarum , published in 1829 in Königsberg.

The elliptic functions of Jacobi are defined as inverses of the elliptic

integral of first kind . Thus , if we write

do

( 1 )
11—kº sin ? ¢

U=

SO
>

we then define the following functions :

sn (u , k ) = sin , cn (u, k ) = cos ¢, dn (u , k ) = v1- kº sina o = A (0 ) ,

am (a, k ) = , tn (a , k)
sn (u , k)

=tan 0. (2 )
cn (u ,k )

In some applications, where k is a fixed value , or where the dis

cussion concerns only the variable u , it is convenient to write sn u for

sn (u , k ) , cn u for cn (u , k ) , etc.

As in the case of the circular functions, it is often important to

have a notation for the inverses of the Jacobi elliptic functions .

It is clear that we can write ,

u=sn - ' (sin $, k ) = cn - ' (cos 0, k ) = dn- ' (40, k ) ,

= am- ' (°, k) = tn - ' ( tan 0, k) . (3 )

Since u= F(0 , k) , these values are readily computed from tables

of the elliptic integral. Thus we have

-1

sn

(3 3 v3 ) =F(30°, 60 ° ) = 0.54223.

9. Properties of the Elliptic Functions of Jacobi

The Jacobi elliptic functions are rich in special values and identical

relationships. A few of these are given below as follows :

sn (0 ) = 0, cn (0 ) = 1, dn (0 ) = 1 , am (0 ) =0 ; ( 1 )

snºu+cn?u= 1 , (2 )

556037 0-61—11
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dnļu — k ?cn ?u = 1 - k = k "?, (3 )

k?sn?u+dn?u= 1 ; (4)

sn ( -u) = -snu, cn (-u ) = cnu, dn ( -u) = dnu,

am (-u) = - am u ; (5 )

sn (u , 0 ) = sin u , cn (u ,0 ) = cos u , dn (u , 0 ) = 1 ; (6 )

e " - e- "

sn (u , 1 ) = tanh u =

1

e te -u' cn (u, 1 )=dn (u , 1 ) = sech u=
eu te- u

(7)

Introducing the imaginary argument ui , we obtain the following

identities :

sn (ui, k ) = i
sn (u ,k ' )

cn (u ,k ')'

1 dn (u ,k ').

cn (ui,k)= cn(u,k ")" dn(ui,k) =cn (u ,k ')

sn (ui ,k ' )

sn (u,k) =-i
cn (ui,k ')'

1

cn (uk) =
cn (ui ,k ')'

dn ( ,k)= en (ui,k")
dn (ui,k ').

cn (ui,k ')
(8 )

Elliptic functions belong to the class of doubly periodic functions

in which 2K and K'i play roles similar to win the theory of the circular

functions and mi in the theory of the hyperbolic functions. The nature

of this relationship is shown by the following identities :

cn u

sn (u + K ) = # dnu sn ( u + 2K ) = - snu; (9)

cn u

sn (u £3K ) = Fdnu sn( u£4K)=sn u , sn (u + K'i) =

1

k snu
( 10)

sn (u+2mK+ 2nK'i) = (- 1 ) msn u , where m and n are integers; ( 11 )

cn u

cn (u+K= FK'
dnu

.ܙ cn (u + 2K ) = - cn u ; ( 12)

sn u

cn ( u + 3K )== k '
dnu'

sn ( u + 4K ) ==cnu , cn (u+K'i)=-

dn u

k sn u

3

( 13 )

mtn

cn (u+2mK+ 2nK'i) = ( - 1 ) " cnu, where mand nareintegers; ( 14 )

dn ( u + K )

k '

dn u'

7 dn (u +2K) =dn u ; ( 15)

dn (u + K'i) =

cn u .

>

sn u

( 16)

dn (u + 2mK + 2nK'i) = ( - 1) " du , where m and n are integers. ( 17 )

-
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Most of the identities just given follow readily from the definitions.

Thus, to prove (2 ) , we merely observe : snºu + cn ?u = sin + cos?o = 1.

To establish such an identity as sn (u + 2K ) = - sn u , we consider the

integral

do do
+

ΔΦ) A (0 )'

" I do

So &
V=

S***ο Δ ( Φ )S **

2K + S***
do

1 - k sina

(18)

We now make the transformation : 6 =rte, and thus obtain

V=2K+Soon
do

= 2K + u .

V1 - k2 sin e

(19)

Therefore, since by ( 18 ) we have

sn v = sin (°+ ) = -sino,

we now establish by (19) the identity

sn (u + 2K ) = - sn u.

Such an identity as sn (u + K ) = cn udn u is obtained from the addi

tion formulas, which are given in Section 11 .

10. Derivatives and Integrals of the Elliptic Functions

The derivatives of the elliptic functions are easily found if we make

use of the relationship

du 1 1

( 1 )
do 11 - k sino dn u

Thus, since sn u= sin d, we get

d do

sn U= COS 0 = cn u dn u.
du du

(2)

The following derivatives are similarly obtained:

d2

sn u = 2kº snºu— (1 + ka) snu,
du?

( 3)

d

du
cnu= -sn u dnu,

d2

duz cn u= (2k- 1 ) cn u — 2k? cn u , (5)
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d

dn u= -k2 sn u cnu,

du
(6)

d2

du ?
dn u= (2-K2) 2 dn u- 2dnº u, (7)

d

am u = dnu .
du

(8)

We also record the following table of integrals, which is readily

verified by differentiation :

1

sn udu = log (dn u-k cn u) ,uk

(9)

( 10)

dn u du= arc sin (sn u) , ( 11 )

dn u - cnu

sn u

( 12)

dn utk snu
du =

k '

log

၊

ſen u du = arc cos ( dn u) ,

Sa

Sonu du=log (do

Senec ( dn 4)

S. an

s du = log (( dua)

Sen dug, log (docu #k')

Sdnudu=log (.ct 1.4)

( 13 )
cn u

1

arc cos (en%)du

1

k '
dnu

( 14)

cn u

( 15)

( 16)

( 17)
cnu

11. Addition Theorems

The following identities exhibit the addition properties of the

Jacobian elliptic functions :

sn u cn v dn v.cn u sn v dn u .
sn ( u + v =

1 - k2 sn’u snav

>

(1)

cn u cn v Fsn u sn v dn u dn v

cn ( u + v =
1 - ksn'u snév

>

(2)
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cn ( u + v ) = cn u cn vFsn u sn v dn ( u + v ) ;

dn u dn vFk sn u sn v en u cn v

dn (u v =
1 -k2 sn’u snlv

>

(3)

=dn u dn v Fk sn u sn v cn ( u + v);

tn u dn v£ tn v dn u

tn ( u + v ) =
15tn u tn v dn u dn v '

(4)

2 sn u cn v dn v .

sn (u+ v) +sn (u-v) =
1 - k2 sn´u sp ?v '

(5 )

2 sn v cn u dn u .

sn (u + v) -sn (u - v ) =
1- K snu sn

> (6)

2 cn u cn v

cn (u + v) + on ( u - v ) =
1 - k ? sn u snav

(7 )

cn(u+v )-cn (u-v) =
2 sn u sn v dn u dn v .

1 - k2 sn u snºv
(8)

2dn u dn v

dn (u + v ) + dn (u - v = ;
1 - K snu snav

(9)

2k2 sn u sn v cn u cn v

dn ( u + v ) -dn (u - v =
1 -k2 sndu snav

(10)

These formulas have been established in a number of ways, but

considerable computation is usually involved in verifying them . One

method which is quite effective is illustrated as follows . To establish

the formula for sn (u+ v) , let us represent the right hand member of

( 1 ) by F(u , v) . This function is also a function of 2=utv, and con

sequently the Jacobian of F and z must vanish , that is

OF

du

OF

де
OF OF

ди dv

=0 . ( 11 )

dz

ди

Dz

dv

The proof of formula ( 1 ) is thus given by first establishing ( 11 ) .

The computation is tedious , but straightforward , and can be facili

tated by first taking the logarithm of F. Since we have now shown

that F(u, v) = F(utv) , identification of the function with the elliptic

sine is made by setting v= 0 , from which we have F (u ) = sn u .
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The products of the functions of sums and differences can be

derived from the preceding identities . Thus, we have

snºu - sn’v

snu + v) sn ( u - v =
cnév + sn'u dny

1 -k2 sn u snév 1 -k2 snļu snềv
1 ,

( 12)

1 dnºv + k ? sn’u cny

K2 1 - k2 sn´u sn’v

1 ;
-

cnu-snév+k2 sn´u snév

cn ( u + v ) cn ( u - v ) =
1 -k2 sn'u sn’v

( 13 )

cnéu + cnév sn’u dnPv + sn’v dnʼu ;
1 = 1

1 - k2 sn´u sn’v 1 -ka snļu snév

1 - k2 sn’u-k snºv +ksn'u sn’y
dn (u+ v) dn (u - v =

1 - kº snu snPv

( 14)

dn’u + dny

1 - k2 snļu snav

-1 ;

sn ucn u dn vsn von v dn u

sn (u+ v) cn (u Fv) =
1 - ka sna u sna v

( 15)

sn u dn u cn vsn v dn von u

sn (u v dn (u Fo =
1 -kasnº u snºv

( 16)

cn u dn u cn v dn v Fk'2 sn usn v

cn (u v) dn (u Fv) =
1 - k2 snº u snºv

( 17 )

[ 1 + sn (u + v) ] [1sn ( u , v ) ] =
(cn vŁsn udn v) ?

1 -k’snº u snºv
(18)

12. Double-Angle and Half-Angle Formulas

From the identities of the preceding section we can derive the

following formulas involving double-angles and half-angles :

sn 2u =

2 sn ucn u dnu

1 -ksn'u

( 1 )

cn ? U-snº u dnº u

cn 2u =

1 -k2 snº u

1-2snu + k2snu

1 -k’snº u
( 2)

dn 2u
=

dn –kº snº tu cnº au 1-2kº snº u +kº sn* 14
;

1 -kºsnt u 1 -kasnº u
(3)

2 tn u dnu

tn 2u =

1 - tna u dnu
(4)



ELLIPTIC INTEGRALS, ELLIPTIC AND THETA FUNCTIONS 151

Using formulas (2 ) and (3) we compute

1 - cn 2u 2 sn’u - 2k2 sn u 2 sn’u ( 1 -ksn’u)
=snºu .

1 +dn 2n 2-2kº snu 2 ( 1 -ksnºu)
(5 )

Replacing u by fu, we then obtain the formula

1

sna

zu=

1- cn u

1 + dnu

(6)

If we multiply the numerator and denominator of this fraction by

( 1 -dn u) and make use of the identities of Section 9 , we obtain

( 1 -cnu) ( 1 -dnu)

( 1 + dnu) (1 - dnu )

( 1 - cn u) ( 1 - dn u)

1 -dn2u

( 1 -cn u) ( 1 -dn u)

kasnau

( 1 - cn u ) ( 1 -dnu)

k ? (1 - cnºu )

1 -cnu

12 ( 1 + cnu)

( 7 )

Similarly, if we multiply the numerator and denominator of the

fraction in (6) by (k '? — ka cn u+ dn u) and simplify, we obtain

1

sna

dn U - cnu

k "? + dn u - k'cnu

(8)
20

Combining these results, we get the following identities :

sin ?

žu= n =

1 - cnu 1 -dnu dn U-cnu

1 + dn u k®(1 + cn u ) k ”? + dn u — k'cn u
(9 )

In a similar manner the following half -angle formulas are established :

enezu=
dn uten uk'cn u—k' ?+dn u

1 +dnu k + ( 1 + cnu)

k'º ( 1 +cnu)
; ( 10)

k ” ? +dn u—k cn u

dn
1 k ? + dnu + k cn u

u = 1 +dnu

cn u + dnu

1 +cnu

k ’’ (1 + dnu )
; ( 11 )

k ”? + dn u — kºcnu

1 -cnu 1 -dnu dn u -cu

tnu=

2 dn 14 + en u kº en –kº + dn t kº(1 + cn 1)

th?ๆ -

( 12)

PROBLEMS

Establish the following values :

1. sn K= 1 , sn iK' = 0 , sn (K+ iK') = 1 /k ;

on K= 0, en iK' = 0 , cn (K + iK') = - ik'lk ;

dn K= k' , dn iK' = , dn (K+iK' ) = 0. ( 13)
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2 .

snįK= ( 1 + k ” ) = 1/2 , sn zik'= ik-1/2,sn }(K +iK')= (2k)–va[(1+ k)u2 +i(1–k )/2];

en K ={k'/(1+k')}"?, cn žiK'=[(1+ k)/xJy ?, en (K + iK”)= (1-1)(k"/2k)./2;

dnžk = ""*,dneK - (1+ ) ,dn ( K +iK ")- ( **) (1+k"> i(1–k")wa).

( 14 )

13. Expansions of the Elliptic Functions in Powers of u

By evaluating successive derivatives of the Jacobi elliptic functions

at u= 0, the following expansions of the functions have been obtained : *

必

7 !sn ( x,k ) = z = ( 1 + k ) **+(1+148*+44).-(1+ 1354*+ 135k*+kº)

1
uº

+ (1 + 1228k2 + 5478k4 + 1228k + k8)
9 !

- (1 + 11069K2 + 165826K4+16582626

u11

+ 11069k8 + k " ) ili + i ( 1 )

u2 44 ue

en(u,k) =1–9 +(1 + 4k)4-(1 + 44kº + 16k4)
6 !

+ (1 + 408k +91264+ 64k )

u8

8 !

- ( 1 + 368862 + 30768k4

U10

+ 15808k8+ 256k8) ;10: + (1 + 33212kº + 8070640k* + 1538560k

U12

+ 259328k8 + 1024k " ) 12! + ... ; (2)

us

dn (x, k ) = 1 – ** **+(4k2 + k4) -(1642+ 44k4+k")

u?

6 !

u8

+ (64k2 + 912K4 + 408k + k8) - (256K2 + 15808k4
8 !

ulo

+ 30768k® + 3688k + k10) 10 ! + (1024k2 + 259328k4

u2

+ 1538560k® + 870640kø+ 33212 " + k !?) 121+ ... ;
(3)

* These coefficients are taken from C. Gudermann : “ Theorie der Modular-Functionen und der Modular

Integrale , " Journal für Math ., Vol . 19, 1839, pp . 45-83; in particular, pp. 79-81.
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u5

5 !

u

am(uk) =u-K +(4K2+ k4) :-(16kº + 44k4 + k )
3 !

u9

+ (64K2 + 912k4 + 408k8 + k8)
9 !

- ( 256kº + 15808k4 + 30768k6 + 3688k + k19)
u11

11 !

+ (1024K2 + 259328k4 + 1538560k6+87064028 + 33212k10

U13

+212)

13! + ...
(4 )

14. The Poles of the Elliptic Functions

Both the circular and the hyperbolic functions have zeros in the

finite plane and both are periodic , but neither sin x , cos x , nor sinh x ,

cosh x have poles. The corresponding elliptic functions, however, are

doubly periodic and have polar singularities in the finite plane. This

difference is readily illustrated by the properties of the elliptic sine .

The function sn (x.k) is doubly periodic with the periods : 2 = 4K

and 2 = 2K'i. If , in the complex plane , one forms a set of rectangles

with corners at the points : 4mK+ 2nK'i, as shown in Figure 2 , then

the behavior of sn (2 , k ) in each of the rectangles is identical by virtue of

the periodic properties given by equation ( 11 ) of Section 9 .

The function sn (x, k) is analytic except at the points: 4mK+

(2n + 1 )K'i, where it has simple poles of residue 1 /k , and at the points :

(4m + 2 )K+ (2n + 1 ) K'i, where it has simple poles of residue - 1 /k .

Imaginary Axis

6K'i

х Х х

х

4K'i

х х Х

х

2K'i

х

х

х х

Real

Axis

-4K 4K 8K 12Kх х

х

х

-2K'i

х х х

х

-4K'i

FIGURE 2
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The position of these poles is indicated in Figure 2 by circles (poles of

residue 1 / k ) and crosses (poles of residue – 1 /k ).-1/k ). The zeros of

sn (x ,k ) are found at the points: 2mK+ 2nK'i.

From this it is clear that sn (x,k ) may be expected to have a property

similar to that of tan 6 , which can be expressed in terms of its recipro

cal by a linear transformation of 6, that is

1

tan (0+

1

tan o

That this is , indeed , the case can be shown as follows:

From formula ( 1 ) of Section 11 we have

sn u cn u dn vtcn u sn v dn u
sn ( u + v =

1 - k sn u sn av

(1)

where sn u, cn u, and dn u are connected by the equations :

snéu + cnéu = 1, kasn'u + dn'u = 1. (2)

Let us now choose v so that k snºv= 1 , from which it follows that

dn’v= 0 . Equation ( 1 ) then reduces to

dnu

sn (u+v) =sn v

1

+

k sn ( u + K
(3)

cn u

9

Hence , if we write : u+K=w and utv=w' , equation (3) can be

written :

1

sn w ' = + (4)
k sn w

where w ' = w + 0 - K .

Since dn v is zero at the points: (2n+ 1 )K+ (2m+ 1 )K'i, equation

(4 ) can be written :

1

sn [w + 2nK + (2m + 1 )K'i] = + (5 )
k sn w

From this it follows, by setting w= 0 , that the poles of sn u are given by

2nK+ (2m + 1) K'i. When n is an even number, the sign is positive

and when n is odd; the sign is negative.

The following table gives the periods, zeros , poles , and residues for

sn u , cn u , and dn u within the primitive rectangle:

dnusn u cn u

Periods

Zeros .

Poles

Residues .

iK ' ,

4K , 2iK '

0, 2K

2K tik '

1 / k , – 1 /k

4K, 2K+ 2iK '

K , 3K

iK ' , 2K+ iK !

- ilk , iſk

2K, 4iK !

K + iK, K+ 3iK '

iK ' , 3iK '

-i, i
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15. The Zeta Elliptic Function of Jacobi

Let us now write

E(0, k) =L* 416,k)d6= S“
dnº u du = E ( u ), ( 1 )

where , as previously , u=F(0,k ) . The function E(u) , thus associated

with the elliptic integral of second kind , is an elliptic function . Since

$=am u, we see that we can write ( 1 ) in the form :

E ( u ) = E (am u,k ) . (2)

Unfortunately E(u) is not periodic in either 2K or 2K'i, so Jacobi ,

who first studied it , found it more convenient to introduce the following

new function:

Z (u ) = E (u ) - UE /K , (3 )

where K and E are respectively the complete elliptic functions of first

and second kind . The function Z(u) , called the Zeta elliptic function

of Jacobi , is singly periodic of period 2K.

By methods which are straightforward , but somewhat complicated,

one can show that both E(u) and Z (u) have the following addition

formulas:

E(u) + E (v) - E (u + v ) = k2 sn u sn v sn (uto) ,

Z (u) +Z(0) -Z(u+v) =k sn u sn v sn (u+ v) . (4 )

From the second of these we have

Z (u + 2K ) = Z (u ),

(5)

which follows from the equations:

E (2K ) = E (+ ,k ?) = 2E , Z (2K ) = E ( 2K ) -2E = 0,

Z (u ) + Z ( 2K ) -Z ( u + 2K ) = 0.

PROBLEMS

1. Show that Z (u + 2Ki) = Z (u ) – mi/ K .

2. Prove that

dZ

= dnºu - E / K ,

d2Z

du ?
- 2k2 sn u en u dnu .

du

3. Verify the following integral :

du

= u Z ' ( 0 ) -Z ( u )
cn u dnu

+ C .
sn u

4. Show by differentiation that

ſdn?u dn = u +dn to w-son ' w
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5. Establish the identity

Eliu,( iu, k ) = i
dn ( u ,k ')

( u, k ' ) .
du,

and then , by the formula in Problem 4 , prove that

E (iu , k ) = i [ u + dn (u , k ') tn ( u , k ') – E(u, k ' ) ) .

6. Use the result of Problem 5 to show that

E (2iK ,k ) = 2i(K ' – E') .

7. Show that

Eu + 2K + 21K ') = E ( ) + 2E + 2i ( K ' - E ') .

8. Establish the identity

snº(iu , k ) + snº (u ,k ') = sna(iu ,k ) snº(u ,k ') .

16. The Elliptic Functions of Weierstrass

Directed in his approach by the expansion

1

sindz- Σ ( 1 )
(x - 17)2ns - 00

Karl Weierstrass ( 1815–97) defined a new function , denoted by the

symbol, Ⓡ (x) , by means of the following series :

$(x)= * +
1 1

( x - 2mw — 2nw ')2( 2mw + 2nw ')2°
(2)

m , n

The summation is taken over all positive and negative integral values

of m and n, including zero , except when m and n are simultaneously

zero . The quantities w and w' are two numbers the ratio of which is

not real .

In order to relate this function to the Jacobi elliptic functions which

we have just described , let us write

U= P (x) . (3 )

It can then be shown that the relationship between x and u can be

expressed as the elliptic integral :

-STEP-'(),
(4)

where we write in customary notation

R = 4.53 — 928—93 = 4 (s - en) (s - e2) (s - ez). (5 )
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The relationship between the parameters 92, 9 ; and the quantities

C1 , C2 , ez is readily expressed by the following equations :

1 1

ezteztez=0 , ejezte estea@g = -92, 0,02 € 3 = 93 .
4 6 ,ezes= (6)

The differential equation satisfied by Ⓡ (x) is readily obtained by

differentiating (4 ) , from which we get

du )2

Code
= 403-922—93. (7)

da

When it is necessary to exhibit the values of the parameters explicitly,

f (x) is customarily written : 8 (x, 92, 93).

In order to connect the Weierstrass function with the Jacobi elliptic

functions , we shall now establish the following identity:

е1 — ез

Ⓡ (Q ) = est
sn ? (1 x,k )'

(8)

where we write

da = , -63, ke
2 е - е ,

(9)
ei- ez

Writing equation (8) in the simpler form : u= @ + (21 - es ) sn -2x,

and making use of the formulas in Sections 9 and 10 , we compute and

simplify (du /dx) as follows:

du

drCel
4 ( 2 , - € 3) 12

cn? 2x dn ,
sn62

4 (01-03)212
( 1 - sn’Xx) ( 1 — kºsn’X x ),

sn3

4(0,1–0,)*8? (antide-1) (sn?ne –ka)

= 4(0, –ez)-1X2 (u— es) ( « ) [$ * -*" (6. - ew]
eu ез

Sn ?λα

=4 (21- es) - ? \? (u- 03) (u- e.) (u- e3-k2 ( 21 - es) ] .

If , and k are now defined by (9 ) , then we obtain the equation :

2

( )
du

da
=4 (u- en) (u- ez) (u - e3) = 40 * — 92U - 93. ( 10)

The general solution of this equation is u =(x + c ), where c is an

arbitrary constant . This fact leads to the interesting and often useful

conclusion that (x) can be written as follows :

8.(x ) = (3+ (02- €3)sn? ( x, k) . ( 11 )
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This results from equation (4 ) of Section 14 , where it was shown that a

linear transformation of the variable w in 1 /sn w changes this function

into k sn w' . It is obvious that the variable x in ( 11 ) is different from

that in (8 ) , but both , and k have the values given in (9 ) .

From equation (8 ) we are immediately able to deduce the existence

of the half-periods w and w' , such that

( +2w ) = (x) , 8 ( 2 + 2w ') = (x ). (12 )

Since the periods of sn’ z are 2K and 2iK' , the values of w and w' in

terms of them are found from the equations : w = Kand Aw ' = iK ', that is,

iK'K

and w '

Vei- es

(13 )

Vei- ez

The corresponding values of (w) , (w+ w' ) , and (w' ) are obtained

by use of the special values of sn z given in (13 ) , Section 12. We thus

find

so (w = e , P (wtw') = (2 , (w' ) = (z . (14 )

It is also useful to be able to express the Jacobi elliptic functions in

terms of u = P ( ). This is accomplished by solving equation (8 ) for

sn ( ^ x ,k ). We thus obtain

e3

sn (ax ,k ) =

vu- 63

(15)

and similarly for cn (1x ,k ) and dn (1x ,k ):

en (1x,k) = vu — e, dn (1x,k)
U-62.

( 16 )

Vue3 vu-

Two other matters are of interest in connection with the analysis

just given. The first of these relates to the equation which determines

values of k in terms of g2 and 93. To obtain this equation we must

evaluate ez , ez , and ez as functions of and k . This is accomplished

by means of the following equations:

ei teate = 0, e , -e=\ ?, k'e , - € + ( 1 -keg = 0 , ( 17)

where the first is from (6) and the other two from (9 ) .

We thus obtain explicitly,

ex= 1}x+(2 —kº), e ;=< ^?(2k? — 1 ) , === **(k2+1).

1 1

( 18 )

When these values are substituted in the equations

6,este;este,6 =-1% 6,630 = 1% ,
( 19)
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there results

1

12

921( 1 - k * + k4);

271 °( 1 +k?) (2 — k ?)(1 – 2k?) =2 1 % (20 )

Eliminating , between these equations, we obtain

108 g (1 – k? + k4)3 = g; ( 1 +k?) ? (2—k?) 2 (1–2k2) ?, (21 )

(

where gz and go are assumed +0 .

If g2 = 0 , 9370, then k² satisfies the equation :

1 - kº+ k = 0,

(2
2
)

and if g3= 0 , 9270, then kề has the values , –1 , 2 , and 1/2 .

The second matter refers to the periods 2w and 2w' defined by

(13 ) . Since these are numbers whose ratio is not real , we can form

from them what is called the period parallelogram . Thus, representing

2w and 2w' graphically as shown in Figure 3 , we see that 2 (w+w' )

forms with them and the origin a parallelogram . By adjoining the

sum of multiples of 2w and 2w' , namely, 2mw+2nw' , to the plane,

we can construct a net of congruent parallelograns. Within each of

Imaginary Axis

4ω

20 + 20 '/40 '

2ω ,

2w '

Real

Axis

-2w -20

20-2w !
-40

FIGURE 3
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these the properties of 8 (x ) are identical by virtue of the periodic

properties given in equations ( 12 ) .

Although we have already given explicit values for the half -periods

in ( 13 ) , there is some interest in evaluating them directly from the

fundamental integral (4 ) . Referring to ( 14 ) , we see that w, w+w' , and

w' are defined respectively by the following integrals :

CO

--S
ds

VR
wtw' =

ds

R

w '

=S
ds

JR
(23 )

For simplicity in the argument, we shall assume that e1 , la , and es

are real , and that e , >e2>ez . We now make the transformation :

s = éz + ( , - ez )/ 2, (24 )

from which it follows, observing (5 ) , that we have

ds 1 dx

= KA , (25)
R λ Vii(1 - x2) (1- k -x2)

where , and k are defined by (9 ) . A similar analysis applies to the

evaluation of w' .

We shall consider more explicitly one case of special interest,

namely , when 92 and 9: are both real constants . * Since one of the

roots is real , we shall assume that this is e, and write R in the following

form :

R= 4 (8- ez) { (s —m)?+ nº } , (26 )

where we abbreviate : m =
-ez, 92= 3e}–4n?, Is = e + 4n?ez.

If we now define a constant H as follows:

H = (ez — m )? + n ? = + n ?,+ 4
(27 )

then u, as given by (4 ) , can be written in the form :

U= cn

{
S-C2-H

k

s - l2 + H }
ds 1

(28)

VR 2H

where kk ' = n / (2H ).

Setting s= (2 , we then obtain the real period : N= 282 , where we have

1

120 = w + w = cn - '( - 1 ,k ) =

9-27
1

2H

F (1,5 ) =

1

K ,

HН

( 29 )

2H

where K is the complete elliptic integral corresponding to k .

* See A. G. Greenhill: The Applications of Elliptic Functions. London , 1892, Section 61 , p . 50 .
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3

4

1

2

As an example , let us consider what has been called the equianhar

monic case , * where ga=0. We then have eq =aga, where a = 1/ 4.

Since na = ez and H = 3eż, we find k2= 1V313 and k = (13— 1 )/(212 ).

Since sin a=k , this gives a= 15 ° .

Hence the desired half-period has the following value :

2 = 2K (150) /(VT: V3) = (1/ V7a) 1.52995 4037. (30)

The Functions $ (2 ) and g (x ) .

In addition to ® (2) , Weierstrass introduced two additional functions

denoted respectively by $ (x ) and ( 2 ). The first of these is defined

by the equation

d

$( x)= -8 (x) , (31 )
dx

together with the condition ,

lim [s(2) -1]=o.

(3
2
)

This function has a quasi-periodicity given by the equations :

$ (x + 2w ) = $ (x ) +28 (w ),

$ ( x + 2w ') = $ (x ) +25 (w' ) .

(

(33)

The second function was similarly defined by the equation :

log o(a) = 3(e) , (34)
dx

together with the condition :

lim [042 ]
-1 .

(3
5
)

)

This function also has a quasi -periodicity as follows :

0 (x + 2w ) = - 229 ( + w) o (x ) ,

0 (x + 2w ') = - 427"(x + w ") ( 1 ), (36)

where we write : n = $ (w ), m = sw ').

* H . Burkhardt: Elliptische Funktionen . Berlin and Leipzig , 3d ed . , 1920, p . 75 .

556037 0461 12
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THETA FUNCTIONS

17. Theta Functions

Any study of elliptic functions would be incomplete which did not

contain some account of the theory of Theta functions . These func

tions were first developed systematically by C. G. J. Jacobi in his

treatise Fundamenta nova theoriae functionum ellipticarum , which

we have mentioned earlier in Section 8. Such functions had appeared

previously in connection with the partition function of Euler, * namely ,

( 1 – "z)- !, and in Fourier's analytical theory of heat ( 1822) . But

it was reserved to Jacobi to give an almost complete account of their

properties .

Four principal Theta functions have been recognized and these are

defined by means of the following series :

00

n = 1

07 (2,4) = 2q* (sin r - q? sin 3x + qe sin 5x— q12 sin 7x+ ... ) ,

=2 Ë (-1 ) "g + ) * sin (2n+ 1 ) x; ( 1 )
n = 0

03 (x , q) = 2q+ (cos 2 + q2 cos 3x + qe cos 5x+ q12 cos 7x+ ... ) ,

= 2

n=0

g(n+}} " cos (2n +1)x; ( 2 )

0, (2,4)= 1 + 2q cos 2x + 29* cos 4x + 2qº cos 6x+ ... ,

= 1 + 2 3 qm? c
os 2nx ;

( 3)

0 ,(3,0) = 1-2 cos 2x + 2q* cos 4x - 2qº cos 6x+ ... ,

1 + 2 (-1 ) *(** cos 2mg . (4 )
n = 1

In these functions q is assumed to be a number lying within the unit

circle so that gl< 1. It can be represented conveniently in the form

q= e*lt, (5 )

where r is a complex number of the form : r = r + si, in which s>o .

It is sometimes convenient to represent these functions in terms of

single variable , in which case we shall use the notation :

a

0, (x) = 02 (3,9 ) . (6 )

* Introductio in Analysin Infinitorum , Lausanne, 1748 , 1, 304 .
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n=0

00

With this understanding, we can define the functions at r=0 as

follows :

02(0) = 2q+(1 + e + gº + 992 +420 + ... ) =291 qu2+ r;

63 ( 0 ) = 1 + 24 + 24 + 2q0 + 2q10 + ...) =1 + 2 3 2**;

0.(0) =1–2q + 204—2q° + 2q16–...) = 1+ 2 3 (-1)"qu? (7)

When it is desirable to express the Theta functions as functions of

instead of q, one can use the notation : 0; (x | r ) , 02(x |T ), etc.

Certain properties of the functions are readily deduced from the

series . Thus we see that 0. (x ) is an odd function, but that 02 (2 ), 03(2 ),

and 04 (x ) are even functions . One verifies also that

1

Om (x + * ) = Amom (2 ), Om (x + ) = Bm -e -2150m (x ) ,) ++ x (8)
9

where: A= A,= - 1 , A3=A,= 1 ; B= B,= - 1 , B=B= 1 .

Introducing the notation Q = q1/4er, one can show that the following

relationships exist between the four Theta functions :

1

0, (x) = - 02 ( 3+
2 -

= - 04

1

( )= Q ( 1 + ) = ( + 2
= 0, ( 3 + 1

2

x +
2TT- Q0

1

+
2 " -2"

= 03 ( x + ( 9)

These identities , although not quite obvious, can be established

readily . Thus, observing that we can write

0.(x)= 1+ Š (-1)"qr?(e?nizte- anie),

we have

-iQ 6.(x+ 3x+)=- iQ 1+ 3 (-1)"(quº+ nqanis+ qua - ne- 2nt)o]

= -iqt [(et –e-* + Š (-1)"qu +režnistix

+ Š (-1) +]qcm +12= (n+ 1 )& = 2 (0+ 1 ) +z+ sz]

=2qt sin z -iqtį (-1)"quet»(elan+113 – e = (20 +14 ),

=23(-1 ) "gin+} } ? sin (2n + 1)2. ( 10)
n =0
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We have thus shown that 0, (x) = -10 06(++) r), and the other

identities can be similarly established .

A large number of relationships have been discovered between

four functions , among which the following identities will be of special

use to us :

0} (x )0 ( 0 ) = 0} (x) 02 (0 ) - 03 (2 ) 03(0 ) ,

02 (2 ) 02 (0 ) = 02(x ) 02 (0)— 01 (x )03 (0) ,

03 (2 )0 (0 ) = 0% (2 ) 03 (0 ) - 07 (2 )02(0 ),

02 (x ) 0 (0 ) = 0} ( x ) 0 ( 0 ) 02(x )0 (0 ). ( 11 )

For the derivation of these and other relationships the reader is

referred to treatises on the subject . Modern methods of proof depend

usually upon the application of theorems in the theory of functions

of a complex variable , but the identities were derived originally by

Jacobi from purely algebraic arguments.

If we denote by G the infinite product

G = (1-2 ) (1-24) (1-2 ) . ( 12 )

then the Theta functions can be expressed as the following infinite

products:

01 (x ) = 26q1/4 sin x TT (1–2q2n cos 2x + qan ),

o

n= 1

02 (2x ) = 26q1 /4 cos x ÎI ( 1 + 2q2n cos 2x + qan ),
n= 1

03(x) = G î (1 + 2q2n-1 cos 2x + qon -2),
n = 1

0, (x ) = G i (1–2q2n -1 cos 2x + qan - 2). ( 13)
n = 1

The zeros of the Theta functions are obtained from equations (9 ) .

For example, from these we have the following identity :

0, (x) = - iQ20, (x+*+at) , ( 14 )

and thus, if xo is any zero of 0, (x) , so also is Xo + +at.

More generally, by the same argument, it can be shown that if Xo

is any zero of any one of the Theta functions, then

z=Xo+ma+NIT, ( 15 )

is also a zero for any integral values of m and n .
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Since xo = 0 is a zero of 6, (x) , it follows from the first relations in (9 )

that 37 , + Înt, and its are primitive zeros respectively of 02 (2 ), 03 ( 2 ),

and 6. (x) .

18. The Differential Equation of the Theta Functions

The relationships which exist between both the elliptic integrals

and the elliptic functions , which we have described in earlier sections,

and the Theta functions are obtained most readily by means of the

following identity :

d ( 0.02 0 , ( r ) 03 (x )

dx
)= 0 (0)

04(2 ) 04 ( ) 04(x)
(1 )

The derivation of this equation is difficult and the reader is referred

for it to treatises on the Theta function .

If we now make use of the abbreviation :

0. ( )

y=;

04(20 )'
(2)

square both members of ( 1 ) , and replace 0 (x) 0 (0) and 0 (x) 0 (0)

respectively by 0 (x) 04 (0 ) -0 (x) 02(0 ) and 0%(x) of(0) -07(x ) 02 (0 ), ob

tained from equations ( 11 ) of Section 17 , we derive the following

differential equations :

(0%)*=[ :(0) –y204)(03(0) —y?0( 0) ]. (3 )

Making use of the transformation :

2=

0 (0)

y,
02 (0 )

u=0 (0) x , (4 )

and employing the abbreviation :

0(0)
k=

03 (0 )'

(5)

we obtain equation (3 ) in the canonical form :

(d2
dz 12

du ) - (1– za) ( 1 - kºza).

(6 )
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Since this equation has the solution : 2 = sn (u ,k ), and also the solu

tion defined by (2 ) and (4 ) , we achieve the desired relationship be

tween the Jacobi elliptic sine and the Theta functions as follows:

03(0 ) 0 , [u /0% (0 ) ]
sn (uk) =

0 , (0 ) 04 [ /03 (0 )]

(7)

That the arbitrary constant which enters linearly with u in the solu

tion of (6 ) has been properly determined is seen from the fact that

both sides of (7 ) equal 0 when u=0 .

Observing the equations : cn?u= 1-22 and dn ?u = 1 - kºz ?, and

making use of the relationships between the Theta functions given in

( 11 ) of Section 17 , one readily obtains the following formulas :

04(0 ) 02 (0) 04 (0 ) 03 (0)
cn (uk) dn (uk) (8)

0,(0) 0 (0) 03 (0) 0 (0 )'

where v = u /0% (0 ).

It is often useful to express k' in terms of Theta functions , the

desired formula being the following:

k '
0(0)

0} (0 )

(9 )

This is readily derived by observing that

k '? = 1 - k2_0 (0 ) —04(0 ) ( 10)
Of (0 )

If we now set x= 0 in the last formula of ( 11 ) , Section 17 , we obtain

the identity :

01 (O ) = 0 (0 ) -02(0 ), ( 11 )

from which (9 ) follows as an immediate consequence.

The values of K and K' have the following equivalent forms in

terms of Theta functions :

K

= +63(0), K '= - wir6 ( 0 ), ( 12)

from which it follows that

K|K= -it, q = e - K /K ( 13 )

Formulas ( 12 ) following immediately from (7 ) by observing that

the periods of sn (u ,k ) are 4K and 2K'i and that the corresponding

periods of 0 , (v ) /04 (v ), given by (8 ) of Section 17 , are 27 and at . Hence

we equate : 2K /0% (0 ) = , and 2K'i/03 (0 ) = .
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From these formulas one now has the following series, which are

useful for the computation of the periods as well as k and k' when q

is given :

(26)= 13(0 ) = 1 + 29 + 2q* + 20° + ...,

(245K )'= 82(0)= 2q+(1 + & + go+ 212 +220 + ... ) , (14)

(265) = 04 (0 ) = 1—24 + 274—20° +

K

K' - log 2
п

PROBLEMS

1. Given g=12 , find the values of k , K, and K' .

2. If K = 3 , invert the first equation in ( 14) to estimate q. Use this value to

find k and K' .

3. Defining a ' by the equation : It ' = - 1 , establish the following :

01(: | T ) = - iF (x ) 6 ( IT'-'), 02 (X ! 1) = F (x )04(XT ' ! ' ),

03 ( ) = (x )03 (xT' '), 04 (217) = F (x )02 (IT'17 '),

where we write : F (x) = ( - if) -1/2 exp (it'x2/ ) .

4. Use the results of Problem 3 to prove that

sniu , k ) = i tn (u , k ' ) .

19. Representation of the Jacobi Elliptic Functions as Fourier Series

From the results of the preceding section we are now able to give a

representation of the Jacobi elliptic functions as Fourier series. Since

03 (0 ) = 2K /T , from which it follows that u /03 (0 ) = TU /2K , we shall adopt

the following notation :

TT

V = u. ( 1 )
2K

In terms of the variable v, we can then write the following expan

sions :

sn (uk)
03 (0 ) 0 , (v )

02(0) 0 (0 )

= ['
+ 2x + 2x + 2q° +

1 + 2 ° + 2° +212 + ::][si-27.cösimor tog sig 50=
sin v - gʻ sin 30+ gø sin 50

1–2q cos 2v + 294 cos 40

(2)
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04 (0 ) 62(0)
cn (uk) =

0, (0 ) 04(v )

=[
1–2q + 294-29° + ..

1 + q? + 2° + ? + . [ cos
cos v + q* cos 3v + qê cos50+

1-24 cos 2v+ 29* cos 40 ]
(3 )

dn (u,k)
0, (0 ) 03 (v)

0,(0 ) 04( v)

= (
1-2q + 204—20° +

+ 2x+2qk+ 2q°+ ][I
1 + 2 cos 2v+ 2q* cos 40+

1-29 cos 2v+ 29* cos 40 :]
(4)

This representation of the elliptic functions as the ratios of Fourier

series suggests the possibility of representing them as single Fourier

series. That this is , indeed , the case is readily seen from the second

ratio of (2) . If we write the denominator in the form : 1-22, where

we use the abbreviation :

(5 )z= cos 20-2° cos 40 + q* cos 60—

then the ratio itself can be written as the following product:

(sin v - qº sin 30+ qº sin 50- ...)( 1 + 2q2 + 4q2z2 + 8q°28 + . ) . (6 )

Since both powers of cos nv and such products as cos 'nvX cos'mucan

be reduced to the linear sums of cosines of the form cos (av+ bv) ,

where a and b are integers (or zero ) , it is seen that, at least formally ,

the second term in (6 ) can be reduced to a Fourier series in cosines .

Since , furthermore, the product sin mv cos nvis reducible to the sum of

two sine terms, the product given by (6) can be reduced formally to

the sum of terms of the form sin pv , that is to say , to a Fourier series

in sines. The same argument applies to (3 ) and (4 ) , both of which

reduce formally to Fourier series in cosine terms.

The explicit expansions are as follows :*

sn (uk)
27 q * + 1/2

sin (2n + 1 ) v, 7 )
Kk 7 =61 - q2n +1

00

21

cn ( u ,k ) =
q"+1/2

cos (2n + 1 ) ,

Kk- 1 + q2n +1
Σπ.Σ (8)

21 q"

dn (u ,k) = zK +2KK1+ q2n
cos 2nv .ΤΣ (9 )

* The explicit derivation of these series by different methods will be found in Whittaker and Watson :

Modern Analysis, p . 510, and in Greenhill: Elliptic Functions, pp . 285-286 . The origin of the series is found

in Jacobi's Fundamenta Nova, p . 101 .
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If we write : v= x+ iy and r=r+si, s>0 , then these series converge

for all values of v within the strip

lyk< 378,
( 10)

and represent the functions there. This follows from the fact that the

functions , which form the left members, are analytic except at their

poles and that the series converge provided exp ( Env /2 + nait) < 1 .

A useful form can be given to the coefficients of the harmonic terms

in the three series by observing that q= exp ( -aK '/ K ). Thus , in (7 ) ,

we can write the coefficient of sin (2n+ 1 ) v as follows:

TT2 qn + 1 / 2 1

Kk 1 - q2n + 1 Kk 1
( 9- n- 1 /2— q*+ 1 /2)

2

(11 )

Similarly, the coefficients of the harmonic terms in (8 ) and (9) can

be written respectively as follows :

7T 1
21 q*+ 1 /2

Kk 1 + q2n + 1 KK
cosh

( 12 )

[(n+ 3) =K'K]
TT21 7" 1

K 1 + q2K cosh (naK '/K )
( 13)

20. The Elliptic Modular Functions

Because of their importance in the practical application of the

theory of elliptic functions, three quantities have been defined which

are called elliptic modular functions. These are the following:

f (1 ) 09(017)
07 (017 ) 04 (011)

9(- ) =
03 (011 )'

h (t) = f ( )
( 1 )

g (7 )

where the variable 7 , as previously defined , is connected with q , K.

and K by means of the equations:

T =

TT-10
i iK'

log q =
K

(2)

From equations (5 ) and (9 ) of Section 18 , we see that

$ ( ) = k ?, g (7 ) = k ” , h ( ) = - kº/k "2 = -k /( 1 - k2). (3 )
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= e**(1 + 2)= e

**(1+ 1), w
we

Observing that ka + k " = 1, and that are

obtain the following relationships :

$ (7 + 2 ) = f ( ), g (n+ 2 ) =9 (1) , f(-) +g (t) = 1 , f(i+ 1 ) =h (1) . (4 )

If 1 ' is defined by the equation : it ' = - 1 , then these equations

can be supplemented by the following:

$ ( ') = g ( ), g (') =f(-) . (5)

By means of equations ( 13 ) , Section 17 , the modular functions are

readily expressed as the following infinite products in terms of the

variable a:

(1 + q2) (1 + 94) (1 + 2° )
)

; (6)
( 1 + 2) (1 + 2 ) (1 + 20)

8

•

8

9(=)=[47
(1-2) (1-2) (1-90) (1-97)

( 1 + 2) (1 + 2 ) ( 1 + 2 ) ( 1 + 9+) :] (7 )

Since f (t ) = k ?, it is clear that we can write

k % = v2qF (Q), (8)

where we employ the abbreviation :

F(g)=[ ...
(9)

( 1 + 9 ) (1 + 94 ) ( 1 + 2°)

L (1 + 0) (1 + ) (1 + 0 )

The expansion of F(q) as a power series in q has been given by L. A.

Schoncke ( 1807-53 ) to the term q26 as follows: *

F (a) = 1-9+ 2q2—303 + 474-678 + 9q0— 12q ?+1678

-22°+2970— 38q " + 50q12-64918 + 82944–105715+132016

– 166217 + 208918 — 258919 +320420 — 395q21 + 484722 — 592q23

+ 722q24 — 876q25 +1,060928 + .... ( 10 )

By means of formulas (8 ) and ( 10 ) it is possible to compute k when q

is given . The inverse problem , to compute q when k is given , is more

difficult, and extensive analysis has been devoted to the problem

associated with this in version .

The practical method makes use of the following quantity :

1

(11 )

2 tuk

" Aequationes modulares pro transformations Functionum Ellipticarum , ” Journal für Math., Vol . 16 .

1837, pp . 97-130 .
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which we see lies between 0 and 4 when k or k' is a value between 0

and 1 .

From formula (9 ) of Section 18 we see that th ' = 04 (0 )/03 (0 ), and

thus , referring to the definitions of the functions given in Section 17 ,

we can write (11 ) as follows:

ES

10,( 0) -2 .( 0 ) 7 1 02(0,94)

20.00+0.(0 ) . 2L0. (0,9+)]=* 30 ]
(12 )

q + q° + 225 +249+281+

1 + 294 + 2016 + 2q38 + 2004+

( 13)

This series is now inverted and q obtained as the following series in e :

q = e + 26 + 15 €° + 150€ 13 + 1,707+ 7 + 20,910621 +268,616625 + ... , (14)

a series which clearly converges rapidly for values of e less than %.

If k' is small, so that e is close to y, then the convergence of ( 14 )

can be improved by using k instead of k ' in formula ( 11 ) and comput

ing q ' instead of q . The value of q is then found from the equation :

log q . log q ' = n ? ( 15 )

It is also possible to compute q directly in terms of ka from a formula

provided by C. Hermite (1822–1901 ) , although usually (14 ) , because

of its rapid convergence, is to be preferred. Hermite's expansion is

as follows: *

q = a_ka + azk4 + azk® + azke + azkio + ... , (16 )

where we have

2a1 = 1, 20az = 1 , 2''ag = 21, 21ax = 31, 2127 = 6,257 , 220a9 = 10,293,

22527= 279,025 , 22®ag = 483,127, 23629=435,506,703 ,

237810= 776,957,575 , 2 “ Qu = 22,417,045,555 , 2 *3012=40,784,671,953 .

The numerical values of these coefficients to ten significant figures

are given in the following table :

Q = 0.062500 00000,

az = 0.031250 00000 ,

ag = 0.020507 81250 ,

ag= 0.0063374 56623 ,

Q10= 0.0056531 10384 ,

au1 = 0.0050970 46040,

012=0.0046366 80382.

05= 0.0119342 80396 ,

ag= 0.0098161 69739 ,

ay=0.0083155 93004,

ag = 0.0071991 53304 ,a = 0.015136 71875 ,

* Oeuvres, Vol . 4, pp . 470–487.
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21. Solution of the Quintic Equation By Modular Functions

An instructive application of the modular functions is found in the

solution of the quintic equation :

25 +0,24 +0,23 --Ag22 +242 + ag = 0 . ( 1 )

By means of a Tschirnhausen transformation * it is possible to

reduce ( 1 ) to the canonical form :

75--2 - a = 0 . (2 )

How this is actually done will not concern us here , since the trans

formation involves algebraic processes of considerable complexity .

Fundamentally , however, only square and cube roots are used in the

reduction

For this equation Hermite found a very elegant solution in terms

of the modular functions as follows:

Introducing the functions

$ (t) = k = f( ), \ ( ) = K = V9 (1), (3 )

Hermite defined

*( =[ (6+)+*( ][:(+416)

- ( +4 )][*(*+ 2:16) +(++3:1)] (4)

and showed that the quantities

0 (1) , 0 (1+ 16 ) , 0 (1+ 2.16 ) , 0 (1+ 3.16 ) , 0 (1+ 4.16 ) (5 )

are roots of the following quintic equation :

ņš —245384(1 )¥ 10(7)6—275669(7)¥ 16( )[1 + 08(7)] = 0 . (6 )

If we make the transformation :

Q = 25 * (1 ) ¥" (t )X, (7 )

then equation ( 6 ) reduces to the canonical form defined by (2 ) ,

where a has the following value :

a

2 1 +08( 7 ) 2 ( 1 + ka)

155 $ *(+)44(T) 15521/2k'

(8)

* For a history of this problem see F. Cajori's History of Mathematics, New York, 1919, pp . 349-350. For

the transformation itself consult: M. Serret: Cours d'algèbra su périeure, Vol . 1 , art . 192.

" Sur la resolution de l'équation du cinquième degré," Comptes Rendus, Vol. 48 , 1858 (I) , p . 508; see also

Hermite's Oeuvres, Vol . 2, 1908, pp . 5–12 .
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It is clear from (8 ) that , given a, k can be found as the root of the

quartic equation :

4 ( 1 + k2)2—155a ?k (1 - K2) = 0. (9 )

To solve this equation, we write A = v5*a and determine a from
the equation :

sin a=4/A. ( 10 )

The modulus k is then one of the following values :

a + 27 31-a

k = tantan

πα

tanna , tan ( 11 )
4 4

Choosing any one of these quantities for the modulus, the desired

roots of equation (2 ) are the following:

B (- ), B (t + 16 ) , B (1 + 2.16 ), Bo (1+3.16) , B (1 + 4.16 ), ( 12)

where we write:

1

B =

1

21534 (1 ) (1) 21534 te'
( 13 )

The actual numerical application of this theory to the solution

of equation (2 ) would be quite difficult except for the fortunate

circumstance that ( 1) has the following expansion :

(1 ) = 12*50(1 + Q - Q2 + 23—8Q5—9Q® + 8Q? —9Q8 + ... ) , ( 14 )

where Q = V .

The details of the numerical solution of the equation

205 — 2—2 = 0 ,

are given below as follows:

Since A = 515, we compute :

a

sin a= 0.07155 41753 , tan
4

= 0.01790 57586= k, k ' = 0.99983 9679 .

Hence, by (16 ) , of Section 20, we have :

q= 0.00002 0041725 , Q==0.11491 7725, B=0.40884 9953 .
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We also compute

( = v235 Q= 2.80979 8187 , BC= 1.14878 5857 ,

and the following powers of Q:

Q=0.11491 7725, Q=0.00002 0042 ,

Qe = 0.01320 6084 , Qø= 0.00000 2303 ,

Qe = 0.00151 7613 , Q= 0.00000 0265,

Q=0.00017 4401 , Qº = 0.00000 0030 .

Substituting in (14 ) , we get : $ (7 ) = 3.09934 7991 , and hence

x1 = B ( 7 ) = 1.26716 8280 ,

which is correct to six places .

In order to obtain the pair of conjugate complex roots I, and 23, we

first consider

Q(++ 16)=4[( + 30)7i]= Qelorile

= (cos 4+isin )

=Q(-0.80901 6994 - i 0.58778 5252 ) ,

from which we obtain

Q " ( +16 ) = Q " e16n=1/5, 03/8 (7 + 16 ) = Q3 /826 =1 /5.

When these values are substituted in (14 ) , we obtain

( - + 16 ) = C (e&rt/5 + Qe22« t/5 — Q2e38rt/5 + ... ) ,

=C( -0.77868 9960–0.46496 78851) ,

-2.18796 1638-1.30646 5921i .
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Multiplying this value by B, we then obtain the second root .

Xa = -0.89454 8013-0.53414 8530i,

and from its conjugate , the third root Xz.

The other two roots are similarly obtained from the evaluation of

32

ΒΦΙ τ +

We thus find : X = 0.26096 4068+ 1.1772 2613 i , and from its con

jugate, the fifth root X5 . These roots are correct to the sixth place .

22. Tables of the Elliptic Functions

In the numerical solution of differential equations of the type

described in Section 1 , tables of the elliptic functions are required .

Tables of sn u , cn u , and dn u have been provided to different argu

ments by L. M. Milne - Thomson in Die elliptischen Funktionen von

Jacobi, Berlin , 1931 , and by G. W. and R. M. Spenceley in Smithsonian

Elliptic Function Tables, Washington, D.C. , 1947.

The table of Milne - Thomson gives the values of the three functions

to five decimal places for values of u at intervals of 0.01 corresponding

to the values of k ? at intervals of 0.1 from k = 0 to k=0.9 . The

range of u was from 0 to 2.00 for k2 between 0 and 0.5 , from 0 to

0.25 for k from 0.6 to 0.8 , and from 0 to 3.00 for k = 0.9. For k = 1,

we have sn u = tanh u and cn u=dn u= sech u .

The table of G. W. and R. M. Spenceley was computed to 12 decimal

places for values of k= sin a at each degree from 0° to 89º . The

values were given as functions of u for values of r between 0 and 90

at unit intervals, where u was defined as follows :

-- @ K

K being the complete elliptic integral corresponding to a.

The following tables are four -decimal approximations of snu,

cn u, and dn u, in which the variables are those used in the Spenceley

table .
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TABLE OF su (u , k) , U =

- 90

a= arc sin k

0° 10° 15° 30 ° 45° 80 ° 899

0

1

2

3

4

0.0000

0.0175

0.0349

0.0523

0.0698

0.0000

0.0176

0.0352

0.0527

0.0703

0.0000

0.0178

0.0355

0.0532

0.0710

0.0000

0.0187

0.0375

0.0562

0.0748

0.0000

0.0206

0.0412

0.0617

0.0823

0.0000

0. 0278

0.0556

0.0833

0.1109

0.0000

0.0350

0.0700

0.1047

0.1393

0 0000

0.0603

0.1202

0.1792

0.2370

5

6

7

8

9

0, 0872

0.1045

0.1219

0. 1392

0.1564

0.0878

0. 1053

0. 1228

0. 1402

0. 1576

0.0887

0.1063

0. 1240

0. 1415

0. 1591

0.0935

0. 1121

0. 1306

0. 1491

0. 1676

0. 1027

0. 1231

0. 1435

0. 1637

0. 1838

0. 1734

0. 2072

0.2405

0.2733

0. 3054

0. 2931

0.3473

0.3992

0.4487

0. 4956

10

15

20

25

30

0.1736

0.2588

0. 3420

0.4226

0. 5000

0. 1749

0.2607

0.3443

0.4253

0. 5029

0.1766

0, 2630

0.3473

0.4286

0. 5065

0.1859

0.2764

0. 3639

0.4477

0.5269

0. 2038

0. 3018

0.3953

0.4832

0.5646

0. 3369

0. 4826

0. 6061

0.7064

0.7851

0. 5398

0.7191

0.8360

0. 9069

0.9481

35

40

45

50

55

0. 5736

0. 6428

0. 7071

0.7660

0.8192

0.5765

0 ,"6457

0. 7098

0.7685

0.8212

0.5802

0.6493

0.7132

0.7715

0.8238

0.6011

0.6696

0.7321

0.7882

0.8379

0.6389

0.7059

0.7654

0.8174

0. 8623

0.7599

0.8171

0.8632

0.8998

0.9285

0.8451

0. 8900

0.9231

0.9471

0.9643

0.9713

0.9842

0.9914

0. 9953

0.9975

60

65

70

75

80

0. 8660

0. 9063

0.9397

0. 9659

0.9848

0.8677

0.9075

0. 9405

0. 9664

0. 9850

0. 8697

0. 9091

0.9416

0.9670

0.9853

0.8810

0.9175

0.9472

0.9704

0.9868

0. 9002

0.9316

0.9567

0.9758

0.9893

0.9766

0.9853

0.9914

0. 9955

0.9981

0.9987

0.9993

0.9996

0.9998

0. 9999

81

82

83

84

85

0.9877

0.9903

0. 9925

0.9945

0. 9962

0.9879

0. 9904

0. 9927

0. 9946

0.9963

0.9881

0.9906

0. 9928

0.9947

0.9963

0. 9893

0.9916

0.9936

0.9953

0. 9967

0.9914

0.9932

0.9948

0. 9962

0.9973

0. 9985

0.9988

0. 9991

0.9993

0.9995

1. 0000

1. 0000

1. 0000

1. 0000

1.0000

86

87

88

89

90

0. 9976

0.9986

0.9994

0. 9998

1. 0000

0. 9976

0.9987

0.9994

0. 9999

1.0000

0. 9976

0.9987

0.9994

0.9999

1. 0000

0.9979

0. 9988

0.9995

0. 9999

1. 0000

0.9983

0.9990

0.9996

0.9999

1. 0000

0.9993

0. 9996

0. 9998

1. 0000

1. 0000

0.9997

0. 9998

0.9999

1. 0000

1. 0000

1.0000

1.0000

1. 0000

1. 0000

1. 0000

K 1.8541

K , k =sin a .

60 ° 70 °

0.0000

0.0240

0.0479

0.0718

0.0956

0.1193

0.1429

0. 1664

0. 1897

0. 2128

0. 1383

0.1655

0. 1925

0. 2192

0.2456

0.2357

0.3465

0.4495

0. 5432

0. 6268

0. 2717

0.3960

0. 5081

0. 6062

0. 6900

0. 7000

0.7630

0.8165

0.8612

0.8979

0. 9278

0.9515

0.9698

0.9834

0.9927

0.9507

0.9677

0.9802

0. 9893

0. 9954

0. 9941

0. 9954

0.9965

0.997

0.9982

0.9963

0.9971

0. 9978

0. 9984

0.9989

0. 9988

0.9994

0.9997

0.9999

1. 0000

1. 5708 1. 5828 1. 5981 1. 6858 2. 1565 2. 5046 3. 1534 5. 4349
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T

TABLE OF cn (u, k) ,

-
K, k= sin a .

a = arc sin k

0° 10° 15° 30 ° 45° 60 ° 70 ° 80 ° 89 °

0

1

2

3

4

1.0000

0.9998

0.9994

0.9986

0.9976

1. 0000

0.9998

0.9994

0.9986

0.9975

1. 0000

0.9998

0.9994

0.9986

0. 9975

1. 0000

0.9998

0.9993

0.9984

0.9972

1. 0000

0.9998

0.9992

0.9981

0. 9966

1. 0000

0.9997

0.9989

0.9974

0.9954

1. 0000

0. 9996

0.9985

0.9965

0.9938

1. 0000

0.9994

0.9975

0. 9945

0. 9903

1. 0000

0.9982

0. 9928

0.9838

0.9715

5

7

8

9

0. 9962

0.9945

0.9925

0.9903

0.9877

0. 9961

0. 9944

0.9924

0.9901

0.9875

0.9961

0.9943

0.9923

0.9899

0.9873

0.9956

0.9937

0.9914

0.9888

0.9859

0.9947

0.9924

0.9897

0.9865

0.9830

0. 9929

0.9897

0.9861

0. 9818

0.9771

0. 9904

0.9862

0. 9813

0.9757

0.9694

0.9848

0.9783

0.9706

0.9619

0.9522

0.9561

0.9378

0.9169

0.8937

0.8685

10

15

20

25

30

0.9848

0.9659

0.9397

0.9063

0.8660

0.9846

0.9654

0.9388

0.9051

0.8644

0.9843

0. 9648

0.9378

0.9035

0.8622

0.9826

0. 9610

0.9314

0.8942

0.8499

0.9790

0.9534

0.9185

0.8755

0.8254

0.9718

0. 9381

0.8933

0.8396

0.7792

0.9624

0.9183

0.8613

0.7953

0.7238

0.9415

0.8759

0.7954

0.7079

0.6194

0.8418

0.6949

0.6487

0.4213

0. 3181

35

40

45

50

55

0.8192

0.7660

0.7071

0.6428

0.5736

0.8171

0.7636

0.7044

0.6399

0.5706

0.8144

0.7605

0.7010

0. 6362

0.5669

0.7992

0.7428

0.6813

0.6154

0.5458

0.7693

0.7083

0. 6436

0. 5760

0.5064

0.7141

0. 6463

0.5774

0.5083

0. 4401

0. 6500

0.5765

0.5048

0.4362

0.3713

0.5346

0.4559

0.3847

0.3211

0.2647

0.2379

0. 1768

0. 1310

0.0967

0.0711

60

65

70

75

80

0.5000

0.4226

0.3420

0. 2588

0. 1736

0.4971

0.4200

0. 3397

0.2570

0. 1724

0.4935

0.4166

0.3368

0. 2546

0. 1707

0.4731

0.3978

0.3205

0.2417

0. 1617

0. 4354

0.3635

0.2911

0.2185

0.1457

0.3732

0.3078

0. 2440

0.1816

0. 1204

0. 3100

0.2523

0. 1978

0.1459

0.0961

0. 2149

0.1707

0.1312

0.0952

0.0620

0.0519

0.0375

0.0266

0.0181

0.0112

81

82

83

84

85

0.1564

0.1392

0. 1219

0. 1045

0.0872

0. 1553

0.1381

0. 1210

0.1037

0.0865

0. 1538

0. 1368

0. 1198

0.1027

0. 0857

0.1456

0.1295

0.1134

0.0972

0.0810

0.1311

0.1165

0. 1020

0. 0874

0.0728

0.1082

0.0961

0.0841

0.0720

0.0600

0.0863

0.0766

0.0669

0.0573

0.0477

0.0556

0.0493

0.0430

0.0368

0.0306

0.0100

0.0088

0.0076

0.0065

0.0053

86

87

88

89

90

0.0698

0.0523

0.0349

0.0175

0.0000

0.0692

0.0519

0.0346

0.0173

0.0000

0.0686

0.0514

0.0343

0.0172

0.0000

0.0649

0.0487

0.0324

0.0162

0.0000

0.0583

0.0437

0.0291

0.0146

0.0000

0.0480

0.0360

0.0240

0.0120

0.0000

0.0381

0.0286

0.0190

0.0095

0.0000

0.0244

0.0183

0.0122

0.0061

0.0000

0.0043

0.0032

0.0021

0.0011

0.0000

E 1. 5708 1.5589 1. 5442 1. 4675 1.3506 1 , 2111 1. 1184 1. 0401 1. 0008

556037 0461 13
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TABLE OF dn ( u , k ), U =

6 )90

a = arc sin k

50T 10° 15° 30 ° 45° 80 °

0

1

2

1. 0000

1. 0000

1.0000

1. 0000

1. 0000

1. 0000

1. 0000

1. 0000

1. 0000

0.9999

1. 0000

1. 0000

1. 0000

0.9999

0.9998

1.0000

1. 0000

0.9998

0.9996

0.9993

1. 0000

0.9999

0.9996

0.9990

0.9983

1. 0000

0.9997

0.9986

0. 9969

0. 9946

1. 0000

0.9994

0. 9976

0.9947

0.9906

3

4

K , k = sin a .

60 ° 70° 89 °

1. 0000

0.9998

0. 9991

0.9981

0. 9966

1.0000

0.9982

0.9928

0.9838

0.9715

5

6

7

8

9

1.0000

1. 0000

0. 9999

0. 9999

0. 9999

0.9999

0.9998

0.9998

0.9997

0.9996

0.9997

0.9996

0.9995

0.9993

0.9992

0.9989

0.9984

0.9979

0.9972

0.9965

0. 9974

0.9962

0.9948

0.9933

0.9915

0.9946

0.9923

0.9896

0.9864

0. 9829

0.9915

0.9878

0.9835

0.9786

0. 9730

0.9853

0.9790

0.9715

0.9631

0.9537

0.9561

0.9378

0.9169

0.8937

0. 8686

10

15

20

25

30

0. 9999

0.9997

0.9996

0.9993

0.9990

0.9995

0.9990

0.9982

0.9973

0.9962

0.9990

0.9977

0. 9960

0.9938

0. 9914

0. 9957

0.9904

0.9833

0.9746

0. 9647

0. 9896

0.9770

0.9601

0.9398

0.9169

0.9789

0.9539

0.9211

0.8824

0.8398

0.9669

0.9282

0.8787

0.8219

0.7613

0.9434

0.8799

0. 8024

0.7184

0.6342

0.8418

0. 6950

0.5489

0.4216

0. 3185

35

40

45

50

55

0.9987

0. 9984

0.9981

0. 9978

0.9974

0. 9950

0.9937

0.9924

0.9911

0.9898

0. 9887

0.9858

0.9828

0. 9799

0.9770

0.9538

0.9423

0.9306

0.9191

0.9080

0. 8921

0.8665

0.8409

0.8160

0.7926

0.7953

0.7505

0.7071

0.6662

0.6287

0. 7001

0. 6406

0.5848

0.5339

0. 4886

0, 5543

0. 4814

0. 4167

0. 3607

0. 3133

0. 2385

0.1777

0. 1321

0.0982

0.0732

60

65

70

75

80

0.9971

0. 9969

0. 9966

0. 9964

0.9963

0.9886

0.9875

0.9866

0.9858

0.9853

0.9743

0.9719

0.9699

0. 9682

0.9669

0.8977

0.8886

0. 8807

0. 8744

0.8698

0.7712

0.7524

0. 7365

0.7238

0.7146

0. 5954

0.5666

0.5428

0.5241

0. 5108

0.4493

0. 4162

0. 3893

0. 3685

0. 3537

0.2738

0.2417

0.2164

0. 1974

0.1841

0.0548

0.0414

0.0318

0.0251

0.0207

81

82

83

84

85

0.9963

0. 9963

0.9963

0.9962

0.9962

0.9852

0.9851

0.9850

0.9850

0.9849

0.9667

0.9666

0.9664

0.9663

0. 9662

0. 8691

0.8684

0. 8679

0.8674

0.8670

0.7132

0.7119

0.7108

0. 7098

0. 7090

0. 5087

0. 5069

0.5053

0. 5039

0.5027

0.3515

0.3495

0. 3478

0. 3462

0.3449

0. 1821

0. 1803

0. 1787

0.1774

0.1762

0.0201

0.0195

0.0190

0.0186

0.0183

86

87

88

89

90

0.9962

0.9962

0.9962

0. 9962

0. 9962

0.9849

0.9848

0.9848

0.9848

0.9848

0. 9661
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Chapter 7

Differential Equations of Second Order

1. Introduction

IN PRECEDING CHAPTERS we have studied a few problems which led

in their solution to certain special differential equations of second

order . In this chapter we shall consider the general problem of such

equations , which, for convenience , we can write in the form

F(x ,y ,y ' ,y ' ' ) = 0 . ( 1 )

Let us assume that F( x, y,y'y ' ' ) , regarded as a function of the four

variables x ,y ,y ' ,y ' ' , is continuous in the neighborhood of the point :

Po = (20,40,46,46') and possesses continuous first derivatives there.

If, furthermore, the first derivative of F with respect to y ' ' does not

vanish at Po, then , by the theory of implicit functions , there exists a

unique continuous function y' ' of x ,y ,y ' , let us say , y ' ' = f(x,y ,y '),

which satisfies equation ( 1 ) and which assumes the value yo when

x = xo, Y=yo, y ' = yó. Therefore, in the neighborhood of Po, we can

write equation ( 1 ) in the explicit form :

dday

dz = f(x,y,y '). (2)

2. The Origin of Differential Equations of Second Order

Nonlinear differential equations of second order occur frequently

in connection with applied problems, a circumstance which has led to

considerable interest in them in recent years.

The prototype of some of them is found in one of the earliest ex

amples, namely , the equation which describes the oscillation of the

simple pendulum . This equation, derived in Section 4 of Chapter 1 ,

was found to have the form :

daz

dna + k2 sin z= 0 . ( 1 )

179
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By means of the transformation : y= sin { z, the problem can be re

duced to the solution of the equation ,

dạy

dxż = ay + by ,

which is integrated by elliptic functions .

A generalization of (2 ) is found in the equation :

dy
dydx + ay + by' = f cos mx, (3)dx

2t
h

which introduces a damping term and an impressed harmonic force .

The first systematic study of this equation was made by G. Duffing

in 1918 in an extensive investigation of forced vibrations and for this

reason it is frequently referred to as Duffing's equation .

In his investigation of the orbital motion of planets under the

assumptions of general relativity , that is , the problem of the perihelion

shift, Albert Einstein was led to the solution of the following equa

tion :

dạy
(4)dzi + y = a + by .

It is a matter of some historical interest to note that P. Gerber in

1898 , in an investigation of the velocity of gravitation, was led to the

same problem and derived the correct perihelion shift for Mercury

by solving the following equation :

(1+w +y=a- (2 )? (5)

Both equations are solved by means of elliptic functions .

An example of special interest is the one already examined in Chap

ter 4 in connection with Volterra's problem of the prey and the preda

tor . This problem led to a nonlinear differential equation of the

following form :

dạy
Y
dx2

dy

tacy?+ (ay - ay ?) -acy
dx

(6)
dx

The significant thing about this equation is the existence of periodic

solutions for positive values of a and c .

The significance of a term containing a power, other than one , of

the first derivative was pointed out as early as 1883 by Lord Rayleigh

in a discussion of the damping of a vibratory system under a vis

cosity factor. Lord Rayleigh showed how a steady state might be
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maintained if a term proportional to the cube of y' were introduced.

This interesting equation can be written :

a

*+[- + ( )+c = 0.
(7)

Years later these ideas became important in studying electrical

circuits associated with triode oscillators. The well-known equation

of B. van der Pol , which can be written in the form :

dạy

dx?

dy
( 1 -y ) + y = 0,a

da
(8)

appeared in connection with this phenomenon . This equation, how

ever , can be derived by a relatively simple transformation from that

of Lord Rayleigh. (See (D ) , Section 3. )

Another similar equation found in the theory of currents limited

by a space charge between coaxial cables , and called the equation of

Langmuir, is the following :

3v sve +(del) –1+ge= 0.
(9)

One of the early theories about the behavior of a spherical cloud of

gas acting under the mutual attraction of its molecules and subject

to the thermodynamics of gases led R. Emden to a consideration of

the equation :

,
. (10)

d.x2 ' x dx
+

The solution of this equation subject to the conditions : y= 1 , y ' = 0 ,

when x=0 , is a classic chapter in astrophysics.

These examples are perhaps sufficient to illustrate the variety of

applied problems which have contributed to interest in the theory

of nonlinear differential equations of second order .

It is also possible , of course, to obtain equations of this kind by

the elimination of two parameters from some given function, as we

have shown earlier in Section 4 of Chapter 1. For example , if A

and B are eliminated from the equation

y=log sin (Ax+ B) ,

(1
1
)

we obtain the equation :

2

dy
2 =( coth y- 1 )

dx²

dy
(12)

for which y, as given by ( 11 ) , is the general solution .
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The derivation of the generalized Riccati equation of second order

by the elimination of the arbitrary parameters in the ratio of two linear

forms, as described in Section 10 of Chapter 3 , is another example

of the origin of such nonlinear equations.

3. Classification of Nonlinear Differential Equations of Second Order

From the examples which we have given in the preceding section it

will be seen that most of the equations are special cases of the following

second order nonlinear differential equation :

Aly) op B ( y) +(y) ( *+ D(y)=0, (1 )

where the coefficients are the polynomials:

Ay = A , + Ay + ... + Amy ", B (y ) = B , + By + ... + Bny",

C ( y) = Co + Ciy + ... + Cpy, D ( y ) = D. + Dıyt . + Daye (2)

The quantities A., B1 , C1, and D, are assumed to be functions of u

and the exponents m , n , p , and q are integers.

That this equation does not include all cases of interest is evident,

however, from equation ( 10) of Section 2 , where n may have non

integral values, and from equation ( 12) , where the coefficient of y'?

includes coth y . But an examination of 249 examples of nonlinear

differential equations of second order given by E. Kamke in the

extensive list of such equations in the first volume of his Differential

gleichungen ( 1943 ) shows that 132 , or somewhat more than half, are

subsumed under equation ( 1 ) .

As a practical matter , therefore, we shall classify all equations which

are included under ( 1 ) as equations of polynomial class and all others

either as equations of transcendental class, where transcendental func

tions of the dependent variable occur , or as equations of algebraic

class , where no transcendental functions are involved .

Equation ( 12 ) of Section 2 belongs to the transcendental class and

equation ( 1 ) appears to belong to this class, but is transformed in a

simple manner into an equation of polynomial class. Another example

of an equation of transcendental class is furnished by the following:

ta(% +b sin y=0, (3)

which defines the motion of the simple pendulum with a damping

factor proportional to the square of the velocity .

-
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Such equations as

dạy dy
ta + by - 43/2 = 0,

dx² dr
(4 )

(wy+ b3 +e [ % + ]" (5 )

are examples of equations belonging to the algebraic class .

Progress in the understanding of nonlinear differential equations has

been made largely through the study of examples included under a few

special classes of equations . Some of these classes we shall now de

scribe.

(A) Equations Solved by Elliptic Functions

In this class we find those equations the solutions of which can be

reduced to functions which satisfy the equation :

day

dx²
= A + By + Cy? + Dy', (6 )

where A , B, C , and D are constants .

It will be shown later that there exists a solution for this equation ,

wbich assumes the specific values : Po = (20,90,95 ) and which is analytic

in the neighborhood of P .. Since , moreover, the equation is invariant

with respect to the linear transformation : x = r ' -20, one of the arbi

trary parameters is .o. From the theory of elliptic functions it is clear

that the only singularities are movable poles .

An interesting example of an equation the solution of which can be

reduced to the solution of (6 ) is the following:

dly
4 (y-72)

dx²

dy.

- là=3(1–2y) (disp *+49(2)(y—ya)
(7 )

dx

This equation, which is due to B. Gambier, has the solution :

y = 1 / [1-8 ° ( 4 ) , ( 8 )

where u is a solution of the equation : u' ' — 9 (2 ) u ' = 0 , and ( u ) is the

elliptic function of Weierstrass corresponding to ga = 4 , 93= 0 , that is ,

(u)= P (4,4,0) .

Since the verification of Gambier's example is not entirely a trivial

matter, it may be of interest to show it here . Let us first consider the

equation :

dºg_371 1 (dy
(9 )

du24 \y'y du

2
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If we now transform the independent variable from u to x by means

of the relationship : u=u ( ) , we obtain the equation :

E -G ) - : C +, -1)(?)
>

which , when u'u' is set equal to q(2) , reduces to (7 ) .

In order to solve (9 ) we now write : ( 1–82)y = 1 and differentiate

twice . We thus obtain :

(1–82)y' — 28'y = 0, (1-82)y'' —48 P'Y ' — (28 8 ')' y = 0 .

Dividing both of these equations by (1–82) and noting (8 ) , we get

y' =2&p'y?,

from the first, and the following from the second :

y ' ' = 2y?[48?$ '2y +® ') ?+ ®® ' '] ,

= 2y ?[482f0 !2+ (Ⓡ ') ' (1–82) + ®®" ( 1-82) ] ,

2 [ 360°°° + 8 " -40° 89 " ]. ( 10)

Referring now to equation (7 ) , Section 16 , Chapter 6 , we obtain the

following derivatives :

8'2 = 4803-928-93, 8" = 6892–

1

292., "

When these are substituted in ( 10 ) , the following equation results:

y '' = y [ 12805+ (20—592) 83—69382—3928–293] . ( 11 )

A similar reduction of the right hand member of (9 ) gives us the

following :

3/1 1

4 \y 4-1-1)(CMD )
= y [1295+ (12—392)83 — 39382—3938–392).

(12)

Comparing (11 ) with ( 12 ) , we see that they are equivalent only if

92=4 , 93= 0 . The solution of (9) is thus : y= 1 /(1-8° (u)] , where

p (u) = P (1,4,0 ) .

( B ) Equations in Which Critical Points Are Fired Points

The class of equations solved by elliptic functions suggested to E.

Picard , P. Painlevé , B. Gambier, and their associates, the problem of

classifying the general nonlinear differential equation of second order
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by special categories with respect to the character of the singular

points of the solutions .

The form of the equation adopted for the investigation was ( 1 ) , that

is to say , the equations studied belonged to the polynomial class .

The problem proposed was to establish conditions under which the

critical points of a solution , that is to say , branch points and essential

singularities, would be fixed points instead of movable points. Thus

any function which was the solution of an equation in this class would

have only poles as movable singularities. Clearly the equations de

scribed in (A) would be included in this category .

The investigation resulted in the discovery of 50 canonical types of

equations with the desired property . Of these all but 6 were found

to be integrable in terms of elementary or classical functions , or tran

scendents defined by linear equations. But the remaining 6 equations

required the introduction of new transcendental functions for their

solution . These functions are called Painlevé transcendents.

The Painlevé equations are given explicitly as follows:

( I )

day

dx²
-6y2 + 2x .

(II )

dạy

dx²
-2y+ xy+ u.

2
dydy

dx
-Y

du
tax + by + cyº + dxy *.

dụ 1 (d)? 1

(III) nyar (

Com)*- a ’+ 2(x2 — b)y* + 4xy +

- (1-34) (d2) -zu(1=w10 val (1-x)

(IV) y dzez (dx

3

2
ya

(V) 2 * (y - ya)
dºg 1

dx² 2

+6(1-4) 3 + cxy ( 1 - y ) + dx+y + (1 + y ).

(VI) y( 1 –y) (e-u) in (2–2(0+ 1 )y+ 3y 1 (cm )

+ y(1– y) (x +(1–2 )y)dx + 2x*(1 –2j?
dy 1

2c2 ] + (ayº(1 - y)?(x − y )
(1-2) dx2x ( 2

-bx (1 - y )* (x - y ) 2 - c( 1 - x )y ?(x y )2 — dX (1 — 2 )y (1 - y) ?).

The first three equations were originally given by Painlevé . Their

solutions have no singularities other than movable poles . The last

three equations are due to Gambier.

The 50 canonical types discovered in this investigation are recorded

in Appendix 1 .
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( C ) The Generalized Riccati Equation of Second Order

The essential features of this equation have already been introduced

in Section 10 of Chapter 3. Its significance is found in two facts .

First, the arbitrary constants appear in the ratio of two linear terms.

In the second place , the solution of the general equation can be reduced

to the solution of a linear differential equation of third order.

The generalized Riccati equation of second order belongs to the

polynomial class of nonlinear equations . It is characterized by the

following conditions: A (y) and B(y) of equations (2 ) are linear func

tions of y; C (y ) is equal to –2A1, where A, is the coefficient of y in

A (y) ; D (y) is a cubic polynomial in y.

(D) Equations Having Periodic Solutions

Extensive investigations have been made of a class of nonlinear

equations the solutions of which are periodic. Obviously this class

includes the equations solved by elliptic functions, but there are many

other categories which , under special conditions , introduce functions

which are periodic. Initiated by the researches of H. Poincaré in

1882, by M. A. Liapounoff in 1892 , and by I. Bendixson in 1901 , there

has been an unusual activity in the study of such equations in recent

years . Much of the literature of the subject is associated with the

development of what has been called nonlinear mechanics, which we

mentioned in Chapter 1 .

Equations of this class are illustrated by the equations of Volterra ,

which we have already discussed in Chapter 4 , and by Van der Pol's

equation (8 ) in Section 1. A celebrated example of this class of equa

tions was due to Lord Rayleigh, who first discussed it in a paper in

1883 and included it in the second edition ( 1894 ) of his Theory of Sound .

(See Bibliography .)

Rayleigh argued as follows: The solution of the equation

u " + ku '+ n ?u = 0, (13 )

defines a steady vibration if k= 0 ; but if k is positive, the vibrations

will die down, and if k is negative they will increase without limit .

Let us now add to ( 13 ) a term proportional to the cube of u ' ,

that is,

u " + ku'+ k'u'3 + n ? u = 0 . ( 14 )

If k and k' are both positive the resulting motion will again die out ,

and if both are negative, the motion will increase without limit .

But if k and k' have different signs, then the two terms which contain

them can be written

ku' ( 1 - au ' ) , a>0 , ( 15 )

and the motion is no longer unidirectional .
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If k is initially negative and the initial value of u' is sufficiently

small so that the term in parentheses is positive , the motion will

expand until ( 1 - au'2) becomes negative. Thereupon the motion

will begin to damp, u' will diminish until the term ( 15 ) is again

negative , and the motion once more increases . For small values of

k and k' Rayleigh gave the following approximate solution of ( 14) :

k'nA3

U=A sin nt + cos 3nt ,
32

(16)

where A is defined by

3

k + ık’n’AP = 0.
( 17 )

Commenting on the situation , Rayleigh said : “ If k be negative

and k' positive , the vibration becomes steady and assumes the

amplitude determined by ( 17 ) . A smaller vibration increases up to

this point , and a larger vibration falls down to it . If on the other

hand k be positive, while k' is negative, the steady vibration ab

stractly possible is unstable, a departure in either direction from the

amplitude given by ( 17 ) tending always to increase ."

It is of considerable interest to see how Rayleigh's equation ( 14 )

can be transformed into that of Van der Pol, equation (8 ) of Section 2 .

For this purpose let us write ( 14 ) in the following form :

dau

dt+ [ -670 (de) Jouw +nⓇu =0.
(18)

We now introduce the following change of variables :

pt= 2,
9dt

du

= y , ( 19)

where р and q are constants.

Equation ( 18) now becomes

p dy
-m ? u = 0 .

I da

Differentiating this equation and simplifying, we obtain

d²y b dy , na

(1- x2) ?dxa P
+ ( 20 )

p2 y=0.

If we now let p=n, q = v3c /b, and introduce the abbreviation :

e = b / p, then equation (20) assumes the usual form of the Van der

Pol equation :

dạy
-6 (1-4 )

dy

dx²
doty = 0 .

(21 )
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( E ) Miscellaneous Equations Solved by Special Devices

>

The literature of the subject contains a number of special examples

of nonlinear differential equations of second order, which can be

integrated in terms of elementary functions , or which can be reduced

to the solution of equations of simpler type . But each such equation

is a special case and general rules will not apply.

An interesting example is provided by the following equation :

dạy

-2a +y2 + 2abry - b = 0, (22)
dx

which has as an integral any solution of the Riccati equation:

dy +aye— be = 0. ( 23 )

This is readily proved by taking the derivative of (23 ), from which

we have :

d²y
b

dx ? di

dy
+ 2ay

If dy /dx is now replaced by its value from (23 ) , equation (22 ) is

obtained .

But the fact that any solution of (23 ) is also a solution of (22 )

does not help in obtaining the complete solution of the second order

equation . This situation is quite different from that which pertains

in the case of linear differential equations of second order where the

knowledge of one solution makes it possible to obtain the general

solution by a single integration .

The difficulties of the problem are readily seen if we set b=0 . In

this case the solution of (23 ) is the simple algebraic function :

a

y = a+z + k

where k is an arbitrary constant, but the general solution of (22 ) is

given by the elliptic integral:

X=

= S"(ay*+k”)-16 dy

Only when k' = 0 and the proper sign is taken for the radical is the

solution of (22 ) also a solution of (23 ) .

If b = 0 , the relationship between (22 ) and (23 ) is even more inter

esting. Referring to Chapter 3 , we see that the solution of (23 ) is

y= u'l (au) , where u is a solution of the linear equation :

u' -azu = 0 .
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The solution of this equation is explicitly

U= Vw [C, J (s) + C ,J- } (s) ] , s=şivacy

From this we see that the solution of (23 ) is expressed in terms of

known transcendental functions .

But if we now apply to (22 ) the transformation :

v = Az , = t/ t, where A==

26 \ 36

a2(272)", u = ( 2ab ) ” ,

then the equation reduces to the following :

d 2

drz=22*+ tz

1

z '

which is a special case of the second Painlevé transcendent .

Another example which illustrates the difficulties just mentioned

is furnished by Emden's equation for the case where n= 5 , that is ,

du2 dự + = 0.
+

dx² x dx

A particular solution containing one arbitrary constant is found to be

y== (
3a

X2 + 3a ?

22

i

a)

but this fact does not help in obtaining the complete solution , which

is not known .

4. Existence Theorems

The theorems which were given in Chapter 4 defining conditions

for the existence of a solution of the general differential equation of

first order can be extended without essential change to differential

equations of higher order . The three types of existence theorem

given there are adaptable to the more general problem , although that

of Cauchy - Lipschitz involves some complexities in the formulas

involved .

In order not to repeat arguments which differ little from those

already given , we shall state , without entering into the details of the

proof , the existence theorem from the calculus of limits for a system of

two equations of first order . It will be seen that this theorem also

includes as a special case the existence theorem for a differential

equation of second order.
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In a somewhat abbreviated form , we shall extend the proof of the

method of successive approximations to these cases . The generali

zation to systems of equations in n dependent variables and to differ

ential equations of higher order should then be easily understood from

these arguments.

We shall be concerned with the following system of two equations

of first order :

dy dz

( 1 )

dx

where the functions f(x,y , z) and g (x ,y, z) are subject to limitations

imposed by the theorems.

The following equation of second order :

dʻy = F (x,y,y '),
- (2 )

dx2

is readily converted into a special case of system ( 1 ) by writing:

dy

dx

= 2 ) d =F(z,y,z). (3 )

A solution of ( 1 ) is now sought within some domain R of the varia

bles involved , which reduces to given initial values : y = yo and 2 = 20 ,

when x = 20.

In the calculus of limits we assume that the functions f (x, y , z) and

g (x , y , z) are analytic in the neighborhood of the initial values .

Under this assumption , the equations of system ( 1 ) have a unique

solution, given by the functions y = y (x ) and z = 2 (x ), which are analytic

in the neighborhood of x = xo and which reduce respectively to y, and Zo

when x = Xo. These solutions can be represented explicitly by thefollowing

series :

yo
- (x-x.)3+ .

2 !

(4)

2= 2o+ z'(x —2 )+ (2 - )+31(1–2 )* +

(3)

y = yo+ 46(0–2)+ (2–2.)?+
y3)

3 !

(3)

where the derivatives, evaluated at the point x= xo, are obtained from

successive differentiations of the equations ( 1 ) .

As in the simpler case of an equation of first order , the proof of the

theorem depends upon the determination of a majorante for system ( 1 ) .

Such a majorante is provided by the system :

dYdZ

= F (X , Y , Z ),x
da da

(5)
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where we have

M

F ( x , Y , Z ) =

(6)

-3)(1-1 ) (1-3

The use of this majorante in establishing the convergence of the

series (4 ) differs in no essential manner from the use of a similar

majorante in the case of one equation of first order . The reader is

referred to Section 2 of Chapter 4 for the details of the argument.

In establishing conditions for the existence of a solution of system (1 )

by the method of successive approximations , we proceed as follows:

Since y = yo and z = zo when x=x, we first write the solution in the

following form :

y = yo +

S *1(0,1,2)dt,
2= 2o+ g(x ,y,z) dx. (7)

The variations of the variables x , y , and z are now restricted to the

interior of a region R defined as follows:

z - zo| Sa, lg - go < b, la - z0| 5c, (8 )

and we assume that within R both f(x , y , z ) and g (x , y , z ) are con

tinuous functions and have upper bounds less in absolute value than

a positive constant M. We shall assume further that a is the smaller

of the two values b/M and c/M.

We now introduce the following Lipschitz condition :

If ( x, y , z ) and (x, y ' , z ' ) are any two points in R which have the

same x-coordinate , then there exist two positive numbers K and L

such that

| f ( x, y , z ) -f(x , y ', z ) SKy- y'l + L 2-2' ,
(9)

lg (x , y, z ) -g (x, y' , 2 )| SK\y- y'l +L/ 2-2' .

As in the case of a single equation of first order , a series of successive

approximations are obtained , which assume the following general form :

TO
Yn(a)= y + S®fle,Yn= (2),2n-1()]dx,

2,(a)=zo + S*g18, yn=1(a),2n-1(x)]dr.

( 10)

By an argument which differs in no essential detail from that given

in Section 3 of Chapter 4 , the conditions imposed above are sufficient

to guarantee, first, the uniform convergence of the following series :

y (2 ) = yo + (Yı - yo) + (y2 - yı) + ... + (yn - Yn- 1) + .( ...,

2 (x ) = 20 + (21-20 ) + ( 22-21) + ... + (2n - 2n - 1) + ...,

( 11 )
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and , second , that there exists no other system of integrals, which

assume the prescribed values yo and 20.

5. The Problem of the Pendulum

As we have already seen in Section 4 of Chapter 1 , the mathematical

description of the vibration of the simple pendulum is formulated in

terms of the equation :

d20 g

I
( 1 )

where L is the length of the pendulum , g the acceleration of gravity,

and 0 the angular displacement of the pendulum from its position of

equilibrium .

As we have seen earlier , the solution of this equation can be achieved

by means of elliptic integrals and expressed in terms of elliptic func

tions . To obtain the solution in convenient form , we proceed as

follows:

The first integral is readily seen to be the following:

1 / do

dt

9
cos Q = C , (2)

where C is an arbitrary constant .

If e= w is the maximum displacement of the pendulum from its

equilibrium position , then d' = 0 for this value, and we thus can

evaluate C, for which we find C= - (g cos w/L.

We now solve (2 ) for do /dt, and thus obtain the equation

do 29
cos 0—cos w,

L
(3)

dt

which can also be written in the form

dt

L do

29cos 0—cos w

( 4 )

In order to reduce the right-hand member of this equation to

standard form , we introduce the transformation :

cos 0= 1–2k2 sin’d, k = sinhw , (5)

and observe the following relationships:

cos 0 - cosw = 2kº cos'o,

sin 0= 2k sin ovi - k* sin’o ,

sin o do = 4k ? sin cos o do. (6)
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When these values are substituted in ( 4 ), we obtain the following

standard form for dt:

do
dt (7)

9 1 - kasinº

Therefore the time T required for the pendulum to swing from its

position of equilibrium at 0= 0 to a displacement of 0= , is given by

the integral

do

T = (8)

1 - k2 sinº €-

where do is obtained from the equation :

sina do
1 - cosmo_sin 40.

2k2 ka
(9)

that is to say ,

po = arc sin

( 4 )
sin 100

k

(1
0
)

In terms of elliptic integrals , we can write (8 ) as follows :

T = F (bo, k) .! ( 11 )

g

The period of the simple pendulum is defined to be the time re

quired to make a complete oscillation between positions of maximum

displacement. To determine this position of maximum displacement,

we combine (6 ) with (3 ) and thus write

do

dt

= 2k

VL
Cos 0. ( 12)

Since the desired value of 0 is that for which de /dt = 0, we see that

this corresponds to o = 7. Therefore, if we let P (k) be the period of

the pendulum , we get

do

P (k) =4. 1 - k2 sinº$VS."

= 4 K(k) ,
9

(13)

where K (k ) is the complete elliptic integral of first kind.

When k=0 , this reduces to

P = 21 (14)

556037061 14

9
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In order to find the actual motion of the pendulum , that is , the

displacement as a function of t , we integrate (7 ) and thus obtain

t =

NIS
do

V1 - k sin ?
( 15)

From the definitions of Section 8 , Chapter 6 , this equation can be

written

1

k sin o sin -0, ( 16)

from which we obtain finally

0 = 2 arc sinksn

sin [ ton (« V< )] k = sin W. ( 17)

PROBLEMS

1. A pendulum is displaced through an angle of 45° . Compute its period .

Answer 6.53 VL /g seconds.

2. A seconds pendulum is one that makes a full swing in one second. Using the

standard value g = 32.174 ft./sec.2 , show that the length of the seconds pendulum is

39.11 inches .

3. If a seconds pendulum is displaced through an angle of 90 °, determine the

time required for it to make one complete oscillation . Answer 2.36 seconds .

4. Answer Problem 3 if the initial displacement is 10° . Answer 2.004 seconds.

5. Find the ratio of the periods of a pendulum for which k = sin 30° and the

pendulum for which k= 0. Answer 1.0732 .

6. Show that P(k) has the expansion

P (k ) = 21

V [1+ (1)* +(**)** +(1.3:5) 20+...

7. Use the expansion of Problem 6 to compute P(1 ) . Answer 6.743 VL /g.

8. If L = g/ 16 and if k = 1 , graph the displacement of the pendulum as a function

of time through one complete oscillation .

6. The Equation : y" = 6y?

In order to illustrate the manner in which arbitrary constants enter

into the solution of nonlinear equations of second order, we shall

consider from various points of view the relatively simple equation

dły
=6y.

dx
( 1 )

Referring to Section 1 , Chapter 6 , we see that the solution of this

equation can be expressed in terms of elliptic functions, and , as we
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shall observe shortly , the solution is actually y= P (x) . But the prob

lem in which we shall be interested in this and in subsequent sections

is the manner in which the arbitrary constants enter the general so

lution and their relationship to various types of expansions . In

this way, more, perhaps, than in any other, one can observe the com

plexities which arise when the property of linearity has been abandoned.

We shall first show that the solution of ( 1 ) can be written in the

form

y(z) = C? +

+ k sn { C (1-21),k
(2)

where C and X, are arbitrary constants and k is a root of the equation :

1 - K2 + k = 0 ( 3 )

In order to prove this , let us assume the solution in the form

B

y = A +
snº(Cu)'

V=X- 21 . (4 )

Taking two derivatives of y, we get

dly -2BC2

d -

d2

sn(Cv) sn ( Cy) -3 sn (Cv

dxdxsnº( CV)

(5 )

Making use of the identities

sd

da sn xy = cn’rdn?r = (1 - snºx)(1—kº snºx),n }'

爱 sn I = 2kº snx- ( 1 +k) sn x ,
dx²

d?

we reduce (5) as follows:

dx²

dday - 2BC2

1 -ksn ' (Cv ) +2 snº(Cv) + 2k2 sn (CV) -3),
sn * (Cu)

6BC2 4BC ? ( 1 + k ?)
+ 2k²BC2

sn'(Cv) sn ’(Cy)
( 6)

Since y' ' = 6y?, by equating six times the square of (4 ) to (6 ) , we

get the following identity between the functions :

6BC

snº(Co + 2kºBC?
4BC ( 1 +k) 6B2 12AB

= 6A2 + +
sn ' (Cy) sn ' (Cv) ' sn ' (Cv)
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Identifying coefficients, we thus obtain

6A =2k2BC, 6B2 = 6BC , -4BC? ( 1 + kº) = 12AB,

from which we get the following values for A and B:

B= C?,
A == 1C*(1+k*)=v2kC". (7 )

From the second equation of (7 ) , after squaring and deleting the

common factor , we obtain :

1 -ka+K=0 . (8 )

That is to say , k2 is either of the complex roots of the equation :

20 + 1 = 0 , namely, k = 1 + w , or 1 + wa , where w is a complex cube

root of unity .

We further observe that Aạ = k’C4/3, 1 / A = -3 /[ C ? (1 + ka) ], and

hence we get

C ?k
A = (9 )

1 + k2

The solution of equation (1 ) can also be written in the form

Y = ť (x ), ( 10 )

where 8 ( 2 ) is the elliptic function of Weierstrass described in Section

16 , Chapter 6. If we take the derivative of equation (7 ) of that

section , we have

dru 1

=6u2

d.x2 2 92
( 11 ).

When u is replaced by y , and g2 set equal to zero, equation ( 1 ) results.

That (x) is a solution of ( 1 ) can also be proved directly. Let us

write

e - 03

p ( x ) = (3+
sn ’ (Cx, k )'

( 12)

where , by virtue of the fact that ga= 0 , we have

C'? = e, -es, k2_C2–63, @ teateg = 0, ejezte, ez tezeg = 0. ( 13)

ei - C3
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Referring to equation (2 ) , we see that we must prove that

-C?k / ( 1 + k2) is equal to ez . But this follows from equations ( 13 ) ,

since we have

-C ?k2_- (( - es)(ez - ez)_e;e2-61 € 3 + ez,

1 +k2 eite2-2e3

( -2,03-2e2ezteſ) 3e3

3e3

= 63

3e3 Зез

Although the form in which we have taken the solution , namely,

that given in (2 ) , will be useful in the next section , it should be ob

served that the solution can also be written equally well as follows :

y= C2

=c-[ +k + san®( ' , »]
v ' = x— LOS ( 14)

where to is an arbitrary constant . This second form of the solution

is obtained by means of (4 ) in Section 14 of Chapter 6 .

Although we have now achieved the complete solution of equation

( 1 ) in terms of Jacobi elliptic functions in either of the two forms (2 )

and (14 ) , it is clear that something yet remains . Since k” is a complex

number, the solution is not real . Even though one separated y into

real and imaginary components, let us say , y= U+iV, neither U nor

V separately is a solution as in the case of linear differential equations .

For if we substitute y into ( 1 ) we get

U " + iV ' = 6 (U2– V2) +12 UVi,

from which it follows that : U" = 6 ( UP- V2) and V2 = 12 UV.

The problem of achieving a real solution will be discussed in Section

9 .

7. The Solution of y " = 6y as a Laurent Series

We proceed next to express the solution of the equation

( 1 )
.

duż = 6y ?

as a Laurent series in the variable v, where v=x—21 . From equation

(2 ) of Section 6 , we see that the solution has a pole of second order

for v= 0 , and thus we assume that y can be written as the following

series :

y = " 7 + " ;' + ao + ajv + a2v2 + azpost ... (2 )

a . a
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When this series is substituted in equation ( 1 ) and the coefficients

of equal powers are equated , the following values of an are determined :

2-2= 1 , a - 1 = Qo = 2 , = Qz = 2z = 0 , Q.=h, Q5=28= = 29 = 0 ,

h?

Q10 = 13411 = 212 =

h3

=215= 0, 216 = 247
=

(3 )

where h is an arbitrary constant .

Substituting these values in (2 ) , we thus obtain

ha

thut +
13

010+
h3

016+
247

.

(4 )

To relate this expansion to the solution given in the preceding

section , namely , equation (2 ) of that section , we first write sn z as

follows:

sn 2 = 2 + A12 + A225 + Azz + 4.2 +

where the A, are obtained explicitly from the expansions given in

Section 13 of Chapter 6. We now write

sn’z = z2 + 2A ,2* + ( A + 2A2) 26 + (2A3 + 2A ,A2)28

+ (AŽ + 2A, + 2A1A3) 210 + (2A5 + 2A , A , + 2A2A3)212 +

= z2 + 3,2* + Bz28 + Bz28 + B.210 + B6212 + (5 ).

From the explicit values of A, given in Section 13 of Chapter 6 , we

find the following expressions for B,:

(1+k ), B = 315 (1+ 30k?+ 30kº+kº),

1 1

B , ( 2 + 13k + 2k“) , B , =
3 45 315

1

( 4 + 502K2 + 1752k4 + 502k® + 4k®) ,
28350

2

BE ( 1 + 509kº+49515" + 495k + 509k8 + ko).
467775

Be (6)

Assuming next that

22

= 1 + C + C224 + C320 + C428 + C5210 + .
snaz

(7)

.* Additional values of Bi in terms of Aiare as follows:

Bo = A3 + 2A6 + 2A ,As + 2A2A .;

By =2A :+2A1A +2A1A5 +2A3A4 ;

Bar Ai + 2As+ 2A1A7 + 2A2A6 + 2A :As;

B , = 2A + 2A1A5+ 2A1A7+ 2AA8+ 2AA),
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we compute the following product:

( 1 + Ciz2 + C224 + .... ) (1 + B , z2 + B224 + ... )

= 1 + ( B + C ) 2 + (C2 + B , Ci + B2) 24+ (Cz + B , C2

+ B2C + B3)26 + (C4 + B ,Cz + B ,C2 + BzC + B .) 28

+ (Cs + B , C4 + B , C3 + B ,C2 + B.C + Bs) 210+ ...... (8)

Since this product is identically equal to 1 , we set the coefficients of

z2, 2* , etc. equal to zero and thus compute successively the values of

the C, from the values of the Bi . These are found explicitly to be the

following :

C = -B.= (1 +k?), Cs= -B2- B,C1 = 15 (1 – k ? + k “ ),

(2–3k –3k*+ 220), Cs= 675 (1 –kP +k")==} C3,

(1 –kº+k+)(2–3k? –3k*+ 2k®) = C , Cs.

1

Cz =
189

1

C =
10395

(9)

But we have shown in Section 6 that 1 -ka+k4= 0 . Therefore we

have Cy = Cq = Cs = 0 . If we now replace z by Cv and substitute the

expansion

1 1

sn ?(Cu) C272Chy + C + C_C?v=+CC*v*+

into the right hand member of equation (2 ) of Section 6 , we get

-k2

1 12 + C2,2
+ Ci + C2C202 + C3C4y4 +

We observe finally, that when 1 - k + k + = 0, we have

C ,

k2

=0, and C=C=C=0.
1 +k?

Therefore, if we write

C4 C4

h = C“C3= (2-2k2-3k4+266) = (1-2kº ),
189 63

(10)

we obtain as the Laurant expansion of the solution of equation (1 ) the

following:

1

y = + hv* + 0.28 + 0.08 + ....

This , we see , agrees with the expansion (4 ) above .
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8. The Solution of y" = 6y as a Taylor's Series

In the preceding section the solution of the equation

dạy
hy ?,

dx²
( 1 )

was obtained in the form of a Laurent series . One of the arbitrary

constants in the solution was exhibited as the value x1 , where the func

tion had a pole of second order . In other words, a solution of ( 1 ) can

be found which has a pole of second order at any specified point in the

plane . The equation thus provides us with an example of a solution

which has a movable pole .

But in the solution of differential equations , one usually seeks a

solving function which is analytic in the neighborhood of a point

x = lo and which assumes at that point prescribed values of y and y' ,

let us say, yo and y .

That such a solution exists for equation ( 1 ) at every point in the

plane is assured by the existence theorems of Section 4 . We thus

have the peculiar situation that every point in the plane can be a

polar singularity of the solution and yet every point can also be a

regular point . This apparent paradox is readily dispelled in the

present case by observing that the solution of ( 1 ) , which was shown

in Section 6 first to have the form

Y = C2

-ka

1 + 2 + sn ?(Co,k )
v=X-41 , (2)

was later exhibited as the function

y =C*[ ***+ *sn (CO ",A ) v ' = I - Io. (3 )

In both solutions to and X, are arbitrary constants.

Since sn (z ,k) is analytic in the neighborhood of zero , it is clear that

the function defined in (3 ) is analytic in the neighborhood of to. The

Taylor's series is readily found to be

yo'

y = yo + y ( x - 20) +
2 !y (2–2o) +%" (2-2) *+ ... , (4 )

where y, and y. are specified arbitrarily, y ' is obtained from the

differential equation , and y.3 ) and higher derivatives are evaluated

from successive derivatives of ( 1 ) .
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The first few of these derivatives are the following:

y () = 12yy' , y (4) = 12 (yy'' + y '?)— 12 (6Y3 + y '?),

y (b) = 12 (yy(3) + 3y'y '') = 360y?y ', y ) = 720y (3y + y ' ),

y (7) = 720y' (24yº + y '?), y (8) = 12960y? (8y3 + 5y'?) .

(5)

The relationship between the two expansions, equation (4 ) of Sec

tion 7 and equation (4 ) of this section , is readily understood if x in the

former is replaced by d, and y by Yo. Equation (4 ) of Section 7 is now

differentiated and x and y' replaced respectively by X and y . De

noting 20-21 by vo, we thus have explicitly

1

Yo = + hx6 +

h h3

020 + v68 +
13 247

( 6 )2 10 16

+4h v + ha v + h3 046+ ..

vo
13 247

These two equations form a system for the determination of the

unknown parameters h and v in terms of the given values to, Yo , and y.

From the value of vo thus determined , it is then possible to obtain 21 ,

which is a polar point for y . This value determines the region of con

vergence of series (4 ) , which is thus limited to the interior of the circle

with center at to and radius equal to 12, —Xol.

System (6 ) is generally difficult to solve unless (06) is small, some

value less than 1. By a method which will be described in a later

chapter , it is possible to begin with an initial set of values ( X , Y , Y .')

and determine new values (20,40,4 '.) for which vol is less than 1. Under

these conditions terms in (6 ) which contain powers of h higher than 1

can usually be neglected for a first approximation and equations (6 )

reduce to the following :

1

Yo thuo
vo

% = - + 42
2

+4h vi

(7 )

Eliminating h from these equations, we obtain the following cubic :

yó v8-4yov + 6 = 0 , (8)

from which an approximation for vo can be made . The corresponding

value of h is then found from the equation :

h = (y.vn - 1) /v (9 )
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Even though ſvol is not less than 1 , the approximation obtained from

(8 ) may be a good one . Thus, for the initial values : Io = 0 , Yo = 1,

1

*6 = 0 , we find that v=8=3 v6 = 1.2247 and that h=4/27 . As we

shall show in the next section , these parameters have the exact values :

1.21432 (to five decimal places) and 1/7 respectively .

From what has been said we see that equation (4 ) provides a method

for obtaining values of y in the neighborhood of X , and the first of

equations (6 ) for computing values in the neighborhood of the pole zi .

But in general , the rate of convergence of both series is such that

neither usually provides a convenient algorithm for obtaining values

midway between I , and 2. Another method for computing these

values will be described in a later chapter .

9. The Equation: y" =6y2– 192

Although the equation

d’y
= y

1

292dx²

( 1)

appears to have a restricted form , the more general equation

du

dzz = Au ?+ B, (2)

is readily reduced to it by means of the transformation :

4 = png , 2=q, pa= -12B/(Ag2) , g * = - 392/(AB). (3)

The solution of equation ( 1 ) is given by

y = ( :-),

and the formal expansions of both y and y' about an arbitrary polar

singularity X, are the following series, where gz is an arbitrary constant:

1 1 3

Y = (x )

1 1

v2 ' 2092v24 8+61609
29308

+
.et 289

304
+

1200
93,6

&

it

7
y ' = $ ' (x)=

1 3

+
2004

5920 °
+770

9

+ (4 )

In these expansions v = I -- 21.
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The half periods , 2 and 2' , are defined by the equations:

( 2 ) = e , ® (2 + 12') = (2, P ( 2 ') = C3, (5)

where e1 , C2 , and ez are the roots of the equation :

493 — 928–93 = 0. (6 )

For the equianharmonic case (See Section 16 , Chapter 6) we have

92= 0, which reduces ( 1 ) to the equation already discussed in the

preceding three sections . We can now complete that case by obtain

ing the real solution . For this purpose we consider the roots of (6) ,

which we now write : ei =aw, lz= a , lz= aw?, where w and w? are the

complex cube roots of 1 , and a= (93/4 ) /3=0.6299605 (93 ) / 3 . We shall

assume that gz is a positive real number.

The real half -period 822, defined by 8 (12) = 2, has been computed

in Section 16 , Chapter 6 , and shown to be 1.52995 4037 / (93) "/6.

A table of the values of the solution of equation ( 1 ) was first pub

lished by A. G. Greenhill and A. G. Hadcock in 1889 and this table

appears in all the editions of the Funktionentafeln of E. Jahnke and

F. Emde. The values of y , given in the Greenhill-Hadcock table ,

correspond to an argument r defined in terms of v by the equation :

r = 1080 / 122. Since v= 0 is a pole , it follows that v = 222 is also a pole .

Thus r ranges between 0 and 360. The midpoint of the range , which

we shall denote by vo, corresponds to r= 180 . Its value is thus .

The initial values used by the computers were : yo= a= 0.62996 , which

corresponds to a choice of ga = 1 ; yb = 0 ; v= 92 .

The table just described can be used for the evaluation of a solution

of the equianharmonic case of ( 1 ) , that is , where 92= 0 , for the initial

values : y= wo , y ' = 0 , x = 20, in which both Wo and zo are arbitrary .

For this purpose let us write equation ( 1 ) and the corresponding

equation defining the first derivative as follows :

2

ddạy

dra1=6,3°, en = 47-93. (7)

A particular solution is given in terms of the initial conditions :

y = yo, y'=y = 0 , x= lo, and a second solution is now sought corre

sponding to the initial values (U0,0,20 ).

Observing first that the arbitrary constant gz has the value : 9 =

44., we next make the transformation :

y=Pu, 2 -X= Q(2-2) , (8)

by means of which equations (7 ) become

du 2dau

=6PQ?u?,
dz2

( 7) = Q*(4Pu*–9a/ P ). (9 )
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We now write : PQ = 1, and since u = Uo when y = yo, we have P=

yo/Wo and Q = uo/yo. Since ub =0, we obtain from the second equation

of (9 ) , 93 = 4u ;P3, which is seen to be consistent with the value of 93

already obtained above.

In particular, if we now let yo = a = 1/ 4, xo = 12, as in the table

mentioned above , and if Wo = 1, 2,=0 , then the values corresponding

to the new boundary conditions are obtained from the tabulated

values by the following equations :

u=y/P=4y= 1.5874011 y,

z = (x - xo)/ Q = (x — 12) = (x – 1.5299540)A2, ( 10)

=0.7937006 (1-1.5299540) .

In terms of r , for which values of y are tabulated, x = 82 (7/180 ).

Thus, when r= 240 , we have r = 22 , y= 1.0000 .12, y= 1.0000 . Hence, u= 1.5874 ,

when z= 0.7937 ( -1)
1 ) = 0.4048 .

The values for u' are computed from (9) , which now becomes

(doze =
( du ) ²

= 40-4.

dz
( 11 )

The half -period of the function u (z) is equal to 1.5299540/12

1.2143254 . This value we shall denote by 21 . The expansions of

u (2) and u' ( z) in the neighborhood of 2, are obtained from equations

(4 ) in which appropriate substitutions have been made with special

reference to the higher terms given in (3 ) of Section 7. We thus have

1 1

toutt
637

010+

1

8472154721
016+ .

(12 )

u'

2 4 10

t = 23 +
23 ' 7 637

vºt
16

215 +
84721

where v= 2—21 .

The graphical representations of u (z) and u' (2) are shown in

Figure 1. It will be observed that u(z) is an even function and u' (z)

an odd function . Both functions are periodic with real period equal

to 2.4286508 = 0.77306367. Values of u and u' are given in the

-
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FIGURE 1.—Graphical representation of u'z) and u ' ( 2 ).
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following table , which has been computed by a method of analytic

continuation , which will be described in a later chapter.

Values of u= ( 2,0,4) .

z u u' 2 u 2 u

0.00

0.01

0.02

0.03

0. 04

0.05

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

0.0000

0. 0600

0. 1201

0. 1803

0. 2408

0, 3015

0. 35

0. 36

0. 37

0. 38

0. 39

0. 40

1. 4185

1. 4464

1. 4755

1. 5059

1. 5377

1. 5709

2. 7238

2. 8469

2. 9750

3. 1083

3. 2472

3. 3921

0. 70

0. 71

0.72

0. 73

0. 74

0. 75

3. 7895

3. 9401

4. 1000

4. 2700

4. 4509

4. 6438

14. 62

15. 51

16. 48

17. 53

18. 67

19. 91

0.06

0.07

0.08

0.09

0. 10

1. 0108

1. 0148

1. 0193

1. 0245

1. 0303

0. 3626

0. 4241

0. 4862

0. 5489

0. 6122

0. 41

0. 42

0. 43

0. 44

0. 45

1. 6055

1. 6417

1. 6796

1. 7191

1. 7604

3. 5435

3. 7016

3. 8671

4. 0403

4. 2219

0. 76

0. 77

0.78

0.79

0. 80

4. 8495

5. 0694

5. 3048

5. 5570

5. 8277

21. 27

22. 74

24. 35

26. 12

28. 07

0. 11

0. 12

0. 13

0. 14

0. 15

1. 0367

1. 0438

1. 0515

1. 0599

1. 0690

0. 6762

0. 7412

0. 8070

0. 8739

0. 9418

0. 46

0. 47

0. 48

0. 49

0. 50

1. 8036

1. 8487

1. 8958

9452

1. 9968

4. 4124

4. 6125

4. 8228

5. 0441

5. 2772

0. 81

0.82

0.83

0. 84

0. 85

6. 119

6. 433

6. 771

7. 137

7. 534

30. 2

32. 6

35. 2

38. 1

41. 4

0. 16

0. 17

0. 18

0. 19
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0.87 8. 433

0. 88 8. 944

0.89 9. 504
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0. 26

0.27
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3. 2673 11. 64

3. 3870 12. 31

3. 5135 13. 02
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3. 7895 14. 62

1
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10. The Equation: y ' = Ay + By3

The equation

d-d'y

=Ay+By },
dx?

( 1 )

is readily solved by observing the following identity taken from Sec

tion 10 of Chapter 6 :

d2

snu = 2k'sn'u- (1 + k ?) snu.
du ?

(2)

Replacing u by dx and making an identification of constants , we

readily obtain the general solution of ( 1 ) in the form :

y= C sn (Av ,k ), v = x - X , (3)

where , and to are arbitrary constants, and where k and C are deter

mined as follows:

(1 ? + A ) 2 (1² + A )
K2 C2 (4 )

12 B

Since k and C are thus functions of n , it is clear that either of them ,

but not both, may be chosen arbitrarily.

Making use of the addition formulas for sn u given in Section 9

of Chapter 6 , we can give other forms to the general solution . Three

of these are listed below as follows :

y= C cn (av,k) , v = x— XO,

where ka= (12+A) / (212) , C2 = - (12 + A ) / B ; (5)

y = C dn ( v ,k) , v = x— 20,

ka = (212 - A / ?, C2 = -2X4/ B ;where (6)

y = C /snav ,k ), v = I-- Xo,

where
k = - (12 — A )/X ?, C2 = 21 ° / B . (7 )

In Section 5 of this chapter the equation

dạy

drž + n sin y=0 , (8)

was solved and the solution given in the form :

y= 2 arcsin (k sn (t ,k ) ) , k = sin5w ,k=sin jw, t= nz ,

( 9)

where y' =0, when y= w.
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As has been stated earlier, it is possible to convert (8 ) into an equa

1

tion of type ( 1 ) by means of the transformation : y= sin a2, but it

will be useful to us later to study the form of the equation obtained

by replacing sin y by the first two terms of its Taylor's expansion .

Thus we have

dły na

(10)
dx2 6

The solution of this equation , comparable to (9 ) , can be written :

y= w sn (ut,k ), t = nx , ( 11 )

where we have

k=w / ( 12 - wº) , = 1-62/ 12 . ( 12)

The classical approximation of equation (8 ) is , of course, the linear

equation :

d'y

( 13)
dx2

the solution of which , comparable to (9 ) , that is , y= w, when y'= 0 ,

is merely

y=w sin t, t = nx. ( 14 )

This function gives a close approximation to the solution of (8 )

when w is small , but when w is of the order of 7/3 the departure is

large . It will be of interest to compare the values of the three func

tions , defined respectively by (9 ) , ( 11 ) , and ( 14 ) , when w="/3 .

That (9 ) and (11 ) give values very close to one another is seen if

we compute the value of t for which the functions have attained their

maximum values , namely, when y= w. In the first case (equation

1

ETT , t , = 1, t=

1.68575 .

In the second case [equation (11 )] , we compute

sn (*) =1

72

K2 0.10058, k= 0.31714 ,
108–7

72

up =

=(
1 -0.90861, p= 0.95321 .

108

Setting k =sin a, we find a= 180.48992 . Corresponding to this

value , we have K(k) = 1.61270 , from which we get

t = K /u = 1.69185.

-
-

-
-

1

-

-



DIFFERENTIAL EQUATIONS OF SECOND ORDER 209

This exceeds the value obtained in the first case by only 0.36 of one

percent .

1

)
27
a = 1.57080,

which is nearly seven percent less than the exact value . This differ

ence is graphically illustrated in Figure 2 , which shows the two func

tions , defined respectively by (9) and ( 14 ) , over a complete cycle .

LO

O

N
E

4 5 6 217

-1.01

GRAPH of y : 2 orcsin lè sn(t, is),Period =6.7430 ;
.....GRAPH of y : sin , Period : 2T1 : 6.2832 .

FIGURE 2

11. Solution of the General Elliptic Equation

The solution of the general elliptic equation,

y'' = A + By + Cy2 + Dy3, ( 1 )

is achieved by means of a theory of transformations, which reduces

the integral to a standard form .

If we multiply ( 1 ) by y' , integrate, and simplify the resulting ex

pression, we obtain the following equation :

( )*=a + 2Ay + By=+ _ Cy + Dys,
(2)

where a is an arbitrary constant, which is to be determined from the

initial conditions .

We now write (2 ) in the more convenient form :

y ' = a + by + cy? + dy: + ey*, (3)

and seek a transformation :

z= 2 (y) , ( 4 )

556037 0–61-15
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by means of which (3) is reduced to the standard form :

dz \

dx3)
= (1-22) ( 1 – k222) = 4²( 2 ). (5)

Since 2=sn (x ,k ) , we can express the desired solution y in terms

of the Jacobi elliptic functions by inverting equation (4) . It will be

convenient to consider two cases : ( I ) When the right-hand member

of (3 ) is a cubic ; ( II ) when the right-hand member is a quartic .

Case I. Let us write (3 ) as follows :

=h'y-a) (y-B) (y-7) , (6)

from which we have

1 dy

ha , (y ) dx
,

(7 )

where we abbreviate : Ai(y) = (y- a) (y-B) (y-7) , and where h may

have either sign .

If we now write

z ? a.
a

k =
_B_Y, M = ~~~

(8)

y-Y -Y 4

we obtain

M dy1 da

A (2 ) de
(9)

A.(y ) da '

and hence

1 dy 1 dz

=1 .

ha , (y ) dx A ( z ) dl - hMx)

=

(10)

From this it follows that

z = sn ( -hMx, k) , v = 2—20, ( 11 )

from which y , the solution of (6) , is obtained by the inversion of the

first equation in (8) .

As an example, let us assume that aren , B= (2 , y = lz and ha= 4 ,

which identifies y with ® (v) . We readily find from equations (8) :

y = estº es, z?=snº( v,k ) ,

X = , -ez , ka = (ez- ez) / ( e , -es) , which is the expression given for

p (v) in Section 16 , of Chapter 6 .
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Other transformations , similar to (8) , are also available , such , for

example , as the following for which k and M are the same as in (8) :

( a ) z2_Y_
a

(a)== ; (b) 2= (@= ) = ); (c) 2 =*=*
( 12)

y-B '

Case II. We now replace (6 ) and (7) by the following :

(de)*=h*A:(3),
1 dy

= 1,

haz (y) dx

)

( 13)

where we abbreviate :

( 14 )A3( 9 ) = (x - 3 )( x - 3) ( x - 1) (x - 3).

If we now write

22=
(8-8) (y-a)

(a-o) ( - )

( B - ya - 8)
k =

( a - y (8-8)
MP_ (8-8)( – »), (15)

4

we obtain

1 dz M dy

A (2 ) dxAz(y) dx'
( 16 )

and thus the equation :

2 = sn (hMv, k) , v = X — X0. ( 17)

Other transformations similar to ( 15) are available , such , for

example , as the following :

(a ) zi_ (a – Y) (6-2) (B- 8) ( - ) (a-y) (8-0)

; (b) 2 =
( B -ya - 2)

; ( c) 2 =
) ,

( B- ) (2-0) -8) (y - 2 )'
( 18)

Q

where k? and M ? are the same as in ( 15) .





Chapter 8

Second Order Differential Equations of Polynomial Class

1. Introduction

WE HAVE ALREADY DEFINED in Chapter 7 and have indicated the

importance of second order differential equations of polynomial class .

This class of nonlinear equations has been defined by the equation :

A( ) B(g)+C (u ) ( %)*+ D(x)= 0, ( 1 )

where the coefficients are the polynomials:

A (y) = A , + Ay + ... + Amy", B (y) = B , + By + ... +Bry",

C ( y) = Co + Ciyt .. + Cpy' , D (Y ) = Do + Day + + Day ". (2)

The quantities Ai , B1 , C1, and D; are assumed to be functions of x and

the exponents m , n , p, and q are integers.

The simplest case of this equation , where A (Y) = 1 , B(y) = C(y) =0 ,

and D (y) is a polynomial of third degree with constant coefficients,

has already been studied in the preceding chapter. The general

solution can be expressed in terms of elliptic functions .

It is the purpose of this chapter to extend our knowledge of equation

( 1 ) by certain special devices and by the consideration of particular

equations whose solutions are reasonably tractable to elementary

analysis .

2. The Linear Fractional Transformation

Since the generalized Riccati equation described in Section 10 of

Chapter 3 belongs to the polynomial class and since its general solution

is expressible as the quotient of two linear forms, the importance of

investigating equation ( 1 ) of Section 1 by means of a linear fractional

transformation is suggested .

This transformation , denoted by T, we shall write in the form :

T )
a + b2

y= A = ad - bc70,

(1)

c + dz'

where a, b , c , d are functions of x .

213
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The linear fractional transformation has the following properties :

( 1 ) The inverse transformation , T -1, that is to say , the transforma

tion in which z in ( 1 ) is expressed in terms of y , is also a linear frac

tional transformation .

(2 ) The successive application of two transformations S and T ,

that is, the product transformation , P = ST, is a linear transformation

the determinant of which is the product of the determinants of the

two transformations. In general, however, ST is different from TS.

(3 ) If four points are transformed by T into four other points , the

cross-ratios of both sets of points are equal . That is to say , the linear

fractional transformation leaves invariant the cross-ratio of four

points .

We shall apply the transformation T to the following special form

of equation ( 1 ) of Section 1 :

d ? y

=L(y) = (Ao+Aly)
dy

+( B.+Biy) +
dx² dx dx

2

+ co (de

+ De + Day + Day ? + D3y2 = 0. (2)

The transformed equation , TL (y ) = M (2) = 0, assumes the following

form :

d22 dz \ 2 dz dz

fi (2,2 ) + fa (3,2 ) +85(2,2 ) = 0 , (3 )
d: dr dx

where we employ the abbreviations :

fi(2,2) = ¥ i(2 )+41(x) + ¥}(2 ) z2 + 4 (2 ) 2 +4} (x )24. (4 )

The values of ¥ } (x ) are given explicitly in Appendix 2. Since these

functions are seen to be identically zero when i= 1 , 2 , 3 , j =4 , 5 ;

i = 4, j= 5, and since, moreover, we have

V4 ( 20) + v }( x ) = 0 , (5)

the transformed equation , M(2) = 0 , reduces to the following :

daz dz dz

A( z) +D( 2) =0, (6)
dx dx )

where the coefficients have the following explicit forms:

A ( z) = vi + y2z + * }z ?,

B ( 2 ) = \ i + (4 + viz + (4 + ) za,

C ( 2 ) = vi + viz,

D (2 ) = vítváz + v5z2 + 42 + * 24. (7)

* For an extensive account of the properties of the linear fractional transformation see L. R. Ford : Auto

morphic Functions. New York , 2d ed . , 1951, Chapter 1 .
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From this representation of the transformed equation , we obtain

the following theorem :

THEOREM 1. The effect of the transformation T on L ( y) = 0 is to

produce an equation of similar form in which , in general , the exponents

of the polynomial coefficients have been increased by unity .

But an example is readily given which shows that the equation

TL ( y) = M (2 ) = 0 is not always one in which the exponents have been

increased . For example, the generalized Riccati equation , discussed

in Section 10 of Chapter 3 , is a special case of equation (2 ) . But the

generalized Riccati equation is obtained by the elimination of the

arbitrary constant parameters in the function ,

kivitk2v2 + k3v3

y = kiwi+ kuwa + kzW3
(8)

and the same equation would clearly be obtained if the elimination

were made on the reciprocal of y . Thus the transformation : y= 1 /2

would not increase the exponents of the generalized Riccati equation .

It is thus a matter of interest to formulate general conditions under

which the transformation T does not increase the exponents of (2 ) .

We shall speak of such a transformation as one which preserves

exponents.

It is clear that exponents are preserved if the coefficients A ( 2) ,

B (2 ), C (2 ), and D (2) have a common linear factor in 2 , let us say ,

p+q2 , where p and q are functions of x . But since a linear trans

formation preserves exponents, as we shall soon show, such a trans

formation can remove p and it is thus sufficient to consider the case

where 2 is a factor of the coefficients.

An examination of (7 ) shows that a transformation which preserves

exponents must satisfy one or the other of the following sets of condi

tions :

( I ) : (a ) v = 0; (b) vitx = 0; (c) v=0; (d ) V = 0;

(II ) : (a ' ) yi=0 ; (b ' ) Vi= 0 ; (c' ) vi=0 ; (d' ) v = 0. (9 )

Referring to the explicit values of the functions as given in Ap

pendix 2 , we see that conditions ( I ) are equivalent to the following :

Case (I)

(a) and (c) : d(Ad+A,b) = 0 ;

(b) : 2 (d'A - DA ') (Ad + A16 ) + 2C, A (bd ' — 6'd ) -dA ( B ,d + B6) = 0 ;

(d) : (Apd + A ,b ) [ (6''d — bd '') + 2d' (bd ' — b'd )] + Co(6'd - bd ')? +

d ( Bod + B6) (6'd- bd') + d (ďD.+ bd’D + bºdD2+ 63D3) = 0 . ( 10)
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If d= 0 , we see that all the conditions are fulfilled . Hence we have

the theorem :

THEOREM 2. If T is a linear transformation , exponents in M (z ) = 0

are preserved.

If , however, d= 0 , the conditions given above reduce to the follow

ing :

b A.

; (b) : 2Cop ' = B + Bie;(a) and (c) : p = ā Ā

(d ) : 3Cop ' + De + Dip + D202 + D3p3 = 0 . ( 11 )

The following theorem is a consequence of these conditions:

THEOREM 3. If the coefficients of equation L (y) = 0 satisfy the con

ditions (6 ) and (d ) of (11 ) , then the transformation

a-A2

T)
y = c + A ,Z

- ( 12)

preserves the exponents of TL(y) =M (z ) = 0 , provided c and d are any

functions such that Aja + AC 0.

We can also derive the following theorem as a consequence of

conditions ( 11 ) :

THEOREM 4. If in equation L (y) =0, the functions A , and A, are

linearly dependent, and if the determinant

A. All

(13)

BO
BV

vanishes identically, then the transformation T defined by (12) preserves

the exponents of M (z ) = 0 , provided a and c are functions such that

Aja + A.C # 0, and the functions D , satisfy the condition :

D + De + D , pa + D3p3 = 0, ( 14)

where p= -A,/A .

Proof: Since A, and A, are linearly dependent, their ratio is a

constant. Therefore , o' = 0 , from which it follows that p = -B / B .

Thus determinant ( 13 ) must vanish . But since A = d (a- pc) +1, we

see that a and c must be functions such that Aja+Ac +0 .

Conditions (II ) , which also preserve the exponents of equation (6 ) ,

are found to have the following explicit form :

Case ( II )

(a ' ) : c ( A ,C + Aja ) = 0 ;

(b ' ) : (4c'A- 2cA' ) (A.C+ Aja) + 2C A (ac' - a'c) -CA (Boc + Ba ) = 0 ;

( c ' ) : 2d (Ac + Aja) + ACo = 0;

(d ' ) : ( A.C + Aja ) c (a'c - ac ') — 2c' (a'c - ac')+ Coa'c - ac ')?

+ ( Boc + Bac(a'c - ac ') +cDo + acD, + a'c D2 + a'cDg = 0 . (15)
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These conditions are all satisfied provided

c=0, Co = -2A1, ad +0. ( 16)

We thus have the theorem :

THEOREM 5. The exponents of M (z ) = 0 are preserved under the

transformation :

T) y = a + oz , ( 17)
2

where a and 8 are arbitrary, provided Co= -2A1 .

The conditions (II) are also satisfied when we have

B
o

a A.

A

7 Co = 0 , Do + Dir + D2re + D3/ 3 = 0 , Aod+A6 +0 .
B

( 18)

The following theorem may thus be stated :

THEOREM 6 . The exponents of M(z ) = 0 are preserved under the

transformation :

-A.+ bz
T) (19)y = A + d2

provided :

1 ) Co = 0 ; 2 ) A , B , - A , B = 0 ; 3) Ad+Ajb =0 ;

4) Do + Dir + D2m2 + D3y = 0 ,

where r = -A0/ A ,.

A useful corollary of Theorem 5 is obtained if we observe that

V = -24 } = 2Ad ( And + A16 ). (20)

For if 8 = b /d is taken equal to – A /A1, then both y; and y's are zero .

Therefore, the function A (z) , defined in (7 ) , reduces to zv = -azaA1,

and C(2) , also defined in (7 ) , vanishes identically .

We thus have the theorem :

THEOREM 7. Under the transformation :

a- ( A / A ) 2
T) y = (21 )

2

the exponents of M (z ) = 0 are preserved provided Co= —2A1 . More

over , the term in z ' disappears and in the coefficient of z ' ' the multiplier

of z is zero .
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Under the indicated transformation (21 ) , equation (6 ) reduces to

the following :

daz dz

Vidze+ I(ti++i) + (4x ++ 2 + (1}+ ...
+4523) =0 . (22)

Since in (21 ) the parameter a is still available for definition, it is

possible to make one further reduction in equation (22) .

The only coefficients which can be reduced to zero without assuming

that a = 0, are the following three :

P=vx+ vi , Q = V , R = 4 .

The three conditions,

P=0, Q=0, R=0 ,

reduce respectively to the following equations in a:

2A a'-Ba = 0 ;

Ajaa '' —2Aja '? + B aa '+ (D2 + 36D3) a² = 0, b = -A /A1;

(-4A , '+Be +bB) a' + ( "'Ai + b'Bi + Di + 26D2 + 36 Dz) a = 0 . (23)

Since the first and third of these equations are linear equations of

first order in a , it is clear that a can be determined by a single inte

gration .

But the second equation can be reduced to a linear equation of

second order by means of the transformation : a = 1/ w . We thus obtain

Aw'' + Bw' - (D2 + 36D3)w = 0 , b = -A /A1. ( 24 )

These results are formulated in the following theorem :

THEOREM 8. If the equation reduced by the transformation (21 ) is

written in the following form :

daz dz

P7+(Qo+ Qız) 17 + R , + R22 + R2z2 + R329= 0, (25)

then the function a in the transformation can be selected as the solution

of a linear differential equation of first order so that either Qo or R, is

The coefficient R, can be reduced to zero if a is the reciprocal of

any solution of the differential equation of second order given by (24 ) .

zero .

3. Applications of the Linear Fractional Transformation

In Section 10 of Chapter 3 it was shown that the Riccati differential

equation of second order had the following form :

(A ,+ Aiy)y' ' + ( B + Bıyly'-2A ( Y ') ? + De + Diy + Daya + D3y8 = 0. ( 1 )
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This equation is characterized by two facts . In the first place , it

is derived by the elimination of the parameters in the fraction :

kivi + k2V2 + k3vz

y =kw,+ kuwa + k3W
(2 )

where the vi and the We are arbitrary linearly independent functions

of x . In the second place , the quantity A, appears both as a multi

plier of (y ' ) ? and in the coefficient of y' ' . Both of these characteristic

features are related to linear fractional transformations.

If we denote the numerator of (2) by U and the denominator by V ,

that is, y = U / V , it is clear that the fraction

aU + 6V
23

CU + dV'

(3)

where a , b , c , and d are arbitrary functions of x , subject to the condi

tion that ad - bc70, will have the same form as (2) . Hence the

differential equation in z obtained by the elimination of the constant

parameters, kv , will be a Riccati equation of second order.

But since U=YV, the fraction (3 ) is the linear fractional transfor

mation

T' )
ay+ 6

cytd
(4)

Hence , observing that the inverse of T' is also a linear fractional

transformation, we reach the conclusion that the form of the Riccati

equation of second order is unchanged by a linear fractional transfor

mation .

Let us now consider the second characteristic feature of the Riccati

equation, namely, that the coefficient of the term (y' ) ? in ( 1 ) is equal

to -2A1 , where A, is the multiplier of y in the coefficient of y' ' .

Since the equation is unchanged in form by a linear fractional trans

formation , the possibility exists that the term (y ' ) ? might be removed

by a proper choice of the elements of the transformation. This is ,

indeed , the case . By means of the transformation :

T)
a- (A /A1)2

y = (5 )
2

where a is an arbitrary function of x , equation (1 ) is reduced to the

following form (see Theorem 7 , Section 2 ) :

P
o
dz dz

Podcz + (Qo + Qız) x + Ro+ R 2 + R22° + R32° = 0. ( 6 )
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We now observe that equation ( 1 ) by proper specialization includes

the general nonhomogeneous linear differential equation of second

order , which , for convenience , we shall write in the form :

Py '' + Qy' + Ry = F. (7 )

Applying to this equation the transformation :

S ) y =

a + bz

c + dz'
; A = ad - bc + 0, (8)

where a, b , c , and d are constants, we obtain the following Riccati

equation :

P (c + d2) 2 " + Q (c + d2) z ' — 2Pd (2 ')2- ( R /A ) ( c + d2 )² (a + bz)

+ ( F / ) (c + d2 ) = 0 . (9)

Since this equation can be restored to its original form (7 ) by

applying to it the inverse transformation S- ?, we see that there exist

special Riccati equations of second order , which can be solved by

reduction to a linear equation of second order .

If we further simplify (9 ) by setting F= 0 , then (7 ) reduces to its

homogeneous form . But we have seen in Chapter 3 that the solution

of the Riccati differential equation of first order can be reduced to

the solution of a homogeneous linear equation of second order . We

thus reach the conclusion that the special Riccati equation of second

order given by ( 9 ), where F= 0, is equivalent to the general Riccati

equation offirst order.

PROBLEMS

1. Given the transformations :

S ) y = et de

a + bz

E ; A = ad- bc ; T ) 2 =

a ' + b'w

c' + d ' w
A' = a'd' - b'c ' ,

show that P=ST is a linear fractional transformation in w with determinant

equal to A : A ' .

2. Given the points : {, = 3, 12 = 11 , 23 = 8 , x4 = 23, show that their cross - ratio R

( see Section 4 , Chapter 3) equals – 1 , Now compute four other points z; by the

transformation :

2 + 3x ,

- 4 + x ,

2 ;=

and show that the value of R is unchanged.

3. Prove explicitly that if four points are transformed by a linear fractional

transformation , the cross-ratio is unchanged .

4. If the transformation S in Problem 1 leaves two points unchanged, show

that they are roots of the following equation :

cz2 + (d - a ) z -- h = 0 .
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5. Prove that there is only one linear fractional transformation that transforms

three distinct points: I1 , I2 , Iz , into three other given distinct points : xí , xa , tis.

6. Solve the following equation :

2 (3 + 4y)y " +5(3 + 4y) y ' -8y'? + (3 + 4y) (1 + 2y) = 0 .

4. Transformations of the Independent Variable

We now consider the transformation of the independent variable,

where we write : x = x (t ) .

The equation ,

AM + B(9) x +c 0 ()+D (y) = 0,

(1)

then assumes the form :

* A * (y) +1B*(y) =P~ A*(w ) C *(u)(* + i*D*(y)=0, (2)

where A * (y) indicates that the functions of x and y in A (y) have been

transformed , and where è and ë denote respectively the first and second

derivatives of x (t ) .

Specifically, if the transformation , denoted by S, is the linear frac

tional one :

atBt
S) Arad - By + 0 , (3 )X=

7+ot

then equation (2) becomes :

dy

dt
(n + 8t )* A * (y) dy+ (x + 8t)? [28 (r+ột ) A *(y) — AB*(y)]

dt?

+ (v+ 8+) * C*(y ) ( y) + 2°D“(y)=0. (4)

If, in this equation , we set := 0 , and use the abbreviation : u = Bly,

then we have

dy dy
A* (y) (5 )+ uB * (y) +

dt? dt

From this we derive the following theorem :

THEOREM 9. If the coefficients of equation (1 ) do not contain the var

iable x then the solutions are invariant with respect to the linear trans

formation: x= t+ p , where p is an arbitrary constant.

This follows from setting u= 1 in equation (5 ) .

Although the contents of Theorem 9 may at first appear to be triv

ial , its implications are quite otherwise. For it suggests the possibility
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of examining equation ( 1 ) for solutions which are automorphic func

tions. While it is beyond the scope of this work to develop the theory

of such functions, certain of their properties will be of interest through

their connection with elliptic functions.

Automorphic functions are associated with groups of linear frac

tional transformations . * By a group (G) of such transformations, we

shall mean a set : T1, T2, ·... , Ty , where N may be either finite or infi

nite , which has the following properties :

( 1 ) An inverse of any transformation of the set is itself a member of

the set , that is , T , ' = Tg, for some q .

(2 ) The succession of any two transformations is a transformation of

the set , that is , T4T; = T , for some q .

Examples of such groups are the following :

(a) The anharmonic , or cross ratio , group :

x= t ,

1

t 1 - t ,
1

1 - t'
2

,
t

-1
(6 )

(b ) The group of simply periodic functions :

x= t+mw, (7 )

where w is a constant and m assumes any integral value, including

zero .

(c ) The group of the doubly period functions:

x= t+mwtnw' . (8)

where w and w' are constants and m and nany pair of integers, includ

ing zero .

An automorphic function is one that remains unchanged with

respect to the elements of a group of linear fractional transformations.

More precisely, we shall say that f(x) is automorphic with respect to

a group (G) of such transformations provided :

( 1 ) f(x) is a single valued function analytic within a domain D.

(2 ) If r lies within D, then every element Tn of the group is also in D.

(3 ) f [ Tn (x )] = f( x ).

Examples are readily given, since it is clear that any rational func

tion of e2-13 is simply automorphic with respect to group (b) above

and that any rational function of $ (x) is automorphic with respect to

group ( c ).

• For an exhaustive treatment of this subject the reader is referred to L. E.Ford (loc. cit . ) .
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Thus, returning to Theorem 9 , we see that equation ( 1 ) will include

as special cases equations which have as solutions functions that are

automorphic with respect to groups (b ) and (c) . An interesting

example is furnished by Gambier's equation [ (9 ) , Section 3 , Chapter 7) ,

where the solution belongs to group (c ) .

But the fact that an equation may be invariant with respect to

the transformation S does not carry with it any implication that its

solution is automorphic with respect to any group of S. This is

illustrated by the following two equations :

yy '' + y '? — 1 = 0 , yy '' —y'2—1 = 0 , (9 )

both of which are invariant with respect to the linear transformation :

x = t+p .

But the solution of the first equation is y = [(x + p)? + q]'/?, where p

and q are arbitrary constants , which is not an automorphic function ;

while the solution of the second is y = (1/9) cosh q (x+p ) , which

belongs to the group (b ) of simply periodic functions , and is thus

automorphic with respect to this group .

An instructive example is furnished by the following equation :

du dºg 37dºg

dx dr 2 dx²( *) ++ (de)
=0, ( 10)

which will be found to be invariant with respect to the transformation

S , given by (3 ) above, if A= 1 .

Replacing y ' by z in ( 10 ) , we obtain the equation :

d’z 3 (dz\2

'++ kz*= 0, ( 11 )
dx² 2 ldx

2

which is a particular case of ( 1 ) and has a solution invariant with

respect to a linear transformation , but not invariant with respect to S.

The general solution of ( 11 ) is readily found to be

2=
aq

( x + p ) + q?'
a ’ = 2 /k , ( 12)

where p and q are arbitrary constants . When z is integrated , we

obtain the following general solution of ( 10 ) :

")+r.
(13 )y=a arctan

where r is the third arbitrary constant.
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But since equation ( 10 ) is invariant with respect to the transforma

tion S, it is clear that the solution ( 13 ) can also be written

y=a arctan

(472_)+ R
(14 )

where P, Q, R are arbitrary constants , and where

α - γ72

t = ( 15 )
-B + ox

s S-?, the inverse of S defined by (3 ) .

This does not mean , however, that y (x ) is itself an invariant of the

transformation , but that for any choice of the parameters of the trans

formation the two forms of y can be equated by proper adjustment of

the arbitrary constants .

PROBLEMS

1. Prove by explicit substitution that equation (10) is invariant with respect

to a linear fractional transformation .

2. Given k = 2 , determine the arbitrary constants so that y as given by ( 13)

is equal to y as given by ( 14) .

3. The following expression is called the Schwarzian derivative of f with respect

to x :

28' ( 2 )f(3)( 2 ) -3[f'' ( x ) ) .
D ( f) : =

2011 ( 2 )

Prove that

af+6
D

cf + d ) :

4. Referring to Problem 3 , prove that for the transformation : x=2 (t) , we have :

D( S) ; = D ( $ ) . ( ) + D(1)

5. If , in equation ( 10) k = 0, show that the solution is : y = (ax + b ) / (cx + d ) .

6. Show that y = ( ax + b ) / (cx - a ) is a solution of the equation :

( y - 2 ) y ' = 2y ( 1 + y ').

7. Given the equation :

3

- -2g = ,

show that its solution is

d

y=
da

where u and v are any two solutions of the linear equation :

da2

dzi + g ( t ) z = 0.
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5. Equations With Fixed Critical Points and Movable Poles

In discussing the solution of the equation

dạy

dx = 6y ?, ( 1 )

it was shown (Section 6 , Chapter 7 ) that the general solution is y=8 ( 2 )

and that this function can be written in the form

P(z)+P) , (2)

where v=r-a , a arbitrary, and P (v) is a convergent power series in v .

It was thus shown explicitly that any point in the plane can be made

a polar singularity . Furthermore , this movable pole was the only

singularity of the solution .

This example suggests that one obvious generalization of elliptic

functions would be to define a class of functions , solutions of second

order differential equations , which would share the fundamental prop

erty of elliptic functions that their only movable singularities would be

poles. In other words, if we use the term critical points to denote

branch points and essential singularities, then the members of the class

mentioned above would possess only critical points that are non

movable, that is to say , fixed .

A brief description of this problem has been given in Chapter 7 .

Its investigation was undertaken by E. Picard , P. Painlevé , B. Gam

bier and their associates around the beginning of the present century .

The problem was not an easy one and required the examination of a

large number of equations . In this work we shall not attempt to de

scribe fully the methods employed by these investigators, since they

produced many memoirs on the subject , most of which have been

listed in the Bibliography. The problem has been extensively pre

sented by E. L. Ince in his treatise on Ordinary Differential Equations

( 1927 ) with an abundance of detail . It will be sufficient for our pur

pose to indicate the general method of approach.

The first problem was to find the form of the differential equations

of second order which would have solutions with the desired property.

It was found that this equation could be written as follows :

ht =P(z.9 ( + Q67,9) +R(2,3),
(3 )

where P, Q, and R are rational functions of y . Thus the equation is

a member of the general class of polynomial equations.

556037 0–61—-16
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For the further limitation of the functions P , Q , and R two necessary

conditions were discovered as follows:

I. P (x ,y ) must be either identically zero , or must have one of the

five following forms :

m+ 1 m- 1

(A ) +

m (y - a ) ' m (y - ax)'

m2 1 .

1

( B ) v - am

( 0 )Žy-a.

1

( D) ( atm)+ ( a )

(E) § 1 + 2
n 2

n = 1 Y-an

The quantities an are arbitrary functions of x . They are not neces

sarily different and one of them may be infinite .

II . The coefficients Q and R must have the following form :

m(x ,y) n ( x , y)

Q(x ,y) = R ( x, y ) = (4 )

p(x,y) p (x , y )

where p (x ,y) , of degree p in y , is the least common denominator of the

partial fractions in P (x ,y ) and m (x ,y ) and n (x,y ) are polynomials in y

of degrees not exceeding p+ 1 and p+ 3 respectively.

But these conditions are very far from being sufficient and a long

and arduous investigation was initiated by the French analysts to

separate equations with the desired property from the total class of

equations which satisfied the criteria given in ( I ) and (II ) . The mag

nitude of the task can be inferred from the first case , where P (x ,y) is

zero , which meant that all equations of the form

ddạy

=Q(x ,y) ( 5 )
dx2 dr

dy + R (x,y),

where Q (x ,y ) is linear in y and R (x, y) is a cubic function of y , had to

be separately studied .

This investigation led to the discovery of 10 equations, which we

have listed explicitly in Appendix 1. The solutions of these equations,

with two exceptions, are expressed in terms of the classical tran

scendents or in terms of functions satisfying a linear equation . For

example, the sixth equation in the list , namely,

ddy

=
dx?

-[3y + g ( x)] dy -9 )y —y ?, (6 )
dr
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has for its solution,

u'

y = where u (3)+9(2 ) u '' = 0. (7)
uԱ `

This is observed to be a special case of the generalized Riccati equa

tion of second order .

The two exceptions mentioned above are the first and second Pain

levé transcendents , which we have already described in Section 3 of

Chapter 7. They are the fourth and ninth equations listed in Appen

dix 1 .

In their study of the remaining five cases listed in (I ) , the French

analysts found it desirable to express P (x ,y) in a convenient canonical

form . This was accomplished by means of a linear fractional trans

formation of the dependent variable . By 'proper specialization, it

was found that P (x ,y ), when it was not identically zero , must have

one of the following seven forms:

(a)

-
m—-1

(b) m an integer greater than 1 ;
my

( c )
3y - 1

- ;

2y (y - 1)

(d)
2 (2y — 1).

3y (y - 1)

(e)
3 (24–1).

4y (y - 1 )

(f )
7y - 4

by (y - 1)

(g)
3y2– 2y( a + 1 ) + a

2y (y - 1) (y - a )

* ) where a is a function of x .

This long study finally resulted in the discovery of a total of 50

special cases , the last 40 of which are included under the 7 forms listed

above . These equations are reproduced in Appendix 1 , from which

we get the following count for each of the categories : (a) 6 ; (6 ) 20 , in

three of which m is unspecified, but in the remainder m= 2 , 3 , 4 , 5 ;

(c ) 4 ; (d ) 2 ; (e ) 5 ; (f) 1 ; (g) 2. In one of these two cases in the last

category a is a constant and in the other a= x .

For all these 40 cases , with the exception of four, the solution can

be expressed in terms of classical transcendentals , or reduced to the
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solution of a linear equation. As an example, consider equation (43 )

in the list in the Appendix, namely ,

2

3

( 1-2y)
4

dy

dx
(8)

which we have already discussed in Chapter 7 (Equation (9 ) , Section

3) . There it was shown that the solution can be expressed in terms of

the elliptic function ® (x) , the singularities of which are only movable

poles .

The four exceptional equations are ( 13 ) , (31 ) , (39 ) , and (50 ) , which ,

together with the two already mentioned , form the six transcendents

of Painlevé . They cannot be solved in terms of the classical function,

nor can their solutions be expressed in terms of the solutions of a linear

equation. These six equations have been listed explicitly in Section

3 of Chapter 7. An extensive analysis of the first two will be given in

the following pages.

In the use of the list of equations in Appendix 1 it is important to

keep in mind that a much larger set of equations , with solutions satis

fying the fundamental criterion, can be generated from it by applying

to each member the following transformation :

T) y =

atbz

; A = ad - bc70,
c + dz

x= x( t ) ,

where a, b , c , d are analytic functions of x and x (t ) is an analytic func

tion of t .

Thus , in the investigation of an equation not included in the ca non

ical list , one first applies to it the transformation T to see whether it

can be reduced to some member of the list, since the inverse of T is a

transformation of the same kind .

For example , the equation

d

4 ( y - y )d=3(1–2y) ( %) +49(1)(y—y )dy, (9 )

which we discussed in Section 3 of Chapter 7 , is not included in the

standard list. But if we make the transformation :

y= 2, u = u (x )

where u is a solution of the equation : u ' - 9 (x ) u ' = 0, then (9 ) reduces

to (8 ) expressed in terms of the variables z and u .

- -



DIFFERENTIAL EQUATIONS OF POLYNOMIAL CLASS 229

6. The First Painlevé Transcendent

It will be convenient to consider the equation which defines the

first Painlevé transcendent in the following form :

dạy

= 6y2+x ,
dx²삁

( 1 )

where X is an arbitrary parameter. That the parameter can be set

equal to 1 without essentially changing the generality of the equation

is seen from the fact that the transformation : x=1-1 /5t , y = \ 2/50 ), re

duces ( 1 ) to the form

daw

(2)dt2 = bwa+ t.

However, the transformation does not admit the important limiting

case where 1= 0 . For this reason , since it will be useful to compare

the solution of equation ( 1 ) with the solution of the equation

day
(3 )d.x2 = 6y ?,

the parametric form will be kept.

Since the general solution of ( 1 ) is characterized by the existence

of a movablepole, we shall expand this solution in the following series :

y = " + ";}+ as + a10 +aşvº +aşrº+ ...,v =8–27.
(4 )

The first eight coefficients have the following values :

a- 2= 1 , a - 1 =do= =0 , az = -1x1/10, az= -4/6 , an=h, az=0, (5)

where both X , and h are arbitrary constants .

The explicit values of an through n = 16 are given in Appendix 3 .

Others can be computed from the following recursion formula :

n-3
6

na-n- 12
ain = Σαχάη-k -25k- n > 4 . (6)

k = -1

Series (4 ) thus gives the expansion of the solution in the neighbor

hood of the singular point x, and can be used effectively in computing

values of y near the pole provided both h and x , are known . Unfor

tunately , however, it is customary to specify as initial conditions values

of y and y' , let us say , yo and yo , at some regular point : x= xo . This

specification thus defines both h and x , but does not suggest how these

constants are to be determined .
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The existence of a solution of ( 1 ) determined by the initial condi

tions: y= yo , y ' = “ , is provided by the theorems of Section 4 , Chap

ter 7 . Its analytical expansion is given by the series :

y= y + 4 (2-2) + (2 - ro)? + % (2-4 )3+ ... , ( 7 )
2 ! 3 !

where yoʻis evaluated in terms of yo and y. by means of the differential

equation, and you and higher derivatives are found from the succes

sive derivatives of ( 1 ) .

The first few of these derivatives are the following:

y (3) = 12yy' +1,

y(4) = 12(yy'' + y'?) = 12 (64° + Axy + y '?),

y (5 ) = 12 (yy(3) + 3y'Y'') = 360y?y ' + 124y + 36 \ xy '. (8 )

Other values of y n ) through n = 15 are given in Appendix 3 .

Connection between the two expansions (4 ) and (7) is readily estab

lished if r in (4 ) is replaced by X, and y by yo Equation (4 ) is differ

entiated and x and y ' replaced respectively by to and y . Denoting

8o— X, by vo, we have explicitly

λ

Yo =

1

va

λα,

10

vz- @ vya + hot + 12x1
x²xi 12X1

v6 + v6 +
300 150

y =
ܟ
ܬ

ܐ
ܝ

λα, Xx 71? r

V - 10% + 4hv + vt
5 2 50 150

v6 + (9 )

These equations can now be put into better form for our purpose

if x , is replaced by 40—10 . We thus obtain

Yo

1

va

1.Xo

va
10

λ Xpx
v + hv +

15 300
v6 + ..

yo

2 λες

. 5

Vo

1227 1²x

vę + 4hv8 + v6 + v8 +
5 50 150

( 10 )

The two equations in ( 10) form a system for the determination of

the unknown parameters h and v , in terms of the given initial values

Yo, Yo , and y . From the value of 1 , it is possible to obtain 21 , which

is the polar point for y . This value defines the region of convergence

of ( 7 ) , which is thus limited to the interior of the circle with center at

mo and radius equal to 111-7 .

We have already applied this analysis to equation (3 ) in Section 8

of Chapter 7. We shall now extend it to equation ( 1 ) . For this pur

pose it will be convenient to use only the first four terms in each of the
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series in ( 10 ) . Since h appears only to the first degree, it can be elim

inated and the following quintic is obtained for the approximate

determination of vo :

106 + 312.06-15462? + 604.0-90= 0 . ( 11 )

In general, however , the value of x,-X, will be too large to allow

a good approximation of vo by equating it to the proper root of ( 11 ) .

This difficulty would be overcome, however, if equation (7 ) and its

derivative could be used to obtain new values of y and y ' which cor

respond to a value of x in the neighborhood of x . Unfortunately,

the rapidity of the convergence of (7 ) decreases as x approaches x ,

and one is thus limited in the use of this device .

However, a method of continuous analytic continuation, which is

described in Chapter 9 , has been devised to overcome the difficulties,

in the convergence of (7 ) . By means of it , tables have been computed

for y and y ' for various values of X corresponding to the initial con

ditions: To = 0, 20 = 1, 4% =0 .

These values are recorded in Table I in the Appendix from which

the graph shown in Figure 1 has been constructed . The graphs of

y for yo = 0 , y = 1, 1= 0 , 1 , and 5 , which are shown in Figure 2 , was

obtained by means of the differential analyzer of the Radiation Lab

oratory at the University of California and were made by John Killeen .

It will be observed that the slopes of the functions corresponding to

various values of the parameter are less for the second choice of initial

conditions than for the first . That this should be the case is readily

seen for the parameter 1 = 0 , if we compare the values of the polar

6

у

I- A : 1 = 5 1

5

A = 1

4

1 =51

3

2

-1.0 1.0 х-0.5 O 0.5

FIGURE 1.-Graph of y for 1= 1 and 5 .
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3

у

i = 5

2

ti : 0

х

1.25.25 .50 .75 1.00

FIGURE 2.-Graph of y for yo= 0 , yb = 1; 1= 0 , 1 , and 5 .

points . For the first set of conditions we found that xi = 1.21432 .

A similar computation for the second set of conditions yields the value :

X = 1.52995 .

With the values available in Table I it is now possible to use equa

tion ( 11 ) effectively in determining x , corresponding to the initial

conditions : x = 0 , Yo= 1 , y = 0. Thus, when X= 5 , we have for xo = 0.90

the values Yo = 12.78, y = 91.9. When these quantities are substituted

in ( 11 ) and proper simplifications made, we obtain the following equa
tion for the determination of vo :

v6 + 2.70 v7-275.7 v : — 153.36 va – 18 = 0 .

From the root , v = -0.279, we thus determine: x1 = Xo— V = 1.179.

This same value is obtained if we use the much larger values of y and

y' corresponding to x= 0.96 .

A similar computation to determine the first negative pole corre

sponding to 1 = 5 was made with the initial values : x = -1.00 , yo =

15.31 , y = -119. The value of this pole was thus found to be ra =

-1.256 .

7. The Boutroux Transformation of the First Painlevé Equation

In a long memoir published in 1913-14 , M. P. Boutroux studied

the asymptotic properties of the first and second transcendents of

Painlevé. In initiating his investigations, Boutroux made the fol

lowing transformation :

4

y = pl /2w , t = 25/4, ( 1 )

, t

-
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upon the variables of the equation :

day

= 6y? + λα,
dx2 + ( 2 )

and thus obtained :

daw

dt?
6w2 +

1 dw 4

i dt+2542
W, (3 )

For certain regions of t , when the absolute value of t is sufficiently

large, Boutroux showed that w is asymptotic to the solution of the

equation :

d2W

-=6W2+ . (4 )

dt ?

The solution of this equation has already been shown ( Section 9 ,

Chapter 7 ) to be

W = 8 (Ct,k ), (5)

where , in this case , the constants ( and k are given in terms of the

roots of the equation

483 + 21s + g = 0, (6 )

in which g is arbitrary .

The value of k is determined from the equation of twelfth degree

defined by equation (21 ) in Section 16 of Chapter 6 and is seen to be a

function of both , and g , and thus of both , and C. The value of C'is

determined from the boundary conditions imposed initially upon the

solution of (4 ).

The period of (2) is the period of snº (2 ) and is thus one -half the

period of sn (2 ) . Let us denote this by 12. The period of W ' is thus

2= 2 /C, and since 2 , is a function of both Cand X , we can denote this

by writing: 2 = S2, ( C , ).

For given boundary conditions, let us say at the origin , C is a con

stant , and hence, for a specified A , 2 , is a constant . If the boundary

conditions are real , then 2 is real and , as we have seen , there will

exist a series of values: t , + m2, for which W '(t) is infinite .

Thus, for sufficiently large values of t , the poles of w will be asymp

totic to the poles of W '. Hence, by means of the transformation ( 1 ) , we

can obtain the asymptotic behavior of the poles of y for large values

of x .

Let T , and T , be successive poles of W ', and let their asymptotic

images for y be respectively X, and X. By virtue of ( 1 ) , we can then

write :

Tz- T, = (X3/4— X5/4). (7 )
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If we now denote the distance between X , and X , by 8 , then from

( 7 ) we get

5

( X + 8) 5/4— X5/4 = X3/4 ( 1+

5 82

(

+

4 X 32 Xi+ ...)- 2
12 .

. )–Xpemo

Since X, is large , we thus have

8 ~ 81X 1/4 (8)

The conclusion is thus reached that the distance between the real

poles of the solution of ( 2 ) approaches zero asymptotically as the fourth

root of the distance of the poles from the origin .

8. Definition of a New Transcendental Function

Since the solution of the equation

dy

( 1 )dx2 = 6y ,

can be written in the form (Section 6 , Chapter 7 )

b

yrat ; V = X — X1

snº(Cv)'
(2)

the possibility suggests itself of defining a new transcendental func

tion , S (2 ) , which will be defined by the equation

B

$ (CV) = ( 3 )
y (v ) -A'

where y (v ) is a solution of the equation

ddạy

dr2
= hy ? + Ar. (4)

It is now our object to determine the parameters in such a way that

S ( z ) reduces to sn ( 2 ) when A = 0 . Fortunately the parameter 1 will

enter into the coefficients in such a way that S ( z ) can be written as

the sum

S(z) = sn (z) +10 (2,1 ) , ( 5 )

where ( 2 ) is the function which we wish to determine explicitly .

Let us assume that we can write $ ? (Cr) as follows :

S ?( CV) = B (22 + 542 * + b226 +6707+ ... ) . (6 )
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Introducing into (3 ) the expansion of y given by (4 ) of Section 6 , we

have

Bv2

S? (Co) = 1 – A02 + a20* + azu:+0908 + ... (7 )

Equating (6 ) and (7 ) , we then obtain the following equation for the

determination of the coefficients bi:

By = B (12 + 6204 +6808 +6707+ ...) (1- Av2 +2204 + a305 + ... ) . (8 )

Equating the coefficients of like powers, we obtain the following

values for the bii

b = A ; bø=A?-Qz; b ; = az- ; bg = A3-2Aaz - aa; by= -2Aaz ;

bo = A *-3a2A ?—20 , A + až - ag; bu = -3a3A²+2azaz-az ;

b12 = A ' — 422A3–30 A² + (3a3-206) A + 20,4staz- as ;

biz = -40zA + (6a2a3-2a7) A + 2a3a4 - ag;

614 =A*— 522A4-4a4A® + (6aż— 398) A²+ (6a284 + 3až — 2a3) A

-až + 20,08 + al - 010. (9)

In order to obtain the expansion of S (Cv) itself, it is now necessary

to extract the square root of the series given in (6 ) . In order to have

an algorithm for the computation of the coefficients, let us consider

the following expansions:

fº (v ) = Fc + Fv + F2v2 + F3213 + ... + F.01 + ... , ( 10)

and its square-root:

f (v ) = fo + fv + f2v2 + f3v3 + . + frun+ ( 11 )

Squaring ( 11 ) , we obtain the series :

fº(v) = f6 + 2f0f1v + (fi + 2f0f2)x2 + ... + (21,1n-s)em+ .
( 12 )

Equating the coefficients of ( 12 ) to ( 10) , we get

fo = F0, 2fef = F , fi + 2fof = F2, fufn -, = Fn.. (13)

n

j=0

From these equations we can compute successively the values of fo ,

f1, f2 , etc. , in terms of the Fi.

We now apply this algorithm to determine from (6 ) and (9 ) the

coefficients of the expansion of S ( Cu ), which we write as follows :

S (Cr) = B (Sqv + S202+53202 + ... +3909 + ... ) . ( 14 )
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We thus obtain the following values for Si:

1

-6 4

S6

Si = 1, S2= 0 , S3 = - A, S SSx= 0, s = do:-2=24

So= 36 = _gasi s =gb - bsbot tai= 4-4a- ,

Ss= 16 bob =-40 = A1, So =360- bobo 108+ imbibo- ja

19.4 + ,4 – 4n+adomes ( 15)

64
128

In this manner we have defined in ( 14 ) a new transcendental

function which , when A = 0 , is identical with sn ( v ). Since 1 appears

only to positive powers , we can write S( z ) , z = ('v, as the sum of sn (z)

and a function in 2 and 1 , as shown in (5 ) . It is this second term ,

which is the new transcendent of Painlevé .

9. Determination of the Parameter h

An examination of the coefficients Sc , defined explicitly in ( 15 )

of Section 8 , shows that the parameter h has not yet been evaluated .

Since ( and x, have been assumed to be the arbitrary constants of the

solution, h cannot be independently chosen also .

For the purpose of determining h , which appears explicitly in both

S , and S , we shall let X =0 and then equate S , to the explicit coefficient

of v ? in the expansion of sn (Cv ). It will be recalled (Section 13 ,

Chapter 6 ) that sn (2 , k ) has the following development:

sn(z,k)= z =(1+ k%)**+ (1+ 14kP+k***–(1+ 135k2+135k*+k)**

+ (1+ 1,228k2+5,478k*+ 1,228k®+ km) –(1+ 11,069%?

k 0+ 165,826k4 + 165,826k6 + 11,069k8 + k10)

21
1

( 1 )
11
17

Referring now to the values given in ( 15 ) of Section 8 , we set 1 = 0 ,

and, recalling that B= ( 2 (see (7 ) , Section 6 , Chapter 7] , we obtain

the equation:

BS = 0
[14

A3

1

-h

2 7= ( 1 +135kº+ 135kö+ 2).
( 2 )



DIFFERENTIAL EQUATIONS OF POLYNOMIAL CLASS 237

Since k - 1 and 1 - k2 + k4 = 0 (see Section 6 , Chapter 7 ) , the right

hand member of (2 ) reduces to -3C (2k - 1 )/ (24.7). Hence, solving

for h , we obtain :

3C6

h = ( 2k2—1) + ; A3 . ( 3 )

56
2k 1)+ 4

But from (7 ) of Section 6 , Chapter 7 , we have A = -(( 1 + k% ) /3 ,

whence A = -C (2k - 1 ) /9 . Introducing this value into (3 ) , we thus

obtain

27 5

h A A3 A3 . (4 )
56 8

We observe that h also appears explicitly in the coefficient of So.

It is instructive to verify (4 ) by comparing Sy with the coefficient of

zº in ( 1 ) . Since we have , when X=0 ,

5.-( 128
35 3

28
A4.

149

C®(k- 1 ) ,
7.9.128

the identification of S/CⓇ with the coefficient of zº leads to establish

ing the identity:

5.9.149 (k2—1) = 1 + 1,228k2 + 5,478k4 + 1,228k + ks,

where k= -1 .

Replacing k by - kº, k6 by – 1 and k* by k2—1 , we see that the right

hand member is reduced to 6,705= 5.9.149 multiplied by k2— 1 .

10. Generalization of S (v )

From the results of the preceding sections, it is now possible to define

a function, which we shall denote by S(0 ,k ;x ) , which reduces to sn (0 ,k)

when X = 0 , and to S(v) when ke= -1 .

In order to define this function, let us write sn (v ) as follows :

sn (v) =vtA3v3 + A325 + A70?+Agvº+ ( 1 )

where the Aį are the functions of k given explicitly in ( 1 ) of Section 9 .

Let us now , in ( 14 ) of Section 8 , set C= 1 , which we can do since (

is an arbitrary constant, from which it follows that B is also equal to 1 .

The coefficients S, are now replaced by their explicit values as given

by ( 15) of Section 8 and we thus obtain the following expansion :

27

112

149

A377 + A409+
896S(v) = v+) Av + 42+

» [2 ze +idx + **Ar++ ; 1+( 2,4 + 150 147)+ ...].]
ta

(2 )
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Let us now observe that Az = - (1 + kº) / 3! reduces to A / 2 , when

k @ = - 1 . Thus, if a new function were formed in which A in S(v ) is

replaced by 2A3, we would have a function which , with respect to the

coefficients in which A occurs, would reduce to S(v ) when kø = -1.

Similarly, A; reduces to 3.42/8 and hence A can be replaced by

8A3/ 3. We obtain in this way the following table of equivalents:

Az reduces to A , d is replaced by 2 Az;

3

Az reduces to > A?, A’ is replaced by Asi

27

A , reduces to 43,
112

112

A3 is replaced by
27

Az ;

149

d, reduces to
896

896

44 is replaced by
149

do;

201

Au reduces to 4 ,
1792

1792

As is replaced by Au.
201

(3 )

When these substitutions are made we obtain the following function :

S(0, k; x) = sn( 0, k)+10(0,k; ) , ( 4 )

where (0,k ; x ) has the explicit expansion :

1 1 3

( 0 ,k ; ) = 3,25+ 06+
20 12 40 3,07 +2 490+(6 452i+

1

λr

480

(5)

If we set x = 0 , the expansion of this function reduces to the fol

lowing:

1 1 1121

0 ( 1 ,k ;} ) = 1 + 3A3v2 + 5A304 + 125+ A906 + ( 6 )
12 6 135

We thus see that the difference between S (v , k ;) ) and sn ( v ,k ) is of the

order of v . The function defined by (6 ) we shall call the first tran

scendent of Painlevé.

Although the function S (v , k ; 1 ) defined in (4 ) is real for real values

of k , it is actually complex when it is introduced into the solution of

the Painlevé equation, since Ap = k / 3, where k = 1 + w and w is a com

plex cube root of 1 .

Some interest may attach to the expansion of S (v) in this form .

The problem reduces to that of the evaluation of powers of A , the

first six of which are found to be the following:

d = - (2 + w / 3, 42 = ( 1 + w / 3, 43 = - (1 + 2w ) /9, 41 = w /9 ,

45 = - ( 1 + w ) /27 , A = -1/27 .
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It is readily shown that A" has the following value:

da _ (
( -1) "

[{ 2" — „ C , 2n - 2 + nCz 29-3— „C5 21-5 + nCo 2n - 6++ . }
39

+ w {wC 2n- 1 - C, 2n - 2 + nC4 2n -4– C5 2n- 5+ ... } ] . (7 )

When these values are substituted in equation (2 ) and x , set equal

to zero , the following expansion results :

1 1

03 + 15.

3 67

07+ oll +
112 16128S(v)= [v- +

+ (se

+ [6 - + - + 5061

5 9λ

V8 — 18+010+
88

vli .

1121

5040

012 +

:)]
.

ve .

67

16128

vllt

.. )

21 (0+
5

28+2010 .
4

2242

2745

212+

.)7 (8 )

11. The Second Painlevé Transcendent

The equation which defines the second Painlevé transcendent can

be conveniently written in the form

dạy

dir ?
==3y+xytu, ( 1 )

where u is an arbitrary parameter . As in the case of the first Painlevé

equation , two expansions will be of interest to us , one valid in the

neighborhood of the pole: x= 81 , and the second in the neighborhood

of a regular point: r = lo at which values of yo and y are specified .

The first of these expansions can be written in the form :

a
-1

y = + do + au + azv2 + azvü + 9q0++ V = X — X1. (2 )
.

When y is substituted in ( 1 ) and coefficients of like powers are

equated, values of an are obtained of which the first seven are the

following:

a - 1 = 1 , do = 0 , Q = -X1/6 , Az -- ( 1 + ) , aa=h ,

04

= 72 * / ( 1 + 34 ), q;=

1

(27 + 1084-216 hr, + 8142—2r ), (3 )
3024

where both x , and h are arbitrary constants.
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The explicit values of an through n= 15 are given in Appendix 4 .

Others can be computed from the following recursion formula :

(n+1)(n+2) [234, 2aAa=c+n+an-sta,ri], - >-1 , (4 )

where am = 0 , when m < -1 .

For example , when n= 2 in (4) , we get

0412 (6a² ,04 + 12a - jagaz + 120-1@ an,+ 6a az + ba,ai + a + azdı).

When the values for dj , i= -1,0,1 2 , 3 , as given in (3 ) , are substituted

and aq solved for , the coefficient given in (3 ) is obtained .

The second expansion of the solution of ( 1) is the following Taylor's

series about the point: 2 = ,:

(3 )

y = yo + yó(r - ro)+ % (2–2.) + (x— X.) 3 + ... , (5 )

2 ! 3 !

where y, and y are specified arbitrarily, y is obtained from the dif

ferential equation, and y3) and higher derivatives are evaluated from

the successive derivatives of ( 1 ) .

The first few of these derivatives are the following :

y ( ) = 6y’y' + xy' ty,

Y (4 ) = 6y y' ' + 12yy'? + xy''+ 2y ' = 12y = + 8zy:

+ buy? + xʻytua + 12yy'? + 2y ',

y (5) = 12y'3 + 36yy'y'' + były(3) + xy(3)+ 3y' ' . (6)

The values of y ( ) through n = 10 are given in Appendix 4 .

As in the case of the first equation of Painlevé , the relationship

between expansions (2 ) and ( 5 ) is readily seen if xin (2) is replaced by

X, and y by yo . Equation (2 ) is differentiated and x and y' assume

respectively the values X, and y . Since v = xo - X1, we now replace

I , by ro - 10, and thus obtain the following equations:

11-1 ...,-Yo= " +1,20+ A22a + 21318 + 428 + A3v6 + A606+
10

-y = ' + A +2Ago+ 34318+4418 + 54368 + 6Agent ... ,

(7)

12

- - - -

1
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where the coefficients have the following values :

A- = 1, A , -- Io, A2=

1

( 1 + 34) , Az = h , A. =
12 72A = 7 (20+ 34),6

A ; =

1

( -15–184 + 216uxo + 8142—2x %),
3024

Ar=

1

( 2.0% + 21wxa + 756uh + 72h ).
6024

(8)

Negative values of y and y' are used in (7 ) on the assumption that

dio < x; and hence vo is negative. This will be the case if the initial

point in (5) lies between the origin and the first pole of the solution.

In applying equations (7) to the numerical evaluation of xy and

h , values of y and y' are determined for some value of x sufficiently

near to x, so that v=2—X; is less than one in absolute value . To accom

plish this we begin with an initial set of values of y and y' at some

specified value of a , let us say, x= 0 . Since series (5 ) converges very

slowly when x is in the neighborhood of 21 , its usefulness is limited

and we have recourse to the method of continuous analytic contin

uation , which is described in Chapter 9 , or to some other method of

approximation . Having finally obtained the desired values , we denote

them by 20 , Yo, yo and substitute them in equations (7) .

Since h appears first in Az, terms beyond this value in (7) are

neglected and the resulting equations are then used to approximate

Since h appears linearly, it can be eliminated . The result

ing equation for the approximation of v, is the following cubic :

h and 21 .

( 1 + 3u) v8 + 4 (20 + 3yó) va — 3640V0—48 = 0 . (9)

From the value of vo thus determined we compute the pole , X1 . In

order to obtain h we substitute v , in equations (7) and solve either

of them for h .

By means of the method of analytic continuation , tables have been

computed for y and y' corresponding to u= 0 , 1 , 2 , 3 , 4 , 5 and the

boundary conditions: 2 ,=0 , yo= 1 , y= 0 . These values have been

recorded in Table II in the Appendix. The graphical representations

of y and y' for u= 0, 1 , 3 , and 5 are found in Figures 3 and 4 .

It will be evident from the graphs that the polar values of the

solutions tend to move toward the origin with increasing u . Making

use of the values of y and y' in the neighborhood of x = + 1 , we obtain

estimates of xį for several values of u by solving equation ( 9) . These

estimates are as follows:

For y= 0, 21–1.26 ; for ú= 1 , x1 = 1.16 ; for ú= 5 , x1 = 0.95 .

556037 0-61 17
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FIGURE 3.-Graph of y and y ' for v = 0 .

12. The Boutroux Transformation of the Second Painlevé Equation

A transformation similar to that which we have described in

Section 7 for the first Painlevé equation was also given by Boutroux

for the equation :

= 2y + xytu . ( 1 )
d x2

ddạy
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FIGURE 4.-Graph of y and y ' for i = 1 , 3 , and 5 .

Applying to ( 1 ) the transformation :

y =?!!?W , = 232,
( 2 )

we obtain the following equation :

24 .daw

=2W3—20

dt ?

1 dw

tdt

+

1 w

+
9 t2 3 t

(3 )



244 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

Boutroux showed that for certain regions of t , when the absolute

value of t is sufficiently large , the solution of (3 ) is asymptotic to the

solution of the elliptic equation:

d2W

= 2W - 26 .
dt2

(4 )

One form of the general solution of (4 ) can be written (see (7 ) ,

Section 10 , Chapter 7 ] :

W = ( / sn (Cu ,k ), k= 2 /(12—1 , u= t - to . (5 )

The values of C and to depend upon the initial conditions imposed

upon W.

Since , for every k , there exists a quantity 12, such that sn( z+ 12)

= sn ( z ), the period of W is given by 2 = / C . Since t= t , is a pole

of W ', there will exist a series of values : to + m2, for which W (t) is

infinite .

Thus within the Boutroux regions, when x is sufficiently large,

the poles of y will be asymptotic to the poles of W. Let T , and T ,

be successive poles of w on the real axis, and let them correspond to

real initial conditions imposed at r=0 . Let us denote by X, and X ,

the asymptotic images of T , and T , respectively. It is then observed

from (2 ) that we can write

T. T, = ( X ? –Xp2) ~ 21 ( 6 )

If we denote the distance between X , and X , by 8 , then from (6 )

we get

38 3 82

1. + +
2 :) – X72 .

Since X, is large , we thus have

8 S2, X 1/2 ( 7 )

The conclusion is thus reached that the distance between the real

poles of the solutions of ( 1 ) approaches zero asymptotically as the

square -root of the distance of the poles from the origin .

One difference between the asymptotic behavior of 8 for the cases

of the first and second Painlevé transcendents is to be observed .

In the first case S2 depends upon the parameter 1 of the equation ,

but in the second case 8 , is independent of the parameter u .
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13. Methods of Analytic Continuation

The problem of extending the solutions of the Painlevé transcend

ents beyond their first singular points on the axis of reals is one of some

interest . Two methods are available . The first of these, which we

shall call the method of " pole-vaulting,” is made practical by the

existence in the neighborhood of the pole of both a Taylor's series and

a Laurent series with a single infinite term . The second method makes

use of an analytic continuation around the singular point.

We shall illustrate these methods by making an extension into the

segment beyond its first pole of the first Painlevé transcendent when

1= 1 . The solution is initially defined at X= 0 by the values : Yo= 1 ,

yó = 0.

In applying the method of " pole-vaulting " we first compute the

value of x ( the first pole ) by means of equation (11 ) , Section 6. For

the initial values we take from Table I in the Appendix the following:

Xo = 0.95, yo = 15.16 , y= 118 . Substituting these in equation ( 11 ) , we

find without difficulty the following solution of the quintic: v = 0.2568 ,

and hence compute:

X ; = x0 + vo = 1.2068.

This enables us to obtain new initial values yo and y' at the arbi

trarily selected point: x = 1.5 by means of equation ( 10) , Section 6 .

We thus find : Yo= 11.62 , y = —79.46. With these as initial conditions ,

the solution is now extended by continuous analytic continuation (see

Chapter 9 ) to x= 2.80 , where we obtain the values : y = 11.23, y' = 75.47 .

Entering these values in equation ( 11 ) , and solving the quintic as

before, we are able to determine the second pole . This is found to be :

X2 = 3.0982. It is obvious that this method can be indefinitely con

tinued .

The technique of the second method is described in Section 11 of

Chapter 9. By means of it , and employing a rectangular path , the

solution of the differential equation is analytically extended into the

complex plane and back again to the axis of reals at x= 1.5 . The values

thus obtained are y= 11.78 and y ' = — 79.56 , which , when one con

siders the complex nature of the computation, agree very well with

those obtained by the first method . The graphical representation of

the curve thus found is shown in Figure 5 .

It is interesting to compare the extended function with a series of

functions computed respectively at the points x= 10 , x = 20, and x= 30,

but each satisfying at its respective point the same initial conditions,

namely, y= 1 , y ' = 0 . These graphs are shown in Figure 6 , which may

be compared with those in Figure 5. The former show the contrac

tion between successive poles as x increases.
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Chapter 9

Continuous Analytic Continuation

1. Introduction

ONE OF THE ADVANTAGES enjoyed by linear equations over nonlinear

ones resides in the relative simplicity of the algorithms available for

the computation of their solutions. For the time ultimately arrives

in most investigations when it becomes necessary to exhibit in numer

ical or graphical form the function which solves an equation .

In preceding chapters we have given three types of existence

theorems, which , in a sense , provide algorithms for the construction

of the integral of an equation. But a survey of these methods will

make it clear that there is a great deal of difference between proving

the existence of a solution and the actual attaining of it in a graphical

or numerical form . In general, complexities increase with each step .

Let us consider, for example, Cauchy's method of limits, which, in

its essential feature, is merely the construction of an appropriate

Taylor's series which satisfies formally the differential equation and

converges, together with its derivatives, to preassigned values at a

given point x= xo . But the computation of the coefficients of the

series is usually a monumental task , since the evaluation of higher

derivatives from the original equation often increases exponentially

in difficulty . The convergence of the series is limited by the radius

r= \ x0—211 , where x; is the nearest singular point. And even when r

is very large, the error in the approximation soon increases beyond

practical limits with an increasing value of xo—x .

Therefore, the need exists for a method of approximation which

has the following features :

(a) The method should be what we shall call linearly iterative .

That is to say, each successive step should be connected with its

immediate predecessor by an algorithm which involves associations

that do not increase in complexity at each step .

( 6 ) The method should be applicable to approximations in the

complex domain . It should not be limited to approximations on the

real axis .

(c ) It should be capable of extension to the neighborhood of any

point in the complex plane , which is not excluded by a natural bound.

247
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(d ) The error in the approximation should increase linearly at most .

That is to say , the error reached in the nth step should not be greater

than nK, where K is a preassigned constant.

A method which has these properties, and which we are about to

describe, will be called the method of continuous analytic continuation .

It can be used for the approximation of solutions of equations of any

order, although in our discussion we shall consider its application to

differential equations of second order .

As an introduction to the method , it will be instructive to describe

another one related to it , which we shall call the method of curvature.

This approximation has already been discussed in Section 2 of Chap

ter 2. The method, however, is much more limited in its scope than

that of continuous analytic continuation, since its applicability is to

real values of the variables, and it is adapted only to differential

equations of first and second orders. It does, however, have the

advantage that it can be applied graphically to the construction of

an integral curve .

2. The Method of Curvature

Let us assume that the equation to be solved can be written in

the form

y ' ' =f(x ,y ,y ' ) , ( 1 )

and that the desired integral passes through the point Po = (xo,yo)

with slope yo.

у

Qla, b )

Polxo,
You

Pi ( xo + Axo , Yo + Ayo )

Y - yo = yo '(x - xo )

X

FIGURE 1

By means of equation ( 1 ) we now determine yó ' and thus can

compute the value of the radius of curvature, Ro, from the formula :

( 1 + y'2)3
R2 ( 2)

y' ! 2

1
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Ro

b = yot

Referring to Figure 1 , let us denote by Q= (a , b ) the center of

curvature . Explicitly the coordinates a and b are computed from

the formulas:

yR ,
a = XO (3 )

V1 + y ? v1 +yo?

The line through Po, which is tangent both to the integral curve

and to the circle of curvature, is given by

Y - Yo = yó (x - xo). (4 )

Let us now consider a second point Pi = (21,9ı ) on the circle of

curvature, which is derived from P, by adding an increment Ax to Zo ;

that is ,

P= ( 20+ Ax, Yo+ Ay) .

To a second approximation we shall have

1

yı = yo + Ay = yo + yódz + % ' ( Ax ) ?.
(5 )

Since P, lies on the circle of curvature , we can now compute the

derivative y ' at P, by means of formulas (3 ) as follows:

dy

\da ) Pi ( +5)= -(
Xo+ Ax-a

yo + Ay - b

Yo Ax + yó ( 1 + y62)
(6 )

362682 +2 46"(42)2]— (1+ 36)[

Denoting this value by yí , we now substitute 21,41 , yí in ( 1 ) to

find y '. The computation is then repeated to obtain Pa= (x2,42 )

and ya. Other points are similarly determined and an approximation

to the integral curve is thus attained .

An estimate of the error involved in this method can be obtained

by considering the difference between yi as given by (6 ) and yi

computed from the derivative of (5 ) . Denoting this difference by

D, we thus find its value to be
>

1

D = ( y ) ?(Ax )?
2

3y6 + y'A.x

1

(Y6 + y6Ax)?

( 7 )

Neglecting differentials of third and higher powers , we have the

following approximation for D:

3 y (y6')
D (8)
2 1 +42 (4x )?
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3. Analytic Continuation

We shall assume that f (z) is a function of the complex variable z

and that it is analytic throughout a simply connected region A except

at a finite number of points in which it has singularities. Let us now

connect two points a and b of the region A by a simple continuous

curve, L , which neither intersects one of the singular points nor

encloses one of them . The situation is shown in Figure 2 , where

,the P , are the singular points of f (z).

P5

A

PA

C'С5.

CI

C6

P3

C
C2

(C3 ICA

C 07

a P2

P

FIGURE 2

Since f ( ) is analytic in A except at the points of singularity , it is

analytic at z= a where it has derivatives of all orders . Therefore, f ( z)

can be expanded in the neighborhood of a in the form of a Taylor's

series ,

( x-a ) ? (x-a) "

f (2 ) = f (a ) + (x - a ) f' (a ) + f " (a ) + ... + f(n ) (a ) + .... ( 1 )

2 ! n!

This series converges within a circle of radius R about z = a , where

R is the distance from a to the nearest singular point . If the situation

is that described in Figure 2 , then R = la- Pil , and series ( 1 ) converges

within the circle C.

The problem proposed here is that of finding the value of f (x)

at the point == b, which lies outside of the circle ( '. This is the

problem which is solved by analytic continuation .

To accomplish this we select some point ( , which lies on L and is

also within the circle C. Since f (2) is analytic at Ci , both the value

of f ( c ) and the values of all of its derivatives can be computed at c ,

by means of the convergent series ( 1 ) . From these values a new

Taylor's series is now constructed which this time converges within



CONTINUOUS ANALYTIC CONTINUATION 251

the circle C1, the radius of which is equal to the distance between

; and P. Part of this circle lies outside of C so we have now enlarged

the domain within which we can define f(2 ) by means of a Taylor's

series ; or , in other words, we have analytically extended f (2) beyond

the region enclosed by (' and into the region interior to ( .

Since the singular points are finite in number and isolated , and

since L does not include or enclose any of them , it is clear that by a

sufficient number of repetitions of the process just described we shall

eventually reach the point z= b with a Taylor's expansion that con

verges within the circle C" .

It should be observed that the circles of convergence vary in size ,

since their radii depend upon the position of the singular points with

respect to the line L. If one is actually computing the values of f(2 )

at points along L , this matter of the size of the circles of convergence

is an important one , since , in general, the rate of convergence of the

Taylor's series depends upon the size of the radius of the circle of con

vergence. The smaller the radius the larger the number of terms that

will be required to attain values of f( z) within the limits of a prescribed

error .

It has been assumed that the path L does not enclose any of the

singular points. The importance of this assumption is readily seen ,

for if one of the points , let us say P1 , is a branch point of f (2 ), then any

path which encloses P, will carry the function to another sheet of the

Riemann surface and we should not be able to reach the final point

2= b .

4. The Method of Continuous Analytic Continuation

The method of analytic continuation which we have described in

the preceding section is especially well adapted to the computation of

a function described by a differential equation. Let us assume that

the function is a solution of the differential equation

y ' ' =f(x ,y ,y ' ) , ( 1 )

and that at the point to it has the value yo and its first derivative has

the value yo

Let us assume that we are interested in obtaining the value of y along

a path L between theinitial point a = (x0 , Yo ) and a second point b . We

shall assume that the path is so chosen that the function y (x ) is ana

lytic throughout its length. It should be observed, however, that the

choice of such a path is not an obvious consequence of the form of the

differential equation .

Take, for example, the simple equation : y ' ' = 6y” , wrich we have

studied in Chapter 7. Cauchy's existence theorem assures us that a

solution with the prescribed boundary conditions exists in the neigh
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borhood of every point in the finite plane . But there is no obvious

reason to infer from the form of the equation that if L is the real axis and

the boundary conditions are real , the path L will contain an infinite

number of poles of the solution , as it actually does .

Under the conditions just assumed there will exist a solution of

equation ( 1 ) in the neighborhood of the point a , which can be written

in the following form :

y(z)=yo+ y642 + ( ) + % (Az) +
yon)

ts

n!
(Ax )" + R ,, (2)

where Ax = - Yo, and

R , = yon + 1) (AI)* + 1/(n + 1) !, 1 , = 20 + 0 (Az ), OS0S1 .

Similarly , for the computation of y ' (x ), we have

y '(2 ) = yó + yó'Art
2 !

(Ax)2+ + (A2) * - * + R ,

(n- 1 ) !

30
m
)

(3 )

where we write

R ' = y (n + 1) (A2)" /n !, 2n = 10 + 0 (4x ), Ososi . (4 )

The values of yom ) for m= 2 , 3 , ... , m are computed from the dif

ferential equation and its successive derivatives . Thus, for example,

we have

y (3) = fa + fuy ' + fyy '' = fa + fxy' +f fu ', (5 )

where the subscripts indicate partial derivatives . Let us take note of

the fact that y( 3) has been expressed in terms of x , y , and y' only .

We now observe that each one of the coefficients of (Ax ) m in (2 ) and

(3 ) can be expressed in terms of the initial values : Po = (10,40,4ó).

Let us write these coefficients as follows:

$ (20,40,yó) = f ( P .),

f:(Po) + yo fy(P .)+ f ( P .) f,, ( P . ) = f3 (Po), (6 )

and so on to higher derivatives.

Equations (2 ) and (3 ) then assume the form :

y1= yo+ yósz+zf:(P) (Az)2+ zxfo(P) (Az) + ... + (P.)(42)*+ Ra,

ví=v6+fx{P.)az+ « P.)(az)*+...+ m -13} -(P)(ar)*++*R
(7)
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where y, and yi are the values respectively of y (x ) and y' (x) at the

point x1 = xo + Ax.

In this manner, beginning with an initial set of values, it is now

possible to compute successive values of y and y' , the errors in each

approximation being largely controlled by the size of Ax. Thus ,

denoting the successive values by Y. and yé , we obtain as approxi.

mating equations the following :

Xul=y=+viss + 6.P.)( )*+... topt.(P)(Az)",

yí+1=yó+ fe (P,)az +zxfo(P) (Az)?+ 1) |fn=1( P .) (Az) - 1) .. (n -1} fa=1CP
( 8 )

The errors, which are obviously cumulative , will be of the order of

mR and mR' , where m is the number of iterations and R and R' are

the absolute values of the respective maxima of R, and R; along the

path L.

The nature of the continuation is readily understood from Figure 3 ,

which shows the successive circles that carry the computation from

the point a to the point b along the path L. The center of each

circle lies on L and each radius is equal to Ax . The error in each

approximation will vary from circle to circle, this variation depending

upon the proximity of the center of the circle to the nearest singular

point of the solution which is being computed . Thus the maximum

values of R, and R '; will , in general , be those corresponding to the

circle which lies closest to a singular point. It is to be observed ,

however, that Ax is not necessarily the same value throughout the

length of L, but can be varied according to the proximity of the

singular points .

( Δ
Χ

L
A
X

O

A
X

FIGURE 3
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The great power of continuous analytic continuation as a computing

device resides in two factors. In the first place the Pi, and con

sequently the coefficients fn(P) , are functions only of x1 , yo , and

yk . No higher derivatives enter explicitly into the computation .

In the second place , even for complicated equations , the iterations

defined by (8) are relatively simple since one rarely needs to go

beyond the fourth derivative , that is to say, beyond the term con

taining fo(P ) . The approximation , like a turtle, carries its house

with it.

5. An Elementary Example Illustrating the Method of Continuous Analytic

Continuation

As a simple , and somewhat amusing, illustration of the method

described in the preceding section , let us consider the solution by

this means of the following linear equation :

y' ' ty=0 . ( 1 )

Since the derivatives form the following sequences :

y " = - y, y ( ) = y, y (®) = - y , ... , y ( 2x ) = ( - 1) ^ y,

y ( ) = -y',y (5 = y ', y ( = - ',. ..., y(2n + 1) = ( - 1) "Y', ( 2 )

equations (8 ) of Section 4 reduce to the following:

Yeti =yı+ yíaz + 31(-y)(4x) + (-y)(42)*+ad;V.(Az)'+ ...,

=y, cos Ar + yi sin At;

(3)

víta= / —y,Az +21( (Az)e+ şiv.(Az) +ay(Az) – ... ,

= -y, sin Ax+yi cos Az. (4)

It is thus observed that we have the relationship,

yi++y1= yi + ya. (5 )

Let us now solve equations (3 ) and (4 ) for sin At and cos Ax . We

thus obtain :

sin Ax = yly:+1-9091+1
cos Ar= Y44+ 1+ ykys+1

(6)
yi + y ? yi + y ??



CONTINUOUS ANALYTIC CONTINUATION 255

Substituting these values into the equations ,

Y1+2=41+ 1 cos Ar + y1 +1 sin Az,

(7)

46+2= -Yi+ 1 sin Ax+ y4 + 1 cos AI,

we thus get the following iteration free from the increment At :

ya(Yi+ 1 - y1+ 1) + 2y++iY4y':+ 1,
Yi+29

yi + y12

yhtsvily1 :.- Yi+1) + 2yY1+11+1
yi+y?

(8 )

It should be observed , however, that an initial choice must be

made of four values , let us say , yo, Y. and Yı , yi , before the sequence ,

ya, ya ; Ya , Ya; etc. , can be computed . The first pair of values are

those which determine the initial conditions of the original differential

equation ( 1 ) . The second pair, arbitrarily chosen except for the one

restriction given by (5 ) , determine the increment Ax of the iteration .

It is interesting to observe that if the four initial values are chosen

to be rational fractions , then the iterated values will also be rational

fractions. Each pair of fractions will form a set of Pythagorean

fractions , that is to say , rational pairs which satisfy the equation :

z ? + ya = y +462 .

The number of such sets is enumerably infinite . The iteration (8 ) ,

however , picks from the totality of Pythagorean fractions a set which

forms separately the ordinates at fixed intervals of two harmonic

curves .

For example, if yo= 1 , y=0 ; yı = 3 /5 , y = -4 /5, then we compute

by means of (8 ) the following subsequent sets :

ya= —7/25, y= -24/25 ; Y = - 117/125 , ya = -44 /125;

y,= -527/625, y4=336/625 ; Ys= -237/3125 , y's = 3116 /3125;

Yo = 11753 /15625, y= 10296/15625 .

Substituting the first two pairs of values in equations (6 ) , we get

sin Ax=4 /5 , cos Ax = 3 /5 , and thus determine : Ax =0.927295 radians .

The solution of the original equation ( 1 ) corresponding to the

initial conditions : Yo = 1 , y = 0 at x= 0 , is y= cos x and its derivative

is y ' = - sin x . The graphs of these two functions showing the location

on them of the rational values just computed are given in Figure 4 .
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FIGURE 4.-Graphs of y = cos x and y ' = -sin x, showing positions of rational

points on the curves .

6. The Solution of y ' = 6y? by the Method of Continuous Analytic

Continuation

As an illustration of the usefulness of the method of continuous

analytic continuation when approximating into the neighborhood of a

singular point , we shall apply the method to the equation :

y' ' = 6y?, ( 1 )

prescribing the following initial values : y (0 ) = 1 , y ' (0 ) = 0 .
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From the extensive discussion of this equation given in Chapter 7 ,

we know that its solution, corresponding to the initial conditions, is a

doubly periodic function with a real period equal to 22, where s=

1.2143254. At the point i= 2 the solution has a simple polar singu

larity . Both a table of values between a =0 and x= 1 and the graph

ical representation of the solution are given in Section 9 of Chapter 7 .

Recognizing the fact that our application of the method of analytic

continuation will carry us speedily into the neighborhood of the pole ,

where the error increases rapidly, we shall illustrate the essential

power of the method by applying it to this unfavorable case .

We shall assume that Ax = 0.01, but in the approximations [ (7 ) ,

Section 4] of y and y' we shall let n= 4 . That is to say , our approxima

tions of the two functions are made respectively with quartic and

cubic polynomials. To obtain the explicit expansions we first com

pute

y (3) = f3 ( P ) = 12yy ', y (4) = fa (P ) = 12 (673 + y '?) . (2 )

From these values we then obtain the following approximating

equations:

Yx+ = ys +y110-2+ (343)10 -*+(2406)10-6 +( 3v1+2 vi*)10-6 , (3)

yí +z = yí + (6y?) 10-2 + (6y241) 10-4 + (124:+24/2)10-6. (4)

The first iteration yields the values: y = 1.00030003 and yí =

0.060012 , both of which are correct to the places indicated . The

values obtained through 100 iterations are given in the table in Section

9 of Chapter 7 .

Since the computation into the neighborhood of a polar singularity

places a great strain upon the method , it is instructive to ascertain

with some precision just what accuracy has been attained . For x= 1

it is possible to obtain an accurate value of y from formula (4 ) of

Section 7 , Chapter 7 , since , for the boundary values assumed above,

we know that h= 1 /7 and x = 1.2143254, correct to the last figure.

We thus find that y has the value 21.7711 and y' the value 203.181 at

2= 1 , these approximations being correct to the last figure. We now

compare these values with those obtained by the method just used

after 100 iterations , that is , y= 21.7444 and y'= 202.8241 . The

errors are thus seen to be respectively 2.7X10-2 and 3.7X10-1 .

It is not usually possible to obtain a precise value for the error of the

approximations of y (x ) and y ' (x ) after m iterations, since there is

always a small error in the initial conditions for each iteration . But

if Em and Em are respectively the absolute values of the errors in y

556037 0–61-18
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and y' after m iterations , then these values will usually satisfy the

following inequalities :

mRsEmSms

mR'SESMS', (5 )

where R and R' are the quantities defined in Section 4 , corresponding

to derivatives of order n+ 1 and S and S' are similar values corre

sponding to derivatives of order n . The assumption is made that S>R

and S'>R' .

Thus, in the problem of this section , n =4 , from which we have

y'*741= (3 +3v "), 35/51 =3yy .

Substituting the maximum observed values, namely , y= 21.7444 and

y' = 202.8241 , in these formulas, we obtain

y (4 ) /4!=92543.32 , y (5 ) /5!=287697.20 .

Computing R and S for m= 100 , Ax = 0.01, we obtain the following

inequality :

2.88X10-3 < EX 9.25X10-?,

which is quite satisfactory.

The estimate for the error of the derivative is not as good , but is

clearly conservative, since we find

1.44 < E ' < 37.0.

7. The Numerical Evaluation of the First Painlevé Transcendent

The first Painlevé equation, which has been described at some

length in Chapter 8 , is a natural generalization of the equation dis

cussed in Section 6. From its form ,

dday

=6y2+x ,
dx

( 1 )

we see that the elliptic equation is the special case =0 .

The numerical solution of this equation is readily attained by means

of the method of continuous analytic continuation . From the table

of derivatives given in Appendix 3 , we obtain the following Taylor's

series to five terms:

y = % + 42+ (34+) -2 )(ar)2+ (24.816+ x) sz)

+ 34

1

+( 34. tölroyotayo? ) (Ax) + R , Ax = x - Lo, ( 2)
2 2
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where we write

R

1

10
( 30yaya + nya + 37xaya)(Az) , Xa = Xo + 043, 0<B< 1 .

Similarly, for the computation of y ' , we have

y = yó +(648 + )Az +(640x6+ »).az)?

+ (12y8 + 21x.yo + 2462) (4x )3 + R ', (3)

where R ' = 5R / Ax.

In the actual computation Ax was set equal to 0.01 . Thus, denoting

the successive values of y and y ' respectively by y ; and yé , we obtain

as approximating equations the following:

¥1+1= y=+y(10 --+ (342+ .) 10-4 +(29.01 + ) 10-6

+ (39i+, 18:91 +212) 10-6, (4)

yó+ = + (6 + 13,)10-2+ (@ yri +ı x) 10-4
yi

+ (12y : + 212142 + 2422) 10-6. (5)

Beginning with the initial values : Yo= 1 , y = 0, x = 0, values of y.

and y, have been computed for 1 = 1 , 2 , 3 , 4 , 5 over the range between

-1.00 and +1.00, except in the immediate vicinity of +1.00 , where

the growth of y and y' is very rapid . These values have been recorded

in Table 1 in the Appendix . The graphical representation of the

solution has been given in Chapter 8 .

The errors in the approximation have been estimated at r= 0.50

and found to be less than 4X10-7 and 2x10-4 respectively for y and y' .

Five -figure values are given for y and y' to x= + 0.50 , but from this

point to +0.80 four - figure values are given for y' . Thereafter the

approximation for y is reduced to four figures and for y' to three

figures.

A direct check on the approximations is difficult, since there is no

alternative way to compute the values of the function and its derivative

in the upper part of the range. But for x= 0.1 , A= 5, the Taylor's

series converges sufficiently fast to permit a 9-decimal approximation .

Thus we find the value : y= 1.03114 1446 , correct to the last place .

By the method of analytic continuation through ten iterations we

obtain : y= 1.03114 1419. The error is thus 3.7X10-8 .
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By means of the method described in the preceding section we find

that the error, E , has the following bounds :

2.44X10-9 < E < 3.86X10-?,

which is quite satisfactory.

8. The Numerical Evaluation of the Second Painlevé Transcendent

The equation defining the second Painlevé transcendent, referring

to Chapter 8 , is the following :

d?y = 2y + ay + w.
dx²

( 1 )

From the table of derivatives given in Appendix 4 we obtain the

following Taylor's series to five terms :

y = yo +%6̂ 2+( x8 + 2540+ ) (4x)2+(yšy6+ 2046+ 40) (Az)"

+ ( 2 ) Az , =
+ (2)

where we write

R

1

(12y3 + (24 & + Xaya + ) ( 36y2y6 + 3)
120

+ (byżya+ Daya + ya)(6y + ma)](Ax) , (3)

in which Xa = Xo + AX, OKO 1 .

Similarly , for the computation of y' , we have

y*= y6+ (248 + 2390 + )Az+ (34546+ 246+ y ) (Az) ?

+ [ (24 + * % 0 + x ) (6y6 + 20) +124046? +24 ](A2 ) + R ”, (4 )

where R' = 5R/Ax.

Beginning with an initial set of values, to, yo , yo , we now compute

successive values of y and y' , where in the actual computation Ax

was set equal to 0.01 . Thus, denoting the successive values of y

and y' respectively by Y, and y' , we obtain as approximating equations

the following :

1 1 1 1

yi M ) ( 1
64

+

1

[ (2yi + qiyotu) (6Yi + x ) + 12y ;y ; + 2y ]( 10 ) -8,
24

(5)
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y6+1= yí + (241+2:48+ w)(10) -2+ ( 3yłyi +, zji + y.) (10)--

(29:+3:41 + x ) (6yX + .) + 12y14?+ 2y](10)-. (6)

+

Beginning with the initial values : x= 0, Y = 1, y = 0, computa

tions were made of y and y' over the range between x= -1.00 and

x= + 1.00 at intervals of 0.01 corresponding to y=0, 1 , 2 , 3 , 4 , 5. As

in the case of the first Painlevé functions , it was found necessary to

limit the range for a few values near both ends of the interval , where

y and y' become unusually large. Graphs are given in Chapter 8 .

A direct estimate of the errors in the approximation was made by

means of a Taylor's expansion about the origin . For x= 0.20 , after

20 iterations , the value obtained by analytical continuation corre

sponding to u= 5 was 1.14439 6449 and by the Taylor's series was

1.14439 65698. Hence , the error was 1.2 x 10-7.

If we compute the bounding errors as described in Section 6 , we

obtain for the limits of the theoretical error E the following inequality :

9.4 X10-9 < E < 8.9 X 10-7,

which is in agreement with what has just been observed .

The value of y for u=5 was computed at r=0.40 by using terms to

zelo in the Taylor's series . The resulting estimate , correct only to

five decimal places, was found to be in agreement to this order of

approximation with the value obtained by continuous analytic con

tinuation .

In Table 2 in the Appendix the values of y and y' are given to four

decimal places between r= 0.00 and x=0.50 . Thereafter, to x=0.80,

the values of y' are reduced to four significant figures. Beyond

x=0.80 the values of y are reduced to four significant figures and those

of y' to three significant figures.

9. The Analytic Continuation of the Van der Pol Equation

It will be useful to express the Van der Pol equation (see Section 2 ,

Chapter 7 ) , that is,

d -g dy
) ( 1 )

da² dx

in the form of a continuous analytic continuation .
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The third and fourth derivatives of y, expressed in terms of y and y' ,

are found to be the following :

y() = ael-y+43) + ( - a 2éʻy + eyt)y ' — 2eyy'?, (2)

7 (4 ) = ala - é ) y + 2ae’yo — ae’ys + ele 2a + (82—36 )ya

+ 3e'y4 – Yºly' +8 + ( - y + yo) y '? — 2ey ': (3)

Denoting by y, and y'i the successive values of y and y' correspond

ing to an increment Az, we obtain the following iterative equations

for the analytic continuation of equation ( 1 ) :

96+ 1 = ys+y ; az+ ( -ay + e( 1 – yð)yél (Ar )?

+ {ac(-ya+ y )– [a— e(1 –yly3–2ey y? }(4x)"

+24

1

{ a (a-éY: + 2aeyi - ae’yi + [22e(-1 + 4y;)

tel (1 - y ?):ly :+86 (-yity:)y2-28y } (4x )* + R ; (4)

víti = y + ( - ays + e ( 1 – y ) y [] az+ ( ael – ys + yi)

- [a- (1 – y ??] y: –2€ 9 : y??} (Az) + a { a (a—e)y.

+ 2aeʻyi - ały + [2ac(-1 + 4y;) + (1 - y }) ʻly':

+86 ( -yi + y ?) y/2—2ey/ } (42)* + R ' . (5)

10. The Analytic Continuation of Volterra's Equation

In Section 4 of Chapter 5 Volterra's equation has been given in the

following form :

dy = (49 ) +c(-y + ya) die+ ac(y2 – y ).y
daa

( 1 )

In order to obtain the analytic continuation for this equation , we

first compute the third and fourth derivatives of y as follows :

y ( ) = - acʻy ( 1 - y )? + [ (3ac + ca) – (4ac + 2c?) y + cʻy ?ly'

+ ( - 3c + 4cy ) y ' /y + y's/y ?, (2 )

y (4 ) = a’c’y ( 1 - y ) (3-4y) + acºy(1-4)3 + [ - 5ac- (1 - y) (2-3y)

-C (1 - y)*ly ' + [(6ac + 7cm) - (11ac + 18cº)y + 11cʻyly ' /y

+ (11cy - 6c ) y ' /yº + y ''/ yº. (3)
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Denoting by Y, and yć the successive values of y and y' correspond

ing to an increment Ar , we obtain the following iterative equations

for the analytical continuation of ( 1 ) :

Ys + 1 = yx+y: Az+ (acy (1 – Yv)—c( 1 – yo)yi + y?/ y.)(4x )?

{ -acºy:(1 –y)2+[(3ac+ c2)– (4ac+269)yn+e+yilyi

+ ( -3 +4y.)y?lys + y1 /4}}(Az)*+24 { a ^ cºy : ( 1 – ys ) (3–44)

1

6

tacey :(1-4 )3 + 1-5ac- (1 - yi)(2-3ys) -cº (1 - y .)'lys

+ [(hac + 7cm) - (11ac + 18c-) y . + 11cʻyi] y ?/y : + ( 1lcyr - 6c) y /y;

+ y1 /4 ? } ( 4x ) * + R ; (4)

1

y4 + 1 = yí + [acy:( 1 - y ) -0(1 - y .)yí + y??/yi] Axtə { -acay ,(1 - ys) ?

+ [( 3ac + ca) – (4ac + 2c?)ystcʻyilyí + c ( -3 + 4y .) Y '?/ Y.

+379/87}( 43)?+ { a?cºy : ( 1 – y . ) (3–4y.) + acºy :( 1 – y . ).

+ 1-5ac-( 1 - y .) (2-3y:) c3(1–4.) ]yí + [ (6ac + 7c2)

- 11)ac + 18c )yst11cʻyily ?/yrt (11cy :-6c) y / /yi + y14 /y ?} ( 42 )8 + R '.

(5)

Values of y and y' have been computed by means of these formulas

for a=2, c= 1 , with boundary conditions y(0 ) = 1 , y ' (0 ) = - 4 , from

I=0.00 to x= 6.00 . These are recorded in Table IV of the Appendix.

11. The Technique of Continuous Analytic Continuation Around a

Singular Point

Although the usual application of continuous analytic continuation

will be to integrations along the real azis , the need occasionally arises

to extend the method to a path in the complex plane. The general

considerations involved in this have been given in Section 4 ; but one

may be puzzled to know more specifically how such a continuation

is to be accomplished . In order to explain the technique we shall

confine ourselves to an example , which has already been described

in Section 13 of Chapter 8 .
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The Painlevé transcendent defined by the equation

y '' = 6y2 + y, y (0) = 1 , y' (0) =0, ( 1 )

has a polar singularity (when 1= 1 ) , at qi = 1.2068 . The problem is

to continue analytically the solution from the origin to some point

to lying between 0 and 21 , then into the plane of the complex variable,

and finally back again to a second point X on the real axis beyond 21 .

While almost any continuous curve can be used as the path of inte

gration , it has been found most convenient to employ a path con

structed from linear segments parallel respectively to the imaginary

axis or the axis of reals . One then begins with the following iterative

equations :

YiYe+z=ystyiAz +(Bvi+ Aze) (A2) +( 2431 + ») (Az)

+ ( 342 +2 12:41taya) (42)

yh+z= y + (697 + 12 )Az +(64491 + ) (Az)?

+ (12y:+2) ItYc + 2y ?? )(A2 ) . (2)

We now introduce the following complex values :

y = u + jv, y'=u' + jo', x=w+ jz, Ax = Aw + jAz, j = 7-1. (3 )

These quantities are now substituted into system (2) and the real

and imaginary expressions thus obtained form separate iterations .

Employing for simplicity the abbreviations: Aw=4 , A2 =8, we obtain ,

after a tedious calculation , the following iterative system :

Usti= ust (u'1—ví8) + ( 3u ?–3v3 + 101) (A?–89)– ( 124,05+12,748

+ ( 20. u4—201vitan ) (43–3482) — (Uxví + W4vi) ( 3428—83 )+ (2u uí

+[34 –9u,vi+ zaqu,ws=2xv)+ 312–1,2] (04-64 8*+ 84)

— [36u10 . - 12vi + 21 (W2it Wive) + 4u4ví] (138—483) ;

1

Vs + =0 + (v14+ u68) +(6u« vs+ 124 ) (43–82) + (6u?–602+1w,)48

+(24, ui–20,vítá ») ( 34²8–8" ) + ( 2,0i +uv ) (A² – 3182)

+ (12u3-364, 0+ 21 (U, W ,-2,04) + 2u ? - 2012)( 4 :8-483)

+ (9ušos– 30?+3 (0,21+2,00)+ u'd')(94–69* 8* + ");

1
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Ustr = u4 + (6u1-6v; + 1w )4- (124 :08+12 ) 8

+(ou_ué— 6vpita ^) (42–8°)–(6u,ví+buio,)Ad

+ (12u :-364,07 + 21 (UfW -2404) + 2442—2014) (43-3482)

- [36u101-120 + 21 (Uz28 + W , 04) + 4u6vá](3A²8—83) ;

0 +1 = 0% + (67–6ơi + c )6+(12 + z ) A

+ (124404—120,06-1)48+ (34706+ 3u40 ) (A2-82)

+ [12u1-364,04 + 27 (UW, -2,01) + 2012-2020 ?] (34 %8—83)

+ ( 36už01-12v + 27 (U12x + W.01) + 4u4v4] (43–3482) .

We now apply this iterative scheme to the path illustrated in Figure 5 .

Along the segment AB, with increments equal to 0.01 , we have ze= 0,

W;= iX10-?, A = 10-2, 8=0, 0 , = v = 0. The initial values for u are

U= 1 , wó = 0. This computation has already been described in

Section 7 and the values are recorded in Table 1 in the Appendix.

From this table we find for the terminal values of u at B the following :

u ==2.0226 , 4 ’ = 5.4606.

Imaginary Axis

D

.5

A B E Real

Axis
.5 1 1.5

FIGURE 5

We now integrate along the path (BC) where we have the values :

2n = iX 10-?, W = 0.5 , A =0, 8= 10-9 , 0. = v = 0. The variation in

this path is shown graphically in Figure 6. At the point C we have

the following terminal values :

u= 0.3289 , u = -0.7011, v= 1.2119 , o = 3.4670 .

The next integration is along the segment (CD ) where we have the

values: 2x= 0.5 , w,= 0.5 + iX10-2, A = 10-2 , 8 = 0 . The terminal

values for the path (BC) now become the initial values for this inte
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At thegration . The variations in u and v are shown in Figure 6 .

point D we obtain the following terminal values :

u= -1.4147 , u' = 9.9821 , v= -2.7136 , v = 0.0155.

u , v
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The final integration is along the path (DE) where we have the

values : zi = -1X10-2, Wi = 1.5 , A = 0,8 = -10-2 The terminalvalues

for the segment (CD ) are the initial values for this computation.

The variations of u and v are shown in Figure 6. At the point E we

have the final terminal values :

u= 11.7796 , u ' = - 79.5588 , v= 0.1152 , v = 0.5880 .

The magnitude of the error in this computation is measured by the

final values of v and c ' , both of which should be zero . But when the

values of u and u ' are compared with those previously obtained by

the method of “ pole -vaulting " (Section 13 , Chapter 8 ) , respectively

11.62 and — 79.46 , the agreement is seen to be quite satisfactory.



Chapter 10

The Phase Plane and Its Phenomena

1. Introduction

PHYSICAL PHENOMENA to the interpretation of which the theory of

differential equations has been so abundantly applied are often of an

oscillatory character. In many instances the observed oscillation is

nearly periodic , and hence its mathematical description may differ

little from an appropriate sum of sine and cosine terms. The astron

omers were pioneers in the investigation of such oscillatory phenomena

and it is not an exaggeration to say that much of our current knowl

edge of nonlinear equations had its origin in the difficulties of celestial

mechanics.

Fortunately for astronomy, and also for those who dwell upon the

surface of the earth , the solar system is dominated by a single massive

object which contains 99.87 percent of the entire known matter within

the effective reach of its gravitational influence . This lucky circum

stance provided nearly elliptical orbits and almost periodic motions

for the observation and study of the early astronomers . But it is

also true that the existence of a single massive planet , Jupiter, with

more than 70 percent of the total planetary mass of the system , has

been the source of trouble with its strong perturbing effect upon the

other planets. In order to take account of the influence of Jupiter ,

as well as that of the other members of the system , the astronomers

were forced to make long and difficult computations in order to obtain

satisfactory approximations of the solutions of the essentially non

linear system of equations involved . But since the paths were nearly

elliptical and the motions almost periodic the difficulties were not

insuperable .

Closely associated with the problem of oscillation is that of sta

bility . Poincaré's classical studies in the field of nonlinear equations

originated in his investigation of stability conditions associated with

the trajectories defined by the equations of celestial mechanics. The

question of whether or not the solar system itself is a stable configura

tion resolves itself into the question of whether or not the nearly

periodic motions of the planets can be described by a convergent

series of periodic functions. Since the equations of the problem of

three bodies cannot be integrated in terms of the elementary functions,

the problem of the stability of the planetary system cannot be solved

267
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by an examination of an explicit solution . Poincaré and others

attempted to find methods by means of which the problems of sta

bility could be answered by an implicit study of the defining differ

ential equations.

2. The Phase Plane and Limit Cycles

Applied problems not infrequently appear in the following form :

dy =P(2,3), di= Q(x,y), ( 1 )

where P(x,y) and Q(x ,y ) are functions which share some common

domain of the x,y-plane .

If the first equation is divided by the second, we obtain the follow

ing differential equation of first order :

dy_P (x ,y )

da Q ( x,y )
(2)

which we shall assume has a solution conveniently written as follows:

f (x ,y) = 0. (3 )

But it is also possible to attain this solution in another way . Dif

ferentiating the first equation in ( 1 ) , we have three equations in the

variables x and dx /dt, from which , in theory at least, we can obtain

an equation of second order in y which is independent of 2 and dx /dt.

The solution of this equation we shall denote by: y= y (t ) . Proceeding

similarly with the second equation in ( 1 ) , we ultimately obtain another

function : x=2(t ) . The pair of equations :

x = r (t ), y=y (t) ( 4 )

are the parametric equivalent of the solution given by (3 ) .

It is customary to speak of the function f (x ,y ) = 0 as a function in

the phase plane, that is to say, the plane of the variables x , y. Since

the function contains an arbitrary constant , its graphical representa

tion will be a series of curves in the phase plane . These are called

phase trajectories.

It is possible to extend this idea in various ways . Let us , for

example , consider the following differential equation of second order :

dar

=
dt? F(t , 0,2% ) , (5)
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which we can write as the following system :

da

dt

dy = F (t,x,y).
(6)

dt

The solution of this system can then be written as the pair of

equations given by (4 ) , which are now the parametric representation

of a function f(x ,y ) =0 . In this simple manner we have associated

with (5 ) a phase plane and a set of phase trajectories.

It is also possible to generalize to more variables. To do this we

replace ( 1 ) by the system :

da =P(2,9,2), (7,1,2), ed - R ( 2.9,2).

( 7)

The parametric solution :

a = r (t), y = y (t), 2=2(t) , (8)

now represents a two -parameter set of curves in a phase space of

three dimensions.

Returning now to equations (4 ) , let us assume that the functions

are defined as t varies from - to to . A curve is thus traced

which may be a complex configuration , such as those shown in Fig

ure 1. The arrows show the direction in which the point P = (x ,y )

describes the trajectory.

у
у

B

х
X X

(a) ( b ) (c )

FIGURE 1

In the first curve (a) the point P approaches the origin as a limit,

as t varies continuously from - to too . This limit is called a

foccl point and the motion is characterized as stable .

In the second figure (b) we observe a different phenomenon. The

trajectories are observed to approach asymptotically a fixed curve

C. This curve is called a limit cycle. Trajectories of this type were

observed by Poincaré and others and have been the object of much

study. As one may intuitively infer, the functions defined by (4 )
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will approach limiting forms which are periodic . Since the direction

of the arrows shows that the point P is approaching the limit cycle,

the motion is stable . If , however, the arrows pointed outward , then

the motion would be unstable outside of the limit cycle and would

approach the origin as a contracting spiral inside of the cycle .

The third figure (c ) represents an unstable motion about the origin ,

since the trajectories are all hyperbolic curves which approach the

origin , but then depart from it . The origin is called a saddle point .

The significance of this term will be explained later . The most in

teresting feature of the figure is found in the curves AA' and BB' ,

toward which the trajectories move asymptotically. Since they

separate the plane into regions which contain different motions , each

curve is called a separatrix .

Since our interest in this chapter will be largely that of the phenom

ena associated with oscillatory solutions of differential equations,

our attention is focused upon the problem of the existence of limit

cycles in the phase plane . When such a cycle exists , then the solu

tions of the differential equation, although they may not be periòdic ,

will approach periodicity. Hence the subject of limit cycles and

that of periodic functions are closely related .

Earlier in the book we examined certain differential equations

which had periodic solutions. One of these was the equation of the

simple pendulum ,

ddạy
+n2 sin y=0,

dt?
(9 )

and its approximation ,

ddạy n2

dřż + n y -742= 0.
( 10 )

A more complicated example was found in Volterra's equation :

vonCH)+acy?cy
dy

+ cy? -acy?
dt

( 11 )

Another cquation which will interest us , both for its comparative

simplicity , the extensive attention which has been given to it, and

the limit cycle to which its solutions are asymptotic, is that of Van

der Pol,

d
+ ay = 0. ( 12 )

dt ? dt

d’y —c(1— ?)
ya

The connection between this equation and the earlier one of Lord

Rayleigh has already been discussed in Chapter 7. In a later chapter

it will be shown that its solutions are oscillatory and that they ap

proach periodicity as t increases .
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It is interesting to observe that of the four equations just given

only the first has a harmonic term in y . In the coefficients of none

of them does the independent variable appear explicitly , which means

that their solutions can be written in the form : y = f (t + p ), where

p is an arbitrary constant.

It is instructive also to consider the physical systems which led to

the equations and the reasons for the existence of periodic , or quasi

periodic , solutions. In the problem of the pendulum , from which

we derived equations (9 ) and ( 10 ) , the assumption was made that

there was no frictional coefficient present , which, of course , is a situa

tion never met in the physical world . Every clock runs at the expense

of an energy input. The solutions of (9 ) and ( 10) are periodic , but

this is by virtue of a false assumption . Realism can be restored ,

however , by the addition of a resistance factor to the left -hand

member and a force function to the right-hand member. Thus ,

equation ( 10 ) could be written :

dạy
dtz + k + n'y

dy

dt

na

6
yö = f cos wt . ( 13 )

This is Duffing's equation , to which reference has been made in Chap

ter 7. Its solution presents many difficulties, which are complicated

by the fact that an explicit function of t appears in the equation .

Its solution will be discussed at some length in a later chapter.

Equation ( 11 ) has already been examined extensively in Chapter

4. It describes the variations in the numbers of a population which

is in conflict with the members of a second population . As we have

seen , there exists a periodic solution of the equation . The population

grows and decreases in a regular manner , which approximates a

sinusoidal motion . It resembles the oscillations of a pendulum , but

with this interesting difference, that the motion does not need to be

sustained by any force function extrinsic to the conflicting popula

tions . Equation ( 11 ) thus defines a function, which , like that de

scribing the motion of the frictionless pendulum , is not subjected to

a damping factor and thus maintains its sinusoidal character.

The fourth equation defines the current in an electrical circuit

which contains a triode oscillator. The circuit , which we are about

to describe , is sometimes referred to as a feed-back circuit and under

certain conditions is capable of maintaining an oscillating current

even though the driving potential is not itself an alternating electro

motive force (e.m.f.).

In Figure 2 , T is a triode vacuum tube , which contains a plate P

(the anode) , a filament F (the cathode) , and a grid G. If P is posi

tively charged the resulting electric field in the tube causes a current

to flow from the filament and the current is controlled by the grid
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potential . It can be shown that the differential equation which de

scribes the current i is the following:

le + Ri+" S'ide- mode- E sinut, (14 )

where M is the mutual inductance and L, R, and C respectively the

inductance , resistance, and capacity of the circuit .

It is a matter of experimental observation that the grid current in

can be represented by a cubic polynomial of the form ,

ie=Au-Bu, ( 15)

where we have

U=k

kſid
idt.

If ia , as given by ( 15) , is now substituted in ( 14 ) , we obtain the

following equation :

d’u du , 1
L - [(KMA - R - 3M Bku ? ] tau = kE sin wt .

dt? dt ©
( 16)

This equation can be simplified in appearance if we write,

e = (kMA - R ) / L , n = 3MBk / L, ( 17 )

from which we have

du 1

+

dt LC

KE

sin wt .

L
( 18)

-
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Finally, if we write : y = (n /€)1/2u, equation ( 18) assumes the desired

form :

dạy
- € y +ay=E, sinwt , ( 19 )

dt? dt

where a = 1 /LC and E.=kE(n/ V2 /L.

In the study of the self -excited oscillations due to the feedback

characteristics of the circuit, the alternating e.m.f. is set equal to

zero and we have the Van der Pol equation ( 12) . For this phenome

non it is necessary that e be positive , which leads to the condition from

(8) that kMA > R . The reason why the solution is oscillatory under

this condition is readily seen from the equation . If y is initially zero ,

then the multiplier of dy /dt is negative and thus acts like a negative

resistance. Hence y increases ; but when y exceeds 1 , the resistance

becomes positive and the function diminishes . The oscillation is the

result of these two opposing actions . In recent literature it has been

customary to refer to such motions as relaxation oscillations, a term

introduced by Von der Pol in 1926.

3. Phase Curves and Forcing Functions

Some of the complexities which we find in the phase trajectories

associated with nonlinear differential equations can be illustrated by

examples taken from the domain of linear differential equations,

when these equations contain forcing functions . That such should be

the case is readily seen from such a simple example as the following:

dr

+2=0,
dt

( 1 )

where v, the forcing function , is a solution of the equation

dv

dt
?=v2. (2 )

If equation ( 1 ) is differentiated and v eliminated between the three

equations , the following nonlinear equation of second order is obtained :

+ x'-x2–2xx ' - x = 0 . (3 )

Hence the complexities of the simple linear equation are actually

those of the nonlinear equation ( 3 ).

Because of the relative simplicity of linear equations , it will be con

venient to examine some of the phenomena of phase trajectories by

the device which we have just illustrated .

556037 0461 19
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Let us first consider the following equation :

dar

A

dt2
+ B

dr

+Cx=E cos qt ,
dt

(4)

which is familiar to everyone from its connection with various physical

problems . In one of its most obvious applications it describes the

charge (2) in a simple electric circuit containing an impressed alter

nating e.m.f. represented by the term : E cos qt.

The solution is readily found to be

x (t) = Ke- ar sin (wt + p ) + L cos ( qt - 0 ), w79 , (5)

where K and p are arbitrary constants, and the other parameters are

defined as follows:

B

a=

2A' -A

1 Вq
4AC - Bº, tan 8= L=

2A C - Aq?'

E

V ( C - Aq?)2 + B ? q?

(6)

The derivative of x (t) , which we shall denote by y (t ) , is seen to be

x ' (t) = y (t) = Ke- a [ -a sin (wt+p) +w cos (wt + p ) ] - Lq sin (qt - 0). (7)

We shall now discuss the phase trajectories defined parametrically

by the equations:

I = X( t) , y = y (t). (8)

Several special cases are to be recognized as follows :

I. When a is positive and L= 0 , the curve defined by (8) is a spiral ,

which approaches zero as a limit point as t-> 0 . From the criteria

established in Section 2 , the motion would be described as stable .

II . When a is positive and L= 0 , the curve is a spiral , which ap

proaches the ellipse

qʻz2 + y = q? L ?, (9 )

as its limit cycle . The motion is thus stable and ultimately becomes

periodic.

III . When a= 0 , L = 0, the curve is the ellipse

war ? + y = K ?w ? ( 10)

The motion is thus stable and periodic.

IV . When a= 0 , L70, the curve is given parametrically by the

equations

x=K sin (wt + p ) + L cos ( qt - 0 ),

y=Kw cos (wt+p) - Lq sin ( qt - 0 ), ( 11 )
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provided w *q . The curve is in general a complex configuration which

lies within the rectangle

-MS2S + M , -NSYS +N, ( 12 )

where we write: M= \K [ + \ LI , N= \Kwl + \ Lql .

If w= kq, where k is a rational fraction , the trajectory will be closed

and the motion is periodic . The case where k is irrational will be

discussed in the next section .

V. If a=0 , E= 0, and w= q, the solution given by (5 ) is replaced

by the following :

z( t ) =K sin ( qt+p) + Qt sin qt, Q = 1VE”/AC; ( 13 )

from which we get for y (t) :

y (t) = Kq cos ( qt + p) + Q(sin qt + qt cos qt). ( 14)

The solution of the original equation is now seen to be unstable,

since x (t) increases with t . The phase trajectories for sufficiently large

values of t are asymptotic to the curve defined parametrically by the

equations :

2 = Qt sin qt, y = 9Qt cos gt. ( 15 )

Since , for any fixed time tı , x and y, given by ( 15) , lie on the ellipse

q *x + y = dQ441, ( 16 )

the phase trajectories are elliptical spirals , the axes of which increase

linearly with t . In this case, dynamical and electrical systems are

said to exhibit resonance . *

A few examples will serve to illustrate some of the cases described

above :

Example 1. Given the differential equation :

dar

dt?
+2

dx

+ (412 + 1) x = E F( t ) ,
dt

( 17 )

where F (t) = (37 ° + 1) cos at - 2 sin it , we shall discuss the motion

which it defines.

Solution : If we set E=0 , we have Case I above . The particular

solution and its derivative , which correspond to the initial conditions:

I= 0 , y= x' = 2T at t = 0 , are found to be the following :

z=e- ! sin 2nt, y = e - 'l - sin 27t+ 21 cos 2nt) . ( 18)

*By resonance we mean the phenomenon in which large vibrations are caused by small forces. Thus a

large ship will sometimes roll heavily in a light sea , when the period of the waves is equal to the natural

period of the ship . Similarly, a bridge may be badly damaged by a column of marching men. For a more

extended account of this phenomenon see A. G. Webster: The Dynamics of Particles. 3d ed . , 1949 , pp . 152

155 , 175.
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These are graphically represented in Figure 3. As t → + , both func

tions tend to zero . The phase curve, x = x (t), y=y(t) is seen from

Figure 4 to be a spiral which continuously approaches the focal point

(0,0) . The motion is thus to be characterized as stable .

If we now assume that E= 1 , which brings us to Case II , we find as a

particular solution and its derivative the following functions :

x= e- ' sin 21t + cos at, y= e- ' ( - sin 27t+27 cos 29t) — * sin it. ( 19)

In this case , as t > + 00 ,x->cosntand y → -a sin at, which means that

the phase curve is asymptotic to the ellipse :

Tºgº + y ^ = .̂ (20)

The graphs of x= x(t) and y= y(t) are shown in Figure 5 and the

phase curve in Figure 6. It is interesting to observe that the approach

of the phase curve to its limiting ellipse is not uniformly an exterior

one , since at one point it actually traverses the ellipse . But this is

not actually an exceptional phenomenon , since we have already

observed an example in the problem of pursuit when the path of the

pursued was a circle. (See Figure 12 , Chapter 5. )
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In the example just given the boundary conditions for t=0 are

x= 1 , y=27. If these conditions are varied , more complicated phase

curves may result. Thus , if we let x= 0 , y= { (37²+ 1 ) , when t =0, the

graphs of x (t) and y (t) shown in Figure 7 and that of the phase trajec

tory shown in Figure 8 were obtained . The graph of the forcing

function, F (t), is also shown in Figure 7. These curves were made by

an analogue computer. In constructing these graphs by this method
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it was found convenient to replace equation ( 17) by the following

equivalent system :

dx ď22d x

dt2 + 2 + (4x² + 1) x = 2 , dtztrʻz = 0, (21 )

where z ( 0 ) = ( 3r2 + 1 ), 2 ' ( 0 ) = - 2r ?.

If z is eliminated between the two equations , we obtain the following

linear differential equation of fourth order satisfied by x:

datdºx dar

+2
dt4 dt:

da

+ (5^ ² + 1) 978 + 2x de+ r+(4x² + 1)2 = 0.4 (22 )

Erample 2. We shall now discuss the motion defined by the

following equation :

dar

+ 4n = 372 cos at . (23 )
dt?

Solution : Corresponding to the initial conditions : x= 1 , y= x' = 27,

for t = 0 , the solution of this equation and its derivative are readily

found to be :

x = sin 21t+ cos at , y= 24 cos 2nt— sin at. (24)
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The graphs of x= x(t) and y=y(t) are shown in Figure 9. The

phase trajectory is shown in Figure 10. It will be observed that both

X and y are periodic functions of t and thus the phase curve is closed .

The motion may thus be described as a vortex motion . Although the

origin of coordinates is not a limit point , the limit in the mean * (l.i.m. )

of both x and y is zero . It is natural , therefore, to say that the vortex

is about this point .

This example illustrates Case IV for the special condition that the

periods of the forcing function and of the solution of the homogeneous

equation are commensurable . When this condition is not satisfied

the situation is very different . This case will be considered in the

next section .

San

1

*The limit in the mean of a function | (t) is defined as follows: l.i.m. (1) = lim 2
1

Í (t) dt.
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If the right-hand member of equation (23) is set equal to zero , we

have an example of Case III . The general solution is

x=A sin 21 (t+a) , (25)

and the phase curve is the ellipse :

4n%22+y=A . (26)

The solution is thus a periodic function of t and the motion in the

phase -plane is a vortex motion .

Example 3. Given the differential equation

dax

+ 4x = 4 cos 2t ,
dt2

(2
7
)

we shall discuss the motion which it defines.

Solution : We are now in the circumstances of Case V above , since

w=q=2 . The solution and its derivative , which both vanish at

t= 0, are seen to be the following :

x= t sin 2t , y= x' = 2t cos 2t+sin 2t . (28)
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The graphs of x= x (t) and y= y(t) are shown in Figure 11 and the

phase curve is given in Figure 12. The motion , which exhibits the

effects of resonance in the system defined by the equation, is clearly

an unstable one .

The surprising number of phenomena, which we have been able to

exhibit by means of a simple linear differential equation of second

order , is the result of the introduction of the force function E cos qt.

It will be found , however, that similar phenomena are discovered in

the solution of nonlinear differential equations where such a force

function is not explicitly observed .
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As a result of the special analysis which we have given above , let

us classify the solutions which we have examined . In cases I and V

the motion is nonperiodic. But in the former it is stable , since the

point x= 0 , y= 0 is approached as t-> 0, while it is unstable in the

latter, since the phase trajectory expands indefinitely as t increases .

In Case II the motion is nonperiodic , but it approaches a periodic

solution asymptotically as t increases. In this case the solution does

not approach a limit point, but the motion has a limit cycle in the

phase -space.

The only completely periodic motion was found in Cases III and

IV, but in the latter only under certain special circumstances , when

the natural period of the solution of the homogeneous equation is

commensurate with the period of the forcing function .

It is thus apparent that periodic motion must be regarded generally

as a very special kind of motion. Periodicity cannot be regarded a

priori as an inherent property of the motion of a dynamical system ,

even when its phase curve is limited to a closed region of space . Thus,

for example, the motion of the moon about the earth cannot be as

sumed to be periodic in spite of the fact that its path intertwines with
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a mean orbit which is stable . One satisfactory proof of periodicity

in such a dynamical system is to exhibit the motion in a convergent

Fourier series and to show that such a series accounts for all the

observed variations .
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In a classical paper of great elegance G. W. Hill ( 1838–1914) re

duced the determination of the motion of the lunar perigee to a

differential equation of the form :

dy+A( t )y= 0, (29 )
dt2

where A (t) is a periodic function . Since this equation was found to

have a periodic solution , the problem of the periodicity of the motion

associated with the perigee was thus established in a very satisfactory

manner . But in most cases the proof of periodicity is elusive .

In the next section we shall consider an example from Case IV,

which shows how deep-seated the problem of periodicity may become

and how difficult it is in the case of special equations to determine

whether or not the solutions possess this important property.
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4. Nonperiodic Solutions in a Closed Area

A good many years ago C. Jordan (1838–1922 ), while reflecting

on the properties of a curve defined by the parametric equations :

x= 2 (t) , y=y (t) , a stsb , ( 1 )

asked the question : Can a continuous curve be defined which will

fill a space? That is to say, can the functions x and y of ( 1 ) , assumed

to be continuous in t , be found such that there would be a one - to -one

correspondence between the points of the continuum : 2 SA , İYİ SB,

and the points on the segment (a , b ) ? The answer to this question

was given in the affirmative in 1890 by G. Peano ( 1858–1932 ) , who

exhibited such a continuous “ space-filling curve” now known to

mathematicians as Peano's curve. Other examples were forthcoming

from E. H. Moore and David Hilbert.

Now the construction of such a curve might well have been con

sidered something of a pathological example, illustrating the ingenuity

of mathematicians in probing the depths inherent in a definition of

continuity, were it not for the fact that the physicists and astron

omers had reached something resembling this same problem . In

vestigating the question of the equipartition of energy in the kinetic

theory of gases , J. Clerk Maxwell , L. Boltzmann , Lord Rayleigh and

others had been led to a consideration of the possible configurations

of a swarm of particles and the distribution of their velocities within

a bounded space . In other words, they were interested in the dis

tribution of energy in a phase-space of 2n dimensions given by the

coordinates :

Position coordinates : q ;= qi(t ) , i= 1,2 ,. .. n,

Velocity coordinates : ġi= ů : (t ) , i = 1,2 ,. n . (2 )>

We shall not consider here the details of the attempts made to

partition the total energy of the system among the individual con

stituent energies which comprised it . But one of the proposed

hypotheses was very intriguing. This assumed that at soine time ,

any specified configuration would be attained to as close a degree of

approximation as one desired .

During this same period of time the astronomers found that their

problems led to a similar question. Given a dynamical system with

a fixed constant energy , such , for example, as that of the planetary

system , does there exist an infinite number of periodic motions in the

neighborhood of a given periodic motion of general stable type?

This question in turn led to another : Does the dynamical system

approach within a specified error any preassigned contiguration ?

This problem was one of the principal concerns of H. Poincaré,
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whose researches led him to concepts of stability and limit cycles in

the solution of differential equations . The name ergodic (ergon=

energy , hodos =path ) was given to the problem and led ultimately

through the researches of G. D. Birkhoff to a statement of the "ergodic

theorem " in a form acceptable to modern mathematics .

As a simple illustration of the general problem , consider the motion

of a billiard ball moving on a frictionless table with perfectly elastic

cushions . If the direction of the ball is such that the point of contact

with the cushion divides the length of the cushion into incommen

surable parts, then it is reasonable to believe that the ball in the

course of time will pass through any preassigned area of the table .

The proof of this proposition is readily attained by an application

of the ergodic theorem . *

T'he existence of paths which , like that traced by the billiard ball ,

pass through any preassigned small part of a given closed area does

not pose an entirely philosophical problem . Consider , for example ,

the path of the moon about the earth . Perturbed by both the earth

and the sun , and to a lesser degree by the planets, the motion of the

moon has presented a problem of great complexity. To note this

one needs merely to examine the heroic computations of E. W. Brown ,

who devoted a lifetime to the problem , or to the theory of Charles

Delaunay, which contains one equation 170 pages in length , or to the

classical papers of G. W. Hill , who reduced the problem of the lunar

perigee to the evaluation of a determinant of infinite order. The

mean path of the moon referred to the earth is a circle of radius

239,000 miles , but the actual path lies within an annulus with radii

equal respectively to 222,000 and 253,000 miles. It is probably true ,

however difficult it would be to prove the proposition , that , given

sufficient time , the moon would traverse any given small area within

this annulus .

No name appears to have been given to this space - filling path , but

one might possibly refer to the area traversed as an ergchorad , or

energy - area (ergon = energy, chora = area ). Such energy spaces are not

uncommon in the theory of nonlinear problems, nor, for that matter,

as will soon be demonstrated, in linear equations as well . In fact , pure

harmonic motion is a much rarer phenomenon . As any operator of an

analogue computer knows , the tracing needle of the machine appears

much more ready to describe an ergchorad in phase -space, than to

follow the highly specialized path of a curve defined by the sum of

harmonic terms.

The significance of the time factor in the ergodic problem may be

comprehended from the following philosophical considerations . Let us

assume that a very small ball lies upon the floor of an otherwise empty

room of dimensions a, b , c . Let us assume further that the ball is

* See , for example , G. D. Birkhoff: “ What is the Ergodic Theorem ?” American Math . Monthly, Vol .

49 , 1942, pp. 222-226 . Collected Works, 1950, pp . 713–717 .
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given a linear velocity equal to v , which , of course , is to endow it with

a total energy of mv",where m is its mass . If the ball is perfectly
2

elastic and if the walls of the room are sufficiently rough so that re

flection from any point of impingement is random , the energy of the

ball will be distributed uniformly throughout the room and the ball

itself in the course of time will make contact with any prescribed area

of the wall to any specified order of approximation .

Since the square of the greatest distance between any two points in

the room is a ? + 62 + c-, and since the area of the walls is A= 2 (ab+ bct

ac), the number of contacts made by the ball per unit of surface in

unit time will be greater than n defined as follows:

V

na

( 3)

(

Aſa² +6²+ 6²

If anyone attempted to enter the room by way of a door of dimensions:

p, q, he would encounter a shower of particles, which in each unit of

time would exert a pressure in excess of kpqn, where k is the pressure

exerted at each contact of the ball . If v is very large , this total pressure

would be very great and one would assert that the empty room was,

in fact , a solid .

Returning from these philosophical matters, let us examine an

actual curve which passes as near as one wishes to every point in an

elliptically shaped space within which its values are defined . For this

purpose , let us consider the linear differential equation :

dar

dt ?
+ 2x = -2 cos 2t . (4 )

The solution which corresponds to the boundary conditions: x (0) = 1 ,

x ' (0 ) = 12 is the following function :

æ (t) = sin v2t+ cos 2t , (5 )

and its derivative is

x' (t) = y (t ) =v2 cos v2 1-2 sin 2t . (6 )

We now consider the phase trajectory defined by the equations:

x= r ( t ) , y= y ( t ) . (7 )

Since the periods of the constituent harmonic terms of (5 ) are incom

mensurable, the phase curve generated when t varies between and

too will not be periodic, but will wander in a series of loops through

out the interior of a nearly elliptical region with semi-axes equal to the

respective periods. The structure of this curve is seen from Figure 13 ,

which shows that portion generated when t varies from – 11.6

to +11.6 .
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It will now be demonstrated that , given any point in the domain of

definition, the phase curve will enter an infinite number of times into

the neighborhood of this point no matter how small the neighborhood

is taken . To show this , let the given point be P = (2 ,yo). To the

equations (5) and (6 ) , now written ,

X=sin pt+ cos qt , p=v2, q= 2 ,

Yo = p cos pt- q sin ot ,

we adjoin the identities:

sinºpt + cos?pt = 1, sinºqt + cos? qt = 1. (8 )

This system of four equations is now solved for sin pt and sin qt . The

actual determination of these quantities involves the solution of a

quartic equation .

We thus have :

sin pt = so, sin qt = 81, (9 )

from which we obtain the following values :

pt = T. + 2nt , qt = T + 2mm, ( 10 )

where m and n are integers.

Solving equations ( 10) for t and equating these values, we obtain

the following equations for the determination of m and n :

1

pm - qn = ( -pT;).
21

( 11 )

In general there will not exist integers m and n which will satisfy

this equation , since p , q , and the right-hand member will usually be

irrational numbers . However, given any irrational number 8 , there

will exist integers M and N such that

|--M
< e, ( 12)

where e is an arbitrarily small positive number. If all the irrational

numbers in ( 11 ) are thus approximated to within some preassigned

error , and if these rational approximations are introduced into ( 11 ) ,

this equation will be reduced to one of the form

Pm-on = R ( 13 )

where P , Q , and R are integers . If P and Q contain a common factor ,

new approximations to the irrational numbers in ( 11 ) are made until

a P and Q are found which are relatively prime.
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Equation ( 12) is a Diophantine equation , which has the following

solution :

m=Rm.- Q8, n= Rno-Ps , ( 14)

where s is any integer and mo and no satisfy the equation :

Pmo - Ono = 1. (15 )

Since P and Q are relatively prime, values of mo and no exist and are

readily found by means of continued fractions as follows:

Let P/Q be expanded into the following continued fraction :

11 1 1

PIQ = a . +

azt azt azt .
( 16)

tan

which will terminate for some finite value of h , since P and Q are

integers.

The last term in ( 16 ) is now removed and the resulting fraction

evaluated . The numerator and denominator of this fraction , with

proper signs, will be respectively the desired values no and mo.

Hence , any of the infinitely many values of m and n defined by ( 14) ,

when substituted in equations ( 10) , will yield an infinite set of values

of t for which the phase curve passes through the neighborhood of the

given point .

As an illustration , let us consider the following example :

Example: Find the value of t for which the phase trajectory defined

by equations (5 ) and (6 ) passes through the neighborhood of the

rational point : x= 0.8212 , y = 2.8978 , where the neighborhood is

defined to be a circle of radius equal to 0.0001 . The point is denoted

by P on the graph shown in Figure 13 .

Solution : To the indicated degree of accuracy, we find the following

values of sin pt and sin qt corresponding to x and y :

sin pt=0.1609 , sin qt = -0.7510, p = v2, q = 2. ( 17)

From these we get , T = 0.1616 , T, = - 0.8496 . Using the approxi

mations: a= 3.1416 , p= 1.4142 , we obtain the following equation for

the evaluation of m and n :

7071m- 10000n= 1213 . ( 18)

The expansion of 7071/10000 as a continued fraction is found to be

1 1 1 1 1 1 1 1 1

7071/10000 = 0 +
1 + 2 + 2 + 2 + 2 + 2 + 3 + 14 + 2

( 19 )

556037 0–61-20
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we
Deleting the last term and evaluating the resulting fraction ,

obtain 3416/483 ), from which we find : mo=4831 , no= 3146 . Sub

stituting these values in ( 14 ) we get

m=586003-10000s , n=4143608-70718, (20)

from which we have , when s= 586 , the values m= 3 , n= 2 . These

values , when substituted in ( 10 ) , give 9.0 as one value of t . An

infinite set of other values is provided by the one -parameter set of

values of m and n obtained from (20) . Finally , to verify the correct

ness of the analysis , we substitute t= 9.in (5 ) and (6) and thus obtain

the values : x=0.821167 , y= 2.897774 , which are observed to be within

the neighborhood of the prescribed point .

The functions x (t ) and y (t ) which we have just examined belong to

what is called the class of almost periodic functions, the theory of

which was initiated by Harold Bohr in 1924. *

By an almost periodic function is meant a function which satisfies

the equation

f( x + 1) = f (x ), (21 )

within an error that can be made arbitrarily small , where 7 denotes

any number of an infinite set of values " spread over the whole range

from - to too in such a way as not to leave empty intervals of

arbitrarily great length .” These values of t are called translation

numbers.

For example, if f(x ) = sin pr + cos qr , where p and q are incommen

surable numbers, then 7 will be a translation number provided integers

m and n can be found such that

pr - 2n1 | < €1, and Iq7—2m <| 2 (22)

where & and 6 are arbitrarily small positive numbers. If << € and

€2 , we can write

pr= 2n te, q = 2mate, (23)

from which we get

7 = 297/p + e/p= 2ma/q + €/q . (24)

If a /P , 7/9 , elp , and e/q are now represented by rational fractions

to any desired degree of approximation , then , as we have already

seen above, an infinite number of integral values of m and n can be

found which satisfy equation ( 24 ) .

* H . Bohr : " Zur Theorie der fastperiodischen Funktionen , " Acta Mathematica, Vol. 45, 1924 , pp . 29–127 ,

Vol . 46, 1925 , pp . 101-214 , Vol . 47 , 1926 , pp . 237–281.

A comprehensive survey of the subject will be found in A. S. Besicovitch : Almost Periodic Functions.

Cambridge, 1932, xiii- + 180 pp.
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There will thus exist an infinite sequence of translation numbers

for which we have

f ( +7) = sin p (x+ 1) + cos q (x+ T) = sin ( px + e) + cos ( qx + e),

= sin pa + cos qx + 20 €, where 101 < 1 .

More generally , an almost periodic function can be expanded into

a series of the following form :

f(x) =ΣΑ,e"λα ,
(25)

where | A , converges . This is a special case of a Dirichlet series ,

which in its turn includes Fourier series as a special case .

Conversely, it can be shown that the series (25 ) is the representa

tion of an almost periodic function , provided |An/? converges.

PROBLEMS

1. Find the first time after t = 0 when the phase curve defined by equations

(5) and (6) passes through the neighborhood of the rational point: x == 1.7565 ,

y = 1.1551 , where the neighborhood is the interior of the circle of radius 0.0001

about the point. Verify that sin pt = 0.6651 and sin q= -0.0495. Answer:

i = 9.4 .

2. Verify that t = 25 is the first time after t = 0 when the phase curve defined

by equations (5) and ( 6) passes through the neighborhood of the rational point :

I = 0.2492 , y = -0.4627. Assume that the neighborhood is the interior of the

circle of radius 0.0001 about the point . Verify that sin pt = -0.7158,

sin qt = -0.2624 .

5. The Pendulum Problem as a Fourier Series

As an example of a nonlinear equation which has a periodic solu

tion , let us return to the equation of the simple pendulum , which has

already been discussed at some length in Section 10 of Chapter 7 .

It will be convenient to write the equation in the form

ddy

dtž = Ay + Bys, ( 1 )

and to write the solution in the form

y = C snax,k ), x= t + p , (2 )

where 1 and p are arbitrary constants and k and C are defined as

follows:

2(12+A )
ka C2 (3 )

12 B
_ (̂ ?+ A )
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If we assume that C is known, as well as A and B, then both , and

k can be computed from ( 3 ). Let us denote by K and K' the com

plete and complementary, elliptic integrals corresponding to k . If

in (2 ) we now set p= 0, and let it= u , then the solution of ( 1 ) assumes

the form

y= C sn (u , k ) . (4 )

But from Section 19 of Chapter 6 , we know that this function can

be written as the following Fourier series :

y =CKT 4, sin (2n + 1) 2, (5)

where we abbreviate :

Ax = 1 /sinh [(-+ ) K'K] -=} (vu /K)=} (Art/K).
( 6)

Although we thus seem to have obtained the solution of the non

linear equation ( 1 ) in linear form as the sum of simple harmonic terms,

the apparent linearization is soon seen to be an illusion . For both

the individual amplitudes, An , and the multiplier of t are functions of

k , and thus also functions of the parameter C.

It will now be of interest to write equation (5 ) in a second form .

To achieve this we introduce the symbol: q= exp ( -5K '/ K ), and

observe from ( 14 ) , Section 18 , Chapter 6, the expansion :

27

= q- 1/2(1 + q + qⓇ + q1? + 2° + ...)- ?,' + q20Kk
(7 )

It now follows from equation (7 ) of Section 19 , Chapter 6 that (5)

above can be written as follows:

y = C an sin (2n+ 1 ) z , (8 )

n =0

where we abbreviate :

auno

q”

- q2n +1
( 1 + 2+ +98 +91? + . ) - ?, (9)

1

or , in expanded form :

an = q" (1–2q² + 394—6q8 + 11q8–18q+0 + 28q+2 + . . )

X (1 + q2n + 1 + qan + a + qºn + 3 +...). ( 10 )
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Explicitly we have for the first three coefficients the following

expansions :

Qo = 1 +9-02-23 + 244 + 2q8—4q8—4q? + 7q8 + 70° — 11q10 — 11q11

+17912+ ... ;

2 , = 9 (1–2q2 + 28 + 394—295—5q8 + 377 + 998—50° — 15q1° + 9q11

+23712+ ... ) ;

an = q? (1—20 +374 + 45—698—2q?+1178 + 379—17q10—6011

+269"2+ ... ) . ( 11 )

It will now be convenient to write equation ( 1 ) in the following

form :

dday

dia + y + ry2= 0 , (12)

and to express the solution (8 ) in terms of a and r, where

a= Cao ( 13 )

-r, if we eliminateSince, in equation (3 ) , we have A = -1 , B

1 , we obtain

-X

k =

2 + r '

k'2
_2

+ 2x
(14 )

2+ 2

where x = rC2 and k2 + k = 1.

Observing that do in ( 13 ) is a function of q, we now seek a relation

ship between q and x, which will enable us to express a as a series in

This objective will be attained by way of the function2 .

= ( -s),v =k".
( 15 )

This function , by ( 14 ) , Section 20 , Chapter 6 , is connected with a

through the following equation:

q= e+26+ 156+ 150€13+ 1707617+ . ... ( 16 )

By ( 14) we have

(17)

and from ( 15) ,

-- (1+ 3 ) = 1733

- }(173)
1 (1-8) 1 ( 1-8 ) ( 1 + sa )

2 1-822 1-84

---

( 18 )

that is ,

2 (1–84 ) e = 1-28 + 2s2 — 293+84.

(1
9
)
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We now observe the following expansions:

1

V

3 7

v2 + 203 .

128 1024

77

v +

327688s= (1+ 0) =1+

s = (1+ ) = 1+v ă

=(1 + ")= 1 + 3 -12 +1024 -

v2 +

1

v3.

128

5

04+

2048

(20 )

32

45

v*+
32768

1

s = 1 + 5v.

When these values are substituted in ( 19) there results

E

1 1

0+ 22.

32 128

21

8192

v3 + . (21 )

From ( 17 ) we now obtain the following expansions:

V=X

- (1- *c+ *+ - ++ ...)

z*(1 +2+ *+ - * + ...)

v =r*(1-x =+ *r -**+ ...)

v=x2 (22)

and when these are substituted in (21 ) there is finally obtained :

--32

1 3

at

32 128

x ?

149

23 + ..
8192

( 23 )

Observing from ( 16 ) that, to the degree of approximation given

by (23 ) , we have

q= E, (24 )

it is now possible to express Ca, in terms of x .
We thus obtain

1

1 23

x +
32 1024

دعد

547

32768

+ .

=C ( 1

23 547

paC pos ( 6+
1024 32768 ( 25 )

Ca =( (

( 1-32 +0?+

(a = c (-3.2c* +j3

Caz= C ( 1024

. ) .

C +...)

rC + ...)

p % C4

297

16384

3

p %C4

2048
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These equations show explicitly the manner in which the arbitrary

constant C and the parameter r enter into the coefficients of the sine

terms in the expansion (8) .

We return now to the original problem , that of expressing the

coefficients of (8 ) in terms of a as defined by ( 13) . To achieve this

we first square ( 13) , multiply by r , and use the abbreviation : urra ?.

We thus have ú=u aš , whence

x = ulağ = u (1—29 + 5q2—80° + ...),

=- ( 1
1

= μ ( 1+
16

X

43 15

r + 23

1024 512 ..)
(26).

This equation is now inverted by the method of Lagrange * and we

obtain the following expansion of x in terms of u :

1

r=ut Ma .
16

39

M3 + ...
1024

(27 )

This is now substituted in (23) and note taken of (24) , from which

we have :

1 11 461

ut Mit ....
32 512

( 28)
32768

E== 42

This value of q is now substituted in the expansions :

Ca; = a (ay/ao) = a (q - + +... ),

Caz = a (Q2jao) = a1q2-08 + . . ) , (29)

and we thus obtain the desired coefficients :

Ca=a, Ca, = a

21

ut
1024

и?

461

32768

1

ray ( 11 )

32

21 461

raº +
32 1023

pa'+ .

a ( -32 m +...)

( .),

(1024 ?– widt...)

-1024 ***(1–43 m2?t...)

Cara

43

32768

(30 )

It will be of interest also to express the multiplier of t in (6) in

1

terms of both x and M. We adopt the notation : w = (A /K ).
2

*See H. T. Davis : Tables of the Higher Mathematical Functions, Vol . 1 , p . 79.
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We first observe from (3) that

x = 1+ ro =̒ 1+ , (31 )

and from equation (14) , Section 18 , Chapter 6 , that

2K

= (1 + 29 + 297 + 2qⓇ + . . . ) ?. (32)

We thus have

w = \ ?( 1 + 29 + 204 + 20° + ...) --,

1

+ (33)

Observing from (24) that to the desired approximation q= e , we

replace q in this expression by (23) from which we obtain the follow

ing :

3 3 9

wa = 1 + 202+ 23 + .
4 128 512= 1 +

2

= 1 +å1 +ărca
3 9

r( 4+ r + .
128 512

(34 )

The equivalent expansion in terms of u is obtained by replacing x

in this expression with its expansion in u as given by (27) . We thus

obtain

3 3 57

wa = 1tiut
= M3 + ..

4 128 4096
M².

3 3 57

1 + 2 raº + pla- poda® + .
128 4096

(35)

As a numerical example, let us consider the case of the pendulum

described in Section 10 of Chapter 7. The equation in the notation

of this section is

ddạy

- P= 0,diet
y (36 )

and the value of C is 13 .

Noting that r= -1 /6 , we introduce C and r into formulas (25) and

thus obtain :

(37)Cao = 1.05407, Ca = 0.00692, Cag = 0.000044 .

Substituting C and r into formula ( 34 ), we find

wa = 0.862022 , (38 )

from which we get : w= 0.928451 .
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The desired Fourier series is thus explicitly the following :

y = 1.05407 sin wt+ 0.00692 sin 3wt+ 0.000044 sin 5wt+ . ... (39)

The convergence of the series which we have given above is not

great as is shown by a more exact determination of the constants in

(39) . The coefficients of the series will be found to be too small by

two units in the last place and the value of w too large by four units

in the last place.

6. Periodic Solutions

Before proceeding to other particular equations it is necessary

to discuss the important question : How does one determine when a

given differential equation has a periodic solution ? This is obviously

a difficult question to answer and the best efforts of great analysts

have been devoted to the problems derived from it . For example,

it is not easy to see , a priori , why the two equations

y '' + y - Y3 /6 = 0 , y ' ' + sin y= 0 , ( 1 )

should have real solutions with real periods , nor why the equations :

y " + (y2–1)y ' + y = 0 , g + sinh ( 4/4) = 0, (2 )

should have real solutions which are not periodic , but which approach

periodicity as x increases along the positive real axis .

That periodicity is a very special property is seen from the fact

that if y (x) is a periodic function , it must satisfy the following equation :

y (x+a) = y (x) , (3 )

where a is a constant . Moreover, all the derivatives of y (x) , if they

exist, are also periodic , as we see by taking the nth derivative of (3 ) .

Since equation (3 ) can be written as the following linear differential

equation of infinite order :

a2 a3

y'+ mpy" +
y (3 ) + yra + ... = 0 , (4 )

3! 41
"y
a

we see that every periodic analytic function must be a solution of this

equation. We thus reach the curious conclusion that every solution

of a nonlinear differential equation , which is both analytic and periodic ,

is also the solution of the linear differential equation (4 ) .
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Equation (4 ) has the following infinite set of solutions :

y = epit, p = 2an /a , n= 0 , +1 , +2 , . (5)

and thus any finite sum of the following form :

n

y(z)= 4 + 2 Amcos
тих Μπα

+ Bm sinË
a

(6 )
a m= 1

where Am and Bm are arbitrary , is also a solution .

We can now establish certain general criteria, which assure the

existence of a solution of the following differential equation of second

order :

dạy
(7 )dx2 = f(x, y, y' ) .

If a set of values Am and Bm exists for all integral values of m, so

that series (6 ) formally satisfies (7 ) as ns , and if the first two

derivatives of (6 ) exist for values of (x Sa, then (7 ) has a periodic

solution of period a .

From the fact that if y (x) is a periodic solution of (7 ) , and if its

deriviative exists , then y ' (x ) must also be periodic , we see that the

corresponding phase-trajectory is closed . Conversely, if any phase

trajectory of (7 ) is closed, then the equation has a periodic solution .

If equation (7 ) has a periodic solution within a domain R, and if

the functionf ( x , y ; y ') is analytic for all values of x ,y ,y ' in R, then every

derivative of y will exist and be a periodic function . This follows

from the fact that every derivative of (7 ) can be expressed in terms

of y and y' and the argument of the calculus of limits (Section 2 ,

Chapter 4 ) insures the existence of the derivatives within R.

If one is willing to relax the requirements of analyticity and substi

tute the limiting processes of summability, the domain of periodic

solutions of differential equations can be considerably enlarged . An

instructive example is supplied by the following equation .

d²Y - 0,
(8 )

dx²

which has as a solution the continuous periodic function shown in

Figure 14 (A ) . Within the interval; -a Sr Sa, y is given by the

formula :

1 + x/a , -asiso,

y=

1 - a , O Sisa . (9 )
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This function meets the first criterion given above, since it is repre

sented by the following Fourier series:

X

y(a)= + *[
1 37X

COS tacos

a 9 a

+

1 57 %

cos +
25 a .]

( 10 )

which converges for all real values of x .

y

o
l

X

- 30 -a O

a

3a

( A ) ( B )

FIGURE 14

It is clear that the function defined by (9) is a solution of the

differential equation , but this is not true in a strictly analytical

sense for ( 10) , since we have y' = - ( 4/ a2) C ( 0), o = mx /a , where we

abbreviate :

C(C) = cos 8+ cos 38+ cos 50+ ( 11 )

and this series is clearly divergent for almost all values of 0 .

However , except at the points x=ma , that is for 0= mt, where m

is any positive or negative integer , the series is summable to zero in

the Fejér-Cesaro sense , * and thus may be said to satisfy the differ

ential equation except at these critical points .

To see this we form the Cesaro sums :

sin 20

Si= cos 0

sin 40

Sz = cos 0+ cos 38=
2 sin 02 sin o'

sin 60

Sz = cos 0+ cos 30+ cos 50=
2 sin 0

sin 2n8

SO) =
2 sin e

.

>

from which we get

SES + S + ... + S
sin (n + 1 ) sin no

2 sin ? 0

( 12)

It thus follows that we have

S

lim =0 ,

nyoon

except when =ma.

*L . Fejér: “ Untersuchungen über Fourische Reihen ," Mathematische Annalen , Vol . 58 , 1904 , pp . 1-69.
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The phase-trajectory is shown in Figure 14 (B) . The perpendicular

lines of the diagram through y=0 and y= 1 may be regarded as

limiting forms of the transition curves of the nth segments of the

Fourier series for y' . Strictly speaking y' has only the value 0 when

y= 0 and y= 1 .

It is instructive to compare the first equation of (1 ) with the

example just given . Referring to Section 5 , we see that its solution

can be written as the Fourier series

y = İB, sin ( 2n + 1 ) 2, (13)
n =0

where z = ax, and B , = P /sinh n + in which a, P, and b are

constants.

It is obvious that the series which defines y( m) converges uniformly

for all values of m and for any point on the real axis of z.

7. Additional Aspects of Periodicity - Floquet's Theory

Deeper problems connected with periodicity than those which we

have described were encountered by the astronomers. They were

disturbed , for example, by the intrusion of secular terms in the descrip

tion of phenomena, which were fundamentally periodic. That is to

say, the solution of their equations led to expansions of the following

form :

y = (an + 6nt + catat .... ) cos (nt + yn), ( 1 )

where t appears explicitly in the multiplier of the harmonic terms.

Such terms are called secular, since they represented variations

which progress in one direction for long periods of time , even though

ultimately they may prove to be periodic . Such , for example, are

movements in the line of nodes, the line of apsides, the inclination

and eccentricity of the planets. But these variations in astronomy

are relatively small and cause small disturbance to the harmonic

terms which they multiply . But in an electrical system , where

many vibrations occur in a short space of time , the appearance of a

factor of the form t cos nt would immediately introduce the phe

nomenon of resonance .

On the other hand , the coefficient of the cosine term in ( 1 ) may

actually be a periodic function and thus , even for rapid changes in t ,

would produce no resonance effect. An elementary example is

furnished by the following function :

y= cos pt cos at, (2 )



THE. PHASE PLANE AND ITS PHENOMENA 301

where p is assumed to be very much smaller than q , as is the case in

the secular variations of astronomy. If the values of y in which we

are interested are limited to a fixed interval of t , let us say , O SUST,

then (2) might well be replaced by the function :

x=(1-9+ )coa qt (3 )

which , while not actually a periodic function , would vary little from

one within the assumed interval of t .

How to handle these secular terms became a problem of great con

cern to the astronomers and a number of ingenious methods were

developed . We shall describe one of these in Chapter 12 .

A second problem which interested the astronomers was that of

determining conditions under which a differential equation with peri

odic coefficients would have periodic solutions .

Let us first observe that the general solution of a differential equa

tion may not be a periodic function , but that the equation may never

theless have particular solutions which are . Thus the linear equation

day B
A

dt ?
+By+Cy=0, (4 )

dt

where the coefficients are constants , has as a general solution the

function :

y (t) = ae' .' + Be'?', (5)

where r, and r2 are roots of the equation : Ar? + Br + C = 0 .

If y (t) is periodic , then there must exist a constant w such that

y(t+ w) =y(t) , (6)

which reduces to the following condition :

e' wla ei'+Be'z' e "?? - ?;) ) = a e ' ' + B e'z ' . (7 )

If ri /re = plq, where p and q are integers, then w = 2q+ i /r, is seen to

be a period . But if this condition is not satisfied, that is , if ri /r2

is not rational, the particular solutions ae'ı ' and Be'z ' are separately

periodic with periods equal respectively to 20i/rı amd 20i/r2.

This elementary analysis was extended by G. Floquet * to a linear

equation in which the coefficients are periodic functions of the inde

• Annales de l'École Normale Supérieure, Sup. 2, Vol . 12 , 1883, p . 47. Accounts of the Floquet theory will

also be found in E.T. Whittaker and G. N. Watson : Modern Analysis, 4th ed . Cambridge, 1927, pp . 412-413 ;

E. L. Ince: Diferential Equations, London, 1927 , pp . 381-384 ; N. Minorsky, Nonlinear Mechanics, Ann

Arbor, 1947, pp. 357-360 .
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pendent variable. With sufficient generality this equation can be

written in the following form :

d - g

dtx+ A ( x) y=0 , (8)

where A (x) denotes the following series :

co

A (x ) = Qo + 2an cos 2nt . (9)

n= 1

This equation is called Hill's equation after G. W. Hill (1838–1914) ,

who introduced it in his study of the motion of the lunar perigee . *

A celebrated special case is the differential equation of Mathieu ,

namely,

du+(a - 2b cos 2t ) y=0, ( 10)
dt ?

which was introduced by E. L. Mathieu (1835–90 ) in a discussion

of the vibrations of an elliptic membrane.

Floquet's theory, with which we shall be mainly concerned , is

designed to establish the existence of a periodic solution of a linear

differential equation of any order with coefficients which are all

periodic functions of a fixed period w. The theory is sufficiently

explained if we limit its application to a differential equation of

second order , such , for example, as equation (8) above.

Let u (t) and uz(t) be any linearly independent solutions of the

equation , from which it follows that

U(t) = Aui (t) + Buz(t) , ( 11 )

where A and B are arbitrary constants , is the general solution .

Since the coefficients of the equation are periodic functions of period

w, it is clear that both uilt + w) and uglt + w ) are also solutions of the

equation . Hence these functions can be expressed linearly in terms

of the fundamental set and we have

U / (t + w = 2jUj( t) + azuz (t ), U2(t + w ) = bju (t) + b2Uz(t). ( 12)

The general solution can then be written :

U (t + w ) = ( Aa + Bb ) u (t) + (Aaz + B62) Uz (t) . ( 13)

* " On the Part of the Motion of the Lunar Perigee, which is a function of the Mean Motion of the Sun

and Moon , " Cambridge, Mass., 1877. Reprinted in Acta Mathematica, Vol. 8, 1886 , pp . 1-36. Also Hill's

Collected Works, Vol. 1 , 1905 , pp . 243-270 . A bibliography and an account of the solution of this equation is

given in H. T. Davis : Theory of Linear Operators, Bloomington , Ind . , 1936 , pp . 436-440 .

TE . L. Mathieu : Journal de Mathematiques, Vol . 13 (2) , 1868, p . 137.
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If we now write

U (t + w = k U(t) , ( 14)

then A and B must satisfy the following set of equations :

Ak = Aa2 + Bb , Bk = Aa2 + Bb2 . ( 15)

Since these are homogeneous equations in A and B, the necessary

and sufficient condition for the existence of values other than zero

assumes the following form :

ak bi

=0. ( 16)

Az b₂k

If k is one of the roots of this equation , then the general solution of

the differential equation will satisfy ( 14) . Let us now write krede

and define the function

W (t) = e - U (t). (17)

We then have from ( 14)

W (t + w = e -1(1 + w) U (t + w ) = e -de-dw U (t + w = e- U ( t ) = W ( t). ( 18)

The differential equation thus has a solution of the form

U(t) = ede W(t) , ( 19)

where W(t) is a periodic function .

The principal difficulty in the actual solution of the original equation

is found in the problem of determining 1. If this constant is zero ,

then the solution is periodic , but otherwise it is either stable , if < 0,

or unstable if ^>0 . The equation of Mathieu has been extensively

investigated from this point of view and a series of periodic functions

have been determined for it , which are called Mathieu functions.

The elegant researches of Hill also make use of this theory and lead

to the evaluation of a determinant of infinite order . Since both of

these problems have been extensively treated in the references cited

above , further discussion will be omitted .

8. Periodicity as a Phenomenon of the Phase-Plane

Since the theory of Floquet, described in Section 7 , makes funda

mental use of the property of linearity , it cannot be applied to the

periodicity problem of nonlinear equations . One must either explore

the possibility of finding a convergent Fourier expansion which satis

fies the differential equation , or investigate the behavior of solutions
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in phase -space. If a closed trajectory is found, then by the criterion

of Section 6 , the existence of a periodic solution is automatically

proved .

If a differential equation

dạy
( 1 )drž = f(y;y'),

is derived by the elimination of x from a system of equations:

di= P(x,y), =Q (2,3), (2 )
dt

then the existence of a closed cycle in the phase -plane ( x ,y) carries

with it the periodicity of y as a function of t . It was in this way that

the existence of periodic solutions of Volterra's equation

yy'' = (y ') ? + ay (1 - y ) y' + acy? (1 – y) , (3 )

was established in Chapter 5. The length of the period was deter

mined by the interval : T= tz- tı , where t , is the time corresponding

to a point : P, = (21,4. ) on the phase-trajectory and t, the next value

of t when the curve reenters the point Pi .

It was an adaptation of this method that A. Liénard used in estab

lishing criteria for the existence of a periodic solution for the following

equation :

ddạy
+

dt?
( 4 )

and that N. Levinson and 0. K. Smith applied similarly to the

more general equation : *

boty na+1(1,0)+9(y)=0,
V =

–
dy

dt

.

(5 )

The theorem of Liénard is as follows :

THEOREM A. The functions f (y) and g(y) in equation (4) are con

tinuous and integrable and satisfy the following additional conditions:

(a) f (y ) is an even function , and g (y) is an odd function such that

y g (y) >0 ;

(6) The functions

Fly)-SP+ 6wdy, G(y)-S" 6wdy,

tend toward c as y .

* See Bibliography for references.
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(c) F (y) has a single positive zero , y=yo. In the interval (0 , yo),

F ( y) is negative, but for y > y , F ( y) is positive and increases monotoni

cally.

Under these conditions there exists a periodic solution of (4 ) , which is

unique to within a simple translation of the variable t .

To prove this theorem we first introduce the Liénard variable

2=y'+ F (y ), (6)

from which we have , by reference to (4 ) ,

dz

de= ) -= y '' + f (y) y' = - 9 (y ). (7 )

-

Moreover , since y ' = dy /dt = 2 – F (y ), we obtain the derivative

dz g (y)

(8 )

dy 2 - F (y)

We now consider the trajectories in the Liénard -plane (y, z) , which

are geometrically simpler than those in the phase -plane (y , y ' ) , since

they are symmetrical with respect to the origin. Thus, if y is re

placed by –y and 2 by – 2 in (8) , the equation is unchanged, since

both g (y) and F(y) are odd functions of y .

This is a very useful property, since it means that if a closed tra

jectory passes through the point (0 , zo) it will also pass through the

point (0 , -20); and conversely, if a trajectory passes through these

two points , it must necessarily be closed . We shall use this fact to

show that there must exist one and only one closed trajectory for

equation (4) in the phase-plane and thus the equation has a unique

periodic solution . This follows immediately from the observation

that when y= 0, we have zo=yo , and hence a closed trajectory in one

plane implies a closed trajectory in the other .

For this purpose we introduce the function

1(4,2)= 22+ G (y) ,
(9 )

which reduces to 22/2 when y= 0 . Thus, in order to establish the

existence of a periodic solution of equation (4 ) , it is merely necessary

to exhibit a trajectory for which (0,2 ) = 14 equals 1 (0 , - Zo) = 18.

To achieve this, we write

d = zdz + g (y )dy = dy, ( 10 )
2- F(y)

from which it follows that

I.F

S "am.---- S"2-4 dv= (21-4)=3(2-3 ). (11)
556037 0-61---21
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Our problem thus reduces to showing that there exists a unique

trajectory for which we have

9.
F

42-
# dy = 0. ( 12)

The argument now proceeds geometrically and to understand it

we refer to Figure 15 , which shows a phase-trajectory: y'= y' (y) ,

a Liénard -trajectory , z= z(y) , and the function F(y ) . Although these

graphs have actually been constructed from the Van der Pol equation

(equation ( 12) , Section 2] for the case where e= 1 , a= 1 , that is , for

f (y ) = y2–1, g (y ) = y, the argument based upon them is perfectly

general .

From the figure we see that I can be expressed as the sum of three

integrals, the first ( I. ), extending over the interval from A to A ' , the

second (12), from A' to A " , and the third ( 13) from A " to B. Since

F(y) is negative from y= 0 to y = Yo, and thereafter increases monoto

nically , I, and 13 are positive , but I, is negative .

y ', z

3t
y'ty )

z ( y )
А.

Zo : yo

2 ( 1 : 0 )
A' ( t :)

у

O

Fly )

A " (t = 1)

-1

-2

B

2 , - yi ( t = T )

Figure 15

We now observe that if A is moved upward along the z-axis , the

values of I, and Iz will not increase. On the other hand, the absolute

value of 12 will increase, since the point Q will move upward along

the curve of F (y) and hence the integrand of ( 12) becomes greater

since F(y) is monotonically increasing.
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It is thus evident from this geometrical argument that by adjusting

the point A along the z-axis , a position will be reached where I is zero .

Moreover this position is unique and thus there will exist one and

only one periodic solution of the equation .

The situation thus described is readily seen if the variable of

integration in ( 12 ) is changed to t . Since the origin of t can be ar

bitrarily chosen , we let t= 0 at A. If the values of t at A' , A' ' , and

B are denoted respectively by tı , t2 , and T, then the integral I can

be written :

I =

-S *9Fdt = 12 + 12+ 13,
( 13)

where the limits of 11 , 12, 1, are respectively (0 , tı ) , (t1,12 ,), ( t2,7 ).

Returning to the Van der Pol equation , we compute values of

the integrand as a function of T, corresponding to an initial value

of zo= 2.5 . These are shown graphically in Figure 16 , from which

one can readily ascertain that the value of – 1 exceeds the sum of

I, and Is, and thus the value of I is negative . From this we conclude

that the initial choice of 20 was too great , and when it is reduced to

2.18 , we find that I= 0 .

' g : F

IE

tz

0
1

2 3

-1

-27

Figure 16

As we have already said above , the more general equation (5 ) was

the object of study by Levinson and Smith . We shall state their

principal theorems, but shall not give proofs of them . The first

theorem , which abandons the condition of uniqueness, is as follows:

THEOREM B. The functions f(y,v ) and g (y ) are continuous and

integrable and satisfy the following conditions:

(a ) y g (y ) >0 for ly > 0. Moreover G (y ) tends toward infinity as

y ++ .
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(6 ) f (0,0) is negative. There exists a positive value of y, namely,

y = yo, such that f (y ,v) 20 for ly /2yo, and a positive value M , such

that f (y ,v) 2 - M for lyl Syo.

(c ) There exists a positive value yıyo> , such that

S ":{(1,0) dy 2 10MY
(14 )

where v>O is an arbitrarily decreasing function of y.

Under these conditions there exists at least one periodic solution of

equation (5 ) .

A theorem somewhat more general than that of Liénard , but less

general than Theorem B , restores the uniqueness of the period solution .

This is achieved by means of the function ( y ,v ), defined by (9)

above , in which z has been replaced by v. This theorem is as follows:

THEOREM C. Let R, denote the region in the ( y ,v ) = plane where

f(y ,v ) is negative and R, the region where f (y ,v ) is positive. Further

more, let R, (c ) denote that part of the curve ( y ,v ) = c which lies in R,

and let R, (c ) denote that part which lies in R2 .

To the requirements of Theorem B, the following condition is added :

For every value of c the minimum value of

Fly,0)= + of(y,0)
1 1 Of( y ,v)

dv

( 15)

on R, (c ) is positive and erceeds the maximum of F (y,v ) on R (c ) .

Under these conditions equation (5 ) has a periodic solution , which is

unique to within a simple translation of the variable t .



Chapter 11

Nonlinear Mechanics

1. Introduction

THE TERM nonlinear mechanics has been applied in recent years to

a series of investigations in the field of nonlinear differential equations ,

which have had their origin for the most part in applications to physi

cal ph mena. The independent variable is time. The systems con

sidered are reducible in general to ordinary differential equations of

second order . Investigations subsumed under the generic title of non

linear mechanics are concerned principally with phase spaces , with

expressions which represent energy terms, with phenomena included

under the subject of relaxation oscillations , stability and instability

points , and with certain loci called limit cycles .

The literature of the subject is now very extensive . Originating in

the classical researches of Poincaré, Bendixson , Liapounoff, and

others around the beginning of the 20th century , the ideas remained

for a time relatively fallow . But the pressure of problems arising in

various technical processes finally turned the attention of scientists to

the subject and to a resurvey of the methods contained in the original

memoirs. We have already given some of the historical details earlier

in the book.

In the chapter we shall be concerned principally with a differential

system of the following form :

di-= P (x ,y), dy = Q (2,4). ( 1 )
dt

Unless otherwise specified , P(x ,y) and Q (x ,y) shall be functions analytic

within a domain D of the x ,y-plane . Thus, by the theory of limits,

there will exist functions :

x = xit), y = y (t), (2)

for a range T of the variable t , which satisfy equations ( 1 ) .

Equations (2) define parametrically a curve in the x ,y - plane. Since

t appears only implicitly in the equations of the original system , the

309
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differential equation of this curve is obtained by dividing one equation

in ( 1 ) by the other. We thus get the following equation of first order :

dy_P (x , y )

dxQ(2,4)

(3)

Assuming the existence of a solution of this equation throughout

some domain D, let us denote it by the following function :

f(x,y)= 1 ) .

It is customary in nonlinear mechanics to refer to the x ,y- plane as

the phase plane, and any graphical representation of equation (4 ) as

a phase trajectory.

It is readily proved that both x (t ) and y (t ) are the solutions of dif

ferential equations of second order . To see this , let us assume that the

first equation in ( 1 ) has been solved explicitly for x in terms of y and y ,

and the second equation has been solved for y in terms of I and ..,

that is

x = , ) y = (2,1 ), (5)

where we now use the customary notation of mechanics: dx /dt = i,

dy /dt = j.

Let us now differentiate the first equation in ( 1 ) . We thus get

ü = Pz(x ,y) * + P , (2,y ) ý, (6)

where P (2 ,y) and P , (x ,y ) denote the partial derivatives of P (x ,y ) .

If we now replace è by Q(x ,y) from ( 1) and replace x by yly,y) from

(5 ) , we obtain the following differential equation of second order of

which y=y(t) is a solution :

v = P , 8,9) + P ( 1,9)QV,g). ( 7 )

A similar procedure for the second equation in ( 1 ) leads to the

following differential equation satisfied by I=r (t ) :

ž = Qz(x ,0 ) 0 + Q , (2,0 ) P (x ,0 ) . (8 )

As an example we shall derive the equation in y from the following

system :

y= -y+xy=P(x ,y) , i = 2 -- xy = Q (x,y ).

We thus compute :

t = 1 + / v = V ( g.g ), P = g , Ph= 1−3= -g/g , Q9,3) = ( x + 3 ) (1-4)/ g.

When these values are substituted in ( 7 ) , we obtain the following

equation :

gj = j + ( y - gºmy + -g . (9)
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2. A Preliminary Example

It will be instructive to investigate in some detail the following set

of equations , which presents many of the problems encountered in

more general systems:

de Cr+ Dy, -Ax+ By. ( 1 )

The multipliers of x and y are constants .

If dy /dt = y is divided by dx/dt=i, we obtain the differential equation

of the phase trajectories as follows :

dy_Ax + By

de Cx + Dy
BC - AD + 0 . ( 2 )

This equation has been extensively discussed in Chapter 2 , but it

will now be important to examine the relationship of its solution to

that of system ( 1 ) .

For this purpose we now obtain the differential equations satisfied

separately by ä (t) and y (t) , namely, those given by (7) and (8) of Sec

tion 1. For system ( 1 ) these equations are found to be identical .

Thus we find that z(t) is a solution of the linear equation :

ë- (B+ C) + (BC-AD)x= 0. (3)

Since y , as well as z, is also a solution of (3 ) , we thus obtain the fol

lowing explicit expressions for the two functions :

x = aeli' + benz', y = ce ,' + denz", (4 )

where the multipliers are arbitrary constants and 1, and 12 are roots

of the quadratic equation :

C- X

105

A

= ? — ( B + X + BC - AD = 0 .

B-X

(5)

Equation (5 ) , called the characteristic equation of system ( 1 ) , has

already been encountered in Chapter 2. It now assumes a major

position in the definition of the categories into which the solution of

equation (2 ) can be placed .

If equations (4) are now solved for exp (^ ,t) and exp (12t) in terms of

X and Y and logarithms taken of both sides of the solutions , we get

1 , t=log k (dx - by), „ t = log k (ay -- cx ), k- = ad-bc=A. (6)
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These equations define the phase trajectories in terms of the param

eter t . If t is eliminated , then we obtain the equation of the trajec

tories in the following form :

(dx - by ) = K (ay - cx )̂ , 2, K= 41-1112 . (7)

This equation is identical with the one obtained in Chapter 2 by the

direct solution of equation (2) . The apparent existence of four arbi

trary constants is an illusion , since the general solution of (2) intro

duces only one arbitrary parameter. The constant K is a function of

k and hence of the four parameters: a , b , c , and d, but it will not be

important in our discussion at this point to indicate the explicit rela

tionships between the parameters.

Let us now write equation (7) in the following form :

w = K21, A2, (8)

where we abbreviate :

w = dx - by, 2 = ay - cz. (9)

If we assume that ad - bc = 1, then equations (9) define a rotation of

axes . The w, z-axes will be orthogonal to the xy -axes if we impose

the further restrictions that ab+cd= 0, but this we shall not assume.

It will be observed that both axes pass through the origin, which is

a singular point of equation (2) .

We shall now consider the character of the curve defined by (8) as

it is related to the roots of the characteristic equation . We shall

consider several special cases as follows:

CASE I. Both roots real, unequal, and negative. Referring to equa

tion (4 ) we see that as t moves from - to to , X and y decrease

and approach zero as a limit. The motion thus described we shall

call stable . Equation (8) represents a family of curves with a common

nodal point at the origin . At this point the curves are tangent to the

2 -axis, which means that the corresponding curves in the x,y-plane

are tangent to the line : ay= cz .

An example, illustrating this case, is shown in Figure 1. The

function w = K243 is represented for various values of K. Since the

characteristic equation is assumed to have the roots : 1,5-4 and

12= -3 , the motion is stable and the arrows indicate that the point

(x,y ) moves toward the origin as t .

Case II . Both roots real, unequal, and positive. In this case we

see from equation (4) that x and y are zero when t = - and increase

without limit as t - too . The motion is thus characterized as un

stable. But as in Case I equation (8 ) represents a family of curves

with a common nodal point at the origin .
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k :
K : 2 K : 2

K :

Z

K : -

k : -1

K : -1

k : -2 K : -2

= kz3 , 1,3-1 , dz : -3

FIGURE 1

Figure 1 , which shows curves under Case I , can equally well be

used to illustrate Case II. If we assume that . = +4 and 1, = +3,

the same curves are obtained . But in this case the arrows will be

reversed and the point (x,y) moves away from the origin as t→0 .

Another example is supplied by Figure 2 , which shows two trajec

tories originating at the nodal point 0. Their equations are given by

y - 2x = K (y - 2 )*/3, ( 10)

where K= 1 , and – 1 respectively. The differential equation is

dy 2x + 2y

( 11 )
dx 5x- y

and the roots of the characteristic equation are 3 and 4. The motion

is thus unstable, as is indicated by the direction of the arrows.

k :

-6 -5 -4 -2 - 1 X

-1

y -2x = Mly -ws

dx
K : 1

dy

²x + 2y

.

5x - y 2

3

FIGURE 2

The equations which define the motion in the two cases are as

follows:

r = - (e "' + est),
I = e31 - e4l,

K= 1 : K= -1 : ( 12)

y = - (et ' + 2e3');
y=2e-et1
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-0 .

It will be seen from these equations that the two trajectories are

tangent to the line y=2x at the nodal point.

CASE III . Both roots real , but differing in sign. It is clear from

(4) that in general both x and y will increase toward infinity as t

approaches either too or Hence the motion is unstable. Equa

tion (8) now represents a family of curves of hyperbolic type for

which w is infinite when z= 0 .

Figure 3 illustrates Case III . The curves are representations of

the function w = Kz - 1/3 for various values of K. The roots of the

characteristic equation are respectively -4 and 3 and the motion is

unstable . The point 0 is called a saddle point.

3

K : 1 K : 1

k : Ź * : ¿

'k :-4 7x =-1

K : -1 k : -1

w kz's

à : -4, 12 : -3

FIGURE 3

Case IV . The roots are conjugate complex numbers , the real part of

which is positive, that is to say, 1 = 1 +ui, 12= 1- ui , ^>0. Referring

now to Section 5 , Chapter 2 , we see that equation (8) is replaced by

the following :

u log r= 1 arctan; +k, ( 13 )

where we write : U = ( x + Dy - A2, v=ux, ra = u2 + v2. Equation ( 13)

thus represents a family of spirals . Equations (4) are now replaced

by the following :

x=ael cos ( ut + b ), y = cell cos (ut + d ). ( 14 )

The motion is observed to be unstable since the amplitudes increase

toward to as t-> +0. In this case and the next the singular point

is often called a focus.
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Figure 4 illustrates this case . The curves shown in the figure for

two values of K have the equation :

s = Kepo, p = 1 /21, ( 15)

where d1=p+i, 12=p-i . Since p is a positive number, the motion

is unstable , and the spirals unwind from the origin.

K : 1

K :

U

4

kep poza

di : D + i , la : p - i

U : r cose , varsin e jury

12.200+(0? +1) 0 lv

X + DY

px - ydx

FIGURE 4

CASE V. The roots are conjugate complex numbers the real part of

which is negative. Referring to Case IV, we see that the phase trajec

tories are spirals , but in this case the motion is stable , since < 0,

and the amplitudes of the motion described by equations ( 14) dimin

ish toward zero as t - too .

This case is also illustrated by Figure 4 and the curves defined by

equation ( 15) . If p is now a negative number, let us say, p = -1/21,

then the spirals wind in toward the origin as t=0 , and the motion is

stable .

CASE VI . The roots are pure imaginaries, that is to say, l= ui,

12 = -ui. Referring to Section 5 , Chapter 2 , we see that the phase

trajectories are a family of ellipses given by the equation :

Ax2 + 2Bxy - Dy = K , –AD > B ”. ( 16)

The motion is thus a stable one about the origin , which is now called

a vortex point .

This case is illustrated by Figure 5 , which represents graphically

the ellipses :

22 — 2xy + 3y== K , ( 17)

derived as solutions of the equation :

dy_1 - Y

dx x 3y
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K : 2

K :

X

x2 - 2xy + 3y2 : K

di : 121, dq = -12

골
.

FIGURE 5

The characteristic roots are + V2 i and the major axis makes an

angle : 0=1/8 with the z-axis . The origin is a vortex point.

CASE VII . The roots are equal. In this case equations (4 ) are

replaced by the following:

x = el '(a + bt), y = ed '(c + dt). ( 18)

} B 0The motion is thus seen to be stable if 1 = ( B + C ) < 0 and unstable
2

if ^>0. The phase trajectories may be straight lines, parabolas, or

somewhat complicated logarithmic curves . These various cases are

described in Section 5 of Chapter 2. Since the roots are equal, the

constants in equation (2) must satisfy the condition :

( B - C )? + 4AD = 0. ( 19)

The equation of the trajectories isFigure 6 illustrates this case.

the following:

y=2(K+log x) , (20)

which is derived from equation (2) by assuming: A=B, B= C, D=0 .

The two roots are equal to B. The equations defining the motion

are respectively :

dx

=AZ,
d

- 2Bdy

di+Bay = 0. ( 21 )

If B is assumed to be negative , the motion is stable as shown in the

figure. But if B is positive, the motion is unstable .
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21

k : 1.5

k : 1

ko į

1

y = xfk + log x) , * : Bx , y - 2By + Bºy = 0

A : 8 , 8 : C , 0 : 0, 1 : B

FIGURE 6

3. The Stability Theorem

The significance of the preliminary example given in the preceding

section becomes apparent when we consider what is called the stability

theorem of nonlinear mechanics.

We shall consider the following system :

dx = P(x,y), Q(x,y ) ,
( 1 )

where P(x ,y) and Q(2,y) are functions analytic in a domain D of the

x,y-plane .

We now make the transformation : x= &+p, y = nta, and thus

obtain

dn

= P (& + p, n + q) = P (2,9) + & P = ( p , q) + nP, (p , q)
dt

1

+

2 ! [F ?P =2( P ,9) + 2€ nP ,,( P, 9) + n *P (p ,q )] + ..

d૬

dt
= Q ($ + p, n + q ) = Q ( 2,9) + FQ ( p , q ) + nQu ( p, q)

+2 (EP# (!,9)+ 2E +Q«u{P,9)+ n*Qm/P,9)3+
(2 )

The singular points of ( 1 ) are the intersections of the curves

P(p,q) = 0 , Q (2,2) = 0 . (3 )

If one of these singular points is the point Po = (Po, ), then the

characteristic equation of the system with respect to this point is the

following:

C-X A

Δ(λ) = = X2-( B+C)X+BC-AD=0, (4 )
D B – (8
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where we adopt the abbreviations :

A = P ( Po,qo), B = P , (Po,qo), C = Q : (Po,q ), D = Q , ( Po , qo ).

The stability theorem * then asserts :

In the neighborhood of a singular point Po of system (1 ) , the stability

characteristics of the solution are determined by the characteristic roots

of equation (4) in the same sense as they characterize the solutions of

the linear system as set forth in the various cases described in Section 2.

To prove this let us write equation (2 ) as follows :

dn = AF+ Bn + $ (k,n),
dt

裝=0
d૬
= C + Dn + ( , n ).

dt
(5 )

We now introduce the transformation :

n= -Du- (C-X) v,

& = - ( B - HU - Av, (6 )

where , and u are assumed to be distinct roots of AX) = 0, defined

by ( 4 ).

When this transformation is made on (5 ) , we obtain :

Dů + ( C - 1)v = [CD + D ( B - u )]u + [C ( C - 1) + AD]o — **(u ,v),

( B - A) i + Ad = [ AD + B ( B - )3u + [ A ( C - A) + AB] -ự* ( 1,0),

(7)

where ** (u ,v ) and y * (u ,v) are respectively the functions + ($ ,n ) and

( . n ) in the new variables and where i and i are derivatives with

respect to t .

Eliminating i , and making use of the relationships : 1 + u = B + C ,

du = BC- AD , we obtain :

A (^ ,u ) u = 14 ( ,̂ ) u - AA (X ) - A * + ( C - 1 )¥ *, (8 )

where we have

A (1,1 ) = AD- ( C - ) ( B - 4 ) = BX + Cu - 24,

= u ? + B ( -u) - lu = (1 - u ) (B, M) = id- u) ( -C ). (9)

* This is also known as the theorem of Liopounoff.
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Since A ^ ) = 0, we get from (8 ) and (9) :

1

i=lut

入ー

A

A - 00*

( 10 )

By a similar analysis , in which we eliminate i from (7 ) and reduce

the resulting equation , we obtain the following expression for i:

i=w +x=>[au- Boxe]
( 11 )

If we now multiply ( 10 ) by u and ( 11 ) by v and add the two equa

tions , we obtain an equation which can be written conveniently

as follows:

dpa

= 2 (au? + mva) + f (u ,v ) = F (u ,v ), ( 12)
dt

where på = u ? + v2 and f(u , v) is a function which vanishes together with

its derivatives of first and second orders at the point Po = (0,0 ).

Let us now consider the surface ,

z = F (u ,v).

Computing the first and second derivatives of z at Po, we have

zx= 2, 0 , Zw = 21, 2p = 24 , Zw = 0 ,

whence it follows that

A = 22, - (2x ) = 4u. ( 13)

We shall now consider five cases : I. Both roots real and positive.

II . Both roots real and negative. III . Both roots real, but differing in

sign . IV. Both roots conjugate complex numbers. V. Both roots pure

imaginaries.

I. When both roots are real and positive we see from ( 13 ) that z

has a minimum value at P. Let us now represent the point (u ,v) in

polar coordinates:

u=p cos 0, v= p sin 0 , ( 14)

where both p and 8 are functions of t , and let us consider the motion

thus defined in the neighborhood of the origin . It will be convenient

to enclose this neighborhood within a circle of radius &c. The

trajectory is schematically shown in Figure 7 .
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1

Ро

FIGURE 7

Since our interest is primarily in the stability of the motion , we

shall consider only the radial velocity : Vo = dp/dt. When the transfor

mation defined by ( 14 ) is made in ( 12 ) , the following equation is

obtained :

de

= ) ( ( 15 )
dt

where k = 1 - M and g(0,0 ) vanishes at least to the first degree as

p>0.

Integrating ( 15) from some initial point C, we now have

Song
= log p-log por

Pop

dp= loge S 4 ( 1 – k sin? 0) +9(0,0)]dt.
( 16 )

Since 1 and u have been assumed to be distinct roots, one is greater

than the other . If we assume that is the larger value , and if both

have the same sign , then k< 1 . Since g(0,0) vanishes at least to the

first degree in p , the radius & of C can be so chosen that g(0,0 ) remains

arbitrarily small within the circle : From the theorem of mean value

for integrals we then have

log p-log Po = (1 - k sina 8.) + e] (t - to), ( 17)

where , is some value between 0 and 27, and e is arbitrarily small.

From this it is clear that when ^ > , as was assumed, p increases

as t increases and will ultimately reach the boundary of C. The

motion is thus to be characterized as an unstable spiral about the

singular point P ..

II . When both roots are real and negative, then from ( 13 ) we see

that 2 has a minimum value at P. Without changing the argument

given in Case I , we arrive at equation ( 17 ) . Now, however, we as

sume that < 0. As t increases, the right-hand member of ( 17 )
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approaches – , from which we conclude that p>0 . Thus the motion

is stable and P , is a stable nodal point.

III . When both roots are real, but differ in sign from one another,

then at the point P , the surface z = F (u ,v) has a saddle point. *

In order to investigate the trajectory within the circle C of Figure

7 , we now take the derivative of ( 12 ) from which we have

dvdap ? du

=40 λu

dt?
+μυ

dt
+ f 0 āt ( 18)

Replacing du /dt and dv/dt by their values from ( 10) and (11 ) respec

tively , we then get

đp?

= 4 (1’uº + u?v2) + G (u ,0),
dt?

( 19)

where G(u,v ) is a function whose first and second derivatives vanish

at P.

Observing that

dp” de dp

dt² dtHome 2 +2( )
>

we can compute đạp /dt> from ( 19 ) and ( 15 ) . A simple calculation

yields the following:

d²p

dt?
=pl? [ ( 1 -k sina 0) + 2k2 sin? 0 cosa 0] + p h(0,0) , (20)

where h (0,0 ) vanishes at least to the first degree as p>0.

If we now consider a point within the circle of Figure 7 and

observe that h (0,8) can be made arbitrarily small by an appropriate

choice of ļ , then d ? p/dt is positive except at P , where it vanishes.

By an argument similar to that already given in Case I , we can now

show that dp /dt is also positive . Hence the radial distance of P

from P , will increase as t increases . Moreover, the rate of this in

crease will be positive. We thus see that the motion is unstable.

In this case, P , is called a saddle point .

IV . If u and I are conjugate complex numbers, let us say a+ bi

and a- bi respectively, we transform equations ( 10 ) and ( 11 ) by

writing

u= U+2V, v = U — ¿ V . (21 )

*If Po is a minimum point on the surface 2 = F ( u , v ), the surface will lie above its tangent plane in the

neighborhood of the point, that is to say , the surface is concave up . But if Pois a maximum point, then the

surface will lie below its tangent plane and is concave down. In both cases, at the point, 2. = 2 ,=0, and

A, given by (13) , is positive. But if 2. = 2 ,=0, and A is negative , then the surface will lie partly above and

partly below its tangent plane at Po. It is thus neither concave up nor concave down, but saddle shaped .

The point is thus referred to as a saddle point.

556037 0–61 -22



322 INTRO. TO NONLINEAR DIFF . AND INTEGRAL EQUS.

We thus get

0+ Vi = aU - 6V + i(aV + bU ) + ...,

Ü - ViraU - V - i (aV + bU ) + . (22)

When these equations are first added and then subtracted there

results

Ü = aU - 6V + F (U ,V ), = aV + 6V + F ,( U , V ), (23)

where F , and F , are functions which vanish , together with their first

derivatives, at Po.

Forming the sum : UU + VÝ, and using the abbreviation : R’=

U ? + V2, we obtain the equation :

DR2

- = 2aR2 + UFU, V ) + VF , U , V ). (24 )
dt

If we now make the transformation : U=R cos 6, V=R sin ,

equation (24) reduces to

dR

= aR + RHR , ), (25)
dt

where H(R,') vanishes at least to the first degree as R- > 0 .

The argument of Case I is now applicable and the stability of the

solution is seen to depend upon the sign of a . When a is negative , the

solution is stable and when a is positive, it is unstable . The singular

point is called a focus.

V. If both X and u are pure imaginaries, then a in equation (25) is

zero and we have

dR

= RHR," ). (26)
dt

Since the right-hand member can be made arbitrarily small within

the circle of Figure 7 by proper choice of ţ , R will be nearly constant .

Thus as t increases the trajectory remains within C and a vortex motion

is defined . This , however, is very far from assuming that the solution

will be periodic, as we shall show later . When the trajectories are

closed the vortex point is often called a center .

4. An Application of the Stability Theorem

We shall now consider the system ( 1 ) of Section 3 in which P(x,y)

and Q(x,y ) are general quadratic functions . We thus write

dy ,
dt =P(2.9), 2(3,9),

( 1 )
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where we have explicitly

P (x ,y ) = E + Ax + By + Lx? + Mxy + Ny?,

Q (x ,y) = F + Cx + Dy + Gx? + Hxy + Kya. (2 )

In these functions E , F, and the coefficients of the variable terms are

assumed to be constants .

Although we have already introduced this system in Chapter 5 ,

we shall examine it more critically here . By means of the trans

formation :

x= $+p, y=nta, (3)

we obtain the following system :

dn

= E + Ap + Bq + Lp + Mpq + NqP + ( A + 2Lp + Mag
dt

+ ( B + 2Np + Man + L2 + M &n + Nna,

d૬

det = F + Cp + Dq + Gp2 + Hpq + Kq? + ( C + 2Gp + Hq)ędt

+ ( D + Hp + 2Kq) n + G ? + H &n + K12 (4)

The singular points are given by the intersections of the conics

Lp2 + Mpg + Nqº + Ap + Bq + E = 0 ,

Gp? + Hpq + Kq2 + Cp + Dq + F = 0 . (5)

There are thus , in general, four singular points , but not all of these

may be real. In certain degenerate cases , the number of points may be

less than four . Let us denote the singular points by Pi= (p1 , qı) ,

i= 1 , 2 , 3 , 4 .

In the discussion which follows we shall limit ourselves to the case

where the singular points are real . From the stability theorem of the

preceding section , the nature of the solution in the neighborhood of the

singular points is determined by the roots of the equation :

C " - A '

19
= 12— ( B ' + C " ) X + B'C' - A'D ' = 0 , (6)

D' B'-,

where we write :

(7)A ' = A + 2Lp : + Mq1,

C ' = C + 2Gp : + Hqi,

B ' = B + Mp1 + 2Nqi,

D ' = D + Hp : + 2Kq1.
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We shall now examine several special cases from the point of view

of the stability theorem .

Example 1. We shall now consider Volterra's equation , the stable ,

periodic solution of which was given in Chapter 5. It will be sufficient

for our purpose to consider the following special case :

dr

=21-2ry,
dt

dy = -y + zy.
dt

(8)

Equations (5) reduce to the degenerate conics,

2p - 2pq = 0, -9+pq=0, (9)

which , as shown in Figure 8 , intersect in the two points: P,= (0,0 )

and P = (1,1).

P2/(1,1),

Pi

D

FIGURE 8

At P, equation (6) reduces to (1+ 1 ) (1-2 ) . Since both roots are

real , but differ in sign , this singular point is an unstable saddle point .

At P , we have A' = 1 , B'=C" = 0 , D' = - 2 , and equation (6)

becomes : 12+ 2= 0 . Since both roots are imaginary, this singular

point is a vortex point .

The solution in the neighborhood of P, has been adequately dis

cussed in Chapter 5. It is graphically represented in the first quadrant

of Figure 9 . We turn , therefore, to an examination of the solution

about P.

It will be recalled from the previous treatment that the equation

of the phase trajectories was found explicitly to be

n = C , ( 10)

where we wrote : m = e */ , = (ye - 2) , and C is an arbitrary constant.

The function n (x ) has a minimum value of e at r= 1 and $ (y ) has a

maximum value of e- ? at y= 1 . Let us denote these respectively by

no and to
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The functions n(x ) and g (y) are represented graphically in Figure

10. From (a) and (b) of that figure we see that real positive values of

2 and y, that is to say, points in the first quadrant of Figure 9, will

satisfy equation ( 10 ) if and only if C'Z no/to=@=20.09.

If , however, the point (x,y ) is in the second quadrant of Figure 9

(x<0 , y>0 ) , it is evident from (b ) and (c ) of Figure 10 , that equation

( 10) will have no real solution unless C<0 . It is also clear that in

this case there will be two values of y corresponding to each value of

x on each phase trajectory .

P2

X

OTP

FIGURE 9

When the point (z ,y) is in the third quadrant (r<0, y<0) , it is

observed from (c ) and (d ) of Figure 10 that ( 10) will have no real

solutions unless C < 0 . In this case there will correspond only one

value of y to each value of x .

Finally , when (x ,y ) is in the fourth quadrant (x>0, y<0 ) , it is clear

from (a) and (d ) of Figure 10 that real solutions of ( 10 ) will exist only

if C>0 . It is also seen that for every value of x there will correspond

a unique value of y.

The phase trajectories in each of the four quadrants are shown in

Figure 9. The integral curves : y= y(t) , x=x(t) , and their first

derivatives , which correspond to the phase trajectory marked A in

Figure 9 , are shown in Figure 11. The numerical computation of

these curves is tedius , but can be made by the methods described

earlier in Chapter 5. It has been found simpler to obtain the tra

jectories given in Figure 9 and the integral curves in Figure 11 by use

of an analogue computer.
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If we now examine Figure 9 as a whole, we observe that the phase

curves are separated into four distinct families by the x- and y -axes.

As we have said earlier in Chapter 10 , such a separation is commonly

observed in many nonlinear problems . It is convenient to refer to

such a curve (or curves) , which thus separate the families of solutions ,

as a separatrix. The equations of the separatrix are usually very

difficult to determine, since they depend upon critical values of the

arbitrary constant. In the present instance, the equations x=0 and

y=0 , which separate the families of solutions , correspond respectively

to C = o0 and C=0 .

Example 2. We shall consider next the following system :

dx

dt = x + y + me + y ?,+ dy = x - Y - 22 + y2. (11 )
dt

Equations (5) reduce to a circle and two intersecting straight lines,

namely :

1

(p- q) (p+ q- 1 ) =0. (12)

+

Their intersections give two real points: P, = (0,0) , P2 = ( - 1,-1) and

two complex points: Pz = ( - w , —w *), P,= (-W,-w) , where w is a com

plex cube root of 1. Since our interest is in real trajectories, we shall

not be concerned with P , and P.

At P, equation (6) reduces to 12—2 = 1, and since the roots are real,

but differ in sign, the motion in the neighborhood of P, is unstable and

of hyperbolic type .

At P, we have A ' = 3 , B'= -3, C' = - 1 , D'= - 1 , from which we

derive equation (6) : 12+41+ 6=0. Since the roots, i= -2+ 2i,

are conjugate imaginaries with real part negative , the motion in the

neighborhood of P , is a stable spiral.

These conclusions are seen to be verified in Figure 12 , which shows

the phase trajectories in the neighborhood of the two singular points.

These trajectories were obtained by the use of an analogue computer.

The separatrix in this case is of considerable interest. This curve

appears to consist of three branches presumably emerging from the

neighborhood of P1 , two of which separate the spirals from the hyper

bolic curves, and one of which separates the unstable trajectories

which emerge respectively from the second and third quadrants.

The equations of motion , that is , x=x (t) , y=y (t) , together with

their first derivatives, are graphically represented in Figure 13 .

The curves denoted by (a ) correspond to the phase trajectory marked

( 1 ) in Figure 12 and those denoted by (b ) correspond to the phase

trajectory marked (2 ) . The origins of time in both cases are at

points outside of the area shown in Figure 12 .
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The graphical representations of the equations given in ( 12 ) are

shown in Figure 12 , where they are denoted respectively by (A) and

(B) . The circle (A) defines a locus at every point of which the slopes

of the phase curves are infinite. Similarly, the two lines (B) define

loci at each point of which the slopes of the phase curves are zero .
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Exceptions, of course , are the singular points, P, and P2, which lie

on each locus.

Example 3. The following system

da

= -52 + by + x2–3xy + 2y ?, dy= -72-147 + 2x2–5x + 4y , ( 13)
dt

idt

has the following four real singular points :

P=( 0,0) ,

P = ( - 4 ,-6),

Px= (312—2,v2–3),

= (2.2426 , -1.5858),

P , = ( - 372—2,-12–3),

= (- 6.2426 , -4.4142) .

These points are shown graphically in Figure 14 , where they appear

as the intersections of the ellipse (A) , defined by the equation :

22- 5xy + 4y2—7x + x14y = 0, ( 14)

with the hyperbola (B) , defined by

22- 32y + 2y - 52+6y= 0. ( 15)

The characteristic equations , computed from (6) and (7 ) , which

correspond to the four points , are the following :

At Pj : 42–94–28 = 0; 1=4.5+ , V193;

At P .: X2+91–28= 0;2=4.5 + / 193;

At Pz: 12 + 4722 + 28 = 0; 1 = -272 + 27211;

At Pa : 12-4722+28=0 ; 1 = 2V2 + 2V21i . ( 16)

An inspection of the cases enumerated in Section 2 shows us that the

four singular points have the following characteristics, which deter

mine the form of the phase trajectories in their neighborhoods:

P : An unstable saddle point , since the characteristic roots are real ,

but differ in sign. (Case III . )

P ,: An unstable saddle point, since the roots are real , but differ in

sign. (Case III . )
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Pz: A stable spiral point, since the roots are complex numbers the

real part of which is negative . ( Case V. )

P4 : An unstable spiral point , since the roots are complex numbers

the real part of which is positive . (Case IV. )

у

4
KB)
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X

-8 -4

/P3

LA

P2

-6

FIGURE 14

It will be seen from an inspection of Figure 14 that these character

istics are confirmed by the trajectories. One also observes that the

slopes of the trajectories are zero where they intersect the ellipse (A)

and infinite where they intersect the hyperbola (B) .

Example 4. The following system :

dr

= -2x + 3y + 8x2–5xy - 4y ?,
dt

dy

= -2x + 2y + 5x + xy - 6y ( 17)
dt

has two complex singular points and two real singular points : P, =

(0,0) and Py = ( 1,1 ), which are the intersections of the hyperbola

defined by the equation :

8x2 - 5xy - 4ye - 2x + 3y = 0, ( 18 )

and the intersecting lines given by

52° + 84-64–2x + 2y = ( 5x46x - 2) (3-4) = 0. ( 19 )
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Their graphs, shown in Figure 15 , are denoted respectively by (A ) and

(B) .

The characteristic equations , computed by (6 ) and (7 ) , are found to

be the following: At P2 : 12 + 2 = 0; at Pz: 12 + 9 = 0 .

Since the characteristic roots are pure imaginaries in both cases, we

have Case V of Section 3 and thus the points are vortex points. This

conclusion is justified by the phase trajectories shown in Figure 15 .

у

( A )

3 ( B )

( A )
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(B )

X
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( B )

( A )

( B ) ( A )

FIGURE 15

But we observe an interesting phenomenon . The vortices are not

closed as they were in Example 1 and the motion thus described is not

periodic. It is thus evident that other conditions must be imposed

upon the coefficients of P (x,y ) and Q(x ,y ) if periodicity is to be a

property of the motion defined by equations ( 1 ) .

5. Limit Cycles

Although the theory which we have described above is sufficient to

determine the singular points of the system

dy

=P(x ,y) ,
dt P(2,3.

dx

=Q(x,y) ,
dt

( 1 )
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and to characterize the stability or instability of the solution in the

neighborhood of these points, our information about the solution is

still very far from complete .

A conspicuous property of nonlinear equations is the existence in the

phase plane in certain cases of limit cycles. These important con

figurations we have already introduced, although somewhat super

ficially, in Chapter 12. They are stable closed curves, independent of

initial conditions, toward which solutions tend in an asymptotic sense ,

or from which they unwind, as it were , as t tends toward plus or minus

infinity.

Limit cycles are of much interest, because they are either themselves

closed solutions of the equation

dy P ( x ,y )

di Q (x,y)

( 2)

or are the asymptotic limits of such solutions . The existence of peri

odic solutions of equations ( 1 ) is thus established when the existence

of limit cycles has been proved . The converse is not true , however,

as one sees from the simple system : x = y, y ' = -2, which has periodic

solutions, but no limit cycle. The limit cycle has been replaced by a

system of vortex cycles instead.

The nature of limit cycles and some of the difficulties encountered

in finding them can be understood by examples.

Example 1. An instructive illustration is furnished by the problem

of pursuit in the circular case , as described in Section 9 of Chapter 5 .

The differential equations describing the path of the pursuer are the

following :

do de

-Cos0-1, = a sin $ -ka,
do

(3)
doP

where the variables are those shown in Figure 16 and k is the ratio of

the velocity of the pursuer to that of the pursued. If this ratio is less

than 1 , then the path of the pursuer is asymptotic to a circle of radius

ka about the origin , independent of the origin of pursuit. This is

illustrated by the two cases shown in Figure 16 , where (a) the pursuer

starts within the circle of the pursued at 0 , and where (6) he starts

outside the circle at O ' . The asymptotic limit of the two paths is a

limit cycle .

That the limit cycle is actually itself a solution of the system can be

shown readily . The differential equation satisfied by e (see ( 14 ) ,

Section 9, Chapter 5) is the following:

de

р an tová - A =0,where A = a:--[(3 ) -ka ]
(4)
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But if the circle of radius ka is the path of the pursuer , then p is a

constant and equal to half of the length of the chord tangent to the

circle, that is ,

prav1 - K ?.

This value of p is observed to be a solution of ( 4 ).

It is instructive to discuss the problem of pursuit from the point of

view of this chapter. From equations (3 ) , in which we set a= 1 ,

k=2/3 , we obtain the singular points from the intersections of the

curves :

p (sin 4-2/3 ) =0 , (5)

p - cos $= 0 . (6 )

The first curve (5) consists of the p -axis and the lines,

$ = arcsin 2 / 3 = 0.7297 = " o, T - 90,-1-00, etc.

The second curve is the graph of the cosine, which intersects (5 ) at

the points Po, P1 , P2, and P shown in Figure 17 .

For the point Po = (1 /2,0 ) the characteristic equation reduces to

(1+ 1 ) (1-1/3) = 0.

Hence this point is unstable and in its neighborhood the phase curves

will be of hyperbolic type. This is also the case for the point Pz.
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For the point P, = (0.7297 , 0.7454 ) the characteristic equation is

912-6X + 5 = 0 ,

with the roots : 1 = -1/3 + (2/3 ) i. Hence P, is a stable point and in

its neighborhood the phase trajectories will be stable spirals . The

point P , shares these characteristics with Pi .

A confirmation of this analysis is offered by the curves shown in

the phase diagram (Figure 17) .

Example 2. In his extensive treatise on the subject of nonlinear

equations H. Poincaré gave a number of examples of limit cycles. *

The following, somewhat modified with respect to notation , is typical

of his analysis :

dy

dt
= r - y + x (x2 + y ) + y (22 + y ),

dx

dt = -x - y + x (x++ y?) — y (x + y ).

(7 )

It is clear that the origin is a singular point and that the solution is

stable in its neighborhood, since the characteristic equation reduces

to : ( 1 + 2)2 + 1 = 0.

Introducing polar coordinates: p2 = ? + y ?, r= arctan ( y /x ), we have

upon differentiating:

rr'= r x' + yy', r ?d ' = x y '-y r' . (8 )

* See Bibliography, Poincaré ( 1 ) . In particular, Chapter 7.
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If the values of x' and y' as given by (7 ) are now substituted in (8 ) ,

the system is seen to reduce to the following :

p = r ( 2-1), A = p2+1. (9 )

The solutions of these equations are readily found to be

1

T= ( 1 +Keº) -1/2, = t + to + s log ( 1 - rº), ( 10)

where K and to are arbitrary constants. We shall assume that K is

positive .

As t-> , r>0 , thus confirming the stability of the singular point;

and as t → --0 , r > 1 , which shows that the unit circle is a limit cycle .

We also observe that the limit cycle is a solution of the system in

phase -space.

An examination of the second equation of (9 ) shows that as t→+ ,

0 ++ , and as t→-0 , 0 - > - 0 . The phase trajectories are thus

spirals .

A similar analysis , assuming that K is negative, shows that the

trajectories are spirals exterior to the unit circle, which a

circle as a limit cycle as t - > - 0 .

ach the

Example 3. As a final example, showing that a system may have

more than one limit cycle , let us consider the following equations :

dy

dt

bd

= x+y acva2 + y2 + (bc + ad) +
Vz ? + y?1=z+v[aev2 + +

+> [aevz
dx

dt
-yta

bd

acva ? + y2 + (bc + ad)+
Vra + yhty] ( 11 )

where a, b , c , d are constants such that D = ad - bc + 0 .

Converting to polar coordinates and substituting in equations (8 ) ,

we reduce ( 11 ) to the following system :

dr

dt
= (ar + b ) (cr + d ),

de

dt
= 1. ( 12)

The solution of ( 12 ) is found to be

アニー

( adKedi - bc)

ac (KeDi - 1)

- = t+ to, (13 )

where K and to are arbitrary constants .
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For the special case : a= b= -c=d= 1 , D= 2 , we have

Ke2 + 1
s=

Ke2_1'
( 14)

which represents a series of spiral curves that approach the unit circle

both from outside and from within the circle . There thus exists a

single limit cycle, namely, r= 1 .

If , however , we assume the values: a= 1 , b=2, c= -1 , d= 1 , D= 3 ,

then equation ( 13 ) becomes

T

Ke3i + 2

Ke3t - 1'
( 15)

and we have a curve which approaches asymptotically both the circle

r= 1 and the circle s= 2 . There thus exist two limit cycles.

The graphs of equation ( 15 ) for the cases where K is respectively

positive and negative have been represented schematically in Figure

18. It is thus seen that the limit cycle : r= 1 is stable , but that the

limit cycle : s=2 is unstable .

K > 0

-

- -

-
-

2

K < 0

2)

FIGURE 18

6. Some Further Comments About Limit Cycles

The existence of a limit cycle carries with it the existence of a set

of solutions of the differential system , which , while not actually

periodic themselves, are asymptotic to a periodic function . If the
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limit cycle is itself a solution of the system in phase-space , then

there exists a periodic solution of the differential equations . The

importance of establishing the existence of limit cycles is evident

from these facts.

The manner in which one can make use of a limit cycle is readily

illustrated by Example 3 of the preceding section . One solution of

the original system of equations was obtained in the following form :

Ke2+ 1

r ( t ) =
Ke2t - 1'

a= t + to , ( 1 )

where, for simplicity , we shall assume that K is positive.

The existence of the limit cycle , r= 1 , proves the existence of a

set of almost periodic functions , which we shall assume can be written

as follows:

2 (t) =A (t) cos ( t + to ), y(t) =A(t) sin (t + to ), (2)

where the amplitude , Alt) , is to be determined . We know , however,

that its limiting value is unity .

If the functions z(t) and y(t) are substituted in the original equa

tions, then A (t ) is found to satisfy the following equation :

PA=1-A,
(3)

or, as we could have found more readily from ( 1 ) ,

A (t) = r (t). (4)

We thus see that the solution of the original system consists of

functions x and y, which are harmonic except for the damping factor

r(t) . This factor approaches 1 as its limiting value .

This example, simple as it is , provides a guide to more general

problems . It suggests that when the existence of a limit cycle has

been established , the solution in the neighborhood of the limit cycle

can be represented by functions of the form :

x = A (t) S (t), y=A(t) C(t) , (5)

where S(t) and C(t) are harmonic functions with a common period 1 .

As an illustration of a somewhat more general situation than that

of the example just given, let us consider the system of Example 2

of Section 5 for which the following solution was obtained :

r (t ) =

1

1 + Keat
o= t+ to+log ( 1 – x2). (6)

556037 0461_23
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Let us now assume a solution of the form :

x=A(t) cos (t+o) , y=A(t) sin (t +o) , (7)

where the amplitude A (t) and the phase ø=" (t) are functions of t to

be determined .

When x and y are substituted in the original equations and proper

simplifications made, A and o will be found to be solutions respectively

of the following equations :

dA

= -A + A3,
dt

do

dt

-A, (8)

from which we get

A( t ) = r( t ) , $ ( t ) = to+ log (1–2).
(9 )

If K is assumed to be positive , we see that r (t ) varies from 1 to 0

as t varies from - to too . The motion is thus a damped harmonic

motion with a variable phase . It is unstable with respect to the limit

cycle , r= 1 , but is stable with respect to the singular point : x= 0 ,

y=0.

The phase trajectory is shown in Figure 19 , where it has been as

sumed that K= 1 , to = 0 . The graphs of x=x (t) and y=y(t) are given

in Figure 20 , where t varies between -a/2 and +*/2 .
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Although the examples which we have just given are elementary ,

they illustrate, nevertheless, one mode of approach to more compli

cated problems. When a limit cycle exists , the solutions in its

neighborhood can often be approximated by the determination of

asymptotic forms for the functions A (t) , S(t ) , and C(t) given in

(5) . S. Poisson was one of the pioneers in using such approximations

and his methods have been generalized and extended by others,

conspicuous among whom was H. Poincaré. Although an extensive

account of this problem is beyond the scope of this book, we shall

return to it in a more general example in Section 3 of Chapter 12 .

7. Periodic Solutions — The Homogeneous Polynomial Case

In this and the next section we shall consider the question of the

existence of periodic solutions for the following system :

dy = P(x,y), 17Q (x,y ), ( 1 )

where P (x ,y) and Q (x, y ) are polynomials in x and y.

The system where P and Q are linear functions has been discussed

in Section 2 and from the number of special cases exhibited there one

can readily infer the complexities which appear when the degrees of

the polynomials exceed 1. Although the stability theorem applies

to all polynomial systems, it gives limited information with respect

to the existence of periodic solutions in the neighborhood of the

singular points. As we have seen, it is necessary that the singularity

should be a vortex point, but this is not a sufficient condition except

in the linear case . In fact , as we shall see in Section 8 , the problem

of finding sufficient conditions when the polynomials are of degree
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two is one of great difficulty and almost nothing is known for higher

exponents .

But when the polynomials P and Q are homogeneous functions of

X and y of degree 2n- 1 , then the following elegant theorem ( Frommer's

theorem ) can be proved :

If P(x ,y) and Q(x ,y) are homogeneous polynomials of odd degree, and

if we write

p (u ) = P ( 1,2 ), q (u ) = Q ( 1,4 ), (2)

then a necessary and sufficient condition that the equation

dy_P (x ,y)

da Q (x , y )

(3)

have a closed cycle about the origin is the following:

9
du=0 .

P-ug

(4 )

The proof follows from the fact that the solution of (3) , as we have

seen in Section 4 of Chapter 2 , can be written in the form

log kz - Sp up du
(5 )

If zz and X are successive intersections of an integral curve with the

line y = ux, then one has

log ka-log ka = SSefuqdu+S .fuqdu + S.. Awadu
that is,

log
12 = 2

25
9

du.

. P-uq
21 - OO

If the integral curve is to form a closed trajectory, then for every ui

we must have dı = Xz. It is clear that the necessary and sufficient con

dition for this is the vanishing of the integral.

Example 1. Let us first apply this theorem to the linear case where

we have

P(x,y) =Ax+By, Q (x ,y) = Cai + Dy.

Since p=A+Bu, q= C+Du, we have

1-55.54
C + Du

X(u)

du,

where we abbreviate : X (u ) = A + ( B - C ) u - Du”.

-
-
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We thus obtain

1- } ( B+C) S. kovo- 3 log x (w) .

It is clear that the first term is zero if B+C=0, and that the second

term will vanish if X(u) has no zero in the finite interval . The con

dition for this is that BC - AD = -B–AD > 0. Referring to Case VI

of Section 2 , we see that these are the conditions for the existence of an

elliptical trajectory about the origin .

Example 2. We now consider the case of Frommer's curve, where

P(x,y) and Q(x ,y) are homogeneous cubical polynomials, that is,

P (x ,y ) = 28 + axry + bxy? + cy ?, Q (x, y) = ax: + bxʻy + cxy ? — 48.

We now have the following integral:

du ,
a + bu + cu2-23

I=

1 +u'

12 UP + v2u +
- (a + c)

U ? — V2u + 1

b . 1

tó arc tan u ? + log (u*+ 1 )
4

= (a–c) 2log love to V2 arc tan

1241
zu

U?-1

.

Since all terms except the second are zero , it is clear that the

necessary and sufficient condition for a closed cycle is merely that

atc=0. (6)

The “ shoemaker's last” shown in Figure 21 is the special case where

a= b= -c= 1 , and the initial condition is x= 1/3 , Yo = 0.

Since Frommer's theorem refers only to equations of odd degree, it is

interesting to examine the case where P(x,y) and Q(x,y) are homo

geneous polynomials of second degree and to enquire whether equation

(3 ) can have closed trajectories. That this is , indeed, the case is seen

from the fact that the conic :

axl + 2bay + cya — K (aa+ by) = 0, (7)

where K is arbitrary, is a solution of the equation :

dy

dx

aⓇx++ 2abxy + (262— ac) y ?.

abæ + (2ac — 62)sy
(8)

When ac - 62 > 0, the conic is an ellipse.
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But comparing Figure 22 with Figure 21 , we see that there is a big

difference between the two cases. The trajectory obtained from the

cubic is a true vortex cycle , since it includes the singular point in its
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interior ; but in the quadratic case , the trajectory passes through the

singular point .

The significance of this is seen if we consider equations ( 1 ) , which in

the first case will have periodic solutions , but in the second case will

not, since an infinite time will be required for a point to trace a

complete cycle .

This is illustrated by the following simple example :

dxdy
= x * —yº,

dt ---
2xy . (9)

dt

The phase trajectory is the circle : x2 + y2– Kx = 0 . If one now elimi

nates z from these equations, he obtains the following equation in y:

y' ' + 6yy' +4y=0 . ( 10)

This is recognized as a generalized Riccati equation , which, by the

method described in Section 10 , Chapter 3 , is found to have the

solution :

1 w

ya
2 w

>

where w=a+ bt+ ct?. Since z '/x = -2y, we also find that x= 1 /w.

It is thus evident that the origin is entered by x and y only as t » .

Hence , the circle is not a closed trajectory in t -space.

8. Periodic Solutions - The General Quadratic Equation

We shall now consider the problem of establishing sufficient con

ditions for the existence of periodic solutions of the system :

dx

= Q (x ,y ),

(1)

where P(x ,y) and Q(x ,y) are the following quadratics :

P (2,4) = Ax + By + Lx? + Mxy + Ny?,

Q (x ,y ) = Cx + Dy + Gx2 + Hxy + Ky?. (2 )

This problem is one of considerable complexity and cannot be said

to have reached final form at the present time . The first investiga

tions appear to have been made by H. Dulac in 1908 and 4 years

later by W. Kapteyn , but the problem languished and was not re

vived until 1934 when M. Frommer, generalizing the methods of

Dulac , produced an extensive memoir which contained numerous

examples of periodic motion for system ( 1 ) with specification of
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sufficiency criteria . This system of equations was critically examined

in 1952 by N. N. Bautin and again in 1955 by I. G. Petrovskii and

E. M. Landis. A reexamination of the problem was recently under

taken by J. E. Faulkner and the author .

Some of the difficulties are readily understood from examples.

In the linear case , that is to say, when the quadratic terms are deleted

from (2) , a closed cycle is obtained in the phase plane if and only

if the origin is a vortex point . But one readily sees that this criterion

is not sufficient for the general quadratic system by examining Ex

ample 4 of Section 4. Both of the real singular points are vortex

points, but about neither of them is there a closed trajectory in

the phase plane.

The following example, due to Faulkner, also shows another

aspect of the situation :

dy dr

= -100 - y + 4x2 + 2xy + 4yº, = 6y - 2y . (3)

dt dt

This system has two real singular points: P = (0,0) and P,=

(2.5,0) . About the first the phase trajectories are stable spirals ,

but about the second they are hyperbolic and unstable as shown in

Figure 23. But the significant aspect of the example is found in the

fact that the separatrix (S) is the circle :

(1-12)2+y= 1 , (4)

which satisfies the phase equation :

dy_P ( x ,y ).
(5 )

dx Q(x ,y )

One observes that it is the limit cycle for both the interior and the

exterior spirals as 2-0 .

Another example , taken from Frommer, shows that it is possible

to have closed trajectories about two vortex points for the same

equation . The following system

dy
= I - 2xy,

dt

dr

=-y+r+y',
dt

(6 )

has four real singular points, namely ,

Pa = (0,0 ) , Pg= ( 0,1 ) , Ps= ( a), pa= ( -15)
( 7 )

The first two points are readily shown to be vortex points and the

last two unstable saddle points. From the graphical representation

of x ,y in the phase plane , as exhibited in Figure 24, it is clear that

the cycles are closed about the points P, and Pz .
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Several important questions are raised by these examples. How

many limit cycles are possible for the system defined by ( 1 ) ? How

many vortex points can one set of equations have? Under what

conditions will the trajectories about a vortex point be closed?

According to Bautin the maximum number of limit cycles is 3 ,

but his proof of this statement is very difficult to follow . The problem

was reexamined in 1955 by I. G. Petrovskii and E. M. Landis (see

Bibliography ), who reaffirmed the correctness of Bautin's theorum ,

but their analysis is also long and intricate . The first example of a

system having one limit cycle was given by Frommer.

The second question is answered by the theorem that at most only

two of the singular points can be vortex points. The following proof

is due to Faulkner :

Referring to Section 4 , we see that if the singular point P= (p ,q ) is

to be a vortex point , then the roots of the following characteristic

equation must be pure imaginaries :

C " - A '

= X2- ( B ' + C '') + B'C' - A'D ' = 0 ,
D' B'- »1

(8)

where we write :

A ' = A + 2Lp + Mq,

C ' = C + 2Gp + Hq,

B ' = B + Mp + 2Nq,

D ' = D + Hp + 2Kq. (9)

For the roots of equation (8 ) to be pure imaginaries we must have

B' +C' =0, B'C' -A'D'>0. ( 10)

We shall examine first the case where three of the critical points are

collinear. Then P(x,y) and Q(x,y) are degenerate conics and will

have a common linear factor so that we can write them as follows:

P (x ,y ) = (ax + by + c ) (mx + ey + 1),

Q (x ,y ) = (ax + by + c) (gx + hy + k ). ( 11 )

We thus see that the equation in the phase plane reduces to the

following linear case :

dy_ (gx + hy + k)
( 12 )

dx (mx + ey + f)'

which we know from Section 2 can have only one vortex point.

We now examine the nondegenerate case to see whether it can have

more than the two vortex points which we have already exhibited in

the example given above . The quantities p and q must satisfy the

first equation in ( 10 ) , which we shall now write

B + C + ( M + 2G ) p + (2N + H ) q = 0, ( 13)



NONLINEAR MECHANICS 347

and also the definitive equations :

P (p ,q) = 0, Q(p ,q) = 0 . ( 14 )

The only way in which ( 13 ) and ( 14 ) can be satisfied by three sets of

values of p and q in the nondegenerate case is for ( 13 ) to be identically

zero , from which we have,

B+C=0, M+2G=0, 2N+H= 0 . ( 15)

Since any three noncollinear points can be transformed into any

other three noncollinear points by a nonsingular linear transformation,

we can take (0,0) , ( 1,0 ) , and (0,1 ) as the three singular points.

Substituting these in ( 14 ) , we have

E=F= 0, C+ G=0, A+L=0, D+K=0, B+N=0. (16)

It is now possible to write all the coefficients A through N in terms

of three coefficients, namely , A , B, and D. These relations are

A=A, B=B, C= -B, D=D, E=0, F=1, G=B,

H=2B, K= -D, L= -A, M= -2B, N= -B. ( 17)

When these are substituted in (9 ) , there results

A ' = A - 2 Ap - 2Bq,

C ' = - B + 2Bp + 2Bq,

B ' = B - 2Bp - 2Bq,

D ' = D + 2Bp - 2Dq. ( 18)

The inequality in ( 10 ) now yields three inequalities corresponding

to the three singular points as follows :

-AD - B2 > O,

AD + 2AB - B2 > 0,

AD-2BD-B?>0.

( 19)

(20)

(21 )

Assuming that B= 0, we get from ( 19 ) that - AD > ,and from (20)

or (21 ) , that AD > 0. Thus B cannot be zero and we can write :

A=aB, D= -BB. (22)

Adding ( 19 ) and (20) , we get

2 (AB - B2) = 2BP ( a - 1) >0,

(2
3
)

and consequently a> 0.
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Adding (19 ) and (21 ) , we have

2 (-BD - B2) = 2BP (B - 1) > 0, (24)

and consequently b > 0 .

Substituting (22 ) in ( 19 ) , (20) , and (21 ) , we obtain the following

inequalities :

aß - 1 > 0, -aß + 2a - 1 > 0, - aB + 28-1 > 0 . (25)

It has already been shown that for all three of these inequalities to

be satisfied it is necessary for a and ß to be positive . In this case the

first inequality in (25 ) is satisfied only to the right of the curve

αβ- 1 =0. (26)

The second inequality is satisfied only to the right of the curve

- aß + 2a - 1 = 0 , (27)

and the third inequality to the left of the curve

-aß + 28-1 = 0 . (28)

ß

-aß + 2B - 1-0

(2)3

( 1 )

2 !
( 3 )

-aß + 22-1 = 0
( 2)

( 3 )

( 1 )

aß - 1 = 0

La

4O 1 2 3

FIGURE 25

These curves are shown in Figure 25. Since the curves (28 ) and

(29 ) are tangent at the point a= B= 1 , it is not possible to satisfy the

last two inequalities of (25 ) for positive values of a and B. But this

is necessary if the first inequality of (25 ) is also to be satisfied . From

this we reach the conclusion that there can be at most two vortex

points .

We come finally to the third question asked above. Under what

conditions will the trajectories about a vortex point be closed ? In

this case the vortex point is called a center . For simplicity we shall

—
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assume that the origin is such a point , an assumption that imposes no

restriction , since any such point can be transferred to the origin by a

linear transformation . Referring to equations ( 1 ) and (2) , we see

that the coefficients of the linear terms must satisfy the conditions :

B+C=0, BC-AD>0, or –AD > C ?. (29)

It is convenient first to express system ( 1 ) in canonical form . To

achieve this we begin with the following transformation :

--x-pay, y -x,

(3
0
)

where k = - AD - C ?.

System ( 1 ) then assumes the following form :

= kX + kp ( X , Y ), p (X,Y )=L'X?+H'XY+N'Y,
dt

dx

on = -kY +kq(X ,Y ), q( X ,Y) = G ' X?+ M 'XY + KÄY ? (31 )

When we divide by k and write t=kt , we obtain the system

dY dx

=X+p (X,Y) , =-Y+ q(X,Y) .
di dT

(3
2
)

Finally we introduce the rotation

X=x' cos 0-y' sin 0, Y=x' sin 8+y' cos 0, (33)

which leaves the form of (32 ) unchanged , but provides a parameter 0.

This is now determined so that

L'+N'=0. (34)

Dropping the primes on d' and y' , we now have the original system

in the desired canonical form as follows:

dy dr

= (
di

= x+p(x,y) , dirdi -y+ g(x,y) ,
-

(35)

where we write

p (x ,y ) = ax? + (26 + a )xy - ay?,

9 (2,4 ) = - 6x2 + (2a - ) xy - dy ?. (36 )

The phase equation thus becomes

dy

dæ

--

atar ? + 26 + a ) ry - ay2

y + bxº- (2a - B )xy + dy
(37 )
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By arguments of considerable complexity it can be shown that

periodic solutions exist for system ( 35 ) and closed cycles in phase space

for (37 ) provided the coefficients satisfy any one of the following four

conditions :

I. b + d = 0

II . a= B=0.

III . a= B= 0 .

IV. B = a + 5 (b + d ) = 0, a ' + od + 2 = 0. ( 38 )

Let us examine several special cases as follows :

Example 1. Volterra's system :

dy

= -cy + cxy,
dt

dx

= ax - axy.
dt

(39)

By the linear transformation : x = r'+1, y = y '+1, the vortex point

( 1,1 ) is transformed to the origin . Dropping primes, we can write

(39 ) as follows:

dx

=-a(y+xy) .
dt

dy = c(x + xy),
dt

Since A=c, B= C=0 , D= -a , we have karac and transformation

(30) becomes :

1

Y.X, y

from which we obtain

x - x - x , 4X --Y + XY, - kt.

It is clear that this system is included under Case I where b+d=0 .

Example 2. Frommer's system :

dy
= I-2xy :

dx

=-y+ r++y?.
(40 )

dt dt

Since this is already in standard form we compare the right-hand

members of the equations with (36 ) and thus obtain : a= a=B=0,

b =d= -1 , from which we see that we have either Case Il or Case III .

For the second vortex point , we make the successive transforma

tions :

q= r', y = y '+1; x ' = X, y'= -Y,

which reduces the system to the same form as (40) .
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Example 3. As a final example we shall consider the system given

in Example 4, Section 5 , namely,

dy
= -2x + 2y + 5r4 + ry - 6y?,

dt

da

dt
-2x + 3y + 872 — 5xy - 4yº. (41 )

It will be recalled that this system has two vortex points: P,= (0,0)

and P2= ( 1,1 ) , but that the phase trajectories about neither of them

are closed . We shall now examine the point at the origin to see why

this is so .

For this purpose we first make the transformation (30) , which in

this case is explicitly the following:

1

v=jāY.
> (42)

System (41 ) then assumes the following form :

dY

dt -x - x + 12XY

dX= -Y + 12 x - v2 Y ?, = 12t. (43)

We now apply the rotation (33 ) to this system and in order to sat

isfy condition (34 ) , we find the following values for sin 0 and cos 8 :

5

sin = 27 v27, cos o=;

1

27
V54.

In terms of these values the parameters of the canonical poly

nomials (36) are found to be :

a = -6807, b= 512y, d= 868y, a = -11307, B = - (1615V2 + 1360 ) Y,

where we use the abbreviation : y =27/2916 .

Since none of the criteria given in (38) is satisfied by these quanti

ties, it is now clear why the trajectories in the neighborhood of the

origin were not closed curves .

9. Topological Considerations - Poincaré's Index - Bendixson's Theorem

In the earlier history of nonlinear mechanics, before the advent of

the great computing devices of the present time , the study of nonlinear

systems was more frequently advanced by topological arguments

than by the quantitative methods of analysis and the use of numerical

integration. But these theorems still retain their usefulness in many
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cases and often serve as guides to more exact determinations of the

motions defined by the systems of differential equations. We shall

now give a brief introduction to certain useful ideas advanced by

Poincaré and to a related theorem of Bendixson . *

In order to describe the nature of a singular point Poincaré intro

duced what he called an inder. In order to understand this term ,

let us consider a set of trajectories defined by the following system :

dx = P(x,y), Q12,9) ( 1 )

As we have seen from the examples given earlier in this chapter,

these trajectories may form closed cycles, they may unwind from

a singular point and ultimately approach infinity in the form of an

unstable spiral , they may approach a limit cycle, or behave in any

of the other ways which we have previously described . It has been

found useful in qualitative descriptions of these trajectories to divide

them into semitrajectories by designating an arbitrary point Po on

each of them . As t advances from -20 , a variable point on one of

them will ultimately reach Po, and as t continues to to the second

half of the trajectory is then described . The nature of the motion ,

whether it is periodic , stable , or unstable , is then determined by the

behavior of the moving point in each half of the trajectory.

This general picture can now be made more precise by attaching

to each point a vector which shows both the direction of the motion

and its magnitude. The topological arguments of Poincaré apply

to the direction of the vector , rather than to the magnitude, since

the latter is determined by quantitative measurement. But the

direction of the field yields qualitative information, which depends

upon the functions P ( x,y ) and Q (x ,y) in ( 1 ) , as we shall soon see , and

thus does not require a knowledge of the integrals of the system .

We shall find it necessary to distinguish between the index of a

closed curve and the index of a point, although both of these are related .

Let us first consider a vector field , which contains within its boundary

a single singular point S and a simple closed curve C that does not

pass through S. At each intersection of C with a trajectory (it may

actually itself be a trajectory ), there will be a direction angle of the

vector field, which we shall denote by $ . If a point now moves in a

counterclockwise direction along C , the angle • will vary and after

the completion of a circuit , • will have the value 271, where I is an

integer, since the direction angle of the field has returned to its initial

value . The quantity I is the index of the curve C.

* For these and other topological arguments the reader is referred to the extensive work of S. Letschetz

( see Bibliography), in particular Differential Equations - Geometric Theory, New York , 1957.
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The situation is shown graphically in Figure 26 for these singular

points, which we have discussed earlier in this chapter. If there is

no singular point in the interior of C , as in (a) of the figure, then the

net variation in is zero and we have I= 0 . But if S is a nodal

point, as in (b ) , then • changes by 21 and the index equals +1 .

This is also true for the vortex center (c ) and for the spiral point (e ) .

But in the case of the saddle point, shown in (d ) , 6 changes by – 21

and we have I= -1 .

The following properties of indexes can be proved without great

difficulty, although they are not obvious :

1. The index of a closed curve which contains several singularities

(of the nodal, focal, or saddle point type) is the algebraic sum of their

indexes.

A simple example is furnished by the phase diagram of Volterra's

problem shown in Figure 9. One can readily show that if a closed

curve encloses the points P, and P2, then its index is 0 , since P, is a

saddle point and P , a center.

556037 0–61-24
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2. The index of a closed trajectory is + 1 ; and , conversely, if C

is a closed trajectory, then it must contain at least one singular

point the index of which is +1 .

3. A closed trajectory must always contain 2n+ 1 singular points,

and the number of singular points of index 1 must exceed by one the

number of saddle points .

Since the index is thus seen to be determined without knowing the

solution of system ( 1 ) , it should be possible to find it analytically

from the functions P (x,y ) and Q(x ,y) . That this is , indeed , the case

is found in the following formula : *

1 P 1 PdQ - QIP
I = d arctan (2)

21
Q 21 P2+Q2

where the path of integration is the closed curve C given above .

If C is chosen sufficiently small so that only the singular point S

is enclosed by it , then I is the index of the singular point. But if C

encloses more than one such point, then we call I the index of the

curve .

The theorem of Bendixson provides a criterion by means of which,

in certain regions, one can show that no closed trajectory exists and

that system ( 1 ) has no periodic solution .

This criterion depends upon the following identity of Green :

OQ OP

+ didy,

дz ' ду

where C is a simply connected curve in the x,y-plane, which encloses

the area A.

If C is a closed trajectory, then the line integral is zero since we have

Qdy - Pdx = r'dy - y'dx = (l'y'-Y'x ' )dt= 0 .

Hence the area integral also vanishes and we thus derive the theorem

that the function

OQ , OP
J =

dx dy

must either be zero or change sign in A if C is a closed trajectory.

* For a systematic discussion of this integral the reader is referred to E. Picard : Traité d'Analyse, Paris ,

1891, Vol . 1 , Chap . 3, Sec. 4, where the theorem is proved that the integral I, taken along C in the positive

sense , is equal to the ercess of the number of roots of the system

P ( 1 ,y ) = 0 , Q ( x , y ) = 0 ,

for which the functional determinant (P_Q , -- P , Qz) is positive, over the number of roots for which this determi.

nant is negative .

If one now applies this theorem to the system : P= Ar+By, Q = Cr + Dy, he will find that I=+1, when

A= BC-AD>0 and 1= -1 , when a<0. Referring to the characteristic equation (5) , Section 2, we see

that the first condition gives us either a nodal point or a focal point, and the second condition gives us a

saddle point.
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As an example, consider the system

y ' = - y + xy , x ' = x - xy,

from which we compute : J=r-y.

The, line , x= y , passes through the two singular points : (0,0 ) and

( 1,1 ) and divides the plane into two parts in neither of which it is

possible to have a closed trajectory . Referring to figure 9 , we see

that this conclusion is confirmed . However, this example also reveals

the weakness of the theorem , since a closed trajectory does exist in

the first quadrant , a fact not disclosed by the analysis just given .

For this reason Bendixson's theorem is frequently referred to as a

negative criterion .





Chapter 12

Some Particular Equations

1. Introduction

IN THIS CHAPTER we shall consider the solution of several particular

equations , which have arisen naturally in the study of physical

phenomena. Some of these have been mentioned in Chapter 1 .

As was the case in the solution of other equations which we have

described in earlier pages, each requires special treatment.

By this time the reader has doubtless observed that the term

" solved , ” when applied to any equation , has a varying degree of

uncertainty about it . In the words of Poincaré, most problems are

never actually solved , but only " more or less solved .” In the case

of differential equations the reduction of the solution to a function

contained in the classical corpus of functions is usually considered a

highly satisfactory achievement. In other cases the expression of a

solution in the form of an infinite series, or in terms of some other

convergent algorithm , will suffice . In practical applications, however,

those who seek the solution of an equation will not be satisfied until

the function has been reduced to tabular form . In this evaluation a

specified order of approximation must be attained throughout a pre

scribed range of satisfactory size . Others who are interested primarily

in the theoretical aspects of a solution will be content with an enumera

tion of the critical properties of the solving function , such, for example ,

as its zeros , its maxima and minima , its infinities, and other types

of singularities. In other cases , where these desirable attainments

cannot be achieved, recourse may be had to various approximations

and to graphical methods . Several useful schemes have been devised

to achieve this , the use of isoclines, for example, and the application

of analogue computers where these machines are available .

In order to illustrate the various techniques by means of which

equations may be " more or less solved,” we shall examine several

classical equations. The first of these is the equation of Van der

Pol , to which reference has already been made in earlier pages. This

equation was originally solved by the method of isoclines.

357
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2. The Equation of Van der Pol

The equation

012 - (1– ya) + ay= 0, e,a >0, ( 1 )

when it was first discussed by B. Van der Pol in 1926 , probably

attracted more attention because of the curious nature of its phase

diagram than because of its explanation of the behavior of the triode

oscillator. The equation in its phase plane provides an excellent

example of a limit cycle , which is approached both from within and

without by the phase trajectories.

Let us first write ( 1 ) in the form

dy.
=X ,

dr

= e (1 - y ?) x — ay = ex — ay - exy?.
dt

(2)
dt

If we make the transformation :

x= $+p, y=nta,

then system (2 ) becomes

v=p+ ě,

į = &p - aq - epq? + e(1 - q?) $ (a + 2ep9)n - e(&m? + 2q6n + pm?). (3 )

Setting the constant terms equal to zero , thatis,p = 0 , ep - aq - epq = 0 ,

we see that system (2 ) has only one singular point in the finite plane,

namely, the origin .

From the characteristic equation

E–λ 1

= l2 - eta = 0,

-λ

(4 )

-a

we have : 1= ut V - a, where u= le .

If u? <a , then 11 , d, are conjugate complex numbers with positive

real parts . Hence the origin is an unstable focal point. If ?>a,

the roots are unequal positive numbers and the origin is thus an

unstable nodal point . This is also the case if ua = a .

By the theorem of Liénard (Chapter 10 , Section 8 ) , equation ( 1 )

has a unique periodic solution, which has its image in the plase plane

as a single closed configuration . This means that the phase trajec

tories emerging from the neighborhood of the origin must approach

this curve as a limit cycle and that the solutions of ( 1 ) associated

with them tend asymptotically to periodic functions .
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If we examine the region exterior to the limit cycle , we see that the

point at infinity is also a singular point of the equation . If we bring

this point into the interior of the limit cycle by means of the transfor

mation : t= 1 /2, equation ( 1 ) assumes the form :

d ° у
24

dy dy
te ( 1 – yº) z? +ay=0.

dz dz

(5 )

d2
27

223

If e= 0 the solutions of (5 ) are exp ( Hiva /z ), which have essential

singularities at the origin . This is a property shared by the solutions

of the nonlinear equation when +0. It is easy to show that the

solution of (5 ) is unstable in the neighborhood of z = 0 by the simple

expedient of testing the solution of equation ( 1 ) for points exterior to

the limit cycle . All phase trajectories will be found to approach the

limit cycle.

Various methods have been used to solve equation ( 1 ) , the first

being that of isoclines which Van der Pol applied in his initial integra

tion both to obtain the phase trajectories and the graphical represen

tation of the solutions . Since from (2 ) we have

dx_6(1 - y-) x — ay.

dy
(6)

X

the isoclines are given by the following one -parameter cubic :

(m- ex+ay+ery= 0 .

(7)

Since equation ( 1 ) is readily integrated by an analogue computer,

this method , when available, is superior to the more tedious applica

tion of the method of isoclines. Both methods are graphical, how

ever , and the accuracy attained by them is thus necessarily limited .

The construction of the integral of ( 1 ) from the phase trajectory for

any specified set of initial conditions follows the method already

illustrated in the integration of Volterra's equation given earlier in

the book. (Section 4 , Chapter 5. )

If one desires greater numerical accuracy , the method of continuous

analytic continuation is available to him . The pertinent formulas

for the Van der Pol equation have already been given in Section 9 of

Chapter 9 .

Various solutions of equation ( 1 ) are illustrated in the several

figures of this section . Figure 1 shows the limit cycle for the case

where e= 0.1 , together with phase trajectories , one originating inside

the limit cycle and one originating outside of the cycle . In deriving

these curves the constant a in ( 1 ) has been set equal to unity.
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In Figure 2 the graphs of x=y' (t ) and y=y ( t ) are shown, where the

approach to the limit cycle is from an interior point. The slow

growth of both of these functions is to be observed from the graphs.

This , of course , is a consequence of the many loops of the spiral within

the limit cycle.

In Figure 3 , also for the case where e= 0.1 , the graphs of x= y' (t )

and y=y(t ) are shown, but now the origin is a point exterior to the

limit cycle. The approach to the harmonic solution is observed to

be much more rapid in this case than in the preceding one.
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We observe that for a small value of e the departure of the solution

from the linear case, namely, where e= 0 , is not great . This is par

ticularly to be noticed for the limit cycle , which is nearly circular .

In the linear case , which was discussed at some length in Section 3 of

Chapter 5 , the limit cycle is replaced by a vortex cycle . But the

vortex cycle cannot be derived simply from the limit cycle by merely

letting 60, for, as will become clear in the next section , the breadth

of the limit cycle is always equal to 4 whatever the value of e . But

the vortex cycle , corresponding to the linear equation derived from

( 1 ) by setting e= 0, can have a diameter of any length .

As we increase e , the shapes of both the limit cycle and the phase

curves undergo considerable alteration . This is illustrated in Figure 4 ,

which shows phase trajectories , both interior and exterior , together

with the limit cycle , for the case where e= 1 . We note that the limit

cycle has increased in length , but not in breadth . We also observe

the approach of the phase curves to the lines A and A ' , which form

separatrices for the phase curves.
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The shapes of the derivative curve , x= y' (t) , and of the integral

curve , y= y (t ) depart considerably from normal harmonic motion.

This departure is graphically shown in Figure 5 , where the approach

to the limit cycle is from an exterior point.
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-
-

As eis further increased the shape of the limit cycle changes rapidly .

Its breadth remains equal to 4 , but it gains in length and develops

sharp corners at y = 2 and y= -2 . This is shown in Figure 6 (e= 5 ) ,

in which is exhibited one interior and one exterior phase trajectory.
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The integral tends to a more rectangular shape, while the derivative

curve flattens out except for a series of long spikes near the corners

of the graph of y (t) . These peculiarities are shown in Figure 7 ,

where the initial point was taken interior to the limit cycle.
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3. An Analytical Approximation to the Solution of the Van der Pol

Equation

It will be observed that if in equation ( 1 ) of Section 2 we replace

t by wt , then determine w from the equation aw= 1 , and finally re

place we by € , we can reduce the equation to the following simpler

form :

y' ' – 6(1 - y ?) y ' + y = 0 . ( 1 )

From the phase-diagrams which we have given in Section 2 , we

observe that if the initial values of the point (y,y' ) lie within the

limit cycle , then the amplitude of y slowly increases to a limiting

value of 2 , which is independent of the parameter € . Moreover, the

period remains almost constant and equal to 27. This suggests that

the solution of ( 1 ) might be approximated by a function of the fol

lowing form :

y=A (t) sin (t+ (t) ) , (2)

where A (t ) approaches 2 as t increases and o( t ) is a slowly varying

function of t . This variation in both A (t ) and o (t ) is also a function

of the parameter e , since both reduce to constants as e- > 0 .

It will be convenient to consider a somewhat more general equation

written as follows:

y '' + 12y + eFly ,y ') = 0 , (3)

the solution of which will be assumed to be :

y=A sin (at + o ), (4 )

where both A and o are functions of t as in (2 ) .
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It will be further assumed that , as a first approximation, the

derivative of y can be written :

y '=Al cos (at + o ). (5 )

The following analysis follows that given by N. Kryloff and N.

Bogoliuboff in 1937 in their treatise on Nonlinear Mechanics (see

Bibliography).

Let us first write for simplicity : 0 = X + . We now differentiate

( 4 ) and thus obtain :

y'=A' sin 0+Al cos 6+Ad ' cos , (6)

which, by means of (5) , reduces to the following:

A sin 0+ Ad cos = 0 . (7)

Differentiating (5 ) , we get

y '' = AX cos 6-AX2 sin 6-An' sin . (8)

When this value of y' ' is substituted in the original equation (3 )

and proper simplifications made , one obtains

A cos 6 – And sin 0 = -6F ( A sin 0 , al cos 6) . (9 )

Equations (7 ) and (9) , being linear functions of A' and ', can

now be solved readily for these quantities. We thus get

A ' = - F (A sin 0,AN cos ) cos 6 ,

$ʻ =åF ( A sin 0,AA cos 6) sin 0 . ( 10)

In order to obtain a first approximation to A and 0, we now expand

the functions in the right-hand members of ( 10) as Fourier series ,

that is , we write

F(A sin 0 , Al cos ) cos 0 := 47° (A, cos nø + B, sin no),

F(A sin 0, AA cos 6) sin = 46+ (A, cos nô + B’ sin nø), ( 11 )

1

where we have the customary integrals:

A.=1S.“ F ( A sin 0, AX cos ®)cos 6 cos no de,

Ba= S“ F ( A sin 0, Ar cos ) sin & sin ne de,
( 12 )

with similar integrals for An and Bn.
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Let us now integrate A ' between t and t + T, where T is a period of

sin 0 and cos 0. We thus have

dA

dt
dt=A( t + T )-A( t)=TA' (t+pT) , 0<p<1 . ( 13)

Since we have assumed that A(t) varies little over a cycle , the last

term in ( 13 ) can be replaced approximately by TA ' (t). Moreover,
1

since the integration of ( 11 ) between t and + T reduces to 24,7,

obtain the following approximate equation :

dA

dt - 42 .
(14)

2x

By a similar analysis we also have for the approximation of :

do

dt 2A

( 15 )

If we now make application to the equation of Van der Pol, we write

F (y, y ') = - ( 1 - y ?) y ' = y'y — y',

from which we get

A = (A sinº & cosa 0-A cos 6 )de = A - A ,
= S*S." (AS – ?o do= –

A == + S. (Aº sinº 6–A sin o cos oydø = 0.
( 16)

Substituting the first of these values in ( 14 ) , we obtain the equation

A - 4( 1-4)
( 17)

This is an elementary form of Abel's equation (see (5) , Section 9 ,

Chapter 3) , which has the solution :

2ket/2

A( t ) =

v1 +keet

( 18 )

in which k=az/(4-ax) , where an is the value of A (t) when t=0 .

From ( 15 ) and ( 16 ) we see that $ = do, a constant. Hence the

approximate solution of equation ( 1 ) has the following form :

Y=A(t) sin ( t + .). ( 19)



SOME PARTICULAR EQUATIONS 367

For small values of e this interesting result preserves some of the

observed features of the solution of equation ( 1 ) . Thus A ( t) -> 2 as

t-> 0 , and the period is approximately equal to 27. But as e increases

the departure is apparent in the derivative of (19 ) :

y ' = A ' (t) sin ( t + 00) +A (t) cos ( t + po). (20 )

As t + , A(t) -2 and consequently A' (t)-0, as we see from ( 17 ) .

Thus the amplitude of y' approaches 2 , which is obviously far from

the case as one sees from an inspection of the phase trajectories given

above .

The process which we have just described is sometimes called the

equivalent linearization of a nonlinear equation , since equation (3 )

has in effect been replaced by a linear equation. Thus, in equation

(8 ) , if we replace cos 0 by y ' / A and A sin 0 by y , we obtain the following

linear equation of second order :

gu'+1(A )x +(x +10°)y= 0,
(21 )

where A' and ' are given respectively by ( 14 ) and (15 ) .

PROBLEMS

1. Apply the method just described to the equation :

day

dix + ytrys= 0, ( 22 )

and show that in this manner one obtains the first two terms in the expansion of

w? given by formula (35) , Section 5, Chapter 10. *

2. By the method given in (D) , Section 3, Chapter 7, establish the equivalence

between the Van der Pol equation and the following Rayleigh equation :

1 dz

+ 2 = 0. (23)
dta 3 dt

d22

- €

- [:-} ( ) +

Show that the periods of y (t ) and z (t) are equal.

3. By & very elaborate argument it can be shown that the period , T , of the

periodic solutions of ( 1 ) and (23) has the following asymptotic form :

T= Ae +2Be-vs- 22 loge+ C4-170 (e-48 ) , (24)
9 €

where A = 3- log 4= 1.6138, 2B= 7.0143, C = 0.0087 . From the values given in

Table III of the Appendix , estimate the value of T for e = 5 and compare this

value with the one obtained from (24) .

* Kryloff and Bogoliuboff extended their method to higher approximations, although technical difficulties

increased rapidly. When the method was applied to equation (22 ), they succeeded in obtaining approxima

tions for the first three coefficients of the Fourier expansion of the solution . These coefficients were equiva

lent to C @ o, Ca , to two terms, and Cas to one term as given by formula ( 30 ), Section 5 , Chapter 10. Their

value of w was equivalent to three terms in expansion (35 ) of that section . With respect to this extension ,

they state : “ Generally speaking, the higher approximations provide quantitative rather than new quali

tative information. In view of this and of the difficulty of computing the higher approximation, it is usually

quite sufficient to obtain the first approximation ."
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For a discussion of this problem consult the following (see Bibliography) :

Dorodnicyn, Haag ( 1 ) and (2) , Cartwright (3) , and Stoker, p. 141 .

4. By an ingenious argument Cartwright has shown that the constant B in

Problem 3 has the following value :

B=u(0) + So® ult)
o di

(25)

where u (x) is that solution of the equation

du

u = 2xu +1

di
(26)

for which u (x ) → as 1-0 . Show that if u = I2 + v, then equation (26) is

replaced by the Riccati : dx /dv = + v. Show also that if x = - ° ' ° , where

d' = dd/dv, then $ is a solution of the equation :

d '

do2 +
+ 00 = 0. (27)

5. Referring to Problem 4, we know that one solution of (27) is given by

Airy's integral, that is , (v ) = Ai (- v) , where

Ai(-)==S cOS 13 + xt ) dt .

Given the following facts : (a) that

lim Ai(x ) = 0 ;
X-D

(b) that d Ai( x) /dx has a maximum value at x= -1.01879 ; and (c) that Ai (2)

has a zero value at x= -2.33811 , evaluate the constant B defined by (25) .

4. Stellar Pulsation as a Limit-Cycle Phenomenon

In a paper bearing the title of this section W. S. Krogdahl , employing

a generalization of the Van der Pol equation, has had considerable

success in explaining the shape of velocity curves observed in the

pulsation of variable stars of the Cepheid type . * Such a velocity

curve is shown in Figure 8 for the Cepheid RT Aurigae as observed

by J. C. Duncan .

We let a = r, be the mean or equilibrium radius of the star for some

layer and r = r ( t) be the variable radius. For convenience the time t

is replaced by a new variable 7 , connected with t by the equation :

( - Gevo)"24,
( 1 )

where G is the gravitational constant and po is the mean density of the

star in its equilibrium position .

* Astrophysical Journal, Vol. 122, 1955 , pp . 43-51.
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In normal gas spheres the pressure p is usually assumed to conform

to the adiabatic relationship :

p = polepo , (2)

where y is an empirical constant, chosen in this case to have the value

5/3. But in the case of the Cepheids it is assumed that equation (2 )

should be augmented by another term , which is a function of both

r and r' , where the indicated derivative in r ' is taken with respect

to T.

The variable radius is then written in the form

r (1 ) = a [ 1 + q ( ) ] 1/3, (3)

from which we have the variable velocity :

o(t)=r"( )= aq /11+0(7)]
a3

Зr2
Q'. (4)

By an argument which we shall not give here , but which involves

assumptions concerning the term that is added to (2) , and the replace

ment of g(1) by 1Q(+) , where 1 is an empirical constant, the author

obtains the following equation for the determination of Q:

Q" =-Q+z1Q3–24N+Q +u(1– Q*) + (1–1Q)Q”?,
(5)

in which u is a second empirical constant.

If i= 0, this equation is seen to reduce to that of Van der Pol.

One may assume, therefore, that if X is not too large the equation will

556037 0–61---- 25
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have limit -cycle solutions, which are characterized by the parameters

X and H. This is , indeed, the case , and the author has exhibited

several of these cycles in the velocity-radius plane for the following

values of the parameters:

( 1 ) u= 0.01 , X=0.1 ; (2) u= 0.1 , N=0.15 ; (3 ) u= 0.5 , 1 = 0.1;

(4 ) u= 1.0 , X=0.04 ; (5) u=0.1 , = 0.1 .

The limit cycles in the first four cases are shown in Figure 9. From

these diagrams the velocity curves have been constructed , those for

(3) and (4 ) being shown in Figure 10. Comparing the general form

of these curves with that of the Cepheid velocity curve shown in

Figure 8 , the general argument of the author seems to be confirmed .

5. Emden's Equation

Another classical nonlinear equation , which has been the object of

much study and which will interest us here , is Emden's equation .

This equation has the following form :

d’y_2 dy
dx²

+ y " = 0,
3 da

( 1 )

where n is a constant parameter. The boundary conditions, which are

of most interest, are the following :

y= 1 , y'=0, when x == 0 . (2)

This equation was first studied by the German astrophysicist ,

Robert Emden , in his work on Gas Kugeln ( 1907 ) , which considered

the thermal behavior of a spherical cloud of gas acting under the

mutual attraction of its molecules and subject to the classical laws

of thermodynamics. Since the application of the equation to this

problem throws light upon its solution, we shall review the theory

from which it was derived .

Let us consider a spherical cloud of gas (Figure 11 ) and denote its

hydrostatic pressure at a distance r from the center by P. Let

M(r) be the mass of the sphere of radius r, • the gravitational potential

of the gas , and g the acceleration of gravity .

From these we have the usual equations:

g =

GM(r)

p2

do

dr'

( 3)

where G (the gravitational constant ) = 6.668 X10-8 cgs units .
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R

FIGURE 11

Three conditions are assumed for the determination of $ and P,

namely,

(a) dP = -gpdr = pdo, where p is the density of the gas; (4)

d ¢ , 2 do

) ø (5 )
dr2 r dr

( c) P = Kp", where y and K are empirical constants . (6)

From (4) and (6) , together with the assumption that ø=0, when

p=0, that is, at the surface of the sphere , where r=R as shown in

Figure 11 , we readily find that

p = L0 ", where n= 1 /(0-1 ) , L = { (n + 1) K } -". (7 )

When this value of p is introduced into equation (5) , we obtain

v = -a²d ", (8)

where a’=4 LG.

If we now let $ = doy , where do is the value of $ at the center of the

sphere , and let

r = x /[add(n - 1) ],

then (8) reduces to Emden's equation as given in ( 1 ) . The boundary

conditions specified in (2 ) merely state that , at the center of the

sphere , o reduces to do and that g = -do /dr is zero there .

Since we have assumed that o=0 at the surface of the sphere,

when y= 0 , and p= do at the center of the sphere , when y= 1 , it is

clear that we are interested in those values of the solution of equa

tion ( 1 ) between 0 and 1. We also observe that the radius R of the

gas sphere and its total mass , M=M(R) , are given by the following

equations:

do
R= (r) , - 0, GM = -p2 (9)

dr .=( - det),
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Let us now consider the solution of equation ( 1 ) . General solu

tions corresponding to n=0 and n= 1 are readily obtained and are

found to be the following:

b x²

n=0: y = a + ( 10)

COS X

n= 1 :

sin

y=a
20

+6 (11 )
2

For n=5 a particular solution , involving one arbitrary constant , is

found to be the following:

n= 5 : y = [ 3a)(2 2 + 3a ) ]". ( 12)

For the boundary conditions prescribed in (2 ) these three cases

reduce respectively to the following functions :

sin x.

n=0: y= 1 -
n= 1 : y = n=5 : Yv=(1+ 5) * ( 13)6 X

It is clear from (7) that the first solution must be discarded since it

corresponds to an infinite value of y. Similarly , the third solution

is of doubtful usefulness, since by (9) it corresponds to a sphere of

infinite radius. Acceptable solutions , therefore, are those for which

n lies between 0 and 5 .

In the general case the solution of ( 1 ) contains two arbitrary con

stants, but one of these is what is called a “ constant of homology."

By this we mean that if y=y (x) is a particular solution , then

y = Apy ( Ax), B = 2 /(n - 1), n + 1 , ( 14)

is also a solution, where A is an arbitrary constant. But this fact does

not help in finding the general solution , since ( 14) still contains only a

single arbitrary constant.

In order to obtain a solution of equation ( 1 ) for values of n between

0 and 5 and over an adequate range of the variable x , recourse was had

to a Taylor's expansion about =0 and an analytic continuation of the

series. The following solution , satisfying conditions (2) , was obtained

by J. R. Airey :*

y = 1-31 +
22 26

itna + (5n - 8n ?)

28

i + (70n - 183n2 + 122nº)
5 ! 3.7 9.9 !+ —

210

+ (3150n - 1080n + 12642n3-5032n “) ( 15)

45.11! + .

* For this and other details, including tables, see Mathematical Tables, Vol. 2, British Association for the

Advancement of Science, 1932.
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A number of tables have been computed corresponding to values of

n from 0 to 6 , but the most important and accurate are those pub

lished by the British Association for the Advancement of Science in

1932. The graphical representation of five of these functions is shown

in Figure 12 .

Table I gives the values of x for which y(x) = 0 and the corresponding

values of -y' (x) and -u?y ' (x ).
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Astrophysicists use the table of Emden's functions to estimate the

density and the internal temperature of stars . For this purpose one

introduces the following auxiliary quantities :

R * = 2o, M * = ( - rºy') .–40 Dix) = - « / (3y '), D * = D ( 2 ), ( 16)

Then by

where xo is the first zero of y (x) .

Let R be the observed radius of the star and M its mass .

(9)

R=kR*, GM = kM * do,

where k = {ad * 1)/2] - ?.

( 17)

We then have

GMR * KM ** R *

M*R M*KR*
-0. ( 18 )

Let
pm be the mean density of the star , that is , Pm =

let p, be the density of an interior sphere of radius r.

=M / +R*), and
We then have

Pg =

TP3

M , 3 do Φο 3v '3y
1

4 4 +Gm] 4nk'G 4nk'G D (2 )

கா3

Since D (x) = 1 when x= 0, and since pm= Pr, we get as the ratio

between the mean density and the density at the center of the star

the following:

polem = D ( ). ( 19 )

TABLE I

n=0 n=1 n=1.5 72

To = 2. 44949

-Vo = 0.81650

-2016 = 4.89898

To = 3. 14159

-48 = 0.31831

- tovo = 3. 14159

Io = 3. 65375

-Vo = 0 . 20330

2

-royo = 2. 71406

to=4. 35287

-Yo = 0. 12725

-rové = 2. 41105

n=2.5 n=3

to = 5.35528

-Vo = 0.07626

-rõve = 2 18720

To = 6.89685

-Yo = 0.04243

-Tổyo = 2. 01824

To = 35.96194

-Yo = 0.00480

-róvo = 6.2040

Io = 102. 60285

-Yo= 0.00119

-röyó = 12.551

m=3.5 n=4 n=4.5 n= 5

Io = 9.53581

-Vo = 0.02079

-Toyo = 1.89056

To= 14. 97155

-Yo 0.00802

-Toyo = 1. 79723

To=31 . 83646

-Vo = 0.00171

-Tôvo = 1. 73780

10 =

-Vo = 0

-rove = 1. 73205
27
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Formulas for central pressure ( P.) and central temperature ( T.) are

similarly obtained . Thus, integrating (4) , and noting that ¢ is zero at

the surface of the star, we have

P.-S.* ndo-1,* Indo Temperatur (20)

n + 1

We now introduce the formula : P = CpT, where Cis a technical con

stant equal to k / (Hub ) in which k is the Boltzmann constant = 1.380 X

10-16 erg. deg.-?, H is the mass of the hydrogen molecule= 1.673 X

10-24 gm ., u is the molecular weight of the gas in terms of hydrogen and

B the ratio of radiation pressure to total pressure. Since, in stars of an

order of size between 1033 and 1034 gm ., uß is assumed to have a value

of 2 , we find that C=4.124 X 10'. Hence, from (20) , we get

P.
Το -

Όρο

T.
= 2.425X10-8 Do

n+ 1
(21 )

The following application (from A. S. Eddington *) illustrates the

use of these formulas and the significance of the Emden equation in

the study of stellar phenomena .

For the bright component of Capella we have : M = 8.30 X 1033 gm .

and R = 9.55 X 1011 cm. , from which we compute : Pm= 0.00227 . As

suming that y= 4/3 in (6 ) , we find from (19) that

po = D ( 20) Pm = 54.18pm = 0.1230 gm . per cc .

Since , for n= 3 , R*= 6.90 and M*=2.018 , we compute from ( 18)

6.668X10-8X8.30X1088 X 6.90–1.981X1015 .
Фо:

2.018X9.55 X1011

Hence , using (20) , we get

1

Po= (0.1234X1.981x1016) = 6.11X1013 dynes per cm.?,
43 =

and from (21 ) ,

1

To = * (2.425X10-8X1.981X1015) = 1.20X107 degrees..

In more recent years the theory of Emden has been modified to

take account of new knowledge with respect to radiation pressure

and the so -called " guillotine factor ” , t , which is related to density

through the equation : 7 = Topa. This factor depends upon the ionizing

* The Internal Constitution of the Stars. Cambridge, 1926, viii + 407 pp. See, in particular , Chap. 4.
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potentials of the constituent elements of the star and enters into the

coefficient of energy absorption. This theory tends to increase the

value of the ratio polem, which , for the sun , under the Emden theory

is 23.41 and under the new theory is 79.1 . For an extensive descrip

tion of this theory and the differential system, which replaces the

Emden equations , the reader is referred to an article by S. Chand

rasekhar : " The Structure, the Composition , and the Source of Energy

of Stars" in a Symposium on Astrophysics ( 1951 ) , edited by J. A.

Hynek.

PROBLEM

Given the following values for the sun : M = 1.991 X 1033 gm . and R= 6.960X 1010

cm . , show that pm = 1.410 gm . per cm .. Assuming that y = 7/5 , show that

po = 23.41 pm . Also compute do, Po, and To.

6. The Differential Equation of Isothermal Gas Spheres

In the problem considered in the previous section , the solution of

the Emden equation for n= 5 had no zero in the finite plane . This

implied an infinite distribution of the gas sphere and directed atten

tion to problems associated with such distributions, which are perhaps

approximated in the case of the giant stars . In the isothermal case,

where the temperature, T, remains constant , n is infinite . This fact

makes it necessary to modify the arguments given in the preceding

section .

Referring to Section 5, we see that when n= c , y= 1 and P = Kp.

Hence, since dP = pdo, we get by integration : o=K log (ppo), that

is, p = po exp ( 0 /K ). If po is the central density, then do must be zero,

a change from the condition in the previous case where 0 was zero

only at the boundary of the sphere . The constant temperature is

connected with K by the formula : T=Kulk, where the constants

have the same significance as in Section 5 .

Poisson's equation is now replaced by

vºặ = -aºeº/ , α? = 4προ , ( 1 )

which is generally known as Liouville's equation . It has already been

described in Section 7 of Chapter 1 .

Assuming spherical symmetry as before , equation ( 1 ) in polar

coordinates reduces to the following :

dd 2 dd

+ ta’eç /K = 0,
dr2

(2 )
r dr

which replaces equation (8) of Section 5 .
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If we let ø = Ky, r = (VK /a )x, then (2) becomes

dd y,2 dy .
, (3 )

dx2 + xdx+e=0,

which is to be solved subject to the boundary conditions: y (0 ) =

y' (0 ) = 0 .

It will be found by tedious computation that the solution about

the origin can be expressed by the following series :

1 61.67

y=
22+

1

5.4 !"

10+
8

21.672,00 +

122

81.epido
495.107

20't .

= -0.16666 66667 x2 +0.00833 3333 x -0.00052 91006 26

+0.00003 73555 x -0.00000 22753 10. (4)

Using approximation methods, Emden computed a table of values

of y from x= 0 to x= 2,000 , which are graphically represented in

Figure 13 .

Only one particular solution of equation (3 ) is known , namely, the

function y=log 2-2 log 2.

log , ol-y)

|

L
logio*

2 3

-2

FIGURE 13

The counterpart of equation (3 ) in which ev is replaced by ev ap

pears in 0. W. Richardson's theory of thermionic currents when one

seeks to determine the density and electric force of an electron gas in

the neighborhood of a hot body in thermal equilibrium . *

*See Richardson : The Emission of Electricity from Hot Bodies. 2d ed . London , 1921 , 320 pp . In partic
ular , pp . 47-55 .
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Richardson states that the general condition for this equilibrium

at constant temperature is that the force on the electron in any ele

ment of volume arising from the electric field should balance the

force on the same element of volume arising from the pressure

gradient.”

This is equivalent to having the electric intensity E satisfy the

following nonlinear partial differential equation :

KT

E div E + v2E= 0, (5 )

eo

with the additional condition :

eo

grad log n = E , (6 )
KT

where x is Boltzmann's constant, T the constant temperature , eo the

charge on the electron , and n the number of electrons per unit volume .

To obtain the differential equation satisfied by v, the volume of unit

mass, one first computes the work done when unit mass is moved from

a point A in the field to a second point B against a pressure p . De

noting this work by w, we get

v =Sipdo (7 )

But since the gas is in equilibrium the work done on the electron

by the electric force is equal to w. Denoting this work by w' , we have

v =-S" Nace
dV

ds,
ds

(8 )

where Vis the potential, N , the number of electrons per unit mass, and

ds is the element of the path from A to B.

Equating (7 ) and (8) , we have

S * pdo+ S" Novi
dV

ds = 0 .

ds
(9 )

Since p = RT/0, we can write (9) as follows :

B

BRTIV

dstdo+ l Nolo

dᏙ

ds = 0 ,

dsv ds

from which we have the equation :

RTIV dV

+ Neo -0. ( 10 )

ds ds
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The potential V satisfies Poisson's equation :

D'V = 47p = 47Noelo. ( 11 )

If the thermionic emission is from a flat plate of infinite extent,

then ds = dx and equation ( 11 ) reduces to

d’V

dved
= 4пр.. (12)

Making use of this equation , we eliminate V from (10) and thus

obtain the following equation which Richardson used in his study

of thermionic distribution in the neighborhood of flat surfaces:

do 1 ( do

dx² v da7 ( *+C =0, C =41NzedRT. (13 )

If the emission is from a spherical surface with radial symmetry,

then equation (11 ) must be expressed in polar coordinates and we have

1 d dV

dr
=4р . (14)

Using this to eliminate Vfrom ( 10) we obtain the following nonlinear

equation :

do 1 ( do 2 dv

+ C = 0.
dr

(15)
dra

By means of the transformation :

v = e", prat, a C = 1,

equation (15) assumes the following form :

dºg , 2 du

dx²Tz da
-te-v=0 . (16)

PROBLEMS

1. Show that equation ( 13) has a particular solution of the form :

v = (ax+8) .

Make the transformation log vry and obtain the general solution of ( 13) .

2. Obtain a series solution of (16) which satisfies the conditions:

y (0 ) = y ' (0) -0 .



SOME PARTICULAR EQUATIONS 381

7. Equations of Emden Type

By an equation of Emden type, we shall mean any equation of the

following form :

dºg , 2 dự f( x ) = 0,
dxzdł

( 1 )

wheref (y ) is some given function of y. In the preceding two sections

f (y ) = y " and e.

We shall now consider eight additional cases by specializing f (y) as

follows :

f ( y) = # sin y, #cos y, sinh y, Ecosh y. (2)

But if x and y are variables in the complex plane, then an Emden

equation involving any one of these eight functions can be reduced to

an Emden equation involving any other. To see this, let us first

observe that under the linear transformation

y=u+p, (3)

where p is a constant, equation ( 1 ) assumes the form :

dar , 2 du

dx + edz + f(u + p)= 0. (4)

If f(y) is a periodic function, and if p is any period, then equation

( 1 ) is unchanged by the transformation . This means that any solution

of (1 ) which is increased by a period of f(y) is also a solution . Since all

the functions in ( 2) are periodic, this property is possessed by any

equation of which they are a member.

Let us now denote any member of set (2) by fm (y) and any other

member by fr (y ). We then observe that real or imaginary values of

p and q exist, such that

Jmq p) = kf ( u), (5)

where k is a constant. For example, cosh ( u + ini) = i sinh u and

cosh iu+ T )=sin u.

If we now subject the equation

day , 2dy + fm(Y) = 0 ,
derda

(6)

to the transformation :

y = qu + p, 2 = ct,

(7)



382 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

where c = kg, then (6) transforms into the following equation :

du 2 du

+ +fr (u) = 0 .
dt2

(8)
t dt

Thus the proposition is established .

As in the cases previously considered, an analytic solution of ( 1 ) is

always possible in the neighborhood of x= 0 for the boundary condi

tions :

y (0 ) = yo, y ' (0 = 0. (9)

If we denote by fo, fó fo', etc. , the values of f(y) and its derivatives

when y= yo , then the expansion of the solution to four terms in the

neighborhood of x=0 is given by the following series:

1 1

y = yo- fozim?+ f0f65 **– ( 5f7f0' + 3f0f63)3fof3 3.71
206+ ( 10 )

The term in y' in equation ( 1 ) can be removed by means of the

transformation :

1

y= z (w ). ( 11 )

We thus obtain

d2

dx2 + xf(z/x ) = 0. ( 12 )

We shall now consider separately the eight cases defined by (2 ) ,

where we shall assume the boundary conditions : y (0 ) = 1 , y'0 = 0.

(a ) f(y) = sin y .

The phase trajectory, that is , y ' = F (y ), is shown in Figure 14 and

the values of y and y' as functions of x are graphed in Figure 15. The

motion is seen to be a damped oscillation .

(b ) f(y ) = -sin y .

This case can be referred to (a ) by setting p = -a in equation (3 ) .

The focal point, which was zero in the first equation , is now transferred

to , as one observes from Figure 16. But the boundary conditions

are now different, for they correspond to y(0 ) = 1– , y' (0 ) =0 , in the

first case .

( c ) f(y) = cos y .

This problem can be referred to (a ) by setting p = * / 2 in equation

( 3 ) and choosing the boundary conditions: y (0 ) = 1 + */2 . In the

phase -trajectory, Figure 18 , a focal point appears at y= -*/2 , y' =0 .

The motion is again a damped oscillation .
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(d ) f (y ) = - cos y .

This problem is referred back to case (a ) by setting p = -1 / 2 and

using the boundary conditions : y (0 ) = 1-1 /2, y' =0 . The phase dia

gram and the curves y= y (x) , y ' = y ' (x ) are shown in Figure 20 .

2011

y " . - cos y : 0 .

1.5.
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1.0
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.21
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1-05

Для
..10

X

.1
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FIGURE 20

(e ) f ( x ) = sinh g .

The phase trajectory for this case is shown in Figure 22 and the

graphs of y= y (r) and y' = y' (x) in Figure 23 . We see what appears

at first sight to be a surprising fact , namely, that this case differs

very little from (a ) where f(y ) = sin y .
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An explanation is readily obtained from equation ( 12 ) , however,

for if we expand f(z/x) as a power series in 2!x for the two cases, we

obtain the following two equations :

Case (a ) : z '' +2

1 23.1 25

3 ! 22 ' 5 ! x4
+ =0,

1 23 1 25

Case (e) : 2" + 2 + 3 + 517 + =0 . ( 13 )

If | 2 | remains less than or equal to 1 , then, as x increases, both

equations are asymptotic to z ' ' + z= 0.

556037 0461 26
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(f) f(y) = -sinh y .

The solution in this case increases exponentially. The phase

trajectory , y' = F(y) and the curves y=y (x) and y' =y' (x) are shown

in Figure 24 .

(g) f(y ) = cosh y .

In this case both y = y ( x) and y' = y(x) decrease exponentiall ;. us

shown in Figure 21 .

(h ) f(y) = -cosh y .

This case resembles closely case ( f) as is shown by Figure 25 , which

may be compared with Figure 24. The reason is obvious since the

dominating term in each function is ev.
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8. The Duffing Problem

The Duffing problem concerns the integration of the following

equation :

ddạy

diž + ay + by * = K sin St , a > 0 , ( 1 )

which is that of a simple pendulum moved by a driving force K sin St.

This equation was the subject of a small book by G. Duffing in 1918

and has been investigated by many others since that time.
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Without essential loss of generality it can be written in the simpler

form

y' ' ty try ' = K sin át, (2 )

since we can make the transformation : t= ct' and choose c so that

a= 1 . It should also be observed that the driving force could equally

well be K cos Nt, since the equation is unchanged by the linear trans

lation : t = t + p.

Although equation ( 1 ) looks comparatively simple , this simplicity

is entirely specious . Its solution is a matter of great difficulty and

only limited progress has been made in the mathematical understand

ing of it . The reason for this is readily understood, for, in the com

paratively simple linear case , where r=0, we have already shown in

Chapter 10 the numerous complexities introduced by simple varia

tions of the forcing function . These complexities are multiplied

severalfold in (2 ) , where , for example , the period of the solution of

the null equation

y '' + y + ry = 0, (3 )

does not depend alone upon r, but also upon the amplitude of the

motion . In the linear case we have the phenomenon of resonance

when the period of the forcing function is equal to the period of the

solution of the null (homogeneous) equation. It is independent of K.

But this is not the case for (2 ) , where resonance is a function of r,

12, and K.

The analytical difficulties of the problem are perhaps most readily

apprehended if we write equation (2 ) as the following system :

y " + y + ry ' = 2, 2 '' + 122 = 0 , (4)

which we can do , since the forcing function is a solution of the second

equation.

If the first equation is differentiated twice and 2 eliminated , we

obtain the following nonlinear equation of fourth order :

y( 4) + (1 + 12 + 3ry ?) y '' + 6ry \y ') ? + Nay + r N ?yo = 0 , (5)

which is the null-equivalent of ( 1 ) . If one refers to Example 1 ,

Section 3 , Chapter 10 , he will be instructed as to the complexities

inherent in the solution of (5 ) by observing those introduced in the

same manner in the much simpler case of a linear system .

The method which we shall use here is to express the solution of ( 1 )

as the following Fourier series :

y=Q, sin wt+ az sin 3wt + a ; sin 5wt + (6)

where w is a period of the null equation (3 ) .
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This, of course, gives us considerable latitude in the choice of w,

since , as we have shown in Section 5, Chapter 10 , this quantity

depends upon an arbitrary constant and can be written in the following

form :

3 9

?
rC4 + rᏟᎶ+ (7)

128 512

where C'is arbitrarily given. When r= -1 /6 (the case of the pendu

lum) , C is the value of the maximum excursion of the bob .

In general, the period of the driving force will be different from w.

To surmount this difficulty we shall express K sin st as a Fourier

series in w , that is

K sin st = K , sin wt + K ; sin 3wt + K ; sin 5wt + (8)

where the coefficients are derived from the formula :

2

K2n + 1 =

Ksin u

(9)#M ? — (2n + 1)?? u = N /w.

We have already shown in Section 5 , Chapter 10 , that the solution

of (3 ) can be written as the following Fourier series:

U = U sin wt + Uz sin 3wt + Uz sin 5wt + . ( 10)

and explicit values have been derived for the parameters.

We shall now assume that the solution of (2 ) can be written in the

form

y=uto, ( 11 )

and shall seek to show that u can be expanded in a Fourier series

similar to ( 10) , namely,

v= v, sin wt + vz sin 3wt + v ; sin 5wt + .. ( 12)

If y as given by ( 11 ) is now forced into equation (2) , the following

equation is obtained for the determination of v :

V" ' + v+ 3r u’v + 3r uva + r v=K sinst. ( 13)

The question now, which is far from obvious, is to determine whether

or not v can have the form specified in ( 12 ) . If ( 12 ) is now substituted

in ( 13) and the multiplications u’v, uva, and 13 performed , it will be

found that the resulting series will contain terms of the form : S3, S , S3,

SzS.S , etc., where we use the abbreviations:

Si = sinwt, S=sin 3wt, Ss=sin 5wt, etc. ( 14)
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But an easy calculation shows that

S:= s- so, 8,83= s.t; s.-á su,

S.S.S,= , S S ,
1

(Si +S5+ ,-S15) , etc. ( 15 )
4

It thus follows that the left -hand member of ( 13 ) reduces to a

linear combination of Sı, S3, S3, S, etc. , the coefficients of which will

be defined by a system of algebraic equations obtained by setting the

coefficients of S1, S3, S5, S, etc. , equal respectively to K1, K3, K3, K7,

etc. , obtained from equation (8) .

In this manner we have shown that the solution of the original

equation can be expressed formally as a Fouriers series of the specified

type defined by (6) . We now substitute (6) in equation (2 ) . After

a somewhat tedious calculation it will be found that the first four

parameters in (6) must satisfy the following system of equations:

(1—w*)astára?+24;q3 + 2a,a}+ 2a,a?–aźdz — 2a,asas – 20,asar

+ 2azazaz + ažas - aža ,) = K1,

(1–92)ązti r(-as + baủaz — 3ažas + 69,azas– 6a ,agar + 69,@ sar + 3a;

+ 6azak + 6aza + 3aša ,) = K3, (16)

3

(1–250°)as + r(a,as , așaz + 2aſas - aſaz + 20,0zar+ 2azazaz

+ 2aža taš + 2asaž) = K5,

(1–49w ?)artir( -ajaš— aſas+ Paſar + 2ajazas + 2aza }

3

+ 2aža + 2aža + 2aş) = K7.

From this obviously complicated set of equations we can obtain

at least one simple result . Thus, if r=0, we have

Olan+17

K2+1

[1— (2n + 1 )?w ?]'1
n=0, 1 , 2 , etc. ( 17)

provided w + 1 / (2n+ 1 ) . Otherwise we shall have resonance in the

linear system such as that exhibited in Example 3, Section 3 , Chapter

10 . Since w, as defined by ( 12 ) , equals 1 when r=0, it is clear that

we may expect difficulties with the solution if w has a value close to

unity.
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If we assume that the solution of ( 1 ) is given by series (6) , it is

clear that at t=0 we have yo= 0 . Moreover, for any arbitrarily

chosen value of y ' , let us say yo, we obtain the following equation :

y = wa + 3az+503 + 70 + ...) . ( 18)

This is a linear relationship between the parameters , which must be

added to the nonlinear set ( 16) above .

If r # , and if we neglect all harmonic terms beyond the third ,

then system ( 16) reduces to the following:

4 ( 1 - w-) ai +3r ai+ 6r djaž + 6r ajaş— 3r aſaz- 6r a aza + 3r aşa ; = 4K ,

4 (1-9w ?)az - ra } + 6r a az - 3r aaz + 6r a azaz + 3r až + 6raza } = 4K ,. ( 19)

Adjoining to this system the linear equation,

yo = wa + 3a3 + 503), (20)

by means of which one of the three parameters can be removed, let

us say as , we obtain a set of two cubic equations in two variables

which will, in general , lead to nine solutions .

There is no simple way in which this system can be solved for a

and az , although the eliminant for either variable can be formed as a

determinant of sixth order by Sylvester's dialytic method (See Section

6 , Chapter 13) . Since the resulting equation, in the general case, is

one of ninth degree there will be at least one real solution . This can

usually be located graphically without great difficulty and computed

to any desired degree of accuracy .

As an example we shall consider the equation :

1

y" + y -1 봉Y=2 sin 3wt. (21 )

The null equation :

u" tu (22)

we have already solved in Section 5 , Chapter 10. Corresponding to

an initial displacement of 7/3 , we found the values : wa= 0.86202 , w=

0.92845, and this we shall assume defines the value of win (21 ) . Since

3w is considerably larger than the critical value of unity, we anticipate

no difficulty with the convergence of series (6 ) . Further reasons for

this will be given in the next section . We shall assume as initial

values : Yo = y = 0.
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Since the constants in ( 19 ) are the following: w = 0.86202, r= -1 /6 ,

K=0 , K3 = 2, we have , after the elimination of as , the following set

of equations :

1.1038421–1.089; -3.720,až + 0.12ajaz + 0.6a3= 0 , (23-a)

- 162.1963a3 + 0.4a| -6.84aíaz - 2.16a ,až + 5.16a ; = 48 (23 - b )

Proceeding graphically as shown in Figure 26, we determine approxi

mately the real point (P) of the intersection of the curves represented

by equations (23 ) . These are denoted respectively by (a) and (6 ) in

the figure. The coordinates of this point are then determined more

exactly by interpolation and are found to be :

a = 0.8333, Az= -0.2878 . (24 )

The value of a; is then computed from (20) in which y = 0, from which

we have : az = 0.0060.
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Therefore, to a satisfactory degree of approximation, we obtain

the solution of (21 ) in the following form :

y= 0.8333 sin wt- 0.2878 sin 3wt+0.0060 sin 5wt . (25)

The phase diagram for this equation is shown in (a ) of Figure 27 ,

which shows a simple configuration consisting of two symmetric

ovals. This we have called the diagram of the double egg . The

graphical representations of y and its first two derivatives are given

in (b ) , ( c ) , and (d) of the figure. These same curves through several

cycles were obtained by the analogue computer in order to confirm the

analysis and are shown in Figure 28 .

Intrigued by the great variety of figures obtained in the phase

plane for various choices of K and 2, the computers made a number of

these . A rather characteristic pattern is shown in Figure 29 , together

with the component functions y, y ' , and y' ' . In this case K= 2,

N= 5w.

y '
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FIGURE 27
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The beautiful configuration shown in Figure 30 was discovered by

Norriss Hetherington and has been called the Norriss Heart. It is

given by the values : K= 1 , N=2w. The pattern shown in Figure 31 ,

corresponding to K= 3 , 2= 3w, was named Murphy's Eyeballs, in

recognition of the titular diety who presides over error in computing

laboratories. *

*Murphy is credited with the discovery of three propositions : ( 1 ) If anything can go wrong, it will ; ( 2)

Things when left alone can only go from bad to worse ; (3 ) Nature sides with the hidden flaw . During this

investigation Murphy's eyes were constantly upon these computations.
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9. Nonlinear Resonance - The Jump Phenomenon

We turn next to a consideration of the more difficult case of the

Duffing equation , that is ,

y' ' + y + ry ' = K sin Nt , ( 1 )

where 2 is a value in the neighborhood of w, a period of the null

equation.

We have shown in an empirical way that the system of equations

given by ( 16 ) in Section 8 can have stable solutions for appropriately

chosen values of 2 and K , But an existence theorem assuring stable

solutions would be very difficult to give because of the obvious analyt

ical difficulties presented by the nonlinear character of the equations .

In spite of this, however, it is clear from Cauchy's existence theorem

that a local solution of ( 1 ) must exist in the neighborhood of t=0 for

every value of 2 and K. But it is a different matter to determine

whether or not this solution can be expressed in a convergent series of

the form assumed in the preceding section .

If we examine the case where r= 0 and 1= 1 , we find that the solu

tion of ( 1 ) , for which yo=y= 0 , has the form

y=1K sin t – Kt cos t.
(2 )

While the solution is thus oscillatory it is not periodic. On the

contrary , it is unstable and approaches infinity with an amplitude

which increases as Kt/2. This solution , of course , is well known , and

when it appears, the phenomenon which it describes is said to exhibit

resonance.

That resonance should also be observed in solutions of equation ( 1 )

when r #0 is to be expected , but the conditions under which it appears

are by no means easy to state . One very curious aspect of such un

stable solutions is what has been called the " jump" phenomenon .

A solution y= y ( t ) will appear, through a considerable interval of

time , to be a stable oscillation . Then , without obvious reason, it

will become unstable in such a sudden and abrupt manner that the

motion which it describes appears very much like a jump .

The phenomenon of resonance as exhibited by equation ( 1 ) differs

from that in the linear case through a functional relationship between

K and 2 which divides the region of stability from that of instability .

It is our purpose to discover something about this function .

For this purpose we shall make use of the method of continuous

analytic continuation described in Chapter 9 as an empirical probe

and shall seek by means of it to determine the boundary between the
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regions of resonance and nonresonance . The results thus obtained

are then checked by applying the differential analyzer to the same

problem . It will be convenient in this investigation to formulate the

results in terms of a known period of the null equation and for this

purpose we shall assume the values r= -1/6 , w= 0.92845 , w = 0.86202.

This choice of w , it will be recalled from Section 5 , Chapter 10 , cor

responds to the case of a pendulum with an initial displacement of

1/3 . The boundary conditions will be yo = y = 0 for t= 0 .

In order to illustrate the method we shall apply it first to the case

where K=2 , 2= w. Since a local solution exists in the neighborhood

of the origin, we find its expansion to (At) ? by evaluating successive

derivatives of y (t ) . The following series is thus obtained :

ž Se (At)3—3 ( 2+2° ) (14 ) *+ź ( + 28+ 80) (At ) ?+ ....
(3 )

The radius of convergence, of course, is unknown . That the series

is entire is very doubtful , since the elliptic function which solves the

null equation has polar singularities in the finite plane .

Since equation (3 ) is inadequate for the evaluation of y except in

the immediate vicinity of the origin , we now introduce the equations

by means of which the solution can be analytically continued . In

spite of the complex configurations to which they are to be applied ,

sufficient accuracy will be attained by using derivatives only to fourth

order . We thus obtain the following :

4x+1=ye+yat + , sin sty(41) +- cos 9t , (At ) :

sin 2t , (At)*+ (-4–ry) (At)+31(–1–3ryd)(4 );
ΚΩ2

4 !

+ 1-6ryiyi? + (1 + 3ryî) ( yitryi - K sin sti]

(At)

( 4)
4 !

ΚΩ ΚΩ2

y'i + 1 =Yi + K sin 2t , At+ cos sti (At ) ?_ ? sin ti (At)

2 ! 3!

yi

yi - ry At +
2 !

+ (1 + 3ryi) (Yatryi - K sin stil
(Δt ) 3

3 !

With increments of At= 0.1 , the solution was extended analyti

cally to t = r and was found to increase monotonically. The results

of this computation are shown in Figure 32. The instability of the

solution is readily seen from the phase diagram .
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A systematic study was now initiated to determine the approximate

line ,

F ( K , 2 ) = 0 ,

which defines the boundary between the stable and the unstable solu

tions. Curves were first constructed in the phase-plane (y ' ,y ) for

various values of K and =nw until two regions were roughly out

lined , one in which there was resonance and the other in which there

was no resonance . The boundary between the two regions was then

more exactly obtained by computing y and y' by means of formulas

(4 ) for a systematic set of values of K and nw, where K and n varied

by small increments.

The results of this investigation are shown in Figure 33 , where

values of K and 2 in the shaded area were found to produce unstable

solutions and those in the unshaded area stable solutions . The cross

in the shaded area corresponds to the resonance pattern shown in

Figure 32 and the dots in the unshaded region correspond to the

stable solutions given in Figures 27 to 31 . In order to define the

boundary line AB a least-squares polynomial was fitted to the mid

points between neighboring positions of stability and instability .

The equation of the polynomial thus obtained is the following :

k = 3.3864( n - 1) -0.8811( n - 1)* - 0.0052( n - 1) +0.0701(0-1)*

-0.0109(n - 1 ), (5)

where n varies between 1 and 5 .

A special investigation was made of the small region of stability

between 0 and w, since it was here that one encountered the curious

jump phenomenon which has already been described above. A
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characteristic jump is shown in Figure 34 , which gives the graphs of

y ( t) and y' ( t ) corresponding to K=0.8 , 1=0.27w . The phase -diagram

appears in (a ) of Figure 35 .
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FIGURE 34

The problem of defining the boundary between the stable and un

stable regions was much more difficult than in the previous case ,

since very complex patterns were encountered and for very small

values of a long runs on both the digital and analogue computers
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were necessary before resonance appeared . This is shown by the

phase graphs in (b ) and (c) of Figure 35 , which correspond respectively

to the points K= 0.25 , 2 = 0.81w and K= 0.9 , 2= 0.05w . The results

of this investigation are shown in Figure 36, where the boundary CD

is well defined , but the boundary OC is to be regarded as somewhat

conjectural . As in the previous case , a least -square polynomial was

fitted to the midpoints of contiguous positions of stability and in

stability. The equation of the polynomial thus obtained is given as

follows:

K

= 0.22642 (1 - n )-1.0570 (1 - n ) 2 +3.5602 ( 1 - n ) 3
10

-4.8358 (1 - n )* + 2.2435 ( 1 - n ) , (6 )

where n varies between 0.2 and 1 .
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10. The Generalized Equation of Blasius

By the generalized equation of Blasius we mean the following non

linear equation of third order:

+av - [( 4) --]
( 1 )

where a and B are arbitrary constants. But a can be set equal to

1 without loss of generality, as one sees from the transformation :

y=p2, x=pt, where p’a = 1.

The boundary conditions of greatest interest ( for a= 1 ) are the

following:

y (0 ) = y ' (0 ) = 0, y ' ( x ) >k , as 2 % , (2 )

where k is a constant . When B20, these conditions are sufficient

to insure a unique solution of the equation , but this uniqueness

fails when < 0.

The equation for the case where B= 0 was originally solved by H.

Blasius , who introduced it in studying the laminar flow of a fluid .

The more general problem , where B + 0 . has been the object of study by

Goldstein , Howarth, Falkner and Skan , Hartree , and others. (See

Bibliography ).

Since the equation occupies an important place in the boundary

layer problem of hydrodynamics, a short account of its origin may
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prove instructive. * One considers the flow of a fluid which streams

past a plate placed edgeways in it . We shall denote the velocity of

the fluid by U , which is assumed to be constant except for the dis

turbance of the plate . The coefficient of viscosity and the density

are respectively v and p . The Reynolds number is assumed to be

sufficiently small so that the motion is without turbulence .

The equations of laminar flow with a pressure gradiant are the

following:

ди ди

дх ду дурдх

d ?u_1 op,
=Y

ди , до

+
Ox ' dy

= 0); (3 )

where x is the direction of flow , y the direction of the normal to the

plate , u and v the components of the velocity in the directions x and

y respectively, and p the static pressure in the boundary layer . The

situation is shown graphically in Figure 37 .

у

U+

Laminarflow

o Flat plate

FIGURE 37

The physical assumptions, that there is no slip at the boundary

and that the boundary is a stream -line, are expressed by the condi

tions that u=v=0, when y=0. A third condition requires that

u/U>1 as y

If we introduce a stream function y, where

U

dy

ду

Dy

dx '
(4 )

then equations (3 ) reduce to the following single equation :

oy oy oy oy

ду дуду дz ду?

V

ду 1др

друг р дz
(5)

* See, for example, Sir Horace Lamb : Hydrodynamics. Cambridge, p . 684 et seq . An extensive and ad .

mirable account of the entire problem is to be found in Shih-I Pai : Viscous Flow Theory: I- Laminor Plow .

Princeton , 1956 , xiji + 384 pp. In particular , Chaps. 8 and 9 .

556037 0-61-27
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Introducing the assumption that

p+2 pvc

1

pué = a constant, and v = ka ",

we have

OP δυ

Epv
дх

dx=pm v2/2,

and equation (5 ) becomes

of d²4 dy d²4р 081

tv
ду дуду дz ду? ду?

mv2/x = 0 . (6)

If we now transform to the new variables

$ = /vxvv, z = yv/vivv, (7)

equation (6 ) assumes the following form :

2

дфГдф д ° ф д ° ф дф

дхдг дz2 дхde [
+ m

m+ 1,00030
φ

2 Dz2

tot т. =0 .

Jz ]=0DZ
(8)

The assumption, justified by observation , is now made that o is a

function of z alone , and equation (8 ) reduces to the following :

m ( )
m+ 1 d'o , do

φ + - m=0 .

2 dz2
(9 )

If we now write

n=Az, f= -Ad, where Aa = (m + 1 ) /2,

equation (9) reduces to

f(3) + ff'' = B (f'2–1), B=2m/ (m+ 1 ) ,

that is to say, with proper change of variables , to ( 1 ) .

We shall now consider the solution of the original equation of

Blasius, that is to say , where B= 0, subject to the boundary conditions

(2 ) . But we can, without loss of generality , set a= 1 and k= 1 . To

see this we subject equation ( 1 ) , B= 0 , to the transformation :

y=p2, 2 = at, ( 10)

and thus obtain :

ddaz

dt ?
dt3tapq z

dy pdz

dx q dt
( 11 )

!
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The conditions are fulfilled if we set apq= 1 , p/q= k , that is , when

p = vkla , q = v1/(ka). ( 12 )

The problem is thus reduced to solving the equation :

3 (3)+ y y (2 ) = 0 , ( 13)

subject to the boundary conditions :

y (0 =y' (0) = 0 , y ' > 1 , 2+0 . ( 14 )

In order to achieve this we now observe that y can be written as

follows:

y= a3d(a1/32) , ( 15)

where a is an arbitrary parameter.

When ¢ is expanded as a power series and note taken of the first

two conditions in ( 14 ) , the following solution is achieved :

1

y = 2 ! Aoax 51

1 1 1

57 2jaºrø + aza328– . + ( - 1 )" (3n + 2 )! Anan + 1.703n + 2 + ...,

( 16 )

where the an are determined from the following formula

n- 1

an 3n - 1C3m @ mân - m - 1, ( 17)
m=0

in which qCs is the binomial coefficient.

From this formula we obtain the following values :

do=a = 1 , an= 11 , dz = 375, 04=27,897 , as= 3,817,137 ,

=865,874,115 , az=298,013,289,795 .

In order to solve the problem one now selects arbitrarily some value

of a and by a process of continuation evaluates the limiting value of y '

obtained from the derivative of ( 16 ) . If this limit is k , then the value

of a which belongs to the conditions ( 14 ) , let us say an , is given by the

formula :

Q = k - 3 /2a, ( 18 )

In the numerical solution of this problem Howarth computed a five

decimal table of y , y ' , and y' ' with k = 2 and Hartree a four -decimal

table of y ' for k= 1 . The values of a found respectively by the two

computers were 1.32824 and 0.4696 , but it is seen from ( 18) that the

ratio of the two numbers is 2v2 = 2.828427. One also sees that the



404 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

values in the two tables are related through the following transforma

tion , where y is Howarth's variable and 2 that of Hartree :

dy dz dy
=2

dx 2 at dx²
dt?' x = \ v2t.

The following values are those computed by Howarth :

I y' 1
y' y "

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1. 1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

0.00000

0.00664

0.02656

0.05974

0. 10611

0.16557

0.23795

0.32298

0.42032

0.52952

0. 65003

0.78120

0.92230

1.07252

1. 23099

1. 39682

1. 56911

1. 74696

1.92954

2. 11605

2. 30576

2. 49806

2. 69238

0.00000

0. 13282

0.26553

0.39788

0.52942

0. 65957

0.78756

0.91253

1. 03352

1. 14953

1. 25954

1. 36263

1. 45798

1. 54492

1. 62303

1. 69210

1. 75218

1.80354

1.84666

1.88224

1.91104

1.93392

1. 95174

1.32824

1.32795

1.32589

1. 32033

1. 30957

1. 29204

1. 26637

1. 23147

1. 18666

1. 13173

1. 06701

0.99345

0.91237

0.82582

0.73603

0.64544

0.55651

0.47151

0.39234

0.32050

0.25694

0. 20208

0.15589

2.3

2.4

2.5

2. 6

2.7

2.8

2.9

3.0

3. 1

3. 2

3.3

3.4

3. 5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

2.88826

3. 08534

3. 28329

3. 48189

3. 68094

3. 88031

4. 07990

4. 27964

4. 47948

4. 67938

4. 87931

5. 07928

5. 27926

5. 47925

5. 67924

5. 87924

6. 07923

6. 27923

6. 47923

6. 67923

6. 87923

7.07923

1. 96537

1.97558

1.98309

1. 98849

1. 99231

1. 99496

1. 99675

1. 99795

1.99873

1.99922

1.99954

1.99973

1. 99984

1.99991

1.99995

1.99997

1.99999

1. 99999

2.00000

2.00000

2. 00000

2.00000

0. 11793

0.08748

0.06363

0.04537

0.03171

0.02173

0.01459

0.00961

0.00620

0.00392

0.00243

0.00148

0.00088

0.00051

0.00029

0.00017

0.00009

0.00005

0.00003

0.00001

0.00001

0.00000

The generalized equation of Blasius was investigated by Hartree ,

who discovered that when ß is positive or zero , then conditions (2 ) are

sufficient to define a unique solution ; but when B is negative , the

property of uniqueness disappears. It is thus necessary to replace the

third condition in (2 ) . This Hartree did by assuming that y' ap

proaches 1 from below as rapidly as possible , that is to say , by making

y ' ( 0 ) as large as possible , subject to the condition y's1 . If y'

approaches 1 from above , this would mean that y (x ) has a maximum

value , a situation which would occur only if there was a reversal of the

normal gradiant of the tangential velocity in the boundary layer.

This does not appear to be a probable physical condition .

It was found that the new boundary condition imposed limits upon

B and that it could not be fulfilled if B was less than -0.199 . The

solutions attained for B= -0.198 and B= 1 are compared with the

Blasius solution (B = 0 ) in Figure 38 , based upon the Hartree tables .
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11. Miscellaneous Examples

In this section we shall consider briefly a few examples of nonlinear

equations , which have appeared in various physical problems .

(a ) The first of these is the Thomas- Fermi equation :

1
dạy

dx²一、T3012
( 1 )

which appears in the problem of determining the effective nuclear

charge in heavy atoms. * The solution is defined for the boundary

values :

y (0 = 1 , y ( 2 ) > 0 , as x-> . (2)

The differential equation itself belongs to equations of Emden type ,

since the transformation y= xz leads to the following :

2

z" ' + 2' — 2012= 0, (3)

but the boundary conditions are no longer simple ones .

For this reference see the Bibliography .
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· By graphical methods Fermi obtained the following approximation

for values of x in the neighborhood of the origin :

4

y = 1– Bx + 3x012, B ~ 1.58 ,
(4 )

a result which E. D. Baker extended in the following series : *

1

y= 1 - Bx+ 2013 1 B **+ ...15

(5 )

4 2 3 4 /2 , B3

-- B3+ B2x2+ +

70 63 13 ' 16

2 +

" ..]

with the more accurate value : B= 1.588588 .

Observing that equation ( 1 ) has the particular solution :

Y1 (x) = 144/23, (6)

which satisfies the second condition in (2 ) but not the first, S. A.

Sommerfeld achieved the following interesting approximation : *

y=yı (x) { 1+ [yi (a) ] ^1/3 } 12/2, (7)

where 11 = 0.772 is the positive root and 12 = -7.772 is the negative

root of the equation :

12 + 71-6 = 0. (8)

To obtain this the following transformation is first made :

x= 1 /t , y= w/t, (9)

which reduces equation ( 1 ) to the form :

t4

du

dt?
= W3 /2, ( 10 )

The particular solution (6 ) now becomes: W ,== 144 th and the bound

ary conditions (2 ) are the following :

w ~ tas 10 , w 0 = 0. ( 11 )

The solution of (10 ) is now assumed to be of the form

w = w1( 1 + at ), ( 12)

* For these references see the Bibliography .
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and when this is substituted in ( 10) , we obtain the following expansion :

124 [1+ (4+2)(3+2)e + ... ]= 121 (1 + + ... ).

When the coefficients of a are equated, it is found that I must satisfy

equation (8 ) .

Since the second boundary condition in ( 11 ) is satisfied, equation

( 12 ) must now be adapted so that the first boundary condition is also

satisfied . For this purpose, one now writes

W = w1( 1 + B +A) " = (144t* (1 + Bt ) " ]t. ( 13 )

It is thus clear that the first boundary condition will be satisfied if

Band n are chosen so that

144t ( 1 + Bt ) " = 144tapnyan ( 1 + 8-14-^) " ~ 1 ( 14)

as t- > 00 .

Since the condition is satisfied provided an + 3 = 0 , 1448" = 1 , and

since 1,12= -6 , the desired approximation is attained if i= li ,

n= -3/1 , = 12/2 . Returning to the original variables x and y , we

obtain equation (7 ) .

The numerical integration of equation ( 1 ) has been made by Fermi

and by V. Bush and S. H. Caldwell , the latter using a differential

analyzer for that purpose . For small values of the Baker series is

adequate, but not for values much beyond x = 1 . The Sommerfeld

approximation gives surprisingly good estimates when x is large,

but underestimates y near the origin, as one sees from the following

table :

y ( Fermi) y (Bush

Caldwell)

y (Sommer

feld )

0.0

0.5

1.0

2. O

3. O

4. O

5. O

10

20

30

100

1. 000

0. 607

0. 425

0. 244

0. 157

0. 108

0. 079

0.024

0.0056

0. 0022

0. 00010

1. 000

0. 607

0. 425

0. 247*

0. 156*

0. 106*

0.0788

0. 0244

0.0058

0.0022

1. 000

0. 556

0. 385

0. 221

0. 143

0.099

0. 072

0. 0228

0.0056

0.0022

0.00010

* Interpolated values .
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( b ) The second equation of interest to us in this section is what is

called the “ White-dwarf” equation, namely,

ddạy dy
X +2

dx²
+ x (y2 - C ) 3/2 = 0 ,

dx

( 15)

which S. Chandrasekhar introduced in his study of the gravitational

potential of these degenerate (white-dwarf) stars. * The boundary

conditions are the following :

y (0 ) = 1, y ' (0) = 0 .

y= 1 .
6

This equation is one of Emden type (See Section 7 ) , where f (y ) =

(y2 - C ) 3/2. In fact , it reduces to Emden's equation with index n=

3 when C = 0 .

An expansion exists in the neighborhood of the origin, which

Chandrasekhar gives as follows:

q

x2 +2–4 +
98

(5q* + 14)x8 + (339q² + 280 ) 208
3.9 !

+ ( 1425q4+ 11436Q++ 4256)210+ ... ,. , ( 16)
5.11 !

where qe = ( - 1.

Tables of the solutions of equation ( 15) were computed by Chand

rasekhar for values of C varying from .01 to .8 over ranges varying

from x= 3.5 to x= 5.3 , together with certain auxiliary quantities

connected with the solutions . Graphs of these functions for a few

values of Care shown in Figure 39 .

у
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C : .4

.6
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1

C : .01

1

.2

X

3 5

FIGURE 39

* For the background of this equation see Chandrasekhar: Stellar Structure. Chap. 11 .
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(c ) Another equation of considerable interest, called the Langmuir

equation , is the following:

3y

ddạy

dir ?+ (de) +44 +re= 1 ( 17 )

This equation appeared in connection with the theory of the flow

of a current from a hot cathode to a positively charged anode in a

high vacuum . The cathode and anode are long coaxial cylinders and

the independent variable y is defined by the equation : y = f (r /ro),

where r is the radius of the anode enclosing a cathode of radius ro.

The independent variable x is given by : x=log (r /r .).

The current i is defined by the equation

22 =

8

81

V3

payt'
( 18 )

where i is the electron current per unit length along the axis, V the

voltage at any point P, r the radius at P, e and m the charge and

mass respectively of an electron .

The equation is converted into a somewhat more tractable form by

means of the transformation : y= ze-1/ 2 and thus becomes :

da2
2

32

dz

dx

-e = 0 .

-- = ( 19)

One now observes that equation ( 17 ) has an analytic expansion in

the neighborhood of the point x = lo which assumes arbitrarily given

values yo and yo provided yo+ 0 . But when yo = 0 , then there exists a

solution with a movable zero , that is to say,

y = (x - xo) + A ?(2 — xo) ? + A ( — 30)8+ ... , (20)

where A2, A3 , etc. , are fixed values , but to is arbitrary .

One also observes that y= 1 is a singular solution of the equation .

In the original solution of equation ( 17 ) it was assumed that solu

tion (20 ) , when Zo is set equal to 0 , approaches asymptotically the

value of the singular solution . There is no reason to believe that

this is , indeed, the case .

In the actual solution of the equation the coefficients Ar were com

puted through n = 14 and y evaluated from x = x0 = 0 to x= 4.2 . Be

yond this point values were obtained by means of an analytic exten

sion based upon integration .
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(d) The final equation which we shall consider, due to R. E. Kidder , *

is the following:

day dy

=0, 0 < α - 1 , ( 21 )
dx

1 - ay
-ay dx²dx² 2x

which appears in the problem of the unsteady flow of gas through

a semi-infinite porous medium .

The origin of the equation is attractive since it appears in the one

dimensional problem obtained from the following nonlinear partial

differential equation :

OP

V? (P2) =A2
dt'

(22)op

where A is a constant and y? is the Laplacian operator.

In terms of dimensionless variables p, & , and 7 , the one -dimension

equation obtained from (22 ) is the following :

др

P

૦૬

др

От
(23)

Introducing the new variables y and it defined as follows :

p=1 -ay, x = £/(217), < a < 1, (24)

we reduce the partial differential equation (23 ) to the ordinary non

linear equation (21 ) .

The boundary conditions required by the physical problem are

the following :

y (0 ) = 1, y (x ) > 0 , as x> 0 . (25)

The solution of the equation is now obtained by assuming an

expansion of the form :

y = y ( + ay + a’y (2) + (26)

where the quantities y ( t ) are functions to be determined .

The function ( 1 - ay)" is also expanded as a power series in a and

it , together with (26 ) , are introduced into (21 ) . When the coef

ficients of like powers of the parameter a are equated , a series of

linear differential equations in the y ( i ) are obtained for which integrals

are readily computed. The first three of these are as follows:

d

yli) + 2x y( t ) =F , ( 27 )

* See Bibliography.
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where the F , have the following values :

x d d

F=0 , F =- [ y (0) ] ?, F , = —-2
2 dx dx

y "2009 (yop }
(28 )

The boundary values to be satisfied by these functions are the

following :

y (0 ) = 1, y (2 ) > 0 , as x > 00 .

y ( i ) (O) = 0, y ( x ) 0 , as x > 00 , i= 1 , 2 , 3 , etc. (29)

The solutions for the first two equations are as follows : *

30 = 1 - erf( 2 ), yu = -3x {30[1+ V+ze=14]-e- ze},

(3
0
)

where we use the customary abbreviation :

erf(x)= ŽST
e -rdx. ( 31 )

T

The numerical values of the first three coefficients are contained

in the following table :

r y (0) y (1 ) y ( 2 )

0.0

0.1

0.2

0. 3

0.4

0. 5

0.6

0. 7

0.8

0.9

1. O

1. 2

1. 5

2. O

1. 00000

0. 88754

0. 77730

0. 67137

0. 57161

0. 47950

0. 39614

0. 32220

0. 25790

0. 20309

0. 15730

0. 08969

0. 03389

0.00468

0. 00000

-0.01004

-0. 01893

-0. 02584

-0. 03037

-0. 03245

-0. 03236

--0.03052

-0.02748

-0.02376

-0.01982

-0. 01253

-0. 00514

-0. 00074

0.00000

-0. 00343

-0.00611

-0.00766

-0. 00809

-0.00763

-0. 00661

-0. 00534

-0. 00410

-0. 00299

-0.00210

-0.00094

-0. 00025

-0. 00003

*The explicit value of y (2 ) is given by Kidder , but is a function of some complexity .





Chapter 13

Nonlinear Integral Equations

1. Introduction

THE DIFFICULTIES which we have encountered in the solution of

nonlinear differential equations are not diminished when differential

operators are replaced by integral operators. Some attempts to

surmount them have been made, however, and we shall describe in

this chapter the present status of a theory which must await the

future efforts of mathematicians for a more satisfactory formulation .

We have already seen the necessity for such a theory in the attempts

of Volterra to incorporate in his problem of the growth of populations

the influences of heredity . Thus, referring to Section 6 of Chapter 5 ,

we considered the problem of the growth of a single population (y) in

which the growth was influenced (a) by a generative factor propor

tional to the population , (6 ) an inhibiting influence proportional to the

square of the population , and (c ) a heredity component composed of

the sum of individual factors encountered in the past . This problem

led to an integro -differential equation of the following form :

1 dy

=a+ by+S+ K(1,8)3(e)ds .
( 1 )

ydt

In the case of two competing populations, one preying on the other ,

Volterra introduced the following system :

1 dx

rdt

(2)

ay + Bu +

= a

-by-SK(t–e)y(8)ds,

S ' K.(t –s)x(s)ds,
1 dy

ydt

where a, b , a, and B are positive constants .

The existence theorems for equations of this type do not vary

greatly, however, from those which we have introduced in Chapter 4

for the differential equation :

dy = f(x,y);
dx

(3 )

and in Chapter 7 for the system :

dy = f(x,y,z),
dz

dr dx = 9(x,y,z ). (4)

413
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This follows from the fact that the existence theorem of Picard depends

upon expressing equation (3 ) as the integral equation :

y =y + $.S;*f(x,y)da; (5 )

and system (4) in the following form :

y= 40+ $*$12,19,2)dx, 2= 2 +S S*,62,9,2107 ( 6)

A generalization of (5 ) can be written :

y (x ) = f(x ) + S*K(2,8,9( )]ds, (7 )

which includes as a special case the linear Volterra equation of second

kind , namely,

(8)y(x)=f(a)+ f *K(2,8)y( )ds.

Existence theorems for equation (7 ) have been given by T. Lalesco ,

E. Cotton , M. Picone , and others (See Bibliography) in which the

essential ingredient is an adaptation of a Lipschitz condition to the

more general problem . G. C. Evans extended these proofs to a func

tional equation sufficiently general to include integro -differential

equations such as equation ( 1 ) above.

Among special cases which have been studied may be mentioned

the following introduced by E. Schmidt:

y(2)+ S+K(8,8) ()ds+

> " K(zz, 2,... (%)•k(8)+... (9.*-(8,24ly,de,...,=0,

(9)

where the sum extends over the exponents aį and big one of which is

assumed to differ from zero .

Of less generality is the equation of Lalesco :

y( )=f()+ ſ* ,(3,9) (s)+ K,(2,8)uº(8)+...+ K.(2,8) "(s)}ds. ( 10)

The equations which we have described above are seen to be

generalizations of integral equations of Volterra type , that is to say ,

equations in which one of the limits of the integral is the independent

variable . But some attention has been given to equations of Fredholm

type, that is , equations in which the region of integration is the

rectangle : as, x sb.
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Lalesco has given an existence proof under general conditions for

the equation

( 11 )

3 (x ) = f (x) + S*K]2,8,968)]ds,

and G. Bratu has studied the following special cases :

( 12)

and

y(x) =f(x) +S'K(1,9) y*(8)ds,

Y(13)=f(x)+ S *K(2,8) euro ds. ( 13)

erra2. An Existence Theorem for Nonlinear Integral Equations of

Type

We shall consider in this section conditions under which a solution

exists for the equation :

3(x)=f(x)+ S*K[2,8,9(8)]ds.
( 1 )

It will be convenient to make the following assumptions :

(a ) The function f (x ) is integrable and bounded, \ f(x )} < f, in the
interval a sxb.

(b ) The following Lipschitz condition is satisfied by f(x ) in the

interval (a, b ) :

f(x)-f(x' ) } <k |x—x' ) . (2)

( c ) The function K (2 ,y , z ) is integrable and bounded ,

| K (2,4,2) < K ,

in the domain : a3x, y 56 , Izl <c .

(d ) The following Lipschitz condition is satisfied by K(x ,y , z )

within its domain of definition :

| K (x ,y ,z) – K (x, y,z ') } < M |2-2'). (3 )

Employing now the method of successive approximation , we

assume as the first approximation :

yo(x ) = f(x ) -f(a ),

from which we get

and in general,

41( )=f(x)+ S*K(2,8,9( )]ds,

yn(x)= f(x)+ S*K(1,8741–168)]ds.
(5)



416 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

Making use of our assumptions, we now obtain the following bound

for yı (x ) :

\yı(x ) < ( + K ) |x — al, lx - al < a '. (6)

If x is so limited that (r - al < /(F + K ), then yı/ < f.

Denoting by h the smaller of the numbers a' and f/ (f+K) , we shall

have, for each approximation, the inequality :

lyn (2) < f, 1x-al <h . (7)

Let us now construct the series :

y (x ) = y .( x) + [y ( ) - Yo(2)] +...+ [yn( t) - Yn- 1(c)] + ... (8)

which , by virtue of (5 ) , furnishes the desired solution of the original

equation , provided it converges uniformly. The uniform con

vergence of the series is readily established from the following

considerations .

Since we have

Yu ( ) –yn-(x) = S"{K [1,8,4n-( )]– K[2,8,9n-=()]}ds,
(9)

it follows from (3 ) that we have the inequality:

\yn197 ( ) –yn-[( ) <MS*|--(s)–yn-(e)]ds). ( 10)

Letting n = 1, 2 , 3 , etc., we obtain the following sequence of

inequalities :

\yı (w ) - Yo(x) <Mx- al,

| y9 (v) —y1(x)}< Male- ale,
2 !

|y3(x) – y2(x) < M3 - as
3 !

and in general,

|yn(x) — Yn-1(x) < M » - al". ( 11 )
n !

Since we have c - al < h, the series

Y = f + Mh +
(Mh) (Mh)3 (Mh ) "

+ -+ ...+
2 ! 3 !

t .
n!

( 12 )

forms a majorante for (8 ) .
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3. The Integro-Differential Problem of Volterra

We have described in Section 1 the nonlinear integro -differential

equation of Volterra. Since very little progress has been made in its

solution in a quantitative way , even small results may prove of

interest in indicating the influence of the hereditary factor upon the

stable configurations which have been found when this term is omitted .

We shall begin with the one- variable problem ,

dy

dt =ay-byx+ySK(1–8)y(s)ds,
( 1 )

which generalizes the logistic equation described earlier in Chapter

5 (Section 2 ) . The constants a and b are assumed to be positive and

c is arbitrary, although we shall find it convenient to choose c=0 .

Since the kernel K(t- 8 ) is a function of one variable , we can write

it formally as follows:

K (2)= Ko+ Kız +2 K,x+ (2)

Observing the formula

D."Y(z)=S% ds5* * . . S' WwdonS. < ----"y()da, (3)

where D , "y is the general integration operator , we can now write

( 1 ) as follows:

1 dy 1

ydt

= a - by + K . Di'y+Ki D;? y+K2 D :3y +

=a +by + S Ko+ K (t –8)+ K.(t–8)2+ y()ds,

(4 )

Let us now assume that all the Kį are zero except K., which we shall

denote by K. If we now differentiate (4 ) , we obtain the following

differential equation

yy '' = y '? — by'ya + Kys. (5)

Although this is a differential equation of second order , its solution

involves the specification of only one arbitrary condition , let us say

y = yo at t= c , since from ( 1 ) we obtain the necessary condition

y = ay. - by . (6)

Since equation (5 ) does not appear to be integrable in terms of known

functions, its solution is obtained either by means of analytic con

tinuation or the differential analyzer .

556037 0461 -28
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A somewhat simpler form can be given to equation (5 ) by means

of the transformation : y= au/b , t= rla . We thus get

dau
u

d72 ( –ue+ au ,
(7 )

where . = Kab.

Condition (6 ) reduces to

duo

dt
= Uo - u²b,

(8 )

in terms of an initial value u = Uo.

1.6

i : 1 du . i : .05

145

1.25

-
I.OH

2 : 0

.8

.6

T

-

1 : -. 1

4

1 : 2

.2F.

T : ..6

t

12 142 4 6 8 10

FIGURE 1

It is now possible to construct a parametric set of solutions of

cquation ( 7 ) in terms of , and these are shown in Figure 1. The case

where 1= 0 gives us the logistic, or growth curve, which is seen to

have its characteristic asymptotic approach to the line u = 1 .
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If a>0 , that is , when K is positive , the growth increases without

limit.

If X<0 , let us say , 1 = -u , u attains a maximum value, and at this

point the curve has the following radius of curvature:

1

R =

u ( 1 + uu )

As 4 increases the point of maximum moves toward the origin and R

approaches zero , thus indicating a continuous flattening of the curve .

An associated problem of some interest, which was studied by Z.

Szatrowski, is that of designing a factor of heredity which will pro

duce an arbitrarily assumed function y=y (t ) .

Setting c = 0 and making the transformation : t - s=X, we obtain

equation ( 1 ) in the following form :

F(y)= S*46–2)K(a)dx,
(9 )

where F (y ) = y'ly - atby. If yo denotes the value of y when t= 0 ,

F(y) must satisfy the boundary condition : F(yo) = 0 .

Taking the derivative of (9 ) with respect to t and denoting dF /dt

by f (t), we obtain the following equation :

f(t)= y(0)K(t)+ *v'(1–2)K(z)dx.
( 10)

This we observe is a Volterra integral equation of second kind in

which the unknown variable K(x ) appears linearly and the derivative

of the given function y (t ) is the kernel.

The Two -Variable Problem .

We consider next the problem presented by the growth of two

conflicting populations both subject to the influence of a factor of

heredity. The general problem is formulated in terms of the system

given by equations (2 ) of Section 1. But for simplicity we shall

consider only the following reduced system :

dx dy

= ax - bxy - Kix y (s) ds, = -ay + Bay +Kyſ"(x)ds, ( 11 )
dt dtS'468

where a , b , a , ß are positive constants, but K, and K , can have either

sign.

By the device employed in the one -variable problem , this system

can be reduced to the following differential system of second order :

x x ' = x ' ? — by'x ? — Kixły, yy' ' = y '? + Bx'ya + Kzxy?. ( 12)
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If x = xo and y= yo are arbitrarily given when t= c , then the solution of

( 12) has been defined since to and y satisfy the following relationships:

= ax, -bx.yo, y = -ayo + Broyo. ( 13 )

We shall now consider three particular cases , which will reveal the

effects of a constant hereditary factor upon the mutual growth of

the two populations. These cases are the following:

1. x ' = 2 (8–1 ) – 0.052[%u6wds, a=b=2,Ki= 0.05,

y ==(y=xy)+0.059 S.*z(e)ds, a=B= 1 , K = 0.05 ;

II . 2P=2(a –zy)+0.052[%7()dx, a= b= 2 , K:= -0.05,

v = -(y =ry) –0.059S* ( )ds, a= B= 1, K;= –0.05;

III . x'=2( – ry)+0.052ſ%2(ods, a= b= 2 , K = -0.05,

y = -( –ry)+ 0.0595*2(eds, q= B= 1,K. = 0.05.
( 14)

The case where K=K=0 has already been discussed in Section 4

of Chapter 5 where it was shown that both x and y are stable and

periodic functions of t . The phase-diagram was an ovaloid figure

containing the point x= 1 , y= 1 in its interior .

But when the hereditary factor is introduced the periodicity of the

solutions is destroyed and the motion may become unstable. This is

the case in I where both populations, as shown in Figure 2 , are observed

to increase. The origin of t is assumed for the point r = 1 , y= 2 and is

designated by P in both the phase -diagram and the graphs of the

functions. The number of oscillations per unit of time increases as

the two populations grow in size .

Case II is illustrated in Figure 3. The motion is observed to be

stable and in time both populations reach extinction. As t increases

the number of oscillations per unit of time diminishes .

Figure 4 shows the behavior of the functions for Case III . The

motion is not periodic, but is observed to be stable for the variable y

and unstable for x . As t increases the population y ultimately reaches

extinction, but the population x increases without limit . The number

of oscillations per unit of time appears to diminish slowly.
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PROBLEMS

1. Show that when the hereditary function in equation ( 1 ) , c = 0, is the following

K(2) = 1 + at - log cos z + tanºz,

then y = cos t is a particular solution .

2. If y = A (edite- pl) is a solution of equation ( 1 ) , c = , show that the hereditary

function is the following:

b

K(z ) = - p?[1 + az- log cosh pt- (tanh pz) ?) .
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4. An Existence Theorem for Nonlinear Integral Equations of Fredholm

Type

We now consider the problem of establishing criteria for the exist

ence of solutions for the nonlinear equation :

y(x)=f(-)+13°K[3,8,y ( s) ds. ( 1 )

where is a parameter.

From the theory of the linear Volterra and Fredholm equations,

we know that the parameter , plays a significant role . Perhaps the

most essential difference between the two equations is found in the

ct that , for bounded kernels , integrable functions, and a finite range

of integration , the solution in the Volterra case is an entire function

of X, while in the Fredholm case it is a meromorphic function of the

parameter with singularities at the zeros of the Fredholm determinant

D ( ). This same difference is observed in general between the two

cases when the integral equation is nonlinear .

In order to establish criteria under which a solution exists for ( 1 ) ,

we make assumptions similar to those introduced in Section 2 for

equations of Volterra type. These are as follows:

(a ) The function f(x) is bounded in the interval : a srst, that is ,

f(x) < t.

( b ) The kernel K(x,y , z ) is integrable and bounded,

| K (x ,y ,z ) < K , (2)

in the domain D: asxy b, Izl <c .

(c) K(x ,y , z) satisfies the Lipschitz condition in D, namely,

|K(x ,y, z) - K (1,y,z ') }< M2-2'1. (3 )

By successive approximations we now have

yo (x ) = f (x ) -f(a ),

Yı(x ) = f (x ) +1+^ f*K[2,8,40(8)]ds, (4)

a

and , in general,

yn (x ) = f (x ) +1*S *K[0,834-1(e)]ds.
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From these we obtain

Yı - Yo = 1

S°K[2,99 ( )]ds + f (a ),

12 =y =+$. K[2,8,81(0)) – K[1,8,9( ) }ds

Yn-Yn- 1 = 1 S."{ [2,8,9n-1())– K(2,8,9 ( )}ds.

From the conditions given above , we have

len– yok< 2/K (b–a)+\/(a))=1/(b–a)K [1+A666-a ]

= N /m (b - a ),

where m = K { 1 + f/[ ^ / K (b - a ) ]}.

From this inequality and the Lipschitz condition , we get

iya- yıl</a/MS*y –Yolds < / a /? Mm ( b – a ): < 121 ** (b –a)".

where k is the larger of the two numbers M and m.

Similarly we obtain the inequalities :

\ Y3 - y2l < ^ /*k * (b - a ) ,

14n - Yn- 1} < l^ lnk (b - a )" .

A majorante for the series

y (x ) = Y + [91(x) - Yo(x )] + . . .: + [yn (2) — Yn–1(x )] + : (5)

is furnished by the sum

Y =f+ 3 /4/"2"(6 — a)".

and thus the series converges uniformly for all values of X for which

we have

N <
1

k (b - a )
(6)

Although the condition (6 ) is equivalent to that obtained when

equation ( 1 ) is linear , the role played by 1 in the case where f (x) = 0

is quite different in nonlinear equations from that which it has in

the linear case. This difference will be shown in the next section .
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5. A Particular Example

As a special case we shall consider the equation

U (X ) = 1» S (9 –t)w°(E)dt.

( 1)

Without loss of generality we can set 1= 1 , for if v (x ) is any solution

of ( 1 ) , then u (x ) = \v (x ) is a solution of the equation :

u (2 ) =

S' (2 –t)uºt)dt.
(2)

Since (2 ) can be written

u(x) =2 S'u "(t)dtS* tu ” (e )dt

it is clear that its solution is a linear function of x that is

u (x ) = px + q,

(3)

where p and q are to be determined .

Introducing this function into (2 ) , we obtain

pz +x==( +*+ pe +q )+( r + žme +jx).
(4)

Equating the coefficients of x and the constant terms and simpli

fying, we have the following system of equations for the determination

of p and q :

p?+ 3p9+3q=3p, (5)

3p2 + 8pq + 60 = -12q. (6)

If p and q are points in a Cartesian system of coordinates, then both

(5 ) and (6 ) represent ellipses which pass through the origin : p= q= 0 .

These ellipses are graphically represented in Figure 5 (C= (5 ) ,

Ce = (6 ) ], and are observed to intersect in two real points, namely, the

origin and the point P= (- 6,12 ) .

Therefore equation (2 ) has one real solution other than the trivial

one, u (t ) = 0 , that is ,

U1 (2) = 12x— 6 . (7)

But it also has two complex solutions obtained from the intersections

of the ellipses in the points: (3 +3i , -6 ) and (3–3i, –6 ) , that is,

u, (x) = - 6x+ 3 ( 1 + i) , (8 )

Uz (x ) = -6x +3(1-1) .
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By a simple extension of this example one can derive the following

theorem :

The equation

(9)
213)= S" | A (0 ) 2 + B ( ) }u * ( !) dt

in which A (t ) and B (t ) are real functions integrable in the interval

(a ,b ) , has three solutions other than u ( x ) = 0, at least one of which is

real .

By an argument similar to that used in the example, we obtain the

following system of equations defining p and q in the solution : u (x) =

px + q:

2²»Sº (t)dt+ 2p9S **tA(t)dt+ q*S A(t)dt= p,

p S.* * B(e)dt + 2pgS.* *B(t)dt+{*S*B(A) dt= a .
( 10 )

If this system is solved for p (or q) , the resulting equation which

determines p is a quartic , one root of which is 0. When the quartic

is reduced by the factor p, the resulting equation is a cubic with real

coefficients and hence must have one real root . The theorem results

from this observation .
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As a second example, consider the equation

u( ) =S" (+0 )uº(t)dt .
( 11 )

The first equation in ( 10) reduces to (5 ) , but the second becomes

3p + 8pq + 6q2 = 129, ( 12)

which is the ellipse C'z shown in Figure 5. We see from the graphs

that there is only one real solution, corresponding to the point Q. This

solution to three decimal approximation is the following :

u(x) = 0.726x+ 0.461 . ( 13)

The examples of this section illustrate the difference between linear

and nonlinear integral equations . Thus , if K(x , t ) is a symmetric

function , the solutions of the equation :

u(z)= 1SK(2,8)u(t)dt, ( 14)

will depend upon the parameter 1 and will all be real . If K(x, t ) is a

skew-symmetric function , the solutions are all complex . In the

examples just given , however, one real solution and two complex

solutions exist for both ( 1 ) and ( 11 ) . The fact that the kernel in the

first case is skew -symmetric and in the second is symmetric had noth

ing to do with the situation . Moreover, in the nonlinear equations

the solutions were not dependent upon characteristic values of the

parameter 1, a very conspicuous aspect of linear integral equations .

It should be pointed out that the method just given is also applicable

to the solution of the equation :

u (a ) = Ax + B + S.* ( (0)2+ B(e)]u®(e)dt,
( 15 )

since the form of the solution remains unchanged. But in this case

the solution depends upon , although not in the same critical sense as

in the theory of linear integral equations . We can no longer say ,

however, that there exists a real solution , since the equations of system

( 10 ) are each augmented by an arbitrary constant. In this case there

will be , in general, four nontrivial solutions.

PROBLEMS

1. Discuss the solution of the equation :

u(x)= S." [r sin al+ cos al}uº(t)dt.



NONLINEAR INTEGRAL EQUATIONS 429

2. Given the equation ,

u (x )

= - = - 3 + S" (2-1) vº ( t) dt,

and the fact that u (x) = 2x – 3 is a solution , find the other three solutions.

6. The Equation u(x)=1SⓇK(2,8)u (t)dt.

The particular equation solved in the preceding section is a special

case of the following more general one :

ru(x)= 1$.* K(2,8)x"(t)dt,
( 1 )

the solution of which we shall now consider .

Except in the linear case when n= 1 the parameter 1 can be set

equal to unity without loss of generality . For if we make the trans

formation

u (x ) = \mu(x ),

equation ( 1 ) reduces to the following :

/ M (x ) = \mn+ 1
SK(7,8)e"()dt.

(2)

If m is chosen so that mn+ 1 =m, that is ,

m= -1/ (n- 1 ) , n + 1 .

we get

v(x)= S.*K(1,8)o (t)dt.
(3)

We shall assume that the kernel has the following form :

R

K (x,t) = X (x ) Y ( t ), (4 )
i= 1

when the functions : X1(x ), X2(x ), X3(x ), . . . are assumed to form a

linearly independent set .

Introducing this kernel into ( 1 ) and setting 1 = 1 , we get

U(a)= x.(2)S}\x {t}u*(E)dt,
R

=

= X :(x)P1, (5)
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where the pi are constants defined by

p = SSº Y. ( t ) u " ( t)dt.
(6 )

When (5 ) is introduced into ( 1 ) , we have

R R

Σ Χ ( ) Σ Χ ,( ). SOY.co [ x,(e)p,]" dt.

Since the X+ ( ) are by assumption linearly independent functions

of x , we can equate their coefficients and thus obtain the following

system of equations for the determination of the constants pi :

p= SºY0Sºy.(o) [ Å x.(0)p,]"dt,i=1,2,..
R. (7 )

We thus have a set of R algebraic equations of nth degree for the

determination of the constants pr . These equations will have, in

general , R" solutions, one of which is the trivial case : p = 0 , since

these solutions are obtained from R algebraic equations with real

coefficients in each of the variables and each of degree N= R".

Since the form of these equations is as follows :

Pı(A ,p !- ! + B ; p? -? + ... ) =0 , (8)

there will be at least one real set of values of the pt provided N- 1 =

R"– 1 is an odd integer , that is to say , if R is an even integer .

We thus have the following theorem :

If in equation ( 1 ) the kernel has the form :

R

K (x,t) = X :(x)Y (t),z

where the functions X , (x ) are linearly independent , there will exist in

general N- 1 = R"-1 solutions other than the trivial one , u = 0, and of

these at least one will be a real solution provided R is an even integer .

When n = 2 , equations ( 7 ) reduce to the form

pi =F(pp) , i= 1,2 , . . . , R, 9

( 9)

where F ( p , p ) is the real quadratic form

F (p , p) = P.Pk3
( 10 )

jk

in which

a = am?
S. x,()X:()Y ( )dt.

( 11 )
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In this case there will exist R2—1 solutions with at least one real

solution when R is an even integer.

The actual determination of the solutions, when R is not too large ,

is probably most easily achieved by forming the eliminants for each

pe by means of Sylvester's dialytic method . Thus Pi is eliminated

between equations corresponding to i= i and i = 2 , then between

i= 2 and i= 3 , and so on . In this way n - 1 equations are obtained

containing the remaining variables. From these pz in turn is elim

inated and the process is continued until the final eliminant is obtained ,

which will turn out to be an equation of degree N= R” in Pr of form

(8 ) above .

This process is illustrated readily by considering equations (5 ) and

(6 ) of Section 5 , namely ,

p2+ 3pq+372—3p=0,

( 12)

3p + 8pq + 692 + 12q = 0 .

Multiplying each in turn by p , we obtain the following system of

four equations in the variables p, p?, and p3 :

pa + (37–3)p+ 3q =0

p3 + (37–3) p +372 p =0

( 13 )

3p ? +8qp +692 + 12 = 0

3p3+ 8qp2 + (60°+129) =0

If these equations in p , p , and på are to be consistent the de

terminant must be set equal to zero and we thus obtain the eliminant

as follows:

10 1 (32-3)

3q?1 (39-3)

392

0

=0

(6q2 + 129)

0

( 14 )

0 3 89

3 89 ( 6q2 + 129)

which reduces to the equation :

39 ( 93—189 + 108 ) = 0. ( 15)
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A similar computation for the system corresponding to equation

( 11 ) of Section 5 , namely,

p2 + 3p9 + 372-3p = 0 ,

3p + 8pq + 602-129 = 0,

( 16)

leads to the eliminant:

39 (2 + 24q2 + 2229–108) = 0. ( 17)

7. The Equation of Bratu

The equation of Bratu is the following nonlinear integral equation :

y(2)=15°C(2,8)evoodt, ( 1 )

where the kernel is a Green's function defined as follows :

(6-1) (t - a ) ,
G ( 2,t ) =

b-a

tsu.

(2)

(6 - t) (x — a ),
b-a

tx.

One can show that the function y (x ) which satisfies this equation is

any solution of the differential equation

d’y,+ dev = 0,
( 3)

dx²

which also satisfies the two-point boundary condition: y (a ) = y (b ) = 0 .

It will be convenient to assume that a= 0 and that ^>0 .

We shall now prove the following theorem : (Bratu )

For every value of x taken between 0 and 1,, where

λις
( 1.8745 ...)?

62

> (4 )

equation ( 1 ) has two real and distinct solutions. These curves C, and

C, are of parabolic form , concave to the x -aris and pass through the

points x = 0 and x = b.

As 11, the two curves tend toward a limiting curve C between them .

When = 11 , the limit curve is the unique solution of equation ( 1 ) . For

» > , the integral equation has no real solution .
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Equation (3 ) can be integrated and we have as a first integral

(5)y'2 — m2+27 (ev — 1 ) = 0,

where m = y' (0 ) .

Introducing the variable

t = 1 +

m2

2x

:) (6)

we get y ' = 22 (t - e ), and thus the solution of (3 ) in the following

form :

1

X=

dy
(7 )

v21 Jo vt- e

The curve y= y(x) increases to a maximum at y=log t , and hence

at this point

1 dy 1 du

x = 31 = (8 )

V2X ev 21 unt - u

logt

When ?>x1 , y diminishes, and since the curve is symmetric with

respect to the line x= X1 , y is zero when

x = 2x , = b =

8

log (vt + vt - 1].(vi (9)
at

Since m = 0 , b = 0 for t = 1 and m=0 , b = 0 for t = 0 , 6 passes through

a maximum value as m varies between 0 and co . In order to find this

value we compute :

db log (Vt + Vt - 1)

dt ( 10)

Equating db /dt to zero , we now solve the resulting transcendental

equation and thus find t = 3.2766 . . Denoting the maximum

value of b by B, we now substitute t in (9 ) and thus obtain : B = hlv ,

where h = 1.8745 .

The theorem follows readily from these results. If we assume a

value of b and regard X as a variable , then for each value of B there

will exist a value of , and a value of t . If b =B , then the initial slope

of y (x) , given by equation (6 ) , denoted by u , is found to be

u = 2.1338 vā.

For this value , there exists one curve , namely (", which passes

through x = 0 and x = B.

556037 0–61-29
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But if b<B , that is to say , if 1,>i= h /B2 , then there will be two

curves , (, and C , which pass through x= 0 and x= b . For the first

one the slope m, will be greater than u and for the second the slope

m2 will be less.

If ^ , < , then b > , but since B is the maximum value which b car

have, it is clear that there will be no solution in this case .

The situation is shown in Figure 6 , where = 1 and 1 , = 1.275 .

8. The Nonlinear Convolution Theorem

By a convolution ( or Faltung) we shall mean an integral of the form

R ( = S=S (8)y(8++»ds,
( 1 )

where x (s) and y (s ) are functions integrable separately over the real

axis , with individual convergent Fourier transforms:

Say(s)es"ds and S. 2 (8 )eods ( 2 )
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If y (s) and R (t) are given functions, then ( 1 ) is a linear integral

equation in x (s) . We shall proceed formally to solve for x (s) .

Multiplying R(t) by eßit and integrating over the infinite range, we

thus obtain :

SR(0 d =Laſ .Sº dtſ <(8)y(8+ t ) e +fte$ t etods (3)

Making the transformation : 8 + t = p and assuming such conver

gence as is necessary to validate the process , we can now write (3 )

as follows :

SR(t)eøvedt= S" (plexipdp Sº (s)e-pieds.
(4 )

We now denote by r ( B ) and ri (B) the integrals

r (B) =

=)
R ( t ) cos Btdt , ri(B)=SR(t)sin Btat , (5 )

and by az (8) , bz (B) and ay (®) , by (B) the corresponding transforms of x (t)

and y ( t ) respectively , that is ,

( t ) sin Btdt ,
az(B)= S ( t ) cos Btdt ,

ay(®)= S" y( t ) cos Btdt,

br(B)= S * *( t ) sin

by(Ⓡ)=Sº y(t ) sin Btdt . (6 )

By equating the real and imaginary parts of ( 3 ), we obtain the

Collowing system of equations:

r (B ) = az (B )a, (B ) + bz ( ) b, (B ) ,

ri (B ) = az (B ) b , (B ) -a , (6 ) b2 (B ). (7 )

This system can now be solved in general, for az (B ) and br (B) , since

its determinant is

A = - {a ; (B ) +6;(B ) 4]+0 .

The value of x (s ) is now obtained from the equation

az (® ) + i by(®)= S .
x(s) eßis ds, (8)

by means of the inverse transform :

2(s)

of2a Sºlaz( )+ ib=(B ) e*" * dB.
(9 )
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But the problem which we have just described is essentially different

if in equation ( 1 ) we assume that x( ) =y(8) =u (s ) . The linear prob

lem is now replaced by the following nonlinear convolution :

R(t)=

Sºu(8) u (8+ t ) ds. ( 10)

The uniqueness enjoyed by the linear problem has disappeared since

the second equation in (7 ) is identically zero . We shall now prove

two theorems relating to the inversion of (10 ) .

THEOREM 1. If the functions u (s ) and R ( s) erist over the infinite

range, and if the integrals

a(B)=Su(e) cos 8x ds,b(B)=Su(s) sin Bs ds

r(B)=SR( ) cos Bs ds, ( 11 )

converge , then the functions a (8 ) , b (B) , and r (B) are connected formally by

the relationship:

r (B ) = a² (B ) +62(B) . ( 12)

The proof of this theorem is merely to observe that ( 12) is a corollary

of (7) . If we set (t) = y (t) = u (t), then ri (B ) is zero and r(B) reduces to

( 12) .

The second theorem gives the inversion of equation ( 10 ) in the fol

lowing elegant form :
*

THEOREM 2. If R (t ) sarisfies the conditions of Theorem 1 and if

r (B) is defined by ( 11 ) , then u (s ) , the solution of equation ( 10 ) , is given

by the following inversion :

1

u(8)=
27

B8 dB

S vr(B)cos p (8) cos

+zS. Vr(B)sin p(8) sin Bs dø,
( 13 )

where p ( ) is an arbitrary odd function of B, that is , p (-1) = -p (B) .

In order to prove this theorem , let us denote the first integral in

( 13 ) by u ; (s) and the second by uz (s ) . From their definition

u ( 8) = ui (8) + uz (8) , u (-8) = 3 (8 ), 12 ( -8) = - u2 ( 8 ). ( 14)

" This theorem is due to Norbert Wiener. The author has indicated applications of it to random series

and economic problems in his work : The Analysis of Economic Time Series. Bloomington , Ind . , 1941.
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Employing the Fourier transform ,

f(x)=2* S. 9($)esto ds, g(8)= Sºf(s) e - s * ds,

and making use of ( 14 ) , we now obtain

u(8 ) cos Bs ds = a ( B ),Vr (B) cos p (B) =Su,(8) cos 88 ds=S.

Vr(B ) sin p(8)= S ". S*us)sin B8 ds= b (B) , ( 15 )uz(8 ) sin Bs ds =

where a ( ) and (B ) are defined by ( 11 ) .

From these equations we then obtain the fundamental identity ( 12 )

of Theorem 1 .

PROBLEMS

1. Show that if R (t) = Ae- D ! ? , then u (s) , a solution of equation ( 10) , is a function

of the same kind .

2. Find a solution of equation ( 10) if R (t) =exp ( - \t ).

3. Show that u (s) ==a constant, is a solution of ( 10) , when R (t) is defined as

follows : R (t) = 0, when It/ > a; R (t) = 1 - t/a, 0$ t= a; R (t) = 1 + t/a, - a = t = 0 .





Chapter 14

Problems From the Calculus of Variations

1. Introduction

ONE OF THE MOST FRUITFUL SOURCES of nonlinear differential equations

is found in problems which center around the determination of func

tions that maximize or minimize certain types of integrals. This

wealth of information , now so extensive that the bibliography of the

subject would fill a large book , comprises what is called the calculus

of variations.

The origin of the subject is found in antiquity . In Vergil's story

of the wanderings of Aeneas, we read that Queen Dido , when she

bargained with the Libyans for a site for Carthage, was offered “ as

much land as could be covered with a bull's hide." (Vergil's Aeneid :

i , 368 ) . Her crafty followers interpreted this to mean the area that

could be surrounded by a cord made from a bull's hide . Desirous

of obtaining as much land as possible , the Queen needed to know what

shape of curve could enclose a maximum area . The answer, a circle ,

was known to the Greeks , although many centuries were to pass before

an adequate mathematical theory was evolved to solve this and

similar problems. To Zenodorus, living probably during the 2nd

century B.C. , is attributed the solution , although Archimedes a

century earlier had considered the problem of the maximum volume

enclosed by a given area and stated that the answer was the sphere.

The natural generalization of Dido's problem led in time to the creation

of the isoperimetric problem of the calculus of variations .

During the 18th century the subject of the maximizing and min

imizing of integrals became one of great interest to the mathematicians

for two reasons . The first of these was the existence of several

problems such ,for example, as that proposed by Newton to determine

the form of a surface of revolution, which will encounter minimum

resistance when moved in the direction of its axis through a resisting

medium . Another equally celebrated example was that of the

brachistochrone (brachistos = shortest, chronos = time), a problem due

to the Bernoullis . One is required to determine a path between two

points in a vertical plane along which a particle would move under

gravity in the shortest time .

The second reason for the interest of the mathematicians in the

subject is found in the attempts of early natural philosophers to

439
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discover a minimizing principle in nature . The following statement

of Leonhard Euler (1707-83 ) , which he made in 1744 , is characteristic

of the philosophical origin of what has come to be called the principle

ofleast action :

" As the construction of the universe is the most perfect possible ,

being the handiwork of an all-wise Maker, nothing can be met with

in the world in which some maximal or minimal property is not dis

played . There is , consequently , no doubt but that all the effects of

the world can be derived by the method of maxima and minima

from their final causes as well as from their efficient ones.”

The formulation of the equations of dynamics according to this

principle must be regarded as one of the most astonishing facts of

science . The principle of least action , where action is to be under

stood as the mean value of the difference between the kinetic and

potential energies of a physical system averaged over some fixed

interval of time, originated with P. L. M. de Maupertuis ( 1698–1759 ) .

The general statement of Maupertuis was made in an attempt to

extend the theorem of P. Fermat ( 1601-65 ) that a ray of light, when

travelling in a homogeneous medium , will pass from one point to

another either directly or by reflection by the shortest path and in the

shortest time.

The tirst formulation of the equations of dynamics according to the

principles of the calculus of variations was made by J. L. Lagrange

( 1736–1813 ) in his Mécanique analytique , published in 1788. This

work of Lagrange remained unchanged for nearly half a century until

Sir William R. Hamilton ( 1805–65) in 1834-35 produced his classical

papers on dynamics, which gave a new and very appealing form to the

equations.

The history of the calculus of variations in a modern sense began

with the work of Euler and Lagrange. The former obtained the

first necessary condition for the existence of a maximum or minimum

in the form of an equation, now known as Euler's equation , which

assured the vanishing of the first variation of the original integral.

Lagrange introduced the variational notation , the method now known

as that of the Lagrange multiplier in the isoperimetric problems ,

and added numerous examples of the application of the new calculus .

Interest developed in the problem of finding a sufficient condition

for the existence of a curve which maximized or minimized the pri

mary integral. Attention thus turned to the second variation and

in 1788 , A. M. Legendre ( 1752-1833) published a second necessary

condition which such a curve must satisfy . But the condition thus

discovered was not also a sufficient one . Although interest in the

subject remained lively , no significant advance in its theory was

made until 1837 when C. G. J. Jacobi ( 1804-51 ) discovered a third
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necessary condition associated with what has been called the conjugate

point .

Renewed interest in the sufficiency problem , still unresolved , was

awakened by the lectures of K. Weierstrass ( 1815–97 ) in which a

complete reexamination of the first and second variations and the

criteria of his predecessors led to the discovery of still a fourth neces

sary condition . This involved what is called the Weierstrass excess

function , denoted by the symbol: E(X , Y , y ' ,p ) . By means of this

function a satisfactory sufficiency condition was finally established .

In this chapter our primary interest will be in the differential

equations, principally nonlinear ones , which appear in connection with

classical problems in the calculus of variations. We shall not be

concerned , therefore , with the delicate problem of whether the solu

tions of the differential equations actually provide extremals for the

primary integrals. However, some attention is paid to this question

in the problems given in Section 3 .

Since the differential equations generated by the calculus of varia

tions are consequences of the first variation , we shall limit our interest

to this single aspect of the subject . But this is important enough ,

for we shall find that from it comes the system of equations derived

by Lagrange , and extended by Hamilton , which forms the basis for

dynamics. The application of these equations to celestial mechanics

led to many of the problems which we have already introduced in

the chapter on nonlinear mechanics. We are thus, in a sense, at the

fountainhead of the subject.

2. The Euler Condition

The problem of Euler concerns itself with the establishing of a

necessary condition that a function , y = y (x ) , defined within a domain

R, shall maximize or minimize an integral of the following form :

I =

=Sº F ( x , y , 9 ") ds,
( 1 )

in the sense that the integral will be greater or less for it than for any

other function within R. Such a domain is shown in Figure 1 .

It will be assumed that y (x ) is continuous and has a continuous

derivative y ' (x) in the interval: a SxSb. Such a function is said to

belong to class (' . We shall assume further that F(x , y ,' ' ) is con

tinuous and has continuous derivatives of first and second orders.

To obtain a necessary condition for the existence of a maximum or

minimum value of ( 1 ) , we replace y in ( 1 ) by y (x ) + an(x ), where a
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is an arbitrary constant and n (x ) is an arbitrary function belonging to

class ( ", which vanishes at x= a and x = b ; that is ,

n (a ) = n (6 ) = 0 . (2 )

Any function lying within the domain R which gives a value to I we

shall call an admissible function . We shall assume that both y (x)

and y (x) + an (r ) are admissible functions.

If we denote the new integral by I(a) , that is ,

1(a)= SºF ( 8,4 + an, y ' + ar')de,

(3)

the integral is now a function of the parameter a . Under the assump

tion that F has continuous derivatives of first and second orders,

I(a) can be expanded in a series in a at least to a?.

We thus have

I ( a ) = I( 0 ) +a (4 )S"(Fn+ F n'de

+ S.*{Pr°(e)+ 2Q1(2)n”(x)+R\n(s)"}dt+. ...
+

where we abbreviate :

OF OF

P =

OF

ду?
Q = Dydy'' R = Dy"? F

OF

dy '
F

OF

Edy's
( 5 )

The coefficient of a is called the first variation and is denoted by

ol , that is to say ,

:1= S (+5 + wym ? dr.
(6 )

It will be seen at once that if y (x) is to maximize or minimize the

integral , then it must be a function for which the coefficient of a in
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(4 ) is reduced to zero . We thus obtain as a necessary condition to

be satisfied by y (x) the vanishing of the first variation ,

I = 0 . (7 )

Integrating (6 ) by parts and taking account of (2 ) , we obtain

I = F - 2) + S!( - * )nodz

-S (F:-)o(audz.
(8 )

The fundamental lemma of the calculus of variations is now intro

duced . This lemma states that if in the integral

Sºp( )g (x) ds,
(9)

the function p (x ) is continuous between r=a and x= b , and if the

integral vanishes for all functions q (x ) of class (' which vanish at a

and b , then p (x ) must be identically zero in the interval. *

Employing this lemma we obtain from (8 ) the condition which

must be satisfied by y (x) in the form of the following equation :

OF d DF

dydx dy'

0 . ( 10 )

This famous equation is called the Euler equation . We shall refer

to any solution of it as an extremal . But it does not follow that an

extremal is the solution of the original problem , since the condition

is only a necessary and not a sufficient one .

To investigate the problem of whether or not an extremal actually

provides a maximum (or a minimum ) value of the integral, one is

led naturally to a study of the second variation , namely, the coefficient

of a in (4 ) . Denoting this by 821, we have

31= S.Sº { Pr } ( + ) + 2Q= ( 1) n° (x) + [ r ( ) IP }ds,
( 11 )

we see that the second variation is the integral of a quadratic form in

n(x ) and n ' (c ) . Since our interest in the calculus of variations resides

mainly in its power to generate significant nonlinear equations ,

rather than in the integrals from which they come, we shall not

attempt here to discuss the numerous problems which have been

developed from a study of the second variation .

* Proofs of this by no means obvious lemma will be found in E. Goursat: Cours d'analyse mathématique,

Vol . 3, 4th ed . , Paris, 1924 , pp. 545-547, and also in 0. Bolza : Vorlesungen über Variationsrechnung, Berlin ,

1909, pp . 25-27 .
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Returning to the Euler equation , we shall give a few examples of

the equations which are provided in such abundance by proper

specializations of the integrand of ( 1 ) .

Example 1. (Minimum Surface of Revolution ) . If S is a surface

of revolution generated by revolving about the x-axis a curve y=y (x)

through the points Po= (0 , yo) and Pi = (x1 ,Yı ) , the area of the surface

is given by the equation :

S= 21

S.“ yds=22-S" ( 1 + y * 3) ** dr.

The corresponding Euler equation is readily found to be

y y '' —y'? = 1,

which is the differential equation of the catenary and has the solution :

y= a cosh (x/a+ b) ,

where a and b are arbitrary .

Example 2. The following, a somewhat more complicated example, *

requires the extremals corresponding to the integral:

b

I= ( 1 + x2 + 2ryy' + ( 1 + y ?) y ??j\ dx.ES

For this integral the Euler equation reduces to the following non

linear equation :

( 1 + x2 + y²) y '' = (xy' - y ) ( 1 + y '?).

A first integral of this equation is found to be

a?

(xy' -y) =i + az(1 + y'?)(1 + x + y?),

where a is an arbitrary constant.

If we set x= r cos 0 , y = r sin 0 , this equation reduces to

dt06 +2)"
72+1

p2- a ?

which is readily integrable and has the following solution :

6- k= > a log ( +1) arc tan (au ),

*See A. R. Forsyth : Calculus of Variations , p . 46.
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where we write

u =

p2 + 1 x2 + y2+1

pa — a ? x2 + y2-a2

Example 3. Find the Euler equation for the integral

I= S (př +20yy'+ry'?)da,

where p, q , and r are functions of x .

The desired equation is found to be

de ce+(9?–p)y= 0,

which is the general linear differential equation of second order .

Example 4. Find the Euler equation for the integral

I=S:( + * + Ay++ BY)dr.

The desired equation turns out to be

dạy
= Ay + Bys,

dx2

which was shown in Section 10 of Chapter 7 to have the solution :

y = Csn (Au ,k ) , u=x+p,

where

k-= - ( 12+A) /12 , ("2 = -2(12 + A ) / B .

3. The Euler Condition in the Isoperimetric Case

In the isoperimetric problem we seek extremals for the integral

I= S*F(2,979)da,

( 1)

which at the same time give to a second integral

J=Sº&(2,099)ds,

(2)

a prescribed value C. The values y (a ) =y, and y (6 ) = Y2 are also

prescribed .
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The problem of Dido mentioned in Section 1 is the example from

which this class of problems derives its name. For we are required

to maximize the area integral:

1 -Sydz,
(3 )

while at the same time we keep the integral of length, namely,

J = $. _1 +z" dx,
(4 )

equal to a constant value . Conditions must also be imposed upon

y (x) so that the given length forms a closed perimeter for the area .

Thus the areas considered are isoperimetric.

The Euler condition for this problem is found to be

OH d OH

= 0,

dy dx dy'
(5)

where H = I + AJ, in which is an arbitrary parameter to be evaluated

from the conditions of the problem .

Thus, from (3 ) and (4 ) , we get

H = y + 1v1+ y '?>

and (5) reduces to the equation :

[ at
y'

( 1 + y'2 )

-1 .

(6 )

A first integral is found to be

dy' = (x - c ) ( 1 + y'2) .

(7)

Solving for y ' and integrating, we obtain

( 3 - c) ² + (y - c') = 1 , (8)

that is , the equation for a circle. The value of is determined from

the prescribed value of J , and c and c' from the boundary conditions.

It is often convenient in isometric problems, as well as in other

problems of the calculus of variations, to represent the extremals in

parametric form , that is ,

x= r ( t) , y= y ( t ) , (9)
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In this case I and J are written

I=

=S°F(8,4 ; a " ,Y * ) dt , J= °G(2,19;2”,y”)dt,
( 10)

a

and the Euler equation is replaced by the two equations:

OH OH

дх dt dx '?
-0 ,

OH D DH

dy dt dy '

-0, ( 11 )

where H=F+ AG.

In Dido’s problem considered above, when the curve is represented

parametrically, equations ( 3 ) and (4 ) are replaced respectively by

the following :

IS(M=?==y")dt, J= S *+y*dt,
( 12 )

from which we have :

1

H = (yx' — xy') + 1(x"? + y 2)1/2.

The Euler equations ( 11 ) are seen to reduce to the following:

&' (x+ 2+ y’2) -1 / 2= -y, y '(x '? + y'2) -1/
== X . ( 13)

Dividing the second of these equations by the first, we obtain

y'lx ' = - x !y, ( 14)

which is the equation of the tangent to a circle. The solution then

takes the form :

X: — & o = 1 cos t , y- Yo= ı sin t . ( 15 )

Since a closed perimeter is assumed , there must exist values of t ,

namely to and tı , such that: x (to ) = r (tu ) , y ( to ) = y (t ). These values of t

may be assumed to be 0 and 27, respectively. When x and y as

defined by ( 15 ) are substituted in the second integral in ( 12 ) , we

obtain for the determination of the equation : J = 27 ) , where

Jis the length of the perimeter of the circle .

PROBLEMS

1. If the function F in equation ( 1 ) is independent of x, show that the following

is a first integral of Euler's equation:

F - y'F = constant. ( 16)
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2. Solve the Euler equation for the function

F = - ( 1 + y'2) ,
Y= "y )

and show that the general solution

centers on the x-axis .

a two-parameter family of circles with

3. Given that

F = ya( 1 + y /2) !, ( 17)

show that the solution of Euler's equation for which y = 1 , y ' = 0, when x=0 is

given by the following parametric equations :

t

= m cos' t dt , y = cosmt, m= -1/a.

Find explicitly the solutions corresponding to a= 1 and a= -1 .

4. A bead of mass m is constrained to move under gravity on a smooth curved

wire situated in a vertical plane . We shall assume that the bead starts from rest

at a point h above the x-axis and moves to a point on the z-axis . The time of

descent T is given by the following integral:

T-S" (4 )"dy
(18 )

The curve , y = y (x) , for which T is a minimum is called the brachistochrone, or

curve of quickest descent . Show that this curve is the cycloid, defined by the

following parametric equations:

x =a (@+ sin o) , y = a( 1 - сos 0) ,

where a= th.

5. ( Newton's Problem) . In seeking the form of a solid of revolution which

experiences a minimum resistance when it moves through a fluid in the direction

of the axis of revolution, we are led to minimize the following integral :

I =

= S.
yy'

dx .

1 + y '?

( 19)

Show that the first integral of the Euler equation is

y= C1 ( 1 + p2) 2/p3 , (20)

where p = y' and Ci is an arbitrary constant.

Observing that dx = dy/p, show that

clog p +pa+p' c
tip +C2, ( 21 )

where C , is an arbitrary constant. Now note that equations (20) and (21 ) pro

vide a solution of Euler's equation in parametric form .

6. In Problem 5, let Ci = 1 and Ca = 0 and graph the curve defined by (20) and

(21 ) , regarding p as a variable parameter. Show that as p varies from 0 to 3,

we obtain one branch, and as p varies from V3 to co, we obtain a second branch

of a curve , which has a cusp at the point (x , y) corresponding to p = v3.

-
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7. Show that the Euler equation for the integral.

I y( n)) dx , (22)

is the following :

OF d OF d2 OF OF

· + (- 1 ) " =0 . ( 23)
dy dx dy dx ? dyrt . Dy (n)

8. If L>0 and y (x) is a real-valued absolutely continuous function on (0, L)

which vanishes at 0 and L, and if y ' (x) is of integrable square on the interval,

show that

п? у ?
(24)

L2 ,

and that the equality sign holds if and only if y (x) is of the form C sin (12/L) . *

Hint: Observe the following identity :

ya -[ (2)] +[w -cot (2 )]

The following two problems are concerned with the establishing of conditions

which are necessary (but not sufficient) if a solution of Euler's equation is to

give a maximum or minimum value to the integral . Together these conditions

are sufficient to assume that the second variation 821 is of one sign .

9. If 0 is an arbitrary function of class C' in (a , b) , show that

S* (209n' + oʻre )de = 0.

Now add the integrand of this integral to the integrand of 821 and show that, if

O is a solution of the equation :

R(P+ 0' ) = (Q+ a) , (25)

then we can write :

6

=
821= R ( 7 ' + Mn)2 dx,

where M= (Q+ 0) /R .

From this derive the following theorem (called the necessary condition of

Legendre) : If 821 is to be of one sign, it is necessary that R does not change sign in

(a, b) .

10. Observe that equation (25) is a Ricatti . Hence , let Q+ 0= -R ulu , and

thus derive the following :

Ru" ' + Ru' + (Q' – P) u= 0, (26)

which is called the equation of Jacobi.

Now show that the second variation can be written

(nu - mu )2
R dx .

u?

* See W. T. Reid : Journal of Math. and Mech ., Vol . 8, 1959, pp . 897–906 .

556037 0461-30
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Observe that , when R+0, the integral is of one sign unless the numerator of the

integrand vanishes identically . Show that this is impossible unless n = Cu, where

C is a constant , and that this is impossible unless u vanishes at some point in the

interval (a, b) .

From this derive the following theorem of Jacobi : If 821 is to be one of sign for

all possible forms of the function n (x) , it is necessary that equatton (26) have a solution

which does not vanish in (a , b) .

11. Show that the Euler equation for the integral

I=

= S* ( Px2+ 2Quu' + Ru”?)di
is Jacobi's equation.

12. If y= y (2,2,0) is a solution of Euler's equation , show that

o

=da y (2,2 ,B ) and yo= y ( ,a , B )
B

are solutions of Jacobi's equation .

13. Let y= y (x ,a) be a one-parameter family of curves . If a is eliminated

between y= y (x ,a) and ya as defined in Problem 12, show that the resulting equa

tion is the envelope of the family of curves .

14. Making use of the results of Problems 12 and 13 , show that Jacobi's

theorem can be stated as follows : If y = y (t , a) is a solution of Euler's equation ,

then if 8²1 is to be of one sign, it is necessary that the point of contact of y and

its envelope shall lie outside of the interval (a , b) .

15. Show that the envelope of the family of catenaries :

y =a cosh ( x / a ),

is the straight line

cosh •

y =X = x tany,

where o = 1.1997 and y = 56°28' . ( See Example 1 , Section 2. )

16. Show that for Newton's problem (Problem 5) , we have

24p ( 3 - p ? )
R =

( 1 + p2 )

4. The Euler Condition for a Double Integral

The problem which we have just considered for single integrals

can be extended without difficulty to multiple integrals. We shall

consider the case of a double integral, since its geometrical inter

pretation is readily understood . Let

2== z (x ,y) ( 1 )

be the equation of a surface within a region R of space and let C

be a curve upon this surface the projection of which on the ry -plane

is a simply connected closed curve ( " without double points . Such

a configuration is shown in Figure 2 .

1
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Z

C

X

Figure 2

Let F (x , y , z , p , q) be a function which is continuous in the five

variables x,y , z ,p ,9 with continuous derivatives of orders up to and

including the second . We now consider the integral:

I=
F (x ,y ,2 , P ,9) dx dy, (2 )

evaluated over the area A inclosed by the curve C' . We seek among

the surfaces of the region R which contain the curve C for that surface

with minimizes (or maximizes) I. The symbols p and q have their

usual significance: p=dz/dx and q=dz/dy .

To obtain the first variation we write

z = 2 (x ,y ) + an (x , y), (3 )

where n (x ,y ) is a function which is continuous with continuous deriva

tives in A and which vanishes along C" . The first variation is then

defined by the integral

SI== a

aSS (F_n(x , y ) + Fré + Fon ] de dy.
(4)

We now make use of Green's theorem

SPdz+Q dv=S5 CO?– ) dz dy
(5 )
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in which we set : P= -n (x ,y ) F , and Q = n ( x,y ) Fr. We thus obtain

(6 )

$ 0,1(8,9)(– F, da + F , dy)

- SSC. (97)+ (97 )] dz dy

-S”[; +vor F,+wifi +amy ra]de dy

Since n (x ,y ) is zero along C” , these integrals are all zero and from

the last one we obtain the identity :

Foxi+ Form) de dy--SS-COM,+, P.) ds dy
(7 )

When this is substituted in (4 ) , the first variation reduces to

31=aSS«(2.9) (F.- P - F.)dedy.
(8)

It will be readily seen that the fundamental lemma of the calculus

of variations, which was established in Section 2 , can be extended

without essential change to the case of double integrals. Applying

this lemma here we derive Euler's condition in the following form :

OF O OF O OF

да дz др ду дq

0
(9)

5. The Problem of the Minimal Surface

The problem of the minimal surface concerns itself with the deter

mination of a surface of minimum area , which is bounded by one or

more nonintersecting skew curves .

Since the area of a surface is given by the integral

A=

SS + q a
( 1 + p ? + q2)1/2 dx dy, ( 1 )

the Euler condition , obtained from (9 ) in the preceding section , re

duces to the following nonlinear partial differential equation of second

order :

( 1 + q ) r - 2pqs + ( 1 + p ?) t = 0 , (2 )

where we introduce the customary symbols :

022
8 = t =

Ox?'

022

ду??дхду
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This equation is of elliptic type , since its discriminant , namely,

( 1 + 9+) ( 1 + pa) – pʻqº = 1 + pa + q *, (3 )

is greater than zero . If p and q are sufficiently small quantities , equa

tion (2 ) is asymptotic to Laplace's equation , that is ,

r+ t= 0. (4 )

If kį and k2 are the principal curvatures of the surface : 2= 2 (x ,y ) , it

is proved in treatises on differential geometry that kı + k, (the mean

curvature) has the form :

1

ki+ ka= 2312 [(1+ 9°)r — 2pqs + (1 + p?)t], h = 1 + pe + q”.
(5 )

From this it follows that a minimal surface can be defined as one for

which the mean curvature is zero .

If the equation of the surface is given in terms of the parameters

(u ,v) , where

x = x (u ,v ), y = y ( u ,v ), 2= 2(u,v) , (6)

then equation (2 ) can be expressed in terms of the coefficients of the

first and second fundamental quadratic forms of the surface . These

quadratic forms are customarily written as follows:

dsa = Edu ? + 2Fdudv + Gdva,

-do' = Ddu ? + 2D 'dudu + D'dva, (7 )

where we use the abbreviations :

E=Σ (α.) 2 , F = Σ (α , κ.) , G=Σ(α. ), (8)

Xuu Yuu 2uu
7240 Xoo You 200Qur Yur

1

xu Yu

VH

D =
Xu Yu zu

D'E
ขึ้น

>

1

D'IN

VH

хи Yu 24

VH

xo Yo 2, X, Yo 2, x , Y, 2,

In these expressions the sums extend to the three variables , the

subscripts denote partial derivatives, and H = EG - F2.

Since the mean curvature of the surface , in terms of these coeffi

cients, has the form

1

ki+k;= (ED '' —2D'F + DG ), (9)
H

3

=

equation ( 1 ) of the minimal surface is replaced by the following :

ED '' - 2D'F+DG=0. ( 10 )
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An example is provided by the problem of finding the minimal sur

face , which is a surface or revolution and which is bounded by two

circles having the same axis .

The solution of this problem is immediately obtained from Example

1 of Section 2 , where the surface was shown to be a catenoid, that is to

say , one generated by revolving a catenary about an axis .

If the catenary is revolved about the z-axis , the equation of the

surface assumes the form :

z=a+ b cosh -' ( p / b ), p = r2 + y ?. ( 11 )

A representation of this surface is shown in Figure 3. A study of

the properties of the catenoid shows that it is not always possible to

construct such a surface, which has given a directrix and at the same

time passes through two preassigned points .

Z

х

FIGURE 3

Great analytical difficulties beset the solution of equation ( 2 ) ,

but fortunately there exists a physical analogue which makes it

possible to determine the shape of minimal surfaces for many kinds

of boundary curves . This analogue is due to the blind physicist

Joseph Plateau ( 1801-83 ) , who described it in his classical work on

molecular forces in liquids published in 1873. Soap bubbles, con

strained between bounding contours, will assume the shape of minimal

surfaces through the action of their molecular forces. The problem

of the analyst was thus transferred to the laboratory of the physicist,

and we have here one of the first examples of an analogue solution of

a nonlinear differential equation . Minimal surfaces obtained in this

manner are shown in the accompanying plate , from experiments

carried out by W. T. Reid .

The problem of determining a continuous minimal surface which

passes through a given curve is called the problem of Plateau . It

has been the subject of extensive investigations by T. Carleman , J.

Douglas, A. Haar, and many others . Of special significance are the
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recent researches of T. Radó, who has made important extensions of

the original problem . *

The problem of the minimal surface is included in the broader

problem of the determination of extremals for the integral

SSF(p.9) dx dy, ( 12)

A

where F(p , q ) is an analytic function of p ,q and satisfies the inequalities:

Fpp > 0, F,>0, FF20 - F2 , > 0, ( 13)

for all values of p and q .

One observes that this problem also includes that of Dirichlet,

which requires a minimum for the integral

SS (pe+gº)dx dy.
( 14)

A

The Euler condition reduces to Laplace's equation (4 ) , which we have

just seen is an approximation for the equation of the minimal surface.

Another problem closely related to that of Plateau is the determi

nation of a surface for which the mean curvature is a constant, let

us say k . Physically this corresponds to the case of a soap film in

which there is a constant difference in pressure on its two sides . †

In this case equation (2 ) is replaced by the following:

( 1 + q ) r - 2pqs + (1 + p ?)t = k ( 1 + pa + q2) 312. ( 15)

If p and q are sufficiently small, this equation can be replaced by

the linear one

r+ t= k . ( 16)

Although this equation has the following function as its complete

integral:

k

2=$(x+iy) +442-iy) + (x2 + y2) , ( 17 )
4

where $ and y are arbitrary functions, this fact usually does not

help in constructing a solution which also satisfies the boundary

conditions, that is to say, in finding a surface which passes through

one or more arbitrarily given curves .

* For an extensive account of the problem and its extensions , the reader is referred to the excellent volume

of T. Radó: On the Problem of Plateau , 1932, American edition , 1951 , 109 p.

For a discussion of this problem see H. Bateman : Bibliography, Reference (2) , pp . 169–171 .



456 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

Do

a
Minimal Surfaces for Various Boundary Conditions-Soap Film Pictures Obtained

by W. T. Reid .

6. Hamilton's Principle - The Principle of Least Action

By means of the calculus of variations it has been possible to express

in a fundamental and elegant way the general problem of dynamics .

As we have already stated in Section 1 this formulation has had a long

history which began with Fermat's principle. This principle, in

modern terms, may be stated thus: Rays of light travel along such

lines that the optical distance between any two points of the ray is a

minimum . By an optical distance we mean the sum , Elini , where li

represents the distance traveled in a medium of refractive index ni.

We have also indicated in Section 1 the metaphysical character of the
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arguments by means of which Maupertuis and Euler extended

Fermat's theorem to the more general system of dynamics.

It was left to Hamilton to formulate the modern principle (Hamil

ton's principle ). This states in the language of the calculus of varia

tions that the first variation of the time integral of the difference

between the kinetic energy ( T ) and the potential energy (V) of a

dynamical system is zero , that is ,

of ( T - V )dt= 0. ( 1 )

Since the question is seldom asked whether or not an actual mini

mum is attained by the integral, it is customary to say that the motion

defined by ( 1 ) is stationary . The equation is assumed to hold for all

dynamical systems whether they are conservative, that is , when

T + V = C , where is a constant, or nonconservative.

The quantity T - V is called the Lagrangian and is denoted by L.

With this designation equation ( 1 ) becomes

L dt = 0 , (2 )

and Hamilton's principle then asserts that the first variation of the

time-integral of the Lagrangian is zero .

If the system is conservative, V can be eliminated from ( 1 ) , since

T + V = C , and ( 1 ) then becomes

12

oso
2Tdt = 0 . (3 )

Since the time-integral of 2T is called the action of the system , we

have in (3 ) the formulation of the principle of least action . More

properly stated, the principle of least action asserts that for any

conservative system the action is stationary.

Let us first, as an example, derive Newton's laws of motion from

this more general point of view . The position of a single body of

mass m is given by the coordinates x , y , 2 , which are functions of time.

If the body is constrained to move under a system of forces the

respective components of which are X, Y , and Z, then the motion is

defined by the following system of equations:

mi =X, m = Y , m== Z. * (4 )

* It will be recalled that the symbols i and ï denote respectively dr/ dt and dur /dta. This notation was

introduced by Newton in his theory of fluxions.
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In the application of Hamilton's principle we write the kinetic

energy in the form :

T = žm ( ?+ je+ ), (5)

and define W (the work ) by its variation :

W=X8x+Ydy+Z8z. (6)

Then , since & V = -8W , we have from equation ( 1 )

•$ (T- V) dt=S. " (67 + 5W ) dt

= S; (o os + + ôz + X8x+ Y8y+282) dt =0. ( 7 )

OT

dż

Integrating by parts and noting that the variations vanish at t = t,

and t = tz , we obtain (7 ) in the following form :

S'[(- + x)öz +(+ * +Y)öv+(** 82+2) 82 ]dt=0.
(8 )

Since the variations 8x , dy , and 8z are independent of one another,

their multipliers are zero and we obtain as a consequence Newton's

laws of motion as given by (4 ) .

This analysis can be extended to more complex cases , where the

configuration of the dynamical system is described in terms of a set

of generalized coordinates : 41 , 42 , 43 , · For simplicity we shall

consider a system of three variables , where the familiar cartesian

coordinates, x , y , z , are now written as follows :

" , In .

x = x (91,92,93), y = y ( 91,92,93), 2 = 2 (91,92,93). (9 )

Since the coordinates are functions of t,we have upon differentiation

3

Dx

да.
21+

Dx

да,
ja +

Dx

93 , ( 10 )
093

with corresponding expressions for y and ż .

When these quantities are substituted in (5 ) , the kinetic energy

is then represented as the following quadratic form in the gi :

T = Aj(21,92,93) ģiāj Aj = Aji. ( 11 )

It is evident from the original form of T that this quadratic form is

positive definite and thus the leading principal minors of its matrix
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will be positive . Moreover, if the transformation defined by (9 ) is

orthogonal, then Ais will be zero when i # j.

Since the variation x has the form

δox =

дх

дqi
8q1 +

Dx

092
892+

дх

623 , ( 12)093

with similar expressions for y and 2 , the variation in W given by (6 )

assumes the following linear form in terms of the generalized variables:

ÓW = Q ,89, + Q2892 + Q3843, ( 13 )

where Q1 , Q2 , and Qs are functions of the qi .

By an argument differing in no essential way from that given above,

the equations of motion reduce to the following system :

OT

= Q , i = 1, 2 , 3 . ( 14 )

If the motion is defined by a potential function , V, then we have

Qi=
OV

да:
( 15 )

In this case equations ( 14 ) take the elegant form :

OLd 0

dt og
-0 , ( 16)

where L= T- V is the Lagrangian. This is the celebrated formula

tion of the equations of dynamics as given by Lagrange. It is clearly

extended to a system of n variables without modification.

Erample. A body of mass m moves under the attraction of a

gravitational force the potential of which is - k-/r , where r is the dis

tance from the origin of the gravitational force to the position of the

body. Show that the path of the body is a conic section .

Solution : It is convenient to use polar coordinates, that is , in terms

of generalized coordinates : qı = r , 92 = 0 . Equations (9 ) thus become

x= 41 cos qz= r cos 0, y= 21
sin 92 = r

sin 0.

Since polar coordinates form an orthogonal system , we get

T = (22+ y ) = m ( p2 + range)
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Introducing the potential function , V = -mk-/q1 = -mka/r, we

obtain the Lagrangian as follows:

L = T - v = m (*2+r262+2k+/r).

When this is substituted in equations (6 ) , the following nonlinear

system is obtained :

p - r02 =
?

k2 d

( 720) = 0.
p2' dt

(17)

Integrating the second equation, we get

pl = h , ( 18)

where h is an arbitrary constant.

Introducing r= 1 /u , and observing that

du

r =

dr

dt

1 du

udt

1 dudo

u do dt

-hto

der

r =

dt?

d (du

-h
dt doCara)

dau de

-h
d 02 dt

du

-h u2
d 82'

we obtain for the first equation of ( 17 ) the following:

dau

do2 +

k2

tu =
h2

( 19)

From the solution of this equation , namely,

1

U = --

P
cos(8 + w ) + h's (20)

we are able to conclude that r has the following form :

ep

( 21 )
1 e cos o'

where ep = ha/k ? This is the polar equation of a conic section with

origin at the focus. The constant p is the distance from the focus to

the nearest directrix and e is the eccentricity .

When the orbit is an ellipse , as shown in Figure 4 , we have the fol

lowing relationships:

ep = a ( 1 - e ?) = b2/a, a’e = a ? — 62,

where 2a and 26 are respectively the major and minor axes of the

ellipse .
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1

br

o

FIGURE 4.

From equation ( 18 ) we obtain :

1

2

pa do

1

hdt.

If the first integral is taken over a complete cycle , we obtain the

area of the ellipse and the value of the second integral is the total

period , denoted by T , of the motion . Since the area equals tab=

TQ3/2 (ep ) 1/2, we have

(22)
T2

ha = 4nⓇaºep
>

from which one derives the famous harmonic law of Kepler , namely,

that the cubes of the mean distances of any two planets from the

sun are to each other as the squares of their periods.

7. The Canonical Equations of Hamilton

The equations of dynamics as derived in the preceding section were

given a very useful form by Hamilton, who introduced the new vari

ables, P1 , P2 , , Pn , defined as follows :

PA

OT

-, i = 1,2, ..., n .

oqi

( 1 )

If the qe are the familiar cartesian coordinates, x , y, 2, and if T

is the kinetic energy given by (5) of Section 6 , then

Pi=mi , pe = my, Pg=m2,

and their sum is the momentum of the system. Hence the Pt
defined

by ( 1 ) are the generalized components of the momentum .

It is now possible to give two forms to the kinetic energy, one as

a quadratic form in terms of qt and the other as a quadratic form in

terms of pi . The first of these we shall denote by T and the second
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by T' . Since both represent the same energy, although expressed in

different variables, we have the obvious identity

T= T' . (2 )

In order to give a simplified discussion of the relationships involved

in these representations , we shall consider T' in terms of two variables,

but both the arguments and the results are extensible to n variables .

We thus write ,

T = Auſi + 2A120102 + A2202, (3 )

where the Ar , are functions of qı and q2 . We shall further denote the

determinant of the form by D, that is , D= A1 , A22- Aſu.

Since p = dT/dqi, we have explicitly

pi= 2 (A1191 + A1202) , P = 2 (A1291 + A2292) . (4 )

Solving these equations for gi and 92 , ,we get

91= 2D (Amp A13Pa) , q = 2D ( -A18P1+ A1183).
(5 )

When these values are substituted in ( 3 ), we obtain the explicit

form of TV as follows:

T' = 4D

1

4D
(A22pi-2A12P122+Aup ). (6)

From this expression we get our first important result , namely,

OT' 1 OT

(A22P, - A12P2) = 91, and
2D

= 12 (7 )
Op ор,

Since this argument is readily extended to n variables, we have in

the general case

OT

ģi= i= 1 , 2 , 3, .. , n, (8 )

др.

.

Somewhat less direct is the proof of the second fundamental re

lationship , namely, that

OT' OT

(9 )

даа да ,

To establish this we first observe that T is a homogeneous function

of degree 2 in qı and į2 . Then by Euler's theorem (Section 4 , Chapter

2) we have

OT OT

2T=11 = jpı + 02p2. ( 10 )

δή,og
+92
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Since by (2) T = T ', we can write ( 10) in the form

T ' = jpı + 12P2— T. ( 11 )

Taking the derivative of this equation with respect to 41 and

observing ( 1 ) , we get

OT ' oqi dT_OTdll_01 092_ OT

p + ( 12 )

021 021 δα,δή, δα,δή , δη,

diz

092

P2091
δgr

This same argument can be repeated without essential change in

the general case and thus we establish (9 ) .

The canonical equations of Hamilton are now readily derived from

those of Lagrange given by ( 14) of Section 6 , namely,

d OT OT

- = QC ( 13)
dt og i 091

To accomplish this we replace T by T '' and note both the definition

of pi and equation (9 ) . We thus obtain the desired equations as

follows:

OT' OT '

pit ( 14)

дq др.

= Qi , qi =

If the motion is determined by a potential function , V, then a very

elegant form can be given to these equations by introducing the

Hamiltonian function,

H = T + V . ( 15)

Since Q = -OV /Oqt and since V is independent of pi , equations ( 14)

can be written as follows :

dpi dgi OHOH

да.dt
( 16 )

dtopi

Example 1. We shall derive the equations of motion of a body of

mass m moving under the attraction of a gravitational force, using the

Hamiltonian theory .

Solution : Referring to the example of Section 6 , we have q = r ,

q2= 1, V= -mk-/41= -mka/r , and

T= m(i
T = m ( 2 + r262 ).

Computing p, from ( 1 ) , we find pe = mi, pe= mr2) , and thus

T' ( pi + pž/12).
2m

1
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The Hamiltonian then becomes :

H =

1

( pi + pž/r2) — mka/r.
2m

When this is substituted in ( 16) , the following equations result :

dpi /dt = pžl(mr ) - mka /r2, dpz/dt = 0,

which , when the values of pi are substituted , reduce to equations ( 17 )

of Section 6 .

Example 2. The derivation of the equation of the simple pendulum

by the use of the Hamiltonian is as follows :

If we set m= 1 , let L equal the length of the pendulum , and write

q= 1 , then from Figure 5 we have as the component of the force in the

Bis

M

9

FIGURE 5 .

direction BM the quantity g sin (= g sin q , and hence as the potential

energy the function V= -gL cos q .

Since x= L cos 0, y=L sin 0 , we have

T =}(* + ja)=$ {* = <LI,

from which we get : p= L’q , and thus T ' = {p’L-?

The Hamiltonian then has the value

H= ip’L-2 -GL cos q .
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When this function is introduced into ( 16) , we obtain

dp

dt
gL sin q, dq

da

dt
= pL - 2,

from which we obtain the desired equation :

d2d'q

dt2

sin q, that is, āt?
g

sin 0.

L

PROBLEMS

1. A particle acted upon by gravity is constrained to move on the surface of

a fixed sphere of radius R. This is the case if the particle is suspended from a

fixed point by a weightless, inextensible string and allowed to swing freely in

any direction. Such a system is called a spherical pendulum . If the mass of the

particle is m and if its position in spherical coordinates is ( R, 0, 0) , show that

T and V have the following values :

T = 4m R [02 + sin e 2 ), V= -mgR cos 0 .

Show that the equations of motion are the following :

9
0 - h2 cot A csc? 0+ sin 0= 0, sin2 = n

T

2. Given the data of Problem 1 , compute the Hamiltonian and from it derive

the equations of motion .

3. A particle of mass m moves on the surface of an inverted cone of revolution .

If the coordinates of the particle are (r, ) and a is the angle between the axis

of the cone and its elements, show that

Trim (ja + sin ’ a r202) , V = mg cos a r.

Find the equations of motion .

4. Solve Problem 3 by means of the Hamiltonian .

5. The surface of a stretched elastic membrane is defined by the equation :

z = 2 ( x , y) .

Show that the differential equation for small oscillations of the membrane is

the following:

022 022

k2

ду012 a2ن

Hint: V = a-SS ( 1 + pe +q2) 112 dx dy - A,where A =ESS dx dy is the area of the

membrane at rest .

556037 0-61 -31
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Chapter 15

The Numerical Integration of Nonlinear Equations

1. Introduction

As has been abundantly observed in preceding pages of this work,

the solution of many types of nonlinear equations in a closed analytical

form is not possible. The range of available functions is much too

limited and many equations are intractable to the usual devices of

analysis . In fact , most nonlinear equations define new functions ,

whose properties have not been explored nor for which tables exist .

But the demands of applied science has made it necessary to obtain

some insight into the nature of solutions , subject to prescribed

boundary conditions . This insight usually takes the form of numerical

and graphical representations of the functions.

In large laboratories at the present time there exist various machines

which , with proper assistance, can achieve a graphical or a numerical

description of functions defined by a broad class of nonlinear equa

tions . One class of such machines includes what are called analogue

computers. The mechanical type is generally referred to as a differ

ential analyzer. Both types perform similar functions of graphically

integrating differential equations . When applied to the solution of a

differential equation of second order, for example, analogue computers

will trace the solving function , such derivatives as may be desired ,

and also the trajectories in phase -space.

The second class of machines includes what are called digital

computers , which are used for the solution of equations where numeri

cal tables of the functions are desired . Ordinary desk calculators

belong to this class. An astonishing development has taken place in

recent years in the construction of such machines, with built-in

memory units and rapid recording devices . These devices have

enabled mathematicians to solve numerical problems which were

hitherto far beyond their powers. Two types are in common use,

the IBM computers which operate from punched cards and the

UNIVAC computers which use tape . The operation of such machines,

however, is very expensive and requires a staff of trained men to

program or code problems submitted to them .

In the numerical solution of differential equations the method of

finite integration in one of its several forms has been , for the most

part , the favorite tool of computers. It is based essentially upon the

467
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theory of the Picard algorithm , which we have described in Chapter 4 .

As the reader will recall, this theory depends upon the evaluation of

a sequence of integrals and thus is admirably adapted to methods of

finite integration.

In this book, however, we have found the method of continuous

analytic continuation to be admirably suited to the computation of

the solution of nonlinear equations . As we have shown in Chapter 9 ,

it is based upon the existence theory of Cauchy's calculus of limits

and involves only a few derivatives of the functions involved . Its

flexibility, its ready adaptation to mechanical computers, and the

fact that its application is not limited to real segments, but may be

extended to the evaluation of solutions over paths in the complex

plane , make it a method of unusual power.

Since an adequate description of continuous analytic continuation

has already been given , we shall limit our discussion in this chapter

to the method of finite integration. Since this depends upon the

calculus of finite differences, we shall give a brief description of this

subject and will then describe several of the important adaptations

of it to the integration of differential equations .

2. The Calculus of Finite Differences

The calculus of finite differences begins with the definition of the

difference of a function f(x) , denoted by Af(a), or simply Af. By

this symbol we mean

Af(x ) = f(x + d ) -f(x ), ( 1 )

where d is the difference interval .

By the second difference, denoted by A ?f(x ), we mean the difference

of Af(a) , that is ,

(2)424 (x ) = A [4f (x )] = f (x + 2d ) -f(x + d ) + f(x) ;

and by the nth difference, denoted by A ” f ( a ), the quantity

Anf(x ) = A [An- 1f (x )] = f (x + nd ) – nCif[x + (n - 1) d ]

+ nCzfr + (n - 2)d ] + ... + f(x ), (3)

where „C = n,„C;= n (n- 1 ) , etc. , are the binomial coefficients.

It is often useful also to employ the symbol: E= 1 +4, since we have

Ef(x ) = (1 + 1 )f (x ) = f (x + d ), (4)
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and by a simple generalization ,

Erf(2 ) = (1 + 4 ) *f (x ) = f(x + pd ). (5)

If the term ( 1 +A) " is developed by the binomial theorem , we obtain

the following important expansion of f(x+pd) known as the Gregory

Newton series:

f(x + pd) = f(x) + pAf(x)+P(p—1)A ?5(2) + P(p — 1)(p — 2) 43f( x ) + .
3 !

(6)

In applying this and other formulas to numerical approximation

the following table of differences is to be used :

Argument A 42 43Tabular

Value

44

1-30 | (2-30 ) AP/ (1-4d ) Af(1-50)

A / (1-3d ) Aff (2-40)

1-2d (1-2d ) A ?f ( I - 3d) Af(1-4d )

Af(x - 2d ) A / (1-3d)

I-d ( - d ) A f (x - 20) Af(x - 3d )

Al ( r - d ) 43 (1-2d )

T
( I ) A ?f (2-0) Af(1-2d)

Al ( r) Auf (1-1)

itd (x + d) Apf ( ) Af (r - d )

Al ( x + d ) AY( 7)

1 + 2d f ( x + 2d ) Af ( + d ) AT ( I)

Aſ( I + 20 ) Af( + d)

x + 3d ( 1 + 30 ) A ?f ( x + 2d ) Al (x + d)

From this array we see that the differences which appear in expan

As an
sion (6) are the diagonal differences underlined in the table.

example of its application , let us consider the following numerical

values from which we wish to compute log r (1.0464 ):

7 log r ( 1 ) A 42 A3 A4

1.046 9.989 208 037 866

-218 546 226

1.047 9.988 989 491 640 668 252

-217 877 974 -922

1.048 667 330 49.988 771 613 666

-217 210 644 -918

1.049 9.988 554 403 022 666 412

-216 544 232

1. 050 9.988 337 858 790
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Since p=0.4 , we substitute this value and the following differences

in equation (6 ) :

A= -0 . (3 ) 212 546 226 , 42= 0 . (6) 668 252 ,

A3 = -0. (9 ) 922 , A' = 0 . ( 11 ) 4 ,

where the number in parentheses indicates the number of zeros

between the decimal point and the first significant figure. We thus

obtain the desired value :

log r ( 1.0464) = 9.989 208 037 866-0 . (4 ) 87 418 490—0. (7) 80 190

-0. (10) 58 ,

=9.989 120 539 128 .

It is sometimes desirable , especially in the numerical approximation

of differential equations , to obtain values from a formula expressed

in backward differences, instead of forward differences as just illustrated .

This is the case , for example , when one is extrapolating at the end of

a table , where forward differences are not available .

A useful formula of this type is obtained by adapting the Gregory

Newton formula given in (6 ) . We thus obtain the following :

f (x + pd) = f(x) + paf(x - 1) + P(p + 1) Af(x- 2)
2 !

+ P (p + 1)(p + 2)
43f (x - 3 ) + .... (7 )

3 !

To illustrate the application of this formula, let us consider the

table of log f (x ) given above from which we are to compute the

value of log r ( 1.051 ) .

In this case p= 1 and we have the differences :

A= -0. (3 ) 216 544 232, A2 =0 . (6 ) 666 412,

A3= -0. (9 ) 918 , 44= 0 . ( 11 ) 4 .

Substituting in formula (7 ) , we then obtain :

log r ( 1.051 ) = 9.988 337 858 790–0. ( 3 ) 216 544 232–0. (9 ) 918+ 0 . ( 11 ) 4 ,

=9.988 121 980 056 ,

which is in error by only four units in the last place .

3. Differences and Derivatives

The calculus of finite differences provides a convenient method by

means of which differences of a function can be expressed in terms

of its derivatives , and conversely . We shall denote successive deriv

atives by the following symbols : D , D , D, etc.
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To establish the desired relationships, let us first write Taylor's

expansion of f(x) in the following way :

d2

Ef(x)= f(x +d ) = f(x) + d f'(x) + 1!'(x)+ ... ,

= (1+ 0 +1 + D + 2 +' " ..)f(x)= eupf(x).

( 1 )

From this we get the following symbolic relationship between E

and D:

E=ed . (2 )

Since we have by definition : A= E- 1 , we can then write

A = (E- 1 ) " , (3 )

from which, by means of (2 ) , we obtain the following symbolic

expansion :

A"- ( edD- 1 ) " ,

ndD - ne ( n - 1 ) dD

+
n(n- 1 )

2 !

( n- 2 )dD

e +1

d d? đ 24

>

[ ones.
1] (4 )

We now let n= 1 , 2 , 3 , etc. successively , and expand the resulting

functions as power series in D. When we apply the resulting oper

ators to f (x ), we obtain the following explicit expansions :

Af = d| f' + 218"' +[1 21.8 "' + 37f + 4!f(4 + 57f6 + ]

31

A?f= [s " +df®+ iz deg« +420 + d4f16) +
360

(5 )

Aøf=+*[f® +> df + d f**+ *f*f6 + degem +...]

13

Aff = d ' f (4) + 2d f(5) +f dºf® + f +80 dºf® + . :]5

903

2520

* * *

It is possible similarly to express derivatives in terms of differences.

To achieve this, we solve equation (2 ) for dD and thus obtain

dD = log (1 + A ),

= - = & +34-44 + ..

(6 )



472 INTRO . TO NONLINEAR DIFF. AND INTEGRAL EQUS.

The nth derivative is then given symbolically by the following

equation :

d• =[log (1+2)-= [-- 14 + 34-19 + ... (7 )

As before we let n= 1 , 2 , 3 , etc. successively. The right-hand

member of (7 ) is expanded as a power series in A , and the resulting

operators applied to f (x ). The following explicit expansions are then

obtained :

f'(2) >[afiz_34(2)+584(2) 44(2)+344(2) ...]

f "(m)= [~=f()–4* (a)+1344(a)= 2*(2)+ ...],

fay(x)=> [2°f(x)= ()+ 401(a) ...].

(z) = Af(z)-2 Af(x)+ ...),

(8)

f(4 )

** * * * *

As an example of the application of formulas (8 ) , we shall compute

the first two derivatives of log T ( 1.046 ) from the table given in Section

2. Since we have

d

logo f' ( x) = Mlog.1(x)= Mº(a),

where M= 0.43429 44819 is the modulus and V (2 ) = r ' (x ) / (x ) is the

psi function , and since also

dra
log101 (x ) = MV' (x),

the exact values to 10 places of the first two derivatives of log r ( r )

at x= 1.046 are found from tables of ¥ (x ) and y ' (x ) to equal respec

tively -0.21888 06595 and 0.66917 53958 .

Making use of the differences in the table of log f ( x ), we thus

compute

d

log ( x ) = 10001-0. (3 ) 218 546 226–0 . (6 ) 334 126-0 . (9 ) 307
dx

-0. (11 ) 1 ],

= -0.218 880 660 .
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Similarly, for the second derivative of log f (x ) , we obtain

d2

dxzlog I (r) = 109[0. (6)668 252+0 . (9 ) 992+0 . ( 11 ) 4 ) ,

=0.669 178 .

One should observe from these computations how rapidly the

number of significant figures reduces in converting from differences

to derivatives.

4. Integration Formulas

A number of integration formulas are available for the evaluation

of an integral, which it will be convenient to write in the form :

I== S.***f(t)dt
( 1 )

The most common method of numerical integration makes use of

the Euler-Maclaurin formula , which can be written as follows:

d5

àS *** f(t)dt= Žf(a+nd) —21.f(x)+ f (x + pd) –+ f(x +pd))– 1''(x +pd)—f'(x)]

72011®)( + pd)—f®)(x)]– 30240 [f(*)(x + pd)-f()(x)]

1209600 [ $(" (x + pd) – f(" (z)]— 47900160(f(º)(x + pd )

+

+
d ?

- f (9) (x ) ] + ... + (- 1 ) "
B , d2n -1

If(2n - 1)( x + pd)
( 2n ) !

-f(2n - 1) (x )] + R ,, (2 )

where Bn is the nth Bernoulli number , the first six of which are given

below :

B = 1 /6 , B,= 1 /30 , Bz= 1 /42 , Be= 1 /30, B5= 5/66 , Bo= 691 /2730 ,

These numbers appear in the following expansion:

( + 1= 1-3+
t , Bit Bet * B3t6 B.t8

- +
2 ! 4 ! 6 ! 8 !

+ (3 )

which is related to equation ( 1 ) through the operational identity

A - 3

1

D - 1

-D

D-
1 , B,D B ,D3
+

2 2 ! 4 !
-+ (4 )

* This formula was discovered independently by L. Euler and C. Maclaurin between 1730 and 1740.

Euler's work was published in Comm . Acad. Sci. Petrop ., Vol. 6 , 1738, p . 68, and Maclaurin's in his Treatise

of Fluxions, 1742, p . 672.
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where ^ - is equivalent to the summation symbol E and D-1 is equiv

alent to the symbol for integration.

The remainder term R, in equation (2 ) is bounded by the following

inequality :

| RAK < p d2n + 2 f(2n + 2) (F) ], (5 )

( 2n+ 2) !

Bn + 1

where & is some value between x and x+pd.

The derivation of formula (2 ) will not be given here since it can be

found in any work on the calculus of finite differences.

A second very useful form of the Euler-Maclaurin formula is ob

tained if derivatives in (2 ) are replaced by differences . In this case ,

the resulting integration is called the Gregory formula . *

in the following expansion :

It appears

à S:*** f(t)dt= f(a+nd)— [ (x ) + f ( x + pod) – 12( Af[2+ (p-1)d]

– Af(x)} = { 4? f [ x + ( p — 2 ) d ] + 4 ° f ( x ) } –

(p — 3)d]—4°f(x)} – 180 {44f (x + (p — 4 )d ] + 4 °f( x)}p 1

19

{ A ?f [ x +
720

{ AⓇF [x +

863 275

{45f [x + (p — 5 )d ]—A f (x ) } –
60480 24195

( p - 6 )d ] + 4 °f (x ) } + Rn. (6)

The numbers which appear as multipliers of the various terms are

called logarithmic numbers, since they are obtained from the expansion

t

log ( 1 + t )ito)= 1 +
t

1 1

t ?+ t3

12 24

19

t '+
720

( 7 )

which is related to formula ( 6 ) by the operational identity

1 1

dblog ( 1 + 1)
12–... (8)

24

where 1 /D is equivalent to the symbol for integration and 1/4 is

equivalent to the summation symbol E.

No proof will be given for the Gregory formula since this can be

found in treatises on the calculus of finite differences. Nor will the

explicit form for R, be stated, since this is relatively complicated and

*This formula was announced by James Gregory ( 1638-75) in a letter to John Collins in 1670. See Rigaud's

Correspondence, Vol . 2, p . 209.
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in applications of (6 ) the convergence of the process is assured if the

differences are sufficiently small. The application of the two for

mulas can be illustrated simply by means of the following table of

values :

I | (x ) = r3 42 A3

1.0

1.1

1.2

1.3

1.4

1.5

1. 000

1. 331

1. 728

2. 197

2. 744

3. 375

0. 331

0.397

0. 469

0. 547

0. 631

0.006

0. 006

0. 006

0. 066

0. 072

0.078

0. 084

Total (S) = 12.375.

To compute the integral,

1=S */(2)dz.

by means of ( 1 ) we first find :

f' ( 1.5) = 6.75 , f' ' ( 1.5) = 9.0 , f(3 ) ( 1.5) = 6 ; f' ( 1 ) = 3 , f " (1) = 6, f (3) ( 1) = 6.

Substituting these values in (2 ) , observing that p = 5 and d= 0.1 ,

we get

0.1
I= (6.75 -3.00 )

12

=0.1 (12.375 -2.1875-0.03125 ) = 1.015625 ,

which is exact.

Similarly, making use of formula (6 ) and observing that the dif

ferences which enter the calculation are the diagonal differences at

the beginning of the table, namely, 0.331 , 0.066 , 0.006 , and the back

ward differences at the end of the table, namely, 0.631 , 0.084 , 0.006 ,

we readily compute:

1-80*2L ':*f(x) dx= 0.1 [12.375–3 (1.000+ 3.375)–1 (0.631– 0.331)

(0.084 + 0.066)7 = 0

1

(0.084+ 0.066) = 0.1 (12.375-2.1875-0.025-0.00625 )
24

= 1.015625 .
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Another useful integration formula is obtained by the direct

integration of the Gregory- Newton series. Thus, referring to formula

(6 ) of Section 2 , we write the Gregory -Newton series with a slight

change in notation as follows:

t ( t - 1 )
f (x + td ) = f (x ) + t Af (x ) + : A’f (x ) + ...

2 !

Integrating this series with respect to t , we then obtain

S. 18+ ed)dt=* S *** 16) de

= 70(p)f(x)+nı(p)4f(x) + map)A=f (x) + ...

( 9)

where we use the abbreviations:

mo (p) =p, ni (p)=Sºt dt , ne (p ) =S"S '+(2-1)dt,...,

nn (p) =-S"+(1-1)(8–2)...(t–n +1)dt ( 10)

A few of these polynomials are given below as follows :

no ( p ) = p, 11 (p) =" pº , n (p)= p* (2p– 3) , na(p)=p * (2p – 3),na (p) =* p* ( p — 2 ) ,

p®(6p*—45pP+ 110p — 90), ns (p)= 12v?(p—4)"(2p2–8p+ 9),na (p)
30

1

no ( p ) = ( 12p5—210p4+ 1428p3—4725p2+ 7672p-5040 ) .
84

( 11 )

Another formula, similar to (9 ) , is obtained by the direct integration

of the Gregory -Newton formula expressed in terms of backward

differences. Thus, referring to formula (7 ) of Section 2 , we write it

with a slight change in notation as follows :

f(x+ td)= f(a)+ taf(2–1)+ ( 1) ?f(x – 2)+ ....

If we integrate this expansion , we obtain the following formula :

S.'s(a+ta) dt S. ** de

-no(-p) f ( x ) + ni( -p)Af( x - 1)

n2( P) A ?f( x - 2) + ... , ( 12)
2 !

where n. (p ) are the functions which appear in (9 ) .
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As an example of the application of formula (9 ) we shall compute

the value of the integral,

1=S ***2 ) da,

where f(x ) = 2 ), making use of the table given earlier in this section .

Since we have d= 0.1 , p=5 , we first compute the following values :

no (5 ) = 5, mi (5 ) = 12.5 , n2 (5 ) = 175 /6, 73( 5 ) = 225 /4 .

Substituting these values in (9 ) , we then obtain

S *f(x)dx = 0.1 ( 5+4.1375+ 0.9625+ 0.05625) = 1.015625 .

The usefulness of formula ( 12 ) in computing integrals over a range

of untabulated values is illustrated by the evaluation of the integral

I=

Sf(a) da,

where f ( x ) = 23, and where we make use of the values tabulated in

the table given earlier in this section over the range between x= 1.0

and x= 1.5 .

Observing that d= 0.1 and p= 5, we first compute,

no (-5 ), = - 5 , n (-5 ) = 12.5, n2 (-5) = - 325/6 , n3 (-5) = 1225 /4.

When these values are substituted in ( 12) , we find

S* $(a)dx= 0.1(16.875+ 7.8875 +2.275+ 0.30625)= 2.734375,

which is the exact value of the integral.

Since it is often useful in the application of formula ( 12) to integrate

over one interval at a time, we give the expansion for p= 1 below as

follows:

$* 1( + td) dt=à S.***f(s) ds

=f(x) +41(0–1 ) + 4° (x- 2)+ 4°f( –3 )

+

251 95 19087

4 *f(x — 4) + Af(2-5) +
720

Af(x - 6 ) + ...
288 60480

( 13 )
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Various relatively simple formulas can be obtained from formula (6 )

by specialization of the constants involved . We shall illustrate this

by deriving the well -known Simpson one - third rule . *

If we assume that p = 2 and that third differences are constant ,

then formula (6) reduces as follows:

à S.***f ( ) dt = f (x ) + f ( x + 2 ) + f ( + 2d) $ 1 (* ) + f(x + 2d ))

iz 14f(x +d)–Af(x)}– 24? (x),

=f(x)+ s(2+d)+ f(x +2d)–. [ (27)+f(x+ 2d)]

Ta \$z+20) — 24 ( x + d ) +50)

T>

= () + f(x+d)+31(x+ 20)

( f(x + 2d ) —2f( x + d ) + f (x ) ].

( 14 )

For example , if d= 0.2 and x= 1.0 we have

1.4Icon

1

x®dr = 0.2Xş (1.000 + 4 X 1.728+ 2.744) = 0.7104,

which is exact .

5. An Illustrative Example

For purposes of illustration of the methods of solving differential

equations , which are to be given in subsequent sections of this chapter,

we shall consider the equation

dy = ry (y - 2), ( 1 )
dx

*This is named after Thomas Simpson ( 1710-61 ), who stated his formula iu 1743, although it appears to

have been given first by F. B. Cavalieri ( 1598-1647 ) in 1639 and later by James Gregory in 1668 .
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the solution of which is to be obtained subject to the initial condi

tions that yo = 1 when xo = 0 .

The solution of this equation has already been developed in Chap

ter 4 as a power series in x by means of the calculus of limits and the

method of successive approximations.

In the second method, as will be recalled from Section 3 of Chap

ter 4 , we began with the approximate solution :

Yı = yot

$*$(3,9)dx,
(2 )

and obtained in succession Yz ,Y3 ,Y4 , etc. by letting n= 1 , 2 , 3 , etc. , in

the equation :

Yn+1 = yo+ f(x,yn)da.Sii
(3 )

In this manner four approximations were obtained of which ya was

found to have the following expansion :

Y1=1

x² 26

2 ' 24

+ 1714

240 ' 40320

X10

it (4 )

This approximation is exact to the last term as one can verify with

some difficulty by expanding as a power series the solution of the

differential equation, namely, the function :

y-vitae
(5 )

For purposes of illustration it will be convenient to have the accom

panying table in which are recorded to ten decimal accuracy the values

of the solution over the range x= 0.00 to x= 1.00 at intervals of 0.02 ,

together with the corresponding values of the function : y ' = f (x ,y )

xy (y - 2 ) and its differences.
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I

v = ry (y - 2 ) -A 42 -43 -45 46 y = 2/(1 + eth

0.00

0.02

0.04

0.06

0.08

0.10

-0.0000000000 1999 99992

-0.01999 99992 1999 99752

-0.03999 99744 1999 98312

-0.05999 98056 1999 93752

-0.07999 91808 1999 83192

-0.09999 75000 1999 62794

240

1440

4560

10560

20398

- 1200

-3120

--6000

-9838

1920

2880

3838

-960

-958

0.12

0.14

0.16

0.18

0.20

-0.11999 37794 1999 27759

-0. 13998 65553 1998 72332

-0. 15997 37885 1997 89806

-0. 17995 27691 1996 72522

-0. 1999200213 1995 11882

35035

55427

82526

1 17284

1 60640

-14637

-20392

-27099

-34758

-43356

4799

5755

6707

7659

8598

-961

-956

-952

-952

-939

0.22

0.24

0.26

0.28

0.30

-0.21987 12095 1992 98349

-0.23980 10444 1990 21473

-0.25970 31917 1986 69895

-0.27957 01812 1982 31380

-0.29939 33192 1976 92838

2 13533

2 76876

3 51578

4 38515

5 38542

-52893

-63343

-74702

-86937

-100027

9537

10450

11359

12235

13090

-939

-913

-909

-876

-855

0.32

0.34

0.36

0.38

0.40

-0.31916 26030 1970 40365

-0.33886 66395 1962 59277

-0.35849 25672 1953 34173

-0.37802 59845 1942 48987

-0.39745 08832 1929 87063

6 52473

7 81088

9 25104

10 85186

12 61924

- 113931

- 128615

-144016

- 160082

-176738

13904

14684

15401

16066

16656

-814

-780

-717

-665

-590

0.42

0.44

0.46

0.48

0.50

-0.41674 95895 1915 31239

-0.43590 27134 1898 63945

-0.45488 91079 1879 67306

-0.47368 58385 1858 23270

-0.49226 81655 1834 13747

14 55824

16 67294

18 96639

21 44036

24 09523

-193900

-211470

-229345

-247397

-265487

17162

17570

17875

18052

18090

-506

-408

--305

-177

-38

0.52

0.54

0. 56

0.58

0.60

-0.51060 95402 1807 20755

--0.52868 16157 1777 26593

-0. 54645 42750 1744 14021

-0. 56389 56771 1707 66455

-0.58097 23226 1667 68178

26 92992

29 94162

33 12572

36 47566

39 98277

-283469

-301170

-318410

-334994

-350711

17982

17701

17240

16584

15717

108

281

461

656

867

1. 0000000000

0.99980 00000

0.99920 00002

0.99820 00019

0.99680 00109

-2 0.9950000417

3 0.99280 01244

-5 10. 99020 03137

-4 0.98720 06990

0 0.98380 14170

-13 0.98000 26662

0 0.97580 47231

-26 0.97120 79600

-4 0.9662128656

-33 0.96082 00664

-21 0.95503 03504

-41 10. 94884 46924

-34 0.94226 42810

-63 0.93529 05472

-52 0.92792 51946

-75 0.92017 02309

-84 0.91202 80002

-98 0.90350 12175

-103 0.89459 30028

- 128 0.88530 69172

-139 0.87564 69982

-146 0.86561 77965

-173 0.85522 44116

- 180 0.84447 25276

- 195 0.83336 84486

-211 0.82191 91319

0.62

0.64

0. 66

0. 68

0.70

-0.59764 91404 1624 04558

-0.61388 95962 1576 62287

-0. 62965 58249 1525 29614

-0.64490 87863 1469 96594

-0. 65960 84457 ( 1410 55344

43 63620

47 42271

51 32673

55 33020

59 41250

-365343

-378651

-390402

-400347

-408230

14632

13308

11751

9945

7883

1085

1324

1557

1806

2062

-218 0.81013 22209

-239 0.79801 60751

-233 0.78557 97983

-249 0.77283 32636

-256 0.75978 71353

0.72

0.74

0.76

0.78

0.80

-0. 67371 39801 1347 00275

-0.68718 40076 1279 28355

-0.69997 68431 1207 39333

-0.71205 07764 1131 35962

-0.72336 43726 1051 24204

63 55069

67 71920

71 89022

76 03371

80 11758

-413819

-416851

-417102

-414349

-408387

5589

3032

251

-2753

-5962

2294

2557

2781

3004

3209

--232 0.74645 28865

--263 0.73284 28128

--224 0.71897 00408

-223 0.70484 85318

- 205 0.69049 30788

0.82

0.84

0.86

0.88

0.90

-0.73387 67930

-0.74354 81340

-0.75233 97811

-0. 76021 47734

-0.76713 81781

967 13410

879 16471

787 49923

692 34047

593 92875

84 10794

87 96939

91 66548

95 15876

98 41172

-399036

-386145

-369609

-349328

-325296

--9351

- 12891

- 16536

-20281

-24032

3389

3540

3645

3745

3751

-180 0.67591 92983

- 151 0. 66114 36145

-105 0.64618 32379

-100 0.63105 61348

-6 0.61578 09914

0.92

0.94

0.96

0.98

1.00

-0.77307 74656

-0.77800 28847

-0.78188 78309

-0. 78470 92013

-0.78644 77329

492 54191

388 49462

282 13704

173 85316

64 05839

101 38684

104 04729

106 35758

108 28388

109 79477

-297512

-266045

-231029

- 192630

-151089

-27784

-31467

-35016

-38399

-41541

3752

3683

3549

3383

3142

-1 0.60037 71691

69 10. 58486 46526

134 0.56926 39909

166 0.56359 62307

241 0.53788 28427
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6. The Adams-Bashforth Method

Historically one of the first of the approximation techniques was

suggested by J. C. Adams ( 1819–92 ) , the astronomer, and F. Bash

forth in their treatise , Theories of Capillary Action, 1883 .

Let us consider the differential equation ,

dy

=f(x,y) ,
dx

( 1 )

for which we assume that initial values , xo , Yo, are given and that the

function f(x ,y ) exists and has derivatives of all orders at (xo ,yo ) .

The method assumes that an initial table of values has been pro

vided from which a set of backward differences can be derived . This

preliminary table can be computed , for example , by means of a Tay

lor's series as described in the calculus of limits in Chapter 4 .

One then uses formula ( 13 ) of Section 4 to compute

S.*** (6)ds = y ( x + d ) –y( x ) = ay( 2)

=d[ a +v'(x)+2Ay'(x–d)+pX4%'(x–2d)+ 4y'(2–3d)+...]
==

(2 )

Since Ay (x) has thus been found , the next vaiue in the table is com .

puted , a new set of differences is obtained , and the process continued

to the next succeeding value.

As an example, we shall consider the equation introduced in the

preceding section . We assume that values of y and y ' have been com

puted through x= 0.20 and we shall use these to extend the table to

x= 0.22 . We thus have the following values available :

y= 0.98000 26662, y' = -0.19992 00213 , Aųj ' = - 1996 72522 ,

Afy' = 1 17284 , 18y' = 34758, A4y' = 7659, Aby'= 952 .

Substituting in (2 ) , we thus obtain :

Ay = 0.02 ( –1999200213—998 36261 + 48868

+ 13034+2670+ 314) X 10-10,

= -0.00419 79432 .

Hence, for x= 0.22 we have

y= 0.98000 26662-0.00419 79432 = 0.97580 47230,

which differs from the recorded value by one unit in the last place .

It is clear that we can continue from this point to the next and hence

construct the value of y over any range that may be desired .

556037 0–61-32
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7. The Runge -Kutta Method

The method that is used perhaps more than any other in the inte

gration of differential equations is one devised by C. Runge ( 1856–

1927 ) * in 1895 and extended by W. Kuttať 6 years later . Its appli

cation to the equation ,

dy =f(x,y), ( 1 )
da

is described as follows.

Let us assume that the initial values are do and yo. An increment

of the independent variable z is then selected , let us say d, and the

following values are successively computed :

kı = f (x0 ,yold

kz=f(x + d, 90+Motkod,

ks =fizo + *+,x + kad,

ka = f( 20 + d, yo + kz) d . ( 2)

The new value of y which corresponds to do+ d is then given by

y = yo + k , where we write

k =( + 2kz+ 2kg + ka). (3)

In illustration of the application of this method , we shall consider

the example of Section 5 subject to the conditions : Yo = 1, 10 = 0 .

If we choose d= 0.1 , then we get the following values :

k = 0, ky = -0.005, kz= -0.00499 99688, kq = -0.00999 97500 ,

from which we compute:

kusk= - (- 0.02999 96875 ) = - 0.00499 99479 .

We thus obtain the approximation :

y = yo + k = 0.99500 00521 ,

which , when compared with the correct value : y = 0.99500 00417 ,

shows an error of 1 in the eighth place .

* Mathematische Annalen , Vol . 46 , 1895, p . 167.

Zeitschrift für Math. und Physik, Vol . 46 , 1901, p . 435 .
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The order of approximation achieved by this method is indicated

by the following special case :

dy =f(x). ( 4 )

Since the values of the constants are now :

kı = f ( x ) d, kz=f( xo + nd )d, ks= 1( zo + d )d, ka = f( x + d ) d,

we obtain the solution :

y = yo + [ (x +48(70+ 4)+1(8+d ] (5 )

Observing that the solution of (4 ) is actually the integral

y=yo+ S* (z)da,

we see from (5) that the present method is equivalent in this case to

Simpson's rule given by ( 14) in Section 4. Since the error in this

formula is of the order of dº, we can expect a similar error in the general

formula .

About the order of approximation Runge and König make the

following statement : *

“ The error of the procedure one can estimate through calculation

of the term of fifth order . It is very convenient, however, to apply

the process a second time with twice the interval breadth. The error

of the first computation amounts to about one -fifteenth of the dif

ference of the two results."

In illustration we shall compute the value of y in the example

previously used , for r= 0.20 . We shall first apply the method of

this section once using d= 0.2 , and then we shall apply the method

twice using d=0.1 . The difference between the two values should

then be approximately fifteen times the actual error. These computa

tions follow :

Interval : d= 0.2 .

1 y 1-2 Iv (y-2) k = dzy ( y - 2 )

1 -10

0.1

0.1

0.2

0

-0.1

-0.09999

-0. 19992 00160

0= ki

-0.02 = k ,

-0.01999 8 = ks

-0.03998 40032 = k4

1

0.99

0.980002

-1.01

-1.019998

•C . Runge and H. König : Vorlesungen über Numerisches Rechnung. Berlin , 1924. See p . 294 .
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We thus have ,

k = f (
1

( -0.11998 00032) = -0.01999 66672 ,
6

Y2 = yo + k = 0.98000 33328.

Interval : d=0.1 .

1 1-2 Ty (y- 2 ) k = dry ( y - 2)

10

0.05

0.05

0.1

1

0.9975

0.99500 003125

0

-0.05

-0.04999 96875

-0.09999750005

0= ki

-0.005 = kz

-0.00499 996875 = k3

-0.00999 975001 = k1

-1.0025

-1.00499 996875

From this we get,

k = (-0.02999 968751 ) = - 0.00499 994792,

Yo = yo + k = 0.99500 005208 .

Interval : d= 0.1 .

T V y - 2 ry(y- 2) k = dry ( y - 2 )

0. 10

0.15

0.15

0. 20

0.99500 005208

0.99000 017708

0.98750 080206

0.98000 239553

-1.00499 994792

-1.00999 982292

-1.01249 919794

- 1.01999 760447

-0.09999 750006

-0. 14998 500055

-0. 14997 656552

-0. 19992 001906

-0.00999 975001 = ki

-0.01499 850005 = ka

-0.01499 765655 = k3

-0.01999 200191 = ks

We then compute ,

k

1

( -0.08998 406511 ) = - 0.01499 734418 ,
6

y2= yı + k= 0.98000 27079 .

The difference between the two values of yz is thus :

AY2= 0.00000 06249 ,

giving an error E = ay:= 0.00000 00417 ,

which is found to be equal to the actual error :

0.98000 27079-0.98000 26662 = 0.00000 00417 .
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The derivation of the Runge-Kutta equations involves a tedious

computation , but the details of the argument can be inferred from

the following analysis .

Referring to equation ( 1 ) , we first write the expansion of its solution

as the following Taylor's series:

yó
y - yo = yo( x x ) + %

2 !
( x- xo) ?+ ... ,

= fo(2–6w)+31 ( +1 .1 )(2–0) +.....

If we now write : y - york, and x- xo=d, then this expansion

becomes

of d2

+ (6)

k =fd + C +1 dy )o 2!

We next consider the following expansions :

kı = fod ,

+

k =1(7o+3d,mo+3* )--[ +Ctra + m) fo + ...]

ka =f( xo+ zao yot *:}x=d[ fo + Chondon this mom ) fo +...]

ke=1 (2+d, yo + ks )d =d[ fo+ (de inthemi)fot....]

If we now write,

k = akitakz + azkz tanka,

where an , 22 , 23 , 24 are parameters to be determined, it is clear that

we get

d2 o

k = (ai + az + az +24)d.fo + ( az + az + 2a )
дх[ (as+ as+

+ (aski + aska + 2a.ko Jyot.
( 7 )

But we also observe that

azki + azka + 2a4kz = (az + a3 + 2ax)d.fo + higher terms in d .

It thus follows that when this is substituted in (7 ) , we obtain :

k=(as+as+as+a)d:fo + '[(as+as+ 20.)(@s+ as+ 20.)de +(az+ as+ 2a.)fogy tot.....
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If this expression is to be identified with (6 ) , we see that the ai

must satisfy the following equations :

ai + az + aztai = 1, az + az + 20 , = 1 . (8 )

Two similar equations are obtained when terms of orders d and dº

are identified in the same manner . Their derivation is somewhat

involved and will not be given here . They will be found to be the

following :

3a2 + 3a3 + 120 , = 4 , az + az + 80 , = 2. (9 )

When this system of four equations is solved , the values given

earlier in (3 ) : 1 = 24 = 1 /6, A2= 2z= 1 /3 , are obtained .

8. The Milne Method

A method similar to those already described , but which recommends

itself for its simplicity , is due to W. E. Milne. * This method consists

in making two extrapolations from an initial set of four values . Let

these values be (28, yo) , (x1,9ı ) , (x2,42 ) and (23 , Y3 ) . The corresponding

values of yo, yi , y2, and yz are then computed from the equation ,

dy

=f(x ,y ) .
dx

( 1 )

By means of these derivatives we then obtain an approximation for

y, from the formula :

4d

Y4 = yot ( 243- yź+ 2yí ) .
314 + (2)

This new value is now substituted in the differential equation to

obtain y4 and a new approximation, Y ,, is obtained from the formula :

d

Y ,= + z (y4+4y:+ ya) .
(3 )

The error in the second value is estimated from the difference

| Y ,-y.l.A (4)
29

If this error is sufficiently small, so that the desired order of approxi

mation has been attained , then one proceeds to the next value.

*W . E , Milne: " Numerical Integration of Ordinary Differential Equations, " American Math. Monthly ,

Vol . 33, 1926 , pp . 455-460.
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In illustration , using the equation

dy

=ry (y- 2) ,
dx

(5 )

and the initial values : Xo= 0 , Yo= 1 , we obtain the following values by

one of the various methods already described :

r
Y y ' =xy (y - 2)

0.00

0. 02

0.04

0, 06

1. 0000000000

0. 99980 00000

0. 99920 00002

0. 99820 00019

0. 00000 00000

-0. 01999 99992

-0. 03999 99744

- 0. 05999 98056

Employing (2 ) and observing that d= 0.02 , we compute for r= 0.08

the following value:

0.08

Y4 = 1 + ( -0.11999 96112 +0.03999 99744-0.03999 99984)
3

=0.99680 00097 .

Substituting this value in ( 5 ) we get for r= 0.08 :

y ' = -0.07999 91808 .

When this in turn is introduced into ( 3 ), we then obtain :

0.02

Yq = 0.99920 00002+ ( -0.07999 91808
3

-0.23999 92224-0.03999 99744)

= 0.99680 00110 .

Forming the difference (4 ) , we have A = 13/29 , which shows that the

value Y 4 cannot be in error by more than one unit in the last place.

Referring to the table of values given in Section 5 , we see that this

is , indeed , the case .

Formulas (2 ) and ( 3 ) are special cases of the integration formula (9 )

of Section 4 , namely,

n2 (p)

no(p)f( . A ?f ( x ) +
2 !$,

For p = 2, we have, to differences of fourth order,

1,= S **f(s)ds=d [260 +2010 +5 ?fo–-202" }

(Su + 41 + f9) - 4*50.

d

(6 )
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Similarly , for p= 4 , we have, to differences of fourth order,

I , =S **5(8) ds=d [ 4fo + 84fo +7° 4°% + %% + 44 24se ];

=
14

( 2f7 - f2 + 2f1) +
45

dAfo . (7 )

Since we have

29

1,-1 =
11= 90

dAfo,

the error in I, as measured by the fourth difference is seen to be

\ 12–1 \ /29 .

Formulas (2 ) and (3 ) are obtained in an obvious manner by re

placing f (s) by y' (s ) and employing the argument given in Section 6 .

9. Application to Differential Equations of Higher Order and to Systems

of Equations

The methods described in the preceding sections can be applied

without essential change to the solution of differential equations of

higher order than the first and to systems of differential equations .

Thus, let us consider the following differential equation of second

order :

y' ' =f(x ,y,y ' ) , ( 1 )

wheref(x ,y ,y ' ) is a function of the three variables which is analytic in

the neighborhood of the initial values : X0,40,yó.

To reduce the problem to the cases already considered we merely

write : y' = 2 , and thus ( 1 ) becomes the system :

z ' = f(x ,y , z), y ' = 2 . ( 2 )

From the initial values: Xo, yo , zo =y , we first compute the values of y

corresponding to Xo + d, ro + 2d, etc. , from the series :

11

y = yo + zo(3 - X )+
2 ! zó ( x 2) +3; 2 '(x— X ) + ..., (3 )

where we abbreviate :

z' = f(x,y,z), 2" -of of
of

2+
діду Oz

of of

Ox ' dy

+

zt
of

OZ
f, etc.
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From these values a table of z is prepared with differences to a

sufficiently high order to insure a satisfactory degree of approximation .

The table is then extended by the integration of the equation : y ' = 2.

It is clear that the method just described can be extended to more

general systems of differential equations. Thus, if we have the

system :

dr

(4 )
dtde=f(0,1,5), y =9(0,2,0 ).

where f(t,x,y ) and g (t ,x ,y ) are functions analytic in the neighborhood of

the initial values : Xo, Yo, t= 0 , solutions can be obtained in the form

of the following series :

1 1

c = " + t + , aptº + , chº tº + ...,
2 ! 3 ! +

1 1

y=yo+yótto yo'ta + of yl )43+ ...
3 !

(5 )
!

After preliminary tables have been constructed from the series

for a few values of x and y , these can be continued by the process of

integration illustrated in the preceding sections.

As an example, let us consider the following equations:

de

dt

I— Xy ,

dy

=-y+xy,
dt

( 6)

subject to the initial conditions: Po= -1 , yo= 1 , when t= 0.

We first compute the values of ( *) and y( n ) for t= 0 from the following

equations :

x '
n(n- 1 )

2 (n 2y'' + . · + xy (m) ]2 !

yn+ 1) = x (n) — y(n) — 2 (n - 1)

We thus obtain the following sets of values:

n X( n) n x( n) n yin) n y ( n )

- 2 1044

-7434

1

2

3

4

5

0

-2

4

-- 22

116

6

7

8

9

10

- 754

5636

-- 47782

453316

- 4761506

1

2

3

4

5

4

- 10

36

- 174

6

7

8

9

10

60852

- 561950

5776772
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When these values are substituted in (5) and the coefficients reduce

to decimals, the following expansions are obtained :

x = -1- + 0.66666 66667 13–0.91666 66667 +4 +0.96666 66667 +5

–1.04722 22222 16+ 1.11825 39683 17-1.18506 94444 tỷ

+1.24921 73721 19— 1.31214 34083 t10 + ... ,

y = 1-2t + 2 + — 1.66666 66667 + 3 + 1.5t* — 1.45 t +1.45 16–1.475 t?

+1.50922 61905 78 — 1.54858 35538 tº +1.59192 35001 [10+ ..

We now use these expansions to compute to 10 decimal places the

values of x and y from t = 0 to t = 0.10 at intervals of 0.01 . From

these quantities , the values ofx' = x — xy and y ' = - y + xy are computed

over the same range and the table of their differences formed . We

thus obtain the following table :

t 1 I ' = 1 - my Ar ' Ar' AT Ar Ax

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

-1.00000 00000

-1.00009 93424

-1.00039 48103

-1.00088 27198

-1.00155 95851

-1.00242 21093

-1.00346 71742

-1.00469 18324

-1.00609 32987

-1.00766 89422

-1.00941 62795

0.00000 00000

-0.01980 36193

-0.03922 85799

-0.05829 52322

-0.07702 29061

-0.09542 99732

-0. 11353 39055

-0.13135 13299

-0.14889 80788

-0. 16618 92371

-0.18323 91859

-1980 36193

-1942 49606

-1906 66523

-1872 76739

- 1840 70671

- 1810 39323

- 1781 74244

-1754 67489

- 1729 11583

-1704 99488

37 86587

35 83083

33 89784

32 06068

30 31348

28 65079

27 06755

25 55906

24 12095

-2 03504

-1 93299

-1 83716

-1 74720

-1 66269

- 1 58324

-1 50849

- 1 43811

10205

9583

8996

8451

7945

7475

7038

-622

-587

-545

--506

-470

-437

t V V = -utty Δy'' Apy ' Δ3y '' A'Y ' Aly'

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1.00000 00000

0.98019 83482

0.96078 69021

0.94175 61808

0.92309 70306

0.90480 06101

0.88685 83762

0.86926 20706

0.85200 37068

0.83507 55589

0.81847 01495

-2. 00000 00000

-1.96049 40713

-1.92195 31325

-1.88434 36684

-1.84763 37096

-1.81179 27462

-1 . 77679 16449

-1.74260 25731

-1.70919 89267

-1.67655 52640

-1.64464 72431

3950 59287

3854 09388

3760 94641

3670 99588

3584 09634

3500 11013

3418 90718

3340 36464

3264 36627

3190 80209

-96 49899

-93 14747

-89 95053

-86 89954

--83 98621

-81 20295

-78 54254

--75 99837

-73 56418

3 35152

3 19694

3 05099

2 91333

2 78326

2 66041

2 54417

2 43419

- 15458

- 14595

--13766

- 13007

-12285

-11624

-10998

863

829

759

722

661

626

From the values in this table it is now possible to extrapolate by

any one of the methods previously described . In illustration , let us

compute both x and y for t = 0.10 by using the values corresponding

to t = 0.09 . We shall employ formula (2 ) of Section 6 for this purpose .
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Thus, observing that the differences for ' are : -1729 11583 ,

2555906 , -150849 , 7475 , and - 470, and that the differences for y ' are :

3264 36627 , – 75 99837 , 254417 , - 11624 , and 661 , we readily compute:

x (0.10) = - 1.00766 89422 + 0.01 ( -16618 92372-864 55792

+10 64961-56568 +2606 - 155) X10-10 ,

= -1.00941 62795 ;

y (0.10) = 0.83507 55589 + 0.01 ( -167655 52640 + 1632 18313

-31 66599 + 95406—4052 + 218) X 10-10

= 0.81847 01495 .

The Milne method described in Section 8 is also effective in this

example. Thus, if we assume as before that x and y are to be deter

mined for t= 0.10 from preceding values , we assume as known the

values corresponding to t= 0.06 , 0.07 , 0.08 , and 0.09 . Hence, using

formula (2 ) of Section 8 , we compute :

0.04

245 -1.00346 71742+ [ 2 (-0.16618 92371 +0.14889 80788
3

+2 ( -0.13135 13299) ] ,

= -1.00941 62816 ;

0.04

ya = 0.89685 83762+ [2 ( -1.67655 52640) +1.70919 89267
3

+2 ( -1.74260 25731 ) ] ,

=0.81847 01529 .

With these values the corresponding values of xa and y'a are found

from (6 ) . These are respectively: x = -0.18323 91829 and y =
-1.64464 72516 .

Formula (3 ) of Section 8 is now employed with the following results :

0.01

X = -1.00609 32987+ ( -0.18323 91829 +4 ( -0.16618 92371 )
3

-0.14889 80788) ,

= 1.00941 62794 ;

0.01

Y= 0.85200 37068+ [ -1.64464 72516 + 4 ( -1.67655 52640 )
3

-1.70919 89267 ) ,

= 0.81847 01492 .

The errors are seen to be respectively 1 and 3 in the last place .

Formula (4 ) of Section 8 estimates these errors to be of the order of

1 unit with that of Y , somewhat greater than that of X ,
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Appendix 1

Types of Equations with Fixed Critical Points

The following 50 types of nonlinear differential equations of second order ,

special cases of the general equation ( 1 ) of Section 1 , Chapter 8, are taken from

Gambier and Ince with some change in notation :

1 .
day

=0 .

dx²

dạy
2 . = 6ya..

da²

3 .

d'y

di? = 6ye+

4.93-6*+ 2

เ
5 .

dz?= [q(z) — 247d+ g'(x)y.

dy

== - (3y + 9 (x ) ]
dit ?

-9(x ) y — ye.

day
6 .

dx

dạy
7 . =2y.

ax?

8.
day

dra
= a + by + 2y3

9.

dây

=2y + xy + H.
dr

d'y. dy
10.

da -ya

a solution of q' ' = 6q2 + c, c= 0 or 1 ; or a solution of equation 4.

da? dy
11 .

Y dr

day
12. y

=

- )

Calent + a + by + cyø + dys.

ter ( * *-u

14. vieta(Che)* +59(e)ye+r(a) g'(e)yo—r"(2)y.

ya ( )*+ r ( 2 ) yº– vekr"(x)/r(a)].

day
13. my

dx?
tax + by + cy: + dzy .

15. Y dee?

495
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dạy
16 . y dx²

day_1 dy
2

dºg_170412

20. ydr22 de

21. y .

dºg_37d

dx²

Code) –g'(x) + yo— 9(2)y® +q}"(z)y.

17. " G )

18. ydz = (a ) +4y®.

19. Sony= ( % )*+ 4y8+ 24 .

( 7) +4y + 2xy?.

i(de)*+ 39*.

22. G.)-

23. Hot Com)*+ 348+ 9y2 + by.

C %)*+g(a)vedenie+ g( )von +

25. GAD + [ - ] + (a) +r(z) + $

ille)

where ( 1 ) g " = 69º, or (2) q" = 6q2+ ,or (3 ) g " =6q2 +1.

27.--" )+ [ - * *2 + 90 + pv ]-–fy+ hy

-y.

24. Y dig?

d ? у m - 1 / dy \? mq' mq?

m

m + 2.308. (m + 2)244.

+

2

dy

26. Y

day 3/dy

dx² 4 da + 69² dx
- 36q '? – 129''y + 129y2 + 3y3,

+

+
m ( g' - f9)

-43

m+ 2

mg2

(m + 2)34*,

where f, g , h are definite rational functions of two arbitrary analytic

functions g (x) and r (x) and their derivatives .

( 1 ) v ' = 6v2, or (2) y ' = 6v2 +
2'

or (3) y ' = 622 +x .

28.van( )*+ (qy– go to 72p2 + 3 ( + 592)y2– 2qy2+ 3y

where p = 3(v2—vw) and q= (vá — v ) / ( 0.3–0 ) and ri, va are solutions of

e+

29. v % )+ .

30. veka )*- q2 + 2by2+ 4cy® +

= C ) x2–5a² + 2 (z? — b ) y2 + 4xy3 +

Ca)

3

qyt..

3

31. y

day 1 / dy

dra 244.

day

32.
ydra21dx

1

2
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33. - - +ay+4y.

34. vieta (C4 ) – –242+ 4ay?,a $ 0.

35. vd = ( )'+ (p +žav–usein-3p + ( 2pq - 3pºw)

+ (p+ 49'+ ) – 9999+ Žurn

where , if 2y3 + Su + T represents either 2y3 or 2y3 + ay + b , or 2y3 + äyta,

2

S
then p=

dy 5

36.
Yaz5 dx di gps- (pq + 5pply- ) +( -- grav - urbia

3q' + 2)we +5qy8 zy".

er on - C* ==;)*;q= (03–04 /(03–0.), in which v,and

11 4

+ P - 30

1

va are solutions of v ' = 6v+ S, S= 0 , ort.

37. ( y — 32) mm = 3(1– 3y)(1 – 34) ( line)

height =3(1 – 31) ( %) +ay?(1– 4 ) + b (1 – y) * + cy * (1 – y) +dya.

39. x (y yon = 3x*(1 – 3y) ( %) – xy(1– mamma tay (1– y) ;

38. (y- y2)

+6 ( 1 - y ) 3 + cxy ( 1 - y) + dr’y (1 + y ) .

dạy

40. (y- y2)
dx2

= (1-3y)( )*+2(py +quesdy+ ( 1 - y) ? (82y2– 12))
dx

+ 2y2 ( 1 - y) [q2 - p ? + (p ' + 9 ') ],

where s' = -2qs, and t ' = 2pt .

dºg 2 ,

41. (y- y2)
dx2 3

42. (y- y2)
dºg_2 ,

dx23

(1–24)– ( y)

=(1-2y) ( %) +

(p + q+r)4(1 –ye+ (3py2–3q * (1 – y)2

+ Ipy + 9 (1- y) + ry (1 - y )

3

- 3r y3 (1— y )2 — [3r ' + (p + q - r)]y ?(1— y) 2

3 3

— [3q' – 29(p +q - r)]y(1– )2+[3p - p (p + q + r)]y (1– y, )

where 3p = 201 , 3q = vi /vitvit Elvi + 2C, 3r = v1/01-01 + E /V1-2C , where

vi is any solution of the equation : 2vv ' ' = v'2 + 3v1 + 8C 3 +4D02 EP .

d ? u 3 dy

43. (y- y2)
dx2 da

2

43. (y- (1 –2y)( )
556037 0-61 33
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day 3

44. ( y - y2)
dir ? 4(1 –2y) (dub) +ay ( 1 –y)2+ br (1– y) + 2cy * (1 – ) .

45. (y–, (1-2y) ( y )* + [ay ( 1 – y) + b ( 1 – 3) + coming

+ 4d2y2 (1 – y ) (1-2y)- 62 ( 1 - y) 2 + c2y2 – hy(1- y)2 + kyề( 1 – y ) ,

b- c=

3 1

dy

dr

2

where a = (v - v ') / (02-01), (ontva), b+ c=

(v1 – vá) / (v2 — v1 ) , d = 3 (02–01 ) , h = 25' + ab, k = 2c' + ac, and v1 , vz

are solutions of v = 2w + Sv + T, where S and T are the coefficients in

equations 7, 8, or 9.

46. (y = udia(1–29) ( % ) + 2 *' (y +240 mm ( 1 – y ) = (1 – 2y)

+ (H ) x(1+2y)+3(H )*v*(1 – )– Hy( 1 – u)”,

where H= 2 (ví + vi)+ b, v , being any solution of : v = 2v3 + bv + a .

47.(y —go ay = (1–2y) ( %) +Cent ) + 2 * 4-y (2y + 1 )

(2a + 1 )2

+ y_ (1 - y) (1-2y). + ( ZH)+)*y2– Hy (1 – y)H2

[ z(H ) - (H )*]x(1 – u) ,

where H = 2 (0 ,' +0,2)tz and v , is any solution of : y ' = 223 + vx + a .

48. (y - y2) = (4–7y) ( )7y)( %)*+ (1– y)(ay2+by + c) y ga?y*(1 – y )?

–fy°(1– y) 2 – 30°(1– y) 2 – gue –hy ( 1 – y) + 394 ( 1 – y ) ,

where a = (u + w), b= 5(2u + 5w ),( ), c = - |(10–2u),s= }(p?–pg) –2,

222, h = 3(r'— rs)

v2-01 , 03-0 ' vi - ví vz - ví

[ = [ edit ,

+

dạy

dx?

9 3

9 =
in which

1

U =

2

2 =+

V1 ]
W=

V3 V -V1 V3 01

1

where V1 , V2 , vz are three particular solutions of : v ' = 602 + S, S= 0 , or r .

49. y ( 1 – y)(a wine sla 2(a+ 1)y+ 372)— 2(a + 1)y +372166* )*+by?(1– y)=(a— 1) ?

tc ( 1 - y) 2 (a - y) 2 + dy- (a - y)2 + ey? (1– y) 2 .

d day

50. y ( 1 - y) ( x - y) Gr2=dzz=blir – 2(0 +1)y + 3,21( ) + 6
y ( 1 - y )

+ [ x2 + ( 1 - 2x ) y ]
( 1 - x ) dr

1

+

2.7+(1 —-)zlay?(1– y ) ? (o – y) 2 – br ( 1 – u) ? (2 — y) ? –e ( 1 – 1) (r – y) ?

- dr (1-2) ( 1 - y) 2 ) .
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Elements of the Linear Fractional Transformation

The following table gives the explicit values of x' (x) , which are the elements of

the transformation :

a + bz

= ad- bc70T ) y = + dz

when this transformation is applied to the equation

dạy

L(y) = (A0+ A1y)
dx2+ ( Bo + Bij) + C. ( ')*+ Do+ Diy + D999+ D5y9+ D«y = 0.

The equation , T L(y) = M(z) = 0 , can then be written :

f| (2,2) diz +80(0,2)( ) + fo (0, 2) e dema+ fo(2, 2) der + fo(0,2)=0,

where we define :

(2,3) = tiz) ++ z ) 2 + 1 ( c) 2 + (z ) = ++ ( z) 4 .

Noting the explicit values : A ' = a'd + ad' — b'c - bc', and A ' = a''d + 2a'd '

tad' ' - 6''c - 26'c'— bc' ' , we obtain the following expressions for ti (x) :

vi(x ) = - Ac( A.C + Aja) ,

VI (1) = -A [2A.cd + A (ad + bc)],

vi (x) = - Ad(Ad+ A ,b) , * } ( ) = ¥ }( x ) = 0.

Vi (x) = A [20(AC + Aja ) + AC .),

vi (x) = 2ad(A1+ A b) ,

vi(x ) = b2d- (Co + 2A ) + 2bd2(Aod - Ab - Cob ) + d2b (Cob - 2A,d ) = 0 ,

* {( x ) = }( x ) = 0 .

Hi (2) = A (4acdd ' - 26'c-d - 2bc-d ') + A (4a2dd' - 2ab'cd - 2abcd ')

+ Co (2bb'c? – 2ab'cd - 2abcd ' + 2a²dd' ) ,

+ ](x ) = 4d2 A , (ad'– b'c) + A (6abdd ' - 2ab'd2 - 206'cd – 2b2cd ')

+ 2C . (bc - ad) (6'd - bd ' ) ,

VC) = 2d (bd'-'d ) (Ad+ A ,b) ,

V} (x) = 4}(x) = 0 .

vi(x ) = (4c'A - 2cA ') (Anc + Aja ) + 2C A (ac ' - a'c )- CA (Boc + Bia ) ,

(a ) = A.(66'cd -- 4acdd' - 2bcd' – 4a'cd2) + A1 (4ab'cd + 2bb'c2

- 2a?dd ' -- 4abcd ' – 2aa'da + 6abc'd- 2a'bcd- 2b2cc')

– 24C . (a'd - bc' ) – 24Bocd - AB, (bc+ ad) ,

499
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Vi (x) = A. (66'cd2 — 4bcdd ' - 2ad2d' - 2a'd3 + 2bc'da) + Al (2ab'd2

+ 4bb'cd — 4abdd' - 2b2cd ' – 2a'bd2 + 262c'd ) + Bod ? (bc - ad)

+ Bibd (bc - ad ),

vi(x ) = 2 Ayd ? (b'd - bd ') + 2A ,bd (i'd - bd ') , ¥} (2) = 0.

From the above values, we also obtain the following sums :

+1 (x) + vi(x ) = 4A [A (cd' + c'd)- cdA') + 2A112A (bc'+ ad') - A ' (ad+ bc) ]

+ 2Coa (ad ' -a'd+ bc' -b'c) – 2B Acd – B , A (bctad ) ;

vi (x) + ¥ } (x ) = (2d'A - DA ') (Aod + A , b) + 2C , A (bd' — b'd) + dA (Bod + B,b) ;

+1(x ) +43(x ) = 0 .

vi( t ) = ( A.C + Aja ) (c (a'c - ac ' ) ' - 2c'( a'c - ac') ] + Cola'c - ac') ?

+ (Boc + Bia) c (a'c - ac ') + cDotacD,taʼc Data cD3,

(x) = A.(3a''cd+ 6''c3— 2acc ''d— bcc" — acad" – 4a'cc'd - 26'c'c2

– 2a'cd' + 2ac'2d + 2ac'd + 2bcc'2+ 4acc'd ' ) + Aila''bc2 + 2aa''cd

+ ab '' c2— 2abcc' ' – a c''d - a²cd " - 2aa'c'd - 2a'bcc' - 2ab'cc'

- 2aa'cd ' + 4abc'? + 4a²c'd') + 2C , (a'b'c? ta'lcd - aa'c'd - a'bcc'

- ab'cc ' - aa'cd ' + abc'? + a²c'd' ) + B. (3a'ced + b'c3—2acc'd

- bc²c' - ac-d ' ) + Bi(a'bc2 + 2aa'cd - ab'c2 — a c'd- 2abcc' – a cs')

+ 4c3dD . + D , ( 3ac d + bc3) + D2 (2a²cd + 2abca) + Dz(a’d + 3a %bc) .

i (2 ) = A (3a '' cd2 + 36''c d - 2bcc''d - ac''d2- 2acdd ' ' — bc%d " - 2a'c'd2

– 46'cc'd - 4a'cdd' + 2bc'2d+ 4ac'dd' + 4bcc'd' )

+ Al(aa''da + 2ab ''cd -+ 2a''bcd + bb'' c2- 2abc''d- b²cc' ' – 2abcd "

- a²dd'' – 2a'bc'd - 2ab'c'd - 2aa'dd ' - 26b'cc'– 2a'bcd' + 26 % c ' ?

+ 8abc'd' ) + C.(b'2c ta'?d ? + 4a'b'cd - 2a'bc'd - 2ab'c'd- 2aa'dd '

- 266'cc' — 2a'bcd' + b2c'2 + 4abc'd' ) + B.(3a'cd2 + 36'cd - ac'da

– 2bcc'd - 2acdd ' — bc%d ' ) + Bi (aa'da + 2a'bcd + 2ab'cd+ bb'c?

- 2abc'd - b2cc' - a²dd' - 2abcd' ) + 6c2d2D.+ (3acda+ 3bc2d) D ,

+ ( a ? d ? + 4abcd+ b2c2) D, + (3ab2c + 3a2bd ) Dz .

** (x) = A. (6''cd ? ta''d3+ 20''cd2 — bc''d2– 2bcdd' ' – ad d '' – 2'c'da

- 2a'dad ' – 4b'cdd ' + 4bc'dd ' + 2add '? + 2bcd 2) + A1(ab''da + a''bd2

+ 2bb ''cd - bac''d - 2abdd ' ' – b2cd ' ' – 2bb'c'd - 2a'bdd ' - 2ab'dd '

- 2bb'cd+ 462c' d ' + 4abd ' ) + C. (20'2cd + 2a'b'd2 - 2bb'c'd

– 2a'bdd' - 2ab'dd ' – 256'cd ' + 262c'd '+ 2abd'2 ) + Boca'd3 + 36'cd2

- b'cd ? – addd ' - 2bcdd ') + Bi (a'bd2 + ab'da + 2bb'cd – b2c'd

- 2abdd ' – b2cd ') + 4cd3D . + (ad3 + 3bcd2) D ,

+ (2abd? + 2b2cd ) D2 + (b %c + 3ab2d) D3 .

+3(1) = (A.d + A b ) [d (0'd - bd') ' - 2d ' (b'd - bd') ] + C. (b'd - bd ') ?

+ Bod2(b'd - bd ') + Bibd (b'd - bd' ) + d (d ?Do+ bd2D , + b +dD2 + 63D3).



Appendix 3

Coefficients of the Expansions of the

First Painlevé Transcendent

The following table gives the values of the coefficients of the expansion of the

solution of the equation

day.
= 6y2 + 2a ,

dx2
( 1 )

The values of the coefficientsin the neighborhood of the movable pole : x = I1 .

are those in the solution ,

a - 2

y=

+ 4, + ao +
ao taju + a202 + ... , v = - 10, ( 2)

12

and they can be computed successively from the formula :

6
n -3

an =

m2 – 0-12
Qran - k - 2 , n> 4 .

k = -1

(3)

a-2= 1 , a- = do = a = 0 , 02= - 4x1 / 10, az= -1/6 , an = h , ag= 0,

1?x;
an=

300 "

an=

12x1

150
ag=

3hxi

110

+

12

264 '

ag

Лh

30

2

h2

010

- 13%

19,500 13 '

+

011

- 1113xí

73,500

+

012- [A21( + )-- (204+ ]

03-12 [ ( 100+ 2.0) --104 ]

4a =[ 144 ( 130.060 + 32.5m ) – 62: ( +3)+24 ( + )]

[15.147+ ]

[1320 +156 +2205+256 +223 ]- [ $ ]+ m7

215 =

* x

500

1 1

+
33.45 99.39

2 እ h ?

13.55'

2

016

Ari

3800

+

+
13hx|

3800

3

+ +

150 550
19
57

501
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The coefficients of the expansion

yo

y = yo + yó (z — Xo) + :
2 !

(2—30 ) +
yo ( 3 )

(x - 10)8+ ... ,
3 !

where y is a solution of equation ( 1 ) , may be obtained explicitly from the following

table of values of the derivatives :

y' ' = 6y2 + 4x ; y (3) = 12yy' +1; y (i) = 12 yy'' + y ' ) ;

y ( 5) = 12[ yy (3) + 3y'V' ' ) ; y (6) = 12[yy (4)+ 4y'y (3 ) + 3y' ' ?) ;

y (i) = 12[yy (5) + 10y''y ( ) + 5y'y ( ) );

y (8 ) = 12[ yy (6 ) + 6y'y(5)+ 15y''y (1 ) +10 (y (3 ) ) ?;

y = 12 [ yy (7) + 7y'y(®) + 217'y(s) + 35y (3) y (4) );

y (10 ) = 12[ yy ( 8 ) + 8y' y (7) + 28y'' y (6)+ 56y (3 ) y (5 ) +35 (y (4 ) ) 2] ;

y ( 11 ) = 12 [ yy ) + 9y'y ( 8) + 36y''y (7 ) + 84y( ) y (6)+ 126y (1) y ( 5) ];

y ( 12 ) = 12[ yy ( 10 ) + 10y'y (® ) + 45y''y (8)+ 120y(3) y (7) + 210y (1) y (6)+ 126 (y (5 ) ) ) ;

y ( 13 ) = 12[yy (11) + 11y'y ( 10) + 55y' ' y + 165y ( ) y (s ) + 330y(4) y (7)+ 462y (5 ) y ( ) );

y ( 14 ) = 12[ yy ( 12) + 12y'y ( 11 ) + 66y'' y (10)+ 220y (3 ) y ( ) + 495y(4) y (8) + 792y(5) y ( )

+462 (y ( )) ' );

y ( 15 ) = 12[ yy ( 13 ) + 13y'y (12)+ 18y''y ( 11) + 286y (3) y (10)+ 715y ( ) y ( ) + 1287 y(6) y (8)

+ 1716y (6) y (7) ).



Appendix 4

Coefficients of the Expansions of the

Second Painlevé Transcendent

The following table gives the values of the coefficients of the expansion of the

solution of the equation

dạy

= 2y8+zytu, ( 1 )
dx2

The values of the coefficientsin the neighborhood of the movable pole : x=X1 .

are those in the solution :

a- 1

y = + aotaju+ a202 + azw3 + U=I-11 (2)
V

They can be computed successively from formula (4) of Section 11 , Chapter 8.

a- 1= 1 , ao= 0 , 2 , = -21/6 , ag= -14 ( 1 + x ), ag = h ,

au = gt1(1 + 3m ), as= ( 27+1084-216x1+ 8142- 2x +),

- (2x1 + 3pi + 72h + 108uh) ,

1

3024

do

az = [ - 21 as + * (1 + x)(1 + 3m ) – ahtatio(1 + x)2-1 (1 + 3u ) } + 6h2) ,

ag =bil - astek (1 + 34) + 4392 /( 1 + 31 )+ (1 + x)}

(1 + w )8 – 2s (2 + 3x) ] ,

ag = ( -21(az + ha) + xil 864 (1 + 3m)? + aastid (1 + )(1 + 34) }

th{12a5 + (1 + x )2}– (2+ 3u) ao) ,

Q10 = – as + } (2 + 34 )as+ iez (1 + x )? (1 + 3m) } + xilo- h (1 + 34) }

+ 12har h2(1 + x) – (2 + 3u)a7).

Qu = idaktif - as + }(2 + 36)2. * (1 +x)(1 + 34) — 2has}

+ xiliar - siga ( 1 + 3m)2} + 6a3+( 1 + u) ?as+ 12ha ,– (2+ 3x)as+ 2h"),

2 12 = 126/2011 - 210+ |(2 + 3m )ar+ inha(1 + 3u) — 2haol

- tilas6(1 + )(1 + 3u)? + (1 + 34)as + as }

– (2+ 3u) ag+ 12has+ 120 328+ (1 + )?ap - 3(1 + x )has),

503
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2 13 = 150[214-011+ (2 + 3u)ag – 2ha – as -( 1 + x) (1 + 3u )a }

trilja, (1 + 34)ag + gash(1 + 3u)2}+ 12ha,– (2 + 3u)a 10

+ 12azaz + baš + (1 + x)%a7–3(1 + w )har + 6h’a3),

a 14 = iialtil - 212 + }(2 + 3u)ag–2has– 2a326 - (1 + )(1 + 30)ao

+ (1 + 34)as}+ riliano - maz+ aji(1 + 34)3 + 12ha 10– (2 + 3u)aj1

+ 12a5a8+ 12a9a ; + (1 + 3u ) Q8–3h (1 + x)a , – (1 + x )aš+ 6h_ab),

215 = zoals { –21+ (2 + 34)a 10 – 2ha , – 2asa;– aš – (1 + x)(1 + 34)a7

+ in( 1 + 3u)aoštrilaan - ke(1 + 3u )a8 + 36 (1 + 3u )?a;} + 12ha 11

– (2 + 3m ) 12 + 12a + 12a gas+ 6a: + (1 + w )?a ,–3(1 + w )has

-3(1 + x )agar + 6h2a7 + 6haž).

The coefficients of the expansion

yo ' y83 )

y = yo + y'(2—30) + - (x - 30) 2 + (x -70)3+ .
2 ! 3 !

where y is a solution of equation ( 1 ) , may be obtained explicitly from the following

table of values of the derivatives :

y' ' = 2y3 + xy + H , g (3) = 6yºu' + g + g,

y (") = 6yºy'' + 12yy'? + xy''+ 2y ' ,

y (6 ) = 12y'3 + 36yy'y' ' + 6y y (3 ) + .xy ( 3) + 3y' ' ,

y ( ) = 72y'y'' + 36yy ' ' ? + 48yy'y (3 ) + 6y y (4 ) +xy (1 ) + 4y (3 ) ,

y (7) = 180y'y ' ' ? + 120y' y (3)+ 120yy''y( ) + 60yy'y ( ) + 6yºy (5 ) + ry (5 ) +5y(4) ,

y (8 ) = 180y''3 + 720y'y'y(3) + 180y' y (4) + 120y (y (3))2 + 180yy'' y (4) +72yy'y(5)

+ 6y²y (® ) + xy (6 ) + 6y(5) ,

y ( ) = 1260y" ? y (3) + 840 (y ( ) ) ? y ' + 1260y'y''y (1 ) + 252y ' ? y ( ) + 420yy(3) y (4)

+ 252yy''y (5 ) + 84yy'y (6 ) + 6y2y (7) +xy (7 ) + 7y (6 ) ,

y ( 10) = 420 ( y (1))2 + 3360y'' ( y (3))2 + 2520y''? y (4) + 336y'? y (® )+ 2016y'y''y (5 )

+ 1680y'y(3) y (1)+ 672yy ( ) y (5) + 96yy'y (7)+ 336yy''y (6 )

+ 6yºy (8 ) +xy (8 ) + 8y (7 ) .



TABLES





TABLES 507

TABLE I

The values tabulated are approximations of y (t) and y ' (x) , where y (x) is the

solution of y' ' = 6y2 + dt, for initial values : y = 1 , y ' = 0, x = 0, and for 1 = 0, 1 , 2 ,

3 , 4 , 5 .

X =0 X = 1 A =2

C

V y y ' y'

0.00

0.01

0.02

0. 03

0.04

0.05

0.06

0.07

0.08

0. 09

0. 10

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0108

1. 0148

1. 0193

1. 0245

1. 0303

0. 0000

0. 0600

0. 1201

0. 1803

0. 2408

0. 3015

0. 3626

0. 4241

0. 4862

0. 5489

0. 6122

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0109

1. 0148

1. 0194

1. 0246

1. 0304

0. 0000

0. 0601

0. 1203

0. 1808

0. 2416

0. 3028

0. 3644

0. 4266

0. 4894

0. 5529

0. 6172

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0076

1. 0109

1. 0149

1. 0195

1. 0247

1. 0306

0.0000

0. 0601

0. 1205

0. 1812

0. 2424

0. 3040

0. 3662

0. 4291

0. 4926

0. 5570

0. 6223

0. 11

0. 12

0. 13

0. 14

0. 15

0. 16

0. 17

0. 18

0. 19

0. 20

1. 0367

1. 0438

1. 0515

1. 0599

1. 0690

1. 0788

1. 0892

1. 1004

1. 1123

1. 1249

0. 6762

0. 7412

0. 8070

0. 8739

0. 9418

1. 0110

1. 0815

1. 1534

1. 2269

1. 3019

1. 0369

1. 0441

1. 0519

1. 0604

1. 0696

1. 0795

1. 0901

1. 1014

1. 1135

1. 1263

0. 6823

0. 7484

0. 8156

0. 8338

0. 9533

1. 0241

1. 0964

1. 1702

1. 2456

1. 3228

1. 0372

1. 0444

1. 0523

1. 0609

1. 0702

1. 0802

1. 0909

1. 1024

1. 1147

1. 1277

0. 6885

0. 7558

0. 8242

0. 8939

0. 9649

1. 0374

1. 1114

1. 1870

1. 2645

1. 3438

0. 21

0. 22

0. 23

0. 24

0. 25

0. 26

0. 27

0. 28

0. 29

0. 30

1. 1383

1. 1525

1. 1675

1. 1833

1. 1999

1. 2174

1. 2358

1. 2551

1. 2753

1. 2965

1. 3788

1. 4575

1. 5382

1. 6211

1. 7063

1. 7939

1. 8842

1. 9772

2. 0733

2. 1725

1. 1399

1. 1544

1. 1696

1. 1857

1. 2026

1. 2205

1. 2392

1. 2589

1. 2796

1. 3013

1. 4019

1. 4830

1. 5662

1. 6518

1. 7398

1. 8304

1. 9238

2. 0201

2. 1196

2. 2225

1. 1416

1. 1562

1. 1718

1. 1881

1. 2054

1. 2236

1. 2428

1. 2629

1. 2840

1. 3062

1. 4251

1. 5086

1. 5944

1. 6826

1. 7735

1. 8671

1. 9636

2. 0633

2. 1662

2. 2728
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TABLE 1-Continued

X=0 X= 1 X=2

T y y' y y ' y y '

0. 31

0. 32

0. 33

0. 34

0. 35

0. 36

0. 37

0. 38

0. 39

0. 40

1. 3188

1. 3420

1. 3664

1. 3919

1. 4185

1. 4464

1. 4755

1. 5059

1. 5377

1. 5709

2. 2751

2. 3813

2. 4913

2. 6054

2. 7238

2. 8469

2. 9750

3. 1083

3. 2472

3. 3921

1. 3241

1. 3480

1. 3729

1. 3991

1. 4264

1. 4550

1. 4849

1. 5162

1. 5488

1. 5830

2. 3289

2. 4392

2. 5535

2. 6721

2. 7952

2. 9233

3. 0566

3. 1954

3. 3401

3. 4912

1. 3295

1. 3539

1. 3795

1. 4062

1. 4343

1. 4636

1. 4943

1. 5264

1. 5600

1. 5951

2. 3831

2. 4974

2. 6159

2. 7390

2. 8669

3. 0000

3. 1385

3. 2829

3. 4334

3. 5906

0. 41

0. 42

0. 43

0. 44

0. 45

0. 46

0. 47

0.48

0. 49

0.50

1. 6055

1. 6417

1. 6796

1. 7191

1. 7604

1. 8036

1. 8487

1. 8958

1. 9452

1. 9968

3. 5435

3. 7016

3. 8671

4. 0403

4. 2219

4. 4124

4. 6125

4. 8228

5. 0441

5. 2772

1. 6187

1. 6560

1. 6950

1. 7357

1. 7783

1. 8229

1. 8695

1. 9182

1. 9692

2. 0226

3. 6490

3. 8139

3. 9866

4. 1674

4. 3571

4. 5561

4. 7652

4. 9852

5. 2166

5. 4606

1. 6318

1. 6702

1. 7104

1. 7524

1. 7963

1. 8423

1. 8903

1. 9407

1. 9934

2. 0485

3. 7549

3. 9267

4. 1066

4. 2951

4. 4929

4. 7006

4. 9188

5. 1484

5. 3902

5. 6452

0.51

0.52

0. 53

0. 54

0. 55

0. 56

0. 57

0. 58

0. 59

0.60

2. 0508

2. 1073

2. 1665

2. 2284

2. 2934

2. 3615

2. 4330

2. 5081

2. 5869

2. 6697

5. 523

5. 782

6. 056

6. 346

6. 653

6. 978

7. 322

7. 689

8. 078

8. 492

2. 0785

2. 1370

2. 1983

2. 2626

2. 3300

2. 4007

2. 4749

2. 5529

2. 6348

2. 7210

5. 718

5. 990

6. 277

6. 580

6. 902

7. 243

7. 606

7. 990

8. 400

8. 836

1063

2. 1669

2. 2303

2. 2969

2. 3667

2. 4400

2. 5170

2. 5979

2. 6830

2. 7725

5. 914

6. 198

6. 499

6. 817

7. 154

7. 512

7. 891

8. 295

8. 725

9. 183

0. 61

0. 62

0. 63

0. 64

0. 65

0. 66

0. 67

0. 68

0. 69

0.70

2. 7568

2. 8485

2. 9450

3. 0467

3. 1540

3. 2673

3. 3870

3. 5135

3. 6475

3. 7895

8. 934

9. 405

9. 909

10. 45

11. 02

11. 64

12. 31

13. 02

13. 79

14. 62

2. 8117

2. 9071

3. 0077

3. 1138

3. 2258

3. 3441

3. 4691

3. 6015

3. 7417

3. 8904

9. 301

9. 798

10. 33

10. 90

11. 51

12. 16

12. 86

13. 62

14. 43

15. 32

2. 8668

2. 9661

3. 0708

3. 1813

3. 2980

3. 4214

3. 5519

3. 6901

3. 8367

3. 9922

9. 672

10. 19

10. 75

11. 35

12. 00

12. 69

13. 43

14. 23

15. 09

16. 02
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TABLE I-Continued

A =0 X = 1 X=2

I

y y ' y y'

0.71

0.72

0. 73

0. 74

0. 75

0.76

0. 77

0. 78

0.79

0. 80

3. 9401

4. 1000

4. 2700

4. 4509

4. 6438

4. 8495

5. 0694

5. 3048

5. 5570

5. 8277

15. 51

16. 48

17. 53

18. 67

19. 91

21. 27

22. 74

24. 35

26. 12

28. 07

4. 0482

4. 2160

4. 3945

4. 5847

4. 7875

5. 0042

5. 2360

5. 4844

5. 7509

6. 0373

16. 27

17. 30

18. 42

19. 63

20. 96

22. 40

23. 98

25. 71

27. 61

29. 71

4. 1574

4. 3332

4. 5203

4. 7199

4. 9330

5. 1609

5. 4049

5. 6666

5. 9477

6. 2503

17. 03

18. 13

19. 32

20. 61

22. 03

23. 57

25. 26

27. 11

29. 15

31. 40

0.81

0.82

0.83

0. 84

0. 85

0. 86

0. 87

0. 88

0.89

0.90

6. 119

6. 433

6. 771

7. 137

7. 534

7. 964

8. 433

8. 944

9. 504

10. 12

30. 2

32. 6

35. 2

38. 1

41. 4

44. 9

48. 9

53. 5

58. 6

64. 3

6. 346

6. 678

7. 038

7. 427

7. 850

8. 309

8. 811

9. 359

9. 959

10. 62

32. O

34. 6

37. 4

40. 5

44. 0

48. O

52. 4

57. 3

62. 9

69. 3

6. 576

6. 929

7. 310

7. 724

8. 173

8. 663

9. 198

9. 784

10. 43

11. 14

33. 9

36. 6

39. 7

43. 1

46. 9

51. 2

56. 0

61. 4

67. 5

74. 5

0.91

0.92

0.93

0. 94

0.95

0. 96

0.97

0. 98

0.99

1. 00

10. 79

11. 54

12. 36

13. 28

14. 30

15. 45

16. 74

18. 20

19. 85

21. 74

70. 9

78. 4

86. 9

96.8

108.

121.

137.

155.

177.

203.

11. 35

12. 15

13. 05

14. 05

15. 16

16. 41

17. 83

19. 44

21. 27

76. 5

84. 8

94. 3

105.

118.

133.

151 .

171 .

196.

11. 92

12. 79

13. 76

14. 84

16. 06

17. 43

18. 98

20. 75

22. 78

82. 5

91. 7

102.

115.

129.

146.

166.

189.

218.
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TABLE I-Continued

A=0 X = 1 X=2

I y y' Y y ' y y'

0.00

-0.01

-0.02

-0.03

-0.04

--0. 05

-0.06

-0.07

- 0.08

-0.09

-0. 10

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0108

1. 0148

1. 0193

1. 0245

1. 0303

0. 0000

-0.0600

-0. 1201

-0. 1803

-0. 2408

-0. 3015

-0. 3626

-0. 4241

-0. 4862

-0. 5489

-0. 6122

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0108

1. 0147

1. 0192

1. 0244

1. 0301

0.0000

-0.0600

-0. 1199

-0. 1799

-0. 2400

-0. 3002

-0. 3608

-0. 4217

-0. 4830

-0. 5447

-0. 6071

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0108

1. 0147

1. 0192

1. 0243

1. 0301

0. 0000

-0.0601

-0. 1201

-0. 1800

-0. 2400

-0. 3000

-0. 3602

-0. 4206

-0. 4814

-0. 5425

-0. 6041

-0.11

-0. 12

-0. 13

-0. 14

-0. 15

-0. 16

-0. 17

-0. 18

- 0.19

-0. 20

1. 0367

1. 0438

1. 0515

1. 0599

1. 0690

1. 0788

1. 0892

1. 1004

1. 1123

1. 1249

-0. 6762

-0. 7412

-0. 8070

-0. 8739

-0. 9418

- 1. 0110

- 1. 0815

- 1. 1534

– 1. 2269

- 1. 3019

1. 0365

1. 0435

1. 0512

1. 0595

1. 0685

1. 0781

1. 0884

1. 0994

1. 1112

1. 1236

-0. 6701

-0. 7338

-0. 7984

-0. 8638

-0. 9303

-0. 9979

- 1. 0666

- 1. 1367

- 1. 2081

- 1. 2811

1. 0364

1. 0434

1. 0510

1. 0592

1. 0681

1. 0777

1. 0879

1. 0988

1. 1104

1. 1227

-0. 6663

-0. 7290

-0. 7925

-0. 8568

-0. 9220

-0. 9882

- 1. 0554

- 1. 1238

- 1. 1935

– 1. 2646

0. 21

-0. 22

-0. 23

-0. 24

-0. 25

-0. 26

-0. 27

-0. 28

-0. 29

- 0. 30

1. 1383

1. 1525

1. 1675

1. 1833

1. 1999

1. 2174

1. 2358

1. 2551

1. 2753

1 , 2965

- 1. 3788

- 1. 4575

- 1. 5382

- 1. 6211

- 1. 7063

- 1. 7939

- 1. 8842

- 1. 9772

- 2. 0733

- 2. 1725

1. 1368

1. 1507

1. 1654

1. 1809

1. 1972

1. 2144

1. 2324

1. 2513

1. 2711

1 , 2918

- 1. 3556

- 1. 4320

- 1. 5102

- 1. 5904

- 1. 6728

- 1. 7574

– 1. 8446

- 1. 9343

– 2. 0269

- 2. 1225

1. 1357

1. 1494

1. 1639

1. 1792

1. 1952

1. 2121

1. 2298

1. 2483

1. 2677

1. 2881

- 1. 3372

- 1. 4114

- 1. 4874

- 1. 5652

- 1. 6451

- 1. 7271

- 1. 8114

– 1. 8982

- 1. 9877

- 2. 0800

-0. 31

-0. 32

-0. 33

-0. 34

-0. 35

-0. 36

-0.37

-0. 38

-0. 39

-0. 40

1. 3188

1. 3420

1. 3664

1. 3919

1. 4185

1. 4464

1. 4755

1. 5059

1. 5377

1. 5709

- 2. 2751

- 2. 3813

- 2. 4913

-- 2. 6054

- 2. 7238

- 2. 8469

- 2. 9750

- 3. 1083

3. 2472

- 3. 3921

1. 3135

1. 3363

1. 3600

1. 3848

1. 4108

1. 4379

1. 4662

1. 4958

1. 5267

1. 5589

- 2. 2213

-2. 3234

- 2. 4292

- 2. 5388

-2. 6526

— 2. 7708

- 2. 8936

-3. 0215

-3. 1546

-- 3. 2935

1. 3094

1. 3316

1. 3548

1. 3791

1. 4045

1. 4310

1. 4586

1. 4874

1. 5175

1. 5489

- 2. 1753

-2. 2738

- 2. 3757

-2, 4813

– 2. 5908

- 2. 7045

- 2. 8226

-2. 9455

-3. 0734

- 3. 2068
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TABLE I - Continued

λ = 11

I

y' y

-0. 41

-0.42

-0. 43

-0. 44

-0.45

-0. 46

-0. 47

-0. 48

-0. 49

-0. 50

-3. 5435

- 3. 7016

- 3. 8671

- 4. 0403

-4. 2219

- 4. 4124

- 4. 6125

--4. 8228

- 5. 0441

- 5. 2772

-3. 4384

- 3. 5898

- 3. 7481

- 3. 9137

-4. 0873

- 4. 2693

- 4. 4606

- 4. 6614

-4. 8725

- 5. 0948

- 3. 3459

-3. 4911

-3. 6429

- 3. 8018

- 3. 9681

- 4. 1425

- 4. 3254

- 4. 5176

- 4. 7196

- 4. 9322

-0. 51

-0. 52

-0. 53

-0. 54

-0. 55

-0. 56

-0. 57

-0. 58

-0.59

-0.60

- 5. 523

- 5. 782

-- 6. 056

- 6. 346

- 6. 653

- 6. 978

-- 7. 322

–7. 689

-8. 078

-- 8. 492

- 5. 329

- 5. 576

- 5. 837

- 6. 113

- 6. 405

- 6. 714

- 7. 041

-7, 389

-7. 759

-8. 152

- 5. 156

- 5. 392

- 5. 641

- 5. 905

- 6. 183

-6. 478

- 6. 790

–7. 122

- 7. 473

-7. 848

-0. 61

-0. 62

-0. 63

-0. 64

-0. 65

-0. 66

-0. 67

-0. 68

-0. 69

-0. 70

-8. 934

- 9. 405

- 9. 909

- 10. 45

- 11. 02

- 11. 64

- 12. 31

- 13. 02

- 13. 79

- 14. 62

- 8. 570

- 9. 016

- 9. 493

- 10. 00

- 10. 55

- 11. 13

- 11. 76

- 12. 43

- 13. 15

- 13. 93

-8. 246

- 8. 670

- 9. 122

- 9. 606

– 10. 12

- 10. 68

– 11. 27

- 11. 91

- 12. 59

- 13. 33

-0. 71

-0.72

-0. 73

-0. 74

-0.75

-0. 76

-0. 77

--0. 78

-0. 79

-0. 80

- 15. 51

- 16. 48

- 17. 53

--- 18. 67

- 19. 91

- 21. 27

- 22. 74

- 24. 35

- 26. 12

- 28. 07

- 14. 78

- 15. 69

- 16. 67

- 17. 74

- 18. 90

- 20. 16

- 21. 53

- 23. 04

- 24. 68

- 26. 48

A=0 A=2

V y

1. 6055

1. 6417

1. 6796

1. 7191

1. 7604

1. 8036

1. 8487

1. 8958

1. 9452

1. 9968

1. 5926

1. 6277

1. 6644

1. 7027

1. 7427

1. 7844

1. 8281

1. 8737

1. 9213

1. 9712

1. 5817

1. 6158

1. 6515

1. 6887

1. 7276

1. 7681

1. 8104

1. 8547

1. 9008

1. 9491

2. 0508

2. 1073

2. 1665

2. 2284

2. 2934

2. 3615

2. 4330

2. 5081

2. 5869

2. 6697

2. 0233

2. 0778

2. 1348

2. 1946

2. 2571

2. 3227

2. 3915

2. 4636

2. 5393

2. 6188

1. 9995

2. 0522

2. 1074

2. 1651

2. 2255

2. 2888

2. 3552

2. 4247

2. 4977

2. 5742

2. 7568

2. 8485

2. 9450

3. 0467

3. 1540

3. 2673

3. 3870

3. 5135

3. 6475

3. 7895

2. 7024

2. 7903

2. 8828

2. 9802

3. 0830

3. 1913

3. 3057

3. 4266

3. 5545

3. 6899

2. 6547

2. 7392

2. 8282

2. 9218

3. 0204

3. 1244

3. 2341

3. 3499

3. 4723

3. 6019

3 , 9401

4. 1000

4. 2700

4. 4509

4. 6438

4. 8495

5. 0694

5. 3048

5. 5570

5. 8277

3. 8333

3. 9855

4. 1473

4. 3192

4. 5023

4. 6974

4. 9058

5. 1285

5. 3669

5. 6225

3. 7391

3. 8845

4. 0389

4. 2029

4. 3774

4. 5632

4. 7614

4. 9730

5. 1994

5. 4418

- 14. 12

- 14. 98

– 15. 91

- 16. 91

- 18. 00

- 19. 18

- 20. 47

- 21. 88

- 23. 41

- 15. 10
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TABLE I - Continued

X =0 X= 1 X =2

z V v' ' V

-0.81

-0.82

-0.83

-0.84

-0.85

-0.86

-0.87

-0. 88

-0.89

-0.90

- 28. 5

- 30. 6

- 33. 1

- 35. 7

- 38. 7

–42.0

-45. 7

- 49. 8

- 54. 4

- 59. 7

- 26. 9

- 29. 0

- 31. 2

- 33. 7

- 36. 4

- 39. 5

– 42. 9

- 46. 7

- 50. 9

- 55. 7

-0.91

-0. 92

- 0.93

-0. 94

-0. 95

-0. 96

-0. 97

-0.98

-0. 99

- 1. 00

- 65. 6

– 72. 3

- 80.0

- 88. 8

- 99.0

- 111 .

- 124.

- 140.

- 159.

- 182.

6. 119

6. 433

6. 771

7. 137

7. 534

7. 964

8. 433

8. 944

9. 504

10. 12

- 30. 2

- 32. 6

- 35. 2

-38.1

-41 . 4

- 44. 9

- 48. 9

- 53. 5

- 58. 6

- 64. 3

5. 897

6. 192

6. 511

6. 854

7. 226

7. 629

8. 067

8. 544

9. 065

9. 634

5. 702

5. 981

6. 282

6. 606

6. 957

7. 336

7. 747

8. 194

8. 682

9. 214

10. 79

11. 54

12. 36

13. 28

14. 30

15. 45

16. 74

18. 20

19. 85

21. 74

- 70. 9

- 78. 4

- 86. 9

- 96.8

- 108.

121 .

- 137.

155.

- 177.

- 203.

10. 26

10. 95

11. 71

12. 55

13. 49

14. 54

15. 71

17. 03

18. 53

20. 23

9. 798

10. 44

11. 14

11. 93

12. 79

13. 76

14. 83

16. 04

17. 41

18. 95

- 61. 1

- 67. 2

–74. 2

- 82. 1

-91 . 3

- 102.

-114 .

- 128.

- 145.

- 165.
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TABLE 1 - Continued

A =3 X = 4 X=5

I y y' ข ' y y'

0.00

0.01

0.02

0. 03

0. 04

0.05

0.06

0.07

0. 08

0. 09

0. 10

0.11

0. 12

0. 13

0.14

0. 15

0. 16

0. 17

0. 18

0. 19

0. 20

0. 21

0. 22

0. 23

0. 24

0. 25

0. 26

0. 27

0. 28

0. 29

0. 30

0. 31

0. 32

0. 33

0. 34

0. 35

0. 36

0. 37

0. 38

0. 39

0. 40

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0076

1. 0109

1. 0149

1. 0196

1. 0249

1. 0308

0. 0000

0. 0602

0. 1207

0. 1817

0. 2432

0. 3053

0. 3680

0. 4315

0. 4959

0. 5611

0. 6273

1. 0000

1. 0003

1. 0012

1. 0027

1. 0049

1. 0076

1. 0110

1. 0150

1. 0197

1. 0250

1. 0310

0.0000

0. 0602

0. 1209

0. 1821

0. 2440

0. 3065

0. 3698

0. 4340

0. 4991

0. 5652

0. 6324

1. 0000

1. 0003

1. 0012

1. 0027

1. 0049

1. 0076

1. 0110

1. 0151

1. 0198

1. 0251

1. 0311

0.0000

0. 0603

0. 1211

0. 1826

0. 2448

0. 3078

0. 3716

0. 4365

0. 5023

0. 5693

0. 6374

1. 0374

1. 0447

1. 0527

1. 0614

1. 0708

1. 0809

1. 0918

1. 1034

1. 1159

1. 1291

0. 6946

0.7631

0.8328

0. 9039

0. 9765

1. 0505

1. 1263

1. 2038

1. 2832

1. 3647

1. 0376

1. 0450

1. 0531

1. 0618

1. 0713

1. 0816

1. 0926

1. 1044

1. 1170

1. 1305

0. 7008

0. 7704

0. 8414

0. 9139

0. 9880

1. 0637

1. 1412

1. 2206

1. 3020

1. 3856

1. 0379

1. 0453

1. 0534

1. 0623

1. 0719

1. 0823

1. 0934

1. 1054

1. 1182

1. 1318

0. 7069

0. 7777

0. 8500

0. 9239

0. 9995

1. 0768

1. 1561

1. 2374

1. 3208

1. 4064

1. 1432

1. 1581

1. 1739

1. 1905

1. 2081

1. 2267

1. 2462

1. 2668

1. 2883

1. 3110

1. 4483

1. 5341

1. 6225

1. 7133

1. 8070

1. 9036

2. 0032

2. 1062

2. 2127

2. 3228

1. 1448

1. 1599

1. 1760

1. 1929

1. 2108

1. 2297

1. 2497

1. 2706

1 , 2927

1 , 3158

1. 4714

1. 5597

1. 6505

1. 7441

1. 8405

1. 9401

2. 0429

2. 1491

2. 2591

2. 3729

1. 1463

1. 1617

1. 1781

1. 1953

1. 2136

1. 2328

1. 2531

1. 2745

1. 2970

1. 3206

1. 4945

1. 5852

1. 6785

1. 7748

1. 8741

1. 9766

2. 0825

2. 1921

2. 3055

2. 4230

1. 3348

1. 3598

1 , 3859

1. 4134

1. 4421

1. 4721

1. 5036

1. 5366

1. 5710

1. 6071

2. 4370

2. 5553

2. 6782

2. 8057

2. 9384

3. 0764

3. 2201

3. 3700

3. 5264

3. 6897

1. 3401

1. 3656

1. 3924

1. 4205

1. 4499

1. 4807

1. 5129

1. 5467

1. 5821

1. 6192

2. 4909

2. 6133

2. 7404

2. 8725

3. 0098

3. 1528

3. 3018

3. 4573

3. 6195

3. 7890

1. 3454

1. 3715

1. 3989

1. 4276

1. 4577

1. 4892

1. 5223

1. 5569

1. 5932

1. 6312

2. 5448

2. 6713

2. 8027

2. 9392

3. 0813

3. 2293

3. 3836

3. 5446

3. 7126

3. 8883

556037 0-61 -34
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TABLE 1-Continued

X=3 A =4 X =5

r

ข y' V y' y'

0. 41

0.42

0. 43

0. 44

0. 45

0. 46

0. 47

0. 48

0. 49

0. 50

1. 6449

1. 6844

1. 7257

1. 7689

1. 8142

1. 8615

1. 9111

1. 9630

2. 0174

2. 0743

3. 8605

4. 0392

4. 2263

4. 4225

4. 6284

4. 8447

5. 0721

5. 3115

5. 5636

5. 8296

1. 6579

1. 6985

1 , 7410

1. 7855

1. 8320

1. 8808

1. 9318

1. 9853

2. 0414

2. 1001

3. 9662

4. 1518

4. 3462

4. 5501

4. 7642

4. 9891

5. 2258

5. 4749

5. 7375

6. 0145

1. 6710

1. 7127

1. 7563

1. 8020

1. 8499

1. 9001

1. 9526

2. 0077

2. 0654

2. 1260

4. 0721

4. 2646

4. 4663

4. 6779

4. 9002

5. 1339

5. 3797

5. 6387

5. 9118

6. 2000

0.51

0. 52

0. 53

0. 54

0. 55

0. 56

0. 57

0. 58

0. 59

0. 60

2. 1340

2. 1966

2. 2622

2. 3311

2. 4033

2. 4792

2. 5590

2. 6429

2. 7311

2. 8240

6. 110

6. 407

6. 721

7. 053

7. 406

7. 780

8. 178

8. 601

9. 051

9. 532

2. 1617

2. 2263

2. 2941

2. 3653

2. 4400

2. 5185

2. 6011

2. 6879

2. 7794

2. 8756

6. 307

6. 616

6. 944

7. 291

7. 659

8. 050

8. 466

8. 908

9. 380

9. 883

2. 1895

2. 2561

2. 3261

2. 3996

2. 4768

2. 5579

2. 6433

2. 7331

2. 8277

2. 9274

6. 505

6. 827

7. 168

7. 529

7. 913

8. 321

8. 755

9. 217

9. 710

10. 24

0. 61

0. 62

0. 63

0. 64

0. 65

0. 66

0. 67

0. 68

0. 69

0.70

2. 9219

3. 0250

3. 1339

3. 2488

3. 3703

3. 4987

3. 6348

3. 7789

3. 9318

4. 0943

10. 05

10. 59

11. 18

11. 81

12. 49

13. 22

14. 00

14. 84

15. 75

16. 74

2. 9771

3. 0842

3. 1972

3. 3166

3. 4429

3. 5765

3. 7181

3. 8682

4. 0276

4. 1971

10. 42

11. 00

11. 61

12. 28

12. 99

13. 75

14. 58

15. 47

16. 43

17. 47

3. 0326

3. 1436

3. 2608

3. 3847

3. 5158

3. 6547

3. 8019

3. 9581

4. 1241

4. 3006

10. 80

11. 40

12. 05

12. 74

13. 49

14. 29

15. 16

16. 10

17. 11

18. 21

0. 71

0. 72

0. 73

0.74

0. 75

0. 76

0.77

0.78

0.79

0. 80

4. 2670

4. 4508

4. 6467

4. 8559

5. 0794

5. 3186

5. 5750

5. 8504

6. 1465

6. 4656

17. 81

18. 97

20. 23

21. 61

23. 11

24. 76

26. 56

28. 54

30. 72

33. 13

4. 3773

4. 5694

4. 7743

4. 9932

5. 2273

5. 4781

5. 7473

6. 0366

6. 3481

6. 6842

18. 60

19. 83

21. 17

22. 63

24. 22

25. 97

27. 89

30. 01

32. 34

34. 91

4. 4886

4. 6890

4. 9030

5. 1318

5. 3768

5. 6395

5. 9217

6. 2253

6. 5526

6. 9061

19. 40

20. 71

22. 12

23. 66

25. 36

27. 21

29. 26

31. 51

34. 00

36. 75
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TABLE I - Continued

X =3 X =4 X =5

T y' V y'

0. 81

0. 82

0.83

0.84

0. 85

0.86

0.87

0. 88

0. 89

0.90

6. 810

7. 182

7. 586

8. 025

8. 502

9. 023

9. 594

10. 22

10. 91

11. 67

35. 8

38. 8

42. 1

45. 7

49. 8

54. 5

59.7

65. 6

72. 3

80. O

7. 047

7. 441

7. 868

8. 332

8. 839

9. 392

9. 999

10. 67

11. 40

12. 22

37. 8

41. 0

44. 5

48. 5

52. 9

57. 9

63. 6

70. O

77. 4

85. 8

7. 289

7. 704

8. 154

8. 646

9. 182

9. 770

10. 42

11. 13

11. 91

12. 78

39. 8

43. 2

47. 0

51. 3

56. 1

61. 5

67. 7

74. 7

82. 7

91. 9

0.91

0. 92

0.93

0. 94

0.95

0. 96

0. 97

0.98

12. 51

13. 45

14. 50

15. 67

16. 99

18. 48

20. 18

22. 13

88. 8

98. 9

111 .

124.

140.

159.

182.

208.

13. 12

14. 13

15. 26

16. 53

17. 97

19. 59

21. 45

95. 4

107.

120.

135.

153.

174 .

199.

13. 75

14. 84

16. 06

17. 43

18. 99

20. 76

102.

115.

129.

146.

166.

190.
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TABLE 1 - Continued

X=3 X =4 X =5

I v y

0.00

-0.01

-0.02

-0. 03

-0.04

-0.05

-0.06

-0.07

-0. 08

-0. 09

-0. 10

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0108

1. 0147

1. 0192

1. 0243

1. 0299

0. 0000

-0. 0602

-0. 1201

-0. 1799

-0. 2396

-0. 2993

-0. 3590

-0. 4189

-0. 4790

-0. 5393

-0. 6001

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0108

1. 0146

1. 0191

1. 0242

1. 0298

0.0000

-0. 0602

-0. 1201

-0. 1797

-0. 2392

-0. 2985

-0. 3578

-0. 4171

-0. 4766

-0. 5362

-0. 5961

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0107

1. 0146

1. 0190

1. 0241

1. 0297

0. 0000

-0.0603

-0. 1201

-0. 1796

-0. 2388

-0. 2978

-0. 3566

-0. 4154

-0. 4741

-0. 5330

-0. 5920

-0. 11

-0. 12

-0. 13

-0. 14

-0. 15

-0. 16

-0. 17

- 0.18

-0. 19

-0. 20

1. 0363

1. 0432

1. 0507

1. 0589

1. 0677

1. 0771

1. 0872

1. 0980

1. 1094

1. 1215

-0. 6613

-0. 7230

-0. 7853

-0. 8483

-0. 9121

-0. 9767

- 1. 0423

- 1. 1090

- 1. 1768

- 1. 2459

1. 0361

1. 0430

1. 0504

1. 0585

1. 0672

1. 0766

1. 0865

1. 0971

1. 1084

1. 1203

-0. 6563

-0. 7169

-0. 7780

-0. 8397

-0. 9021

-0. 9652

- 1. 0292

-1 . 0941

-- 1. 1601

-1 . 2272

1. 0359

1. 0427

1. 0501

1. 0581

1. 0668

1. 0760

1. 0858

1. 0963

1. 1074

1. 1192

-0. 6513

-0. 7108

-0. 7708

-0. 8312

-0. 8922

-0. 9538

- 1. 0161

- 1. 0793

- 1. 1434

- 1. 2085

-0. 21

-0. 22

-0. 23

-0. 24

-0. 25

-0. 26

-0. 27

-0. 28

-0. 29

-0. 30

1. 1343

1. 1478

1. 1621

1. 1771

1. 1928

1. 2094

1. 2267

1. 2449

1. 2639

1. 2838

- 1. 3164

- 1. 3883

- 1. 4619

- 1. 5372

- 1. 6144

- 1. 6936

- 1. 7750

- 1. 8587

-- 1. 9448

- 2. 0336

1. 1330

1. 1463

1. 1603

1. 1750

1. 1905

1. 2067

1. 2237

1. 2415

1. 2601

1. 2795

- 1. 2956

- 1. 3653

- 1. 4365

- 1. 5093

- 1. 5838

- 1. 6602

- 1. 7386

- 1. 8191

- 1. 9020

- 1. 9873

1. 1316

1. 1447

1. 1584

1. 1729

1. 1881

1. 2040

1. 2206

1. 2380

1. 2562

1. 2752

- 1. 2747

-1 . 3422

- 1. 4110

- 1. 4813

- 1. 5531

– 1. 6267

- 1. 7021

- 1. 7795

-1.8591

-- 1. 9410

-0. 31

-0. 32

-0. 33

-0. 34

-0. 35

-0. 36

-0. 37

-0. 38

-0. 39

-0. 40

1. 3046

1. 3263

1. 3490

1. 3727

1. 3974

1. 4232

1. 4501

1. 4781

1. 5074

1. 5379

-2. 1253

- 2. 2199

- 2. 3178

-2. 4192

-2. 5242

- 2. 6332

- 2. 7463

- 2. 8640

- 2. 9864

-3. 1140

1. 2998

1. 3210

1. 3431

1. 3662

1. 3903

1. 4154

1. 4415

1. 4688

1. 4972

1. 5268

- 2. 0753

- 2. 1661

- 2. 2599

– 2. 3570

- 2. 4576

- 2. 5619

- 2. 6701

-- 2. 7825

- 2. 8995

-3. 0212

1. 2950

1. 3157

1. 3373

1. 3598

1. 3832

1. 4076

1. 4330

1. 4595

1. 4871

1. 5158

- 2. 0253

-2. 1123

- 2. 2021

- 2. 2949

- 2. 3910

- 2. 4906

-2. 5939

- 2. 7011

-2. 8126

- 2. 9286
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TABLE 1 - Continued

እ = 3 X =4 A =5

1 v ' N' y y'

-0. 41

-0. 42

-0. 43

- 0. 44

-0. 45

-0. 46

-0. 47

-0. 48

-0.49

-0. 50

1. 5697

1. 6028

1. 6374

1. 6734

1. 7111

1. 7503

1. 7912

1. 8340

1. 8786

1. 9251

-3. 2469

- 3. 3857

--3. 5308

-3. 6824

- 3. 8412

4. 0075

- 4. 1820

- 4. 3651

- 4. 5576

- 4. 7600

1. 5576

1. 5898

1. 6233

1. 6582

1. 6946

1. 7325

1. 7720

1. 8133

1. 8563

1. 9012

- 3. 1481

- 3. 2805

- 3. 4187

-3. 5632

- 3. 7144

3. 8728

- 4. 0388

- 4. 2130

- 4. 3959

- 4. 5883

1. 5456

1. 5768

1. 6092

1. 6429

1. 6781

1. 7147

1. 7529

1. 7926

1. 8341

1. 8774

-3. 0494

- 3. 1754

. - 3 . 3068

- 3. 4442

- 3. 5879

-3. 7383

-3. 8959

– 4. 0611

- 4. 2347

- 4. 4170

--0. 51

- 0. 52

-0. 53

-0. 54

-0. 55

-0. 56

-0. 57

-0. 58

-0. 59

-0. 60

1. 9738

2. 0246

2. 0778

2. 1334

2. 1915

2. 2524

2. 3162

2. 3830

2. 4530

2. 5265

-4. 973

- 5. 198

- 5. 435

- 5. 685

-5. 949

-- 6. 229

- 6. 526

-6. 840

-7. 173

– 7. 528

1. 9481

1. 9971

2. 0482

2. 1017

2. 1576

2. 2161

2. 2773

2. 3414

2. 4085

2. 4790

-4. 791

-- 5. 004

- 5. 229

- 5. 466

-5. 717

-5. 982

- 6. 262

- 6. 560

-- 6. 875

-7. 210

1. 9225

1. 9696

2. 0187

2. 0701

2. 1237

2. 1798

2. 2385

2. 2999

2. 3642

2. 4315

- 4. 609

- 4. 811

-5. 024

- 5. 248

-5. 485

-5. 736

- 6. 001

- 6. 281

- 6. 579

-- 6. 894

-7. 230

–7. 586

-7. 966

- 8. 370

-8. 801

-9. 262

-9. 755

- 10. 28

- 10. 85

- 11. 45

-0. 61

-0. 62

-0. 63

-0. 64

-0. 65

-0. 66

-0. 67

-0.68

-0. 69

-0.70

2. 6037

2. 6847

2. 7699

2. 8595

2. 9538

3. 0531

3. 1579

3. 2684

3. 3852

3. 5086

–7. 905

-8. 306

-8. 734

--- 9. 190

- 9. 678

- 10. 20

10. 76

- 11. 36

- 12. 00

- 12. 69

2. 5528

2. 6303

2. 7118

2. 7974

2. 8874

2. 9823

3. 0821

3. 1874

3. 2986

3. 4160

-7. 566

-7. 945

- 8. 348

-8. 778

--9. 237

- 9. 728

- 10. 25

- 10. 82

-11 . 42

- 12. 07

2. 5021

2. 5762

2. 6539

2. 7356

2. 8214

2. 9117

3. 0068

3. 1069

3. 2125

3. 3240

-0.71

-0. 72

-0.73

-0. 74

-0. 75

-0. 76

-0.77

-0.78

-0. 79

-0. 80

3. 6393 - 13. 44

3. 7776 - 14. 24

3. 9243 -- 15. 11

4. 0801 - 16. 05

4. 2456 - 17. 07

4. 4217 - 18. 17

4. 6093 - 19. 37

4. 8095 - 20. 68

5. 0233 - 22. 11

5. 2520 - 23. 66

3. 5401

3. 6715

3. 8107

3. 9583

4. 1151

4. 2817

4. 4590

4. 6479

4. 8495

5. 0650

- 12. 77

- 13. 52

- 14. 33

- 15. 21

- 16. 15

- 17. 18

- 18. 30

- 19. 51

- 20. 83

- 22. 27

3. 4417

3. 5663

3. 6980

3. 8377

3. 9858

4. 1431

4. 3103

4. 4883

4. 6780

4. 8805

- 12. 11

- 12. 81

- 13. 56

- 14. 38

-- 15. 26

- 16. 21

- 17. 25

- 18. 37

- 19. 59

- 20. 92
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TABLE 1 - Continued

X=3 A=4 A=5

T ' ' V

-0.81

-0. 82

-0.83

-0.84

-0. 85

-0. 86

-0. 87

-0. 88

-0. 89

-0.90

- 25. 4

- 27. 2

- 29. 3

- 31. 6

-34. 1

- 36.9

-40. O

- 43.5

-47. 3

–51 . 7

- 23. 9

- 25. 6

- 27. 5

- 29. 6

- 31. 9

-34. 4

- 37. 3

- 40. 4

- 43. 9

-47.8

- 22. 4

- 24. 0

- 25. 7

- 27.7

- 29. 7

- 32. 1

- 34. 6

- 37.5

- 40. 7

- 44. 2

-0.91

-0.92

-0.93

-0.94

-0. 95

-0. 96

-0.97

-0. 98

-0.99

-- 1. 00

- 56. 5

-62. 1

- 68. 3

-75. 4

-83. 6

-93. O

- 104.

-116.

-131 .

- 148.

-52. 2

-57. 2

-62. 8

–69. 2

–76. 4

- 84. 7

-94. 3

- 105.

-118.

- 133.

5. 497

5. 760

6. 043

6. 347

6. 675

7. 030

7. 414

7. 831

8. 285

8. 779

5. 295

5. 542

5. 808

6. 093

6. 400

6. 731

7. 089

7. 477

7. 898

8. 357

5. 097

5. 328

5. 577

5. 843

6. 130

6. 438

6. 772

7. 132

7. 522

7. 946

9. 320

9. 912

10. 56

11. 28

12. 08

12. 96

13. 94

15. 04

16. 27

17. 67

8. 857

9. 404

10. 00

10. 66

11. 39

12. 19

13. 09

14. 08

15. 20

16. 45

8. 408

8. 911

9. 462

10. 07

10. 73

11. 46

12. 28

13. 18

14. 18

15. 31

- 48. 2

–52. 7

-57. 6

- 63. 3

- 69. 7

–77. 1

- 85. 5

-95. 1

- 106.

- 119.

11
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TABLE II

The values tabulated are approximations of y (x ) and y' ( 2 ), where y (2 ) is the

solution of y' ' = 2y3 + ay + w , for initial values : y= 1 , y' = 0, x= 0, and for y= 0, 1 ,

2, 3, 4, 5.

H=0 u= 1 u=2

1 V ' v'

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0. 08

0.09

0. 10

1. 0000

1. 0001

1. 0004

1. 0009

1. 0016

1. 0025

1. 0036

1. 0050

1. 0065

1. 0082

1. 0102

0.0000

0.0200

0. 0402

0. 0605

0. 0809

0. 1015

0. 1222

0. 1431

0. 1642

0. 1855

0. 2070

1. 0000

1. 0002

1. 0006

1. 0014

1. 0024

1. 0038

1. 0054

1. 0074

1. 0097

1. 0123

1. 0152

0. 0000

0. 0301

0.0602

0. 0905

0. 1210

0. 1516

0. 1825

0. 2135

0. 2448

0. 2763

0. 3081

1. 0000

1. 0002

1. 0008

1. 0018

1. 0032

1. 0050

1. 0072

1. 0099

1. 0129

1. 0164

1. 0203

0.0000

0 0401

0. 0802

0. 1206

0. 1611

0. 2018

0. 2427

0. 2839

0. 3253

0. 3671

0. 4091

0. 11

0. 12

0. 13

0.14

0. 15

0. 16

0. 17

0. 18

0. 19

0. 20

1. 0124

1. 0148

1. 0174

1. 0202

1. 0233

1. 0266

1. 0301

1. 0339

1. 0379

1. 0422

0. 2288

0. 2508

0. 2730

0. 2956

0. 3184

0 , 3415

0. 3649

0. 3887

0. 4129

0. 4374

1. 0185

1 , 0220

1. 0259

1. 0302

1. 0347

1. 0396

1. 0448

1. 0504

1. 0563

1. 0626

0. 3402

0. 3726

0. 4054

0. 4385

0. 4720

0. 5059

0. 5403

0. 5751

0. 6104

0. 6463

1. 0246

1. 0293

1. 0345

1. 0401

1. 0461

1. 0526

1. 0595

1. 0669

1. 0747

1. 0830

0. 4516

0. 4944

0. 5377

0. 5814

0. 6256

0. 6703

0. 7156

0. 7615

0. 8081

0.8553

0. 21

0. 22

0. 23

0. 24

0. 25

0. 26

0. 27

0. 28

0. 29

0. 30

1. 0467

1. 0514

1. 0564

1. 0616

1. 0672

1. 0729

1. 0790

1. 0853

1. 0919

1. 0989

0. 4623

0. 4856

0. 5114

0. 5377

0. 5644

0. 5916

0. 6194

0. 6477

0.6766

0. 7061

1. 0693

1. 0763

1. 0837

1. 0914

1. 0996

1. 1081

1. 1171

1. 1264

1. 1362

1. 1464

0. 6827

0. 7197

0. 7573

0. 7956

0. 8345

0. 8742

0. 9147

0. 9560

0. 9982

1. 0413

1. 0918

1 , 1011

1. 1109

1. 1211

1. 1319

1. 1432

1. 1550

1. 1674

1. 1803

1. 1938

0. 9032

0. 9520

1. 0015

1. 0519

1. 1033

1. 1556

1. 2090

1. 2635

1. 3192

1. 3761
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TABLE II - Continued

u=0 p= 1 u =2

V ' y v ' y y'

0. 31

0. 32

0. 33

0. 34

0. 35

0. 36

0. 37

0. 38

0. 39

0. 40

1. 1061

1. 1136

1. 1214

1. 1296

1. 1380

1. 1468

1. 1560

1. 1655

1. 1754

1. 1856

0. 7363

0. 7671

0. 7987

0. 8309

0. 8640

0. 8979

0. 9326

0. 9683

1. 0048

1. 0424

1. 1570

1. 1681

1. 1796

1. 1916

1. 2041

1. 2171

1. 2306

1. 2445

1. 2591

1. 2742

1. 0854

1. 1305

1. 1766

1. 2239

1. 2724

1. 3222

1. 3733

1. 4259

1. 4799

1. 5356

1. 2078

1. 2225

1. 2377

1. 2536

1. 2701

1. 2873

1. 3051

1. 3236

1. 3428

1. 3628

1. 4344

1. 4941

1. 5554

1. 6182

1. 6827

1. 7491

1. 8174

1. 8877

1. 9602

2. 0351

0. 41

0. 42

0. 43

0. 44

0. 45

0. 46

0. 47

0. 48

0. 49

0. 50

1. 1962

1. 2072

1. 2186

1. 2304

1. 2427

1. 2554

1. 2685

1. 2822

1. 2962

1. 3108

1. 0810

1. 1207

1. 1615

1. 2036

1. 2469

1. 2915

1. 3376

1. 3851

1. 4342

1. 4850

1. 2898

1. 3060

1. 3228

1. 3403

1. 3584

1. 3771

1. 3965

1. 4167

1. 4376

1. 4592

1. 5929

1. 6520

1. 7130

1. 7760

1. 8412

1. 9085

1. 9783

2. 0507

2. 1257

2. 2037

1. 3836

1. 4051

1. 4274

1. 4506

1. 4746

1. 4996

1. 5255

1. 5524

1. 5803

1. 6093

2. 1124

2. 1924

2. 2752

2. 3611

2. 4502

2. 5427

2. 6389

2. 7391

2. 8436

2. 9526

0.51

0. 52

0. 53

0. 54

0. 55

0. 56

0. 57

0. 58

0. 59

0. 60

1. 3259

1. 3416

1. 3578

1. 3745

1. 3919

1. 4099

1. 4285

1. 4478

1. 4678

1. 4884

1. 537

1. 592

1. 648

1. 706

1. 766

1. 830

1. 895

1. 962

2. 033

2. 106

1. 4817

1. 5049

1. 5290

1. 5541

1. 5800

1. 6070

1. 6350

1. 6639

1. 6941

1. 7254

2. 285

2. 369

2. 457

2. 548

2. 644

2. 744

2. 848

2. 957

3. 072

3. 192

1. 6394

1. 6706

1. 7031

1. 7369

1. 7720

1. 8085

1. 8465

1. 8860

1. 9272

1. 9702

3. 067

3. 186

3. 311

3. 441

3. 579

3. 724

3. 876

4. 037

4. 207

4. 386

0. 61

0. 62

0. 63

0. 64

0. 65

0. 66

0. 67

0. 68

0. 69

0. 70

1. 5099

1. 5321

1. 5552

1. 5791

1. 6038

1. 6296

1. 6562

1. 6839

1. 7127

1 7426

2. 183

2. 262

2. 346

2. 433

2. 524

2. 619

2. 718

2. 823

2. 932

3. 047

1. 7579

1. 7918

1. 8269

1. 8636

1. 9017

1. 9415

1. 9829

2. 0261

2. 0713

2. 1184

3. 318

3. 451

3. 590

3. 738

3. 893

4. 058

4. 232

4. 416

4. 612

4. 821

2. 0150

2. 0618

2. 1106

2. 1617

2. 2151

2. 2710

2. 3296

2. 3912

2. 4558

2. 5237

4. 576

4. 778

4. 993

5. 221

5. 465

5. 725

6. 004

6. 303

6. 624

6. 970
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TABLE II - Continued

M =0 u = 1 = 2

1 V y' V y '

0.71

0. 72

0. 73

0. 74

0.75

0. 76

0. 77

0. 78

0. 79

0. 80

1. 7737

1. 8060

1. 8396

1. 8746

1. 9111

1. 9491

1. 9887

2. 0301

2. 0733

2. 1184

3. 168

3. 296

3. 430

3. 572

3. 722

3. 880

4. 048

4. 225

4. 414

4. 615

2. 1677

2. 2193

2. 2734

2. 3301

2. 3895

2. 4520

2. 5177

2. 5869

2. 6599

2. 737

5. 043

5. 279

5. 532

5. 803

6. 094

6. 405

6. 741

7. 104

7. 495

7. 919

2. 5953

2. 6707

2. 7503

2. 8345

2. 9237

3. 0183

3. 1188

3. 2258

3. 3400

3. 4622

7. 343

7. 747

8. 185

8. 661

9. 180

9. 746

10. 37

11. 05

11. 80

12. 64

0.81

0. 82

0.83

0.84

0.85

0. 86

0. 87

0.88

0. 89

0. 90

2. 166

2. 215

2. 267

2. 321

2. 378

2. 438

2. 501

2. 567

2. 637

2. 711

4. 83

5. 06

5. 30

5. 56

5. 84

6. 14

6. 46

6. 81

7. 19

7. 59

2. 818

2. 905

2. 996

3. 093

3. 197

3. 307

3. 426

3. 552

3. 688

3. 834

8. 38

8. 88

9. 43

10. O

10. 7

11. 4

12. 2

13. 1

14. 1

15. 2

3. 593

3. 734

3. 885

4. 049

4. 227

4. 421

4. 632

4. 864

5. 119

5. 402

13. 6

14. 6

15. 8

17. 1

18. 5

20. 2

22. 1

24. 3

26. 9

29. 8

0. 91

0. 92

0. 93

0.94

0.95

0. 96

0.97

0. 98

0.99

1. 00

2. 789

2. 872

2. 960

3. 053

3. 152

3. 258

3. 371

3. 492

3. 621

3. 761

8. 03

8. 51

9. 03

9. 61

10. 2

10. 9

11. 7

12. 5

13. 5

14. 5

3. 992

4. 164

4. 350

4. 553

4. 776

5. 021

5. 292

5. 594

5. 931

6. 311

16. 4

17. 8

19. 4

21. 3

23. 3

25. 7

28. 5

31. 8

35. 7

40. 4

5. 718

6. 071

6. 471

6. 470

6. 925

7. 447

8. 053

8. 765

9. 613

10. 64

33. 3

37. 5

42. 5

48. 6

56. 1

65. 5

77. 4

93. O

114.

142.
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TABLE II - Continued

u=0 H= 1 u =2

y' V y' y y '

0.00

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08

-0.09

-0. 10

1. 0000

1. 0001

1. 0004

1. 0009

1. 0016

1. 0025

1. 0036

1. 0049

1. 0063

1. 0080

1. 0099

0.0000

-0.0200

-0.0398

-0.0596

-0.0793

-0.0990

-0. 1186

-0. 1382

-0. 1578

-0. 1774

-0. 1970

1. 0000

1. 0002

1. 0006

1. 0014

1. 0024

1. 0037

1. 0054

1. 0073

1. 0096

1. 0121

1. 0150

0.0000

-0.0301

-0.0600

-0. 0899

-0. 1198

-0. 1496

-0. 1794

-0. 2093

-0. 2391

-0. 2690

-0. 2990

1. 0000

1. 0002

1. 0008

1. 0018

1. 0032

1. 0050

1. 0072

1. 0098

1. 0128

1. 0162

1. 0200

0.0000

-0. 0401

-0. 0800

-0. 1200

-0. 1599

-0. 1997

-0. 2397

-0. 2796

-0. 3196

-0. 3598

-0 . 4000

-0.11

-0. 12

-0. 13

-0. 14

-0. 15

-0. 16

-0. 17

-0.18

-0. 19

-0. 20

1. 0120

1. 0142

1. 0167

1. 0193

1. 0222

1. 0252

1. 0285

1. 0319

1. 0356

1. 0395

-0.2166

-0.2362

-0 . 2559

-0. 2756

-0. 2954

-0. 3152

-0. 3352

-0. 3553

-0. 3755

-0. 3958

1. 0181

1. 0215

1. 0253

1. 0293

1. 0337

1. 0383

1. 0433

1. 0486

1. 0542

1. 0601

-0. 3290

-0. 3592

-0. 3894

-0. 4198

-0. 4504

-0. 4811

-0. 5121

-0. 5432

-0. 5746

-0. 6063

1. 0242

1. 0288

1. 0338

1. 0392

1. 0451

1. 0513

1. 0580

1. 0650

1. 0726

1. 0805

-0. 4404

-0. 4809

-0. 5216

-0. 5627

-0. 6039

-0. 6454

-0. 6872

-0. 7294

-0. 7719

-0. 8149

-0. 21

-0. 22

-0. 23

-0. 24

-0. 25

-0. 26

-0.27

-0. 28

-0. 29

-0. 30

1. 0435

1. 0478

1. 0523

1. 0569

1. 0618

1. 0669

1. 0723

1. 0778

1. 0835

1. 0895

-0. 4162

-0. 4369

-0. 4576

-0. 4786

-0. 4998

-0. 5212

-0 . 5428

-0. 5647

-0. 5869

-0 . 6093

1. 0663

1. 0728

1. 0797

1. 0869

1. 0944

1. 1023

1. 1105

1. 1190

1. 1279

1. 1372

-0. 6382

-0. 6705

-0. 7031

-0 . 7361

-0. 7695

--0. 8033

-0. 8376

-0. 8723

-0. 9076

-0.9434

1. 0889

1. 0977

1. 1069

1. 1166

1. 1267

1. 1373

1. 1484

1. 1599

1. 1720

1. 1815

-0. 8583

-0. 9022

-0. 9466

-0. 9916

-1 . 0372

- 1. 0834

- 1. 1303

- 1. 1780

-1 . 2265

- 1. 2759

-0. 31

-0. 32

-0. 33

-0. 34

-0. 35

-0. 36

-0.37

-0. 38

-0. 39

-0. 40

1. 0957

1. 1022

1. 1088

1 , 1157

1. 1229

1 , 1303

1. 1379

1. 1458

1. 1540

1. 1624

--0. 6321

-0. 6552

-0. 6785

-0. 7024

-0 . 7266

-0.7512

-0 . 7762

-0 . 8017

-0 . 8277

-0. 8542

1. 1468

1. 1568

1. 1671

1. 1779

1. 1890

1. 2005

1. 2125

1. 2248

1. 2376

1. 2507

-0. 9798

- 1.0169

- 1. 0546

- 1. 0930

- 1. 1322

- 1. 1722

- 1. 2130

- 1. 2548

-- 1. 2975

- 1. 3412

1. 1975

1. 2110

1. 2250

1. 2396

1. 2547

1. 2704

1. 2866

1. 3034

1. 3208

1. 3388

- 1. 3261

- 1. 3774

-- 1. 4297

- 1. 4831

- 1. 5377

- 1. 5936

- 1. 6509

- 1. 7096

- 1. 7698

- 1.8317
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TABLE II - Continued

u=0 u =2

I y y' V y' y v'

-0. 41

-0. 42

-0. 43

-0. 44

-0. 45

-0. 46

-0. 47

-0. 48

-0. 49

-0. 50

-1 . 3860

- 1. 4320

- 1. 4791

- 1. 5276

-1 . 5775

- 1. 6287

- 1. 6816

- 1. 7361

- 1. 7923

- 1. 8504

- 1. 8954

- 1. 9610

- 2. 0285

-2. 0982

- 2. 1703

- 2. 2447

-2. 3218

- 2. 4017

- 2. 4847

- 2. 5708

-0.51

-0. 52

-0. 53

-0. 54

-0. 55

-0. 56

-0. 57

-0. 58

-0. 59

-0. 60

-1.910

- 1. 973

- 2. 037

- 2. 104

- 2. 173

- 2. 245

- 2. 320

- 2. 398

- 2. 479

- 2. 564

-2. 660

- 2. 754

- 2. 851

- 2. 953

-3. 059

- 3. 170

--3, 286

- 3. 409

- 3. 537

-3 . 672

-0.61

-0. 62

-0.63

-0. 64

-0. 65

-0. 66

-0. 67

-0. 68

-0. 69

-0. 70

- 2. 653

- 2. 745

- 2. 842

- 2. 944

-3. 050

- 3. 162

-3. 280

-3 . 403

- 3. 534

- 3. 671

--3. 815

- 3. 965

- 4. 124

- 4. 292

- 4. 470

- 4. 659

-4. 860

-5. 074

-- 5. 303

- 5. 547

-0.71

-0. 72

-0. 73

-0.74

-0. 75

-0. 76

-0. 77

-0. 78

-0. 79

-0.80

-3. 817

- 3. 971

- 4. 134

- 4. 307

-4 491

- 4. 687

-4. 895

-5 . 118

- 5. 356

-5. 610

1. 1710

1. 1800

1892

1. 1987

1. 2085

1. 2186

1. 2291

1. 2398

1. 2508

1. 2622

-0. 8811

-0. 9082

-0. 9364

-0. 9652

-0. 9947

- 1. 0250

- 1. 0559

- 1. 0877

- 1. 1203

- 1. 1537

1. 2644

1. 2785

1. 2930

1. 3081

1. 3236

1. 3396

1. 3562

1. 3733

1. 3909

1. 4091

1. 3574

1. 3767

1. 3966

1. 4173

1. 4386

1. 4607

1. 4835

1. 5071

1. 5316

1. 5568

1. 2739

1. 2860

1. 2984

1. 3111

1. 3243

1. 3379

1. 3518

1. 3662

1. 3810

1. 3962

-1 . 188

-1 . 223

- 1. 260

- 1. 297

- 1. 336

- 1. 376

- 1. 417

-- 1. 459

- 1. 503

- 1. 548

1. 4279

1. 4473

1. 4674

1. 4881

1. 5094

1. 5315

1. 5544

1. 5779

1. 6023

1. 6275

1. 5830

1. 6101

1. 6381

1. 6671

1. 6971

1. 7283

1. 7606

1. 7940

1. 8288

1. 8648

1. 4119

1. 4281

1. 4448

1. 4620

1. 4797

1. 4980

1. 5169

1. 5363

1. 5564

1. 5771

1. 595

-1 . 643

-1 . 694

- 1. 746

- 1. 800

- 1. 856

-1.915

- 1. 976

-- 2. 039

-2. 105

1. 6536

1. 6806

1. 7085

1. 7375

1. 7674

1. 7985

1. 8307

1. 8641

1. 8988

1. 9348

1. 9022

1. 9411

1. 9815

2. 0236

2. 0674

2. 1131

2. 1606

2. 2103

2. 2622

2. 3164

1. 5985

1. 6206

1. 6434

1. 6670

1. 6914

1. 7167

1. 7428

1. 7698

1. 7979

1. 8269

-2. 174

- 2. 246

-- 2. 321

- 2. 399

-2. 481

-2. 568

- 2. 658

-2.753

- 2. 852

-2. 957

1. 9722

2. 0112

2. 0517

2. 0939

2. 1379

2. 1837

2. 2316

2. 2817

2. 3340

2. 3888

2. 3732

2. 4327

2. 4950

2. 5605

2. 6294

2. 7020

2. 7784

2. 8592

2. 9446

3. 0351

-5. 809

- 6. 089

– 6. 391

- 6. 715

–7. 066

- 7. 445

- 7. 855

-8. 302

-8. 788

-9 . 319
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u= 1

V y ' y y' y y'

-3 . 07

- 3. 18

- 3. 31

- 3. 43

--3. 57

- 3. 72

-3. 87

- 4. 03

- 4. 20

-4, 39

-5. 88

- 6. 18

-6. 49

-6 84

- 7. 20

- 7. 60

-8. 04

-8. 51

- 9. 03

–9. 59

- 9. 90

- 10.5

- 11. 2

- 12. 0

- 12. 9

- 13. 8

- 14 9

- 16. 1

- 17. 5

- 19.0

- 10. 2

- 10. 9

- 11. 6

- 12. 5

- 13. 4

- 4. 58

- 4. 79

-5. 02

- 5. 25

- 5. 51

- 5. 79

- 6. 08

- 6. 40

-6 74

-7. 12

TABLE II—Continued

u =0 u=2

1

-0.81

-0. 82

-0.83

-0.84

-0.85

-0. 86

-0.87

-0.88

-0. 89

-0.90

1. 857

1. 888

1. 921

1. 954

1. 989

2. 026

2. 064

2. 103

2. 144

2. 187

2. 446

2. 507

2. 570

2. 637

2. 707

2. 781

2. 859

2. 942

3. 029

3. 122

3. 131

3. 233

3. 342

3. 458

3. 583

3. 716

3. 860

4. 015

4. 183

4. 365

-0.91

-0.92

-0.93

-0. 94

-0.95

-0. 96

-0.97

-0. 98

-0. 99

- 1.00

2. 232

2. 279

2. 328

2. 379

2. 433

2 , 490

2. 549

2, 611

2. 677

2. 746

3. 221

3. 327

3. 439

3. 560

3. 689

3. 828

3. 979

4. 141

4. 317

4. 510

4. 564

4. 782

5. 022

5. 286

5. 580

5. 908

6. 278

6. 696

7. 175

7. 727

- 20.8

- 22. 8

-25. 1

- 27.8

- 31.0

- 34. 8

- 39. 2

- 44. 7

-51 . 3

- 59. 5

– 14. 4

- 15. 6

- 16. 9

- 18. 4

- 20. 1
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TABLE II - Continued

да 3 u=4 **5

I

V y' v' '

0.00

0.01

0.02

0.03

0. 04

0.05

0.06

0.07

0.08

0. 09

0. 10

1. 0000

1. 0003

1. 0010

1. 0023

1. 0040

1. 0063

1. 0091

1. 0123

1. 0161

1. 0205

1. 0253

0. 0000

0. 0501

0. 1002

0. 1506

0. 2011

0. 2519

0. 3029

0. 3542

0. 4058

0. 4578

0. 5102

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0109

1. 0148

1. 0193

1. 0245

1. 0303

0.0000

0. 0601

0. 1202

0. 1806

0. 2412

0. 3020

0. 3631

0. 4246

0. 4864

0. 5486

0. 6112

1. 0000

1. 0004

1. 0014

1. 0032

1. 0056

1. 0088

1. 0127

1. 0172

1. 0226

1. 0286

1. 0353

0. 0000

0. 0710

0. 1403

0. 2106

0. 2813

0. 3521

0. 4233

0. 4949

0. 5669

0. 6393

0. 7123

0. 11

0. 12

0. 13

0. 14

0. 15

0. 16

0. 17

0. 18

0. 19

0. 20

1. 0307

1. 0366

1. 0430

1. 0500

1. 0575

1. 0655

1. 0742

1. 0834

1. 0931

1. 1035

0. 5630

0. 6163

0. 6700

0. 7244

0. 7793

0. 8349

0. 8911

0. 9481

1. 0059

1. 0645

1. 0367

1. 0438

1. 0515

1. 0599

1. 0689

1. 0785

1. 0889

1. 0999

1. 1116

1. 1239

0. 6744

0. 7381

0. 8024

0. 8674

0. 9330

0. 9994_

1. 0667

1. 1348

1. 2039

1. 2740

1. 0428

1. 0511

1. 0600

1. 0698

1. 0802

1. 0915

1. 1035

1. 1164

1. 1300

1. 1444

0. 7858

0. 8600

0. 9348

1. 0104

1. 0868

1. 1641

1. 2423

1. 3216

1 , 4020

1. 4836

0. 21

0. 22

0. 23

0. 24

0. 25

0. 26

0. 27

0. 28

0. 29

0. 30

1. 1144

1. 1260

1. 1381

1. 1509

1. 1643

1. 1784

1. 1931

1. 2085

1. 2245

1. 2413

1. 1241

1. 1846

1. 2461

1. 3088

1. 3727

1. 4378

1. 5043

1. 5722

1. 6417

1. 7128

1. 1370

1. 1508

1. 1654

1. 1807

1. 1967

1. 2135

1. 2311

1. 2496

1. 2688

1. 2889

1. 3452

1. 4176

1. 4912

1. 5663

1. 6428

1. 7209

1. 8006

1. 8822

1. 9657

2. 0513

1. 1596

1. 1757

1. 1927

1. 2105

1. 2292

1. 2488

1. 2693

1. 2907

1. 3131

1. 3366

1. 5666

1. 6509

1. 7368

1. 8243

1. 9136

2. 0048

2. 0980

2. 1935

2. 2913

2. 3917

0. 31

0. 32

0. 33

0. 34

0. 35

0. 36

0. 37

0. 38

0. 39

0. 40

1. 2588

1. 2770

1. 2960

1. 3158

1. 3363

1. 3577

1. 3800

1. 4031

1. 4271

1. 4520

1. 7857

1. 8604

1. 9372

2. 0161

2. 0973

2. 1809

2. 2672

2. 3563

2. 4484

2. 5438

1. 3098

1. 3317

1. 3544

1. 3781

1. 4028

1. 4285

1. 4552

1. 4829

1. 5118

1. 5419

2. 1391

2. 2294

2. 3222

2. 4178

2. 5163

2. 6181

2. 7233

2. 8322

2. 9451

3. 0623

1. 3610

1. 3865

1. 4130

1. 4407

1. 4695

1. 4995

1. 5307

1. 5632

1. 5971

1. 6323

2. 4949

2. 6011

2. 7105

2. 8234

2. 9400

3. 0607

3. 1858

3. 3156

3. 4506

3. 5911
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TABLE II - Continued

u=3 H=4 u=5

I Y y' y' y y'

0. 41

0.42

0. 43

0. 44

0. 45

0. 46

0. 47

0. 48

0. 49

0. 50

1. 4780

1. 5049

1. 5329

1. 5620

1. 5922

1. 6235

1. 6561

1. 6900

1. 7253

1. 7619

2. 6426

2. 7451

2. 8517

2. 9625

3. 0780

3. 1984

3. 3242

3. 4558

3. 5937

3. 7383

1. 5731

1. 6056

1. 6393

1. 6744

1. 7110

1. 7490

1. 7885

1. 8297

1. 8726

1. 9173

3. 1841

3. 3110

3. 4433

3. 5815

3. 7260

3. 8774

4. 0363

4. 2033

4. 3791

4. 5646

1. 6689

1. 7070

1. 7467

1. 7881

1. 8312

1. 8760

1. 9228

1. 9716

2. 0226

2. 0757

3. 7377

3. 8909

4. 0512

4. 2193

4, 3959

4. 5817

4. 7776

4. 9845

5. 2034

5. 4356

0. 51

0. 52

0. 53

0. 54

0. 55

0. 56

0. 57

0. 58

0. 59

0. 60

1. 8001

1. 8398

1. 8811

1. 9242

1. 9691

2. 0159

2. 0648

2. 1159

2. 1692

2. 2251

3. 890

4. 050

4. 219

4. 397

4. 585

4. 784

4. 995

5. 220

5. 459

5. 714

1. 9640

2. 0126

0634

2. 1164

2. 1719

2. 2299

2. 2906

2. 3543

2. 4212

4914

4. 761

4. 968

5. 188

5. 422

5. 670

5. 936

6. 220

6. 523

6. 850

7. 200

2. 1313

2. 1894

2. 2503

2. 3140

2. 3809

2. 4510

2. 5248

2. 6024

2. 6842

2. 7705

5. 682

5. 945

6. 226

6. 525

6. 847

7. 192

7. 564

7. 966

8. 401

8. 872

0. 61

0. 62

0. 63

0. 64

0. 65

0. 66

0. 67

0. 68

0. 69

0. 70

2, 2836

2. 3449

2. 4092

2. 4768

2. 5479

2. 6228

2. 7017

2. 7851

2. 8733

2. 9668

5. 987

6. 279

6. 593

6. 930

7. 293

7. 686

8. 111

8. 572

9. 074

9. 622

2. 5653

2. 6431

2. 7251

2. 8118

9036

0008

1040

2138

3309

3. 4560

7. 579

7. 988

8. 432

8. 913

9. 438

10. 01

10. 64

11. 33

12. 10

12. 94

2. 8618

2. 9584

3. 0609

3. 1698

3. 2858

3. 4097

3. 5422

3. 6843

3. 8372

4. 0021

9. 386

9. 947

10. 56

11. 23

11. 98

12. 80

13. 71

14. 73

15. 87

17. 15

0. 71

0.72

0.73

0.74

0. 75

0.76

0.77

0.78

0.79

0.80

3. 0659

3. 1714

3. 2838

3. 4038

3. 5322

3. 6701

3. 8184

3. 9785

4. 1518

4. 3400

10. 22

10. 88

11. 61

12. 41

13. 30

14. 29

15. 40

16. 64

18. 05

19. 64

3. 5900

7339

8890

4. 0565

4. 2380

4. 4356

4. 6513

4. 8880

5. 1489

5. 4380

13. 88

14. 93

16. 10

17. 42

18. 92

20. 62

22. 57

24. 82

27. 42

30. 47

4. 1807

4. 3748

4. 5864

4. 8182

5. 0732

5. 3554

5. 6692

6. 0205

6. 4166

6. 8667

18. 60

20. 24

22. 12

24. 29

26. 79

29. 71

33. 15

37. 23

42. 13

48. 09
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TABLE II - Continued

H=3 H =4 H =5

I y' y y ' '

0. 81

0. 82

0.83

0.84

0.85

0. 86

0.87

0. 88

0.89

0.90

4. 545

4. 770

5. 017

5. 291

5. 594

5. 934

6. 316

6. 750

7. 246

7. 820

21. 5

23. 5

26. 0

28. 8

32. 1

36. 0

40. 6

46. 3

53. 2

61. 9

5. 760

6. 121

6. 530

6. 995

7. 530

8. 151

8. 883

9. 757

10. 82

12. 14

34. 1

38. 3

43. 5

49. 8

57. 5

67. 2

79. 7

95. 9

118.

148.

7. 383

7. 981

8. 683

9. 517

10. 53

11. 77

13. 35

55. 4

64. 6

76. 2

91. 4

112.

139.

179.

13. 82 . 191 .0. 91

0. 92

0.93

0.94

0. 95

8. 491

9. 286

10. 24

11. 42

12. 90

72. 8

86.9

106 .

131 .

167 .
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TABLE II - Continued

4=3 p=4

1 V gud V y '

0.0000

-0. 0601

-0. 1200

-0. 1800

-0. 2400

-0. 3000

-0. 3601

-0. 4203

-0. 4807

-0. 5412

-0. 6020

-

-

-0. 6631

-0. 7245

-0. 7863

-0. 8484

-0. 9110

-0. 9742

- 1. 0378

- 1. 1021

- 1. 1671

- 1. 2327

- 1. 2992

- 1. 3666

-- 1. 4348

- 1. 5041

- 1. 5745

- 1. 6461

-1 . 7189

- 1. 7932

- 1. 8689

- 1. 9462

-2. 0253

-2. 1062

- 2. 1891

- 2. 2742

- 2. 3616

- 2. 4515

- 2. 5441

- 2. 6396

- 2. 7383

-2. 8403

H=5

0.00

-0.01

-0.02

-0.03

-0.04

-0. 05

-0.06

-0.07

-0.08

-0.09

-0. 10

1. 0000

1. 0003

1. 0010

1. 0023

1. 0040

1. 0062

1. 0090

1. 0122

1. 0160

1. 0202

1. 0250

0.0000

-0.0501

-0. 1000

-0. 1500

-0. 1999

-0. 2499

-0. 2999

-0. 3500

-0. 4002

-0. 4505

-0. 5010

1. 0000

1. 0003

1. 0012

1. 0027

1. 0048

1. 0075

1. 0108

1. 0147

1. 0192

1. 0243

1. 0300

1. 0000

1. 0004

1. 0014

1. 0032

1. 0056

1. 0088

1. 0126

1. 0172

1. 0224

1. 0284

1. 0351

0.0000

-0.0701

-0. 1401

-0. 2100

-0. 2800

-0. 3501

-0. 4203

-0. 4907

-0. 5612

-0. 6320

-0. 7031

-0. 11

-0. 12

-0. 13

-0. 14

-0. 15

-0. 16

-0. 17

-0. 18

-0. 19

-0. 20

1. 0303

1. 0360

1. 0423

1. 0491

1. 0564

1. 0643

1. 0726

1. 0815

1. 0909

1. 1009

-0. 5517

-0. 6027

-0. 6540

-0. 7055

-0. 7574

-0. 8097

-0. 8625

-0. 9157

-0. 9694

- 1. 0237

1. 0364

1. 0433

1. 0508

1. 0590

1. 0678

1. 0772

1. 0873

1. 0980

1. 1093

1. 1213

1. 0424

1. 0505

1. 0594

1. 0689

1. 0792

1. 0902

1. 1020

1. 1145

1. 1278

1. 1418

-0. 7745

-0. 8463

-0. 9186

-0. 9914

-1 . 0647

- 1. 1386

- 1. 2133

-1. 2887

-1. 3649

- 1. 4420

-0. 21

-0. 22

-0. 23

-0. 24

-0. 25

-0. 26

-0. 27

-0. 28

-0. 29

-0. 30

1. 1114

1. 1225

1. 1341

1. 1463

1. 1591

1. 1724

1. 1864

1. 2009

1. 2161

1. 2318

- 1. 0786

- 1. 1342

- 1. 1905

- 1. 2476

– 1. 3055

- 1. 3643

- 1. 4241

- 1. 4850

- 1. 5469

- 1. 6101

1. 1340

1. 1473

1. 1613

1. 1760

1. 1914

1. 2075

1. 2243

1. 2419

1. 2602

1. 2793

1. 1566

1. 1722

1. 1886

1. 2058

1. 2238

1. 2427

1. 2624

1. 2830

1. 3045

1. 3268

- 1. 5201

- 1. 5993

- 1. 6796

- 1. 7613

- 1. 8443

- 1. 9287

-2. 0148

- 2. 1027

-2. 1924

- 2. 2842

-0. 31

-0. 32

-0. 33

-0. 34

-0. 35

-0. 36

--0. 37

-0. 38

-0. 39

-0.40

1. 2483

1. 2653

1. 2831

1. 3015

1. 3206

1. 3405

1. 3610

1. 3823

1. 4044

1. 4274

- 1. 6746

- 1. 7405

- 1. 8078

-- 1. 8768

- 1. 9475

- 2. 0200

-2. 0945

- 2. 1711

- 2. 2500

- 2. 3313

1. 2991

1. 3198

1. 3413

1. 3636

1. 3868

1. 4108

1. 4358

1. 4617

1. 4886

1. 5165

1. 3501

1. 3744

1. 3996

1. 4259

1. 4532

1. 4815

1. 5109

1. 5415

1. 5733

1. 6062

-2. 3782

-2. 4746

-2. 5736

- 2. 6754

- 2. 7803

- 2. 8884

-3. 0000

-3. 1156

-3. 2353

-3. 3595
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TABLE II — Continued

u=3

I

y v' V y' v'

-0. 41

-0.42

-0. 43

-0. 44

-0. 45

-0. 46

-0. 47

-0. 48

-0. 49

-0. 50

— 2. 4152

- 2. 5019

- 2. 5917

- 2. 6847

- 2. 7812

- 2. 8815

-2. 9858

-3. 0944

- 3. 2078

- 3. 3263

-3. 4886

-3. 6231

-3. 7634

- 3. 9099

- 4. 0634

- 4. 2243

- 4. 3933

- 4. 5712

- 4. 7589

-4. 9571

-0.51

-0. 52

-0. 53

-0.54

-0. 55

-0. 56

-0. 57

-0. 58

-0. 59

-0. 60

- 3. 450

-3. 580

-3. 716

- 3. 860

- 4. 010

- 4. 169

- 4. 337

- 4. 515

- 4. 703

- 4. 903

-5. 167

- 5. 390

-5. 627

-5. 879

- 6. 148

- 6. 436

- 6. 745

- 7. 077

- 7. 435

-- 7. 822

-0. 61

-0. 62

-0. 63

-0.64

-0. 65

-0. 66

-0. 67

-0. 68

-0. 69

-0. 70

- 5. 115

- 5. 341

- 5. 583

- 5. 841

- 6. 117

- 6. 414

- 6. 733

–7. 077

- 7. 448

-7. 850

-8. 240

- 8. 694

- 9. 188

- 9. 728

- 10. 32

- 10. 97

- 11. 68

- 12. 47

- 13. 35

- 14. 33

-

-0. 71

-0. 72

-0. 73

-0.74

-0. 75

-0. 76

-0. 77

-0. 78

-0. 79

-0. 80

-8. 287

- 8. 762

— 9. 281

-9. 848

- 10. 47

-11 . 16

- 11. 91

- 12. 75

- 13. 68

- 14. 73

u=5

y

1. 4511

1. 4757

1. 5011

1. 5275

1. 5548

1. 5831

1. 6125

1. 6429

1. 6744

1. 7070

1. 5454

1. 5754

1. 6066

1. 6388

1. 6723

1. 7071

1. 7432

1. 7806

1. 8195

1. 8599

- 2. 9460

-3. 0557

- 3. 1696

- 3. 2882

- 3. 4117

--3. 5407

-3. 6755

-3. 8167

- 3. 9648

- 4. 1204

1. 6405

1. 6760

1. 7130

1. 7513

1. 7912

1. 8326

1. 8757

1. 9205

1. 9671

2. 0157

1. 7409

1. 7761

1. 8125

1. 8504

1. 8898

1. 9307

1. 9732

2. 0174

2. 0635

2. 1115

1. 9020

1. 9457

1. 9911

2. 0385

2. 0878

2. 1393

2. 1929

2. 2490

2. 3076

2. 3690

- 4. 284

--4. 457

- 4. 639

-4. 832

-5. 037

-- 5. 254

- 5. 485

--5 . 732

-- 5. 995

- 6. 277

2. 0663

2. 1191

2. 1742

2. 2317

2. 2918

2. 3547

2. 4206

2. 4897

2. 5622

2. 6385

2. 1616

2. 2139

2. 2685

2. 3256

2. 3854

2. 4480

2. 5137

2. 5827

2. 6553

2. 7318

2. 4332 - 6. 580

2. 5006 - 6. 905

2. 5714 - 7. 256

2. 6458 - 7. 634

2. 7242 -8. 044

2. 8068 -8. 489

2. 8941 -8. 974

2. 9865 -9. 502

3. 0843 -- 10. 08

3. 1883 - 10. 72

2. 7187

2. 8034

2. 8927

2. 9873

3. 0875

3. 1939

3. 3071

3. 4278

3. 5568

3. 6952

2. 8124

2. 8977

2. 9878

3. 0834

3. 1850

3. 2930

3. 4083

3. 5316

3. 6637

3. 8056

3. 2989 – 11. 42

3. 4168 - 12. 19

3. 5429 - 13. 05

3. 6781 - 14.00

3. 8234 – 15. 07

3. 9799 - 16. 27

4. 1492 - 17. 62

4. 3329 - 19. 15

4. 5330 - 20. 90

4. 7517 - 22. 90

3. 8438

4. 0041

4. 1775

4. 3656

4. 5706

4. 7949

5. 0415

5. 3138

5. 6163

5. 9545

- 15. 43

- 16. 66

- 18. 04

- 19. 62

- 21. 42

- 23. 49

- 25. 88

-- 28. 66

- 31. 93

- 35. 80

556037 0–61-35
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H=3

V v' V

- 15. 9

- 17. 2

- 18.7

- 20. 4

- 22. 3

- 24. 6

- 27. 2

- 30. 2

-33. 8

- 38. 1

- 25. 2

- 27. 9

-- 31. 1

-34. 8

- 39. 2

-44. 6

-51. 1

- 59. 3

- 69.5

-82. 7

-40. 4

-46. O

- 52. 9

- 61. 5

–72. 3

- 86. 3

- 105 .

- 130.

- 165.

- 218.

- 100 .

-123.

-156 .

- 204.

TABLE II - Continued

w =5

-0.81

-0. 82

-0.83

-0.84

-0. 85

-0. 86

-0. 87

-0. 88

-0.89

-0.90

3. 959

4. 124

4. 303

4. 499

4. 712

4. 947

5. 205

5. 492

5. 811

6. 170

4. 992

5. 257

5. 552

5. 880

6. 249

6. 668

7. 145

7. 696

8. 338

9. 096

6. 335

6. 766

7. 260

7. 831

8. 497

9. 288

10. 24

11. 41

12. 87

14. 77

10.00

11. 12

12. 50

14. 29

-0.91

-0. 92

-0.93

-0.94

-0.95

-0. 96

-0.97

-0.98

-0. 99

6. 576

7. 039

7. 571

8. 190

8. 919

9. 790

10. 85

12. 17

13. 85

- 43. 2

- 49.5

-57. 2

- 67.0

- 79. 4

-95. 6

-117.

- 148.

-191 .
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TABLE III

The values tabulated are approximations of y (x ) and y ' (x ) , where y (x ) is the

solution of Van der Pol's equation

or in- - ( 1 – ya) den + y = 0 ,

for the initial conditions: y (0) = 2, y ' (O ) = 0 and for e=0.5, 1 , 2 , 3 , 4 , 5 .

€= 0.5 e= 1.0 (= 2.0

1 1

V u' v'

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2. 00

1. 99

1. 96

1. 92

1. 87

1. 80

1. 73

1. 64

1. 55

1. 45

0.00

-0. 19

-0. 34

-0. 48

-0. 60

-0.71

-0. 80

-0. 89

-0.98

-1 . 07

2. 00

1. 99

1. 97

1. 93

1. 89

1. 84

1. 78

1. 72

1. 65

1. 58

0.00

-0. 17

-0. 30

-0. 40

-0. 47

-0. 53

-0. 59

-0. 64

--0. 68

-0. 73

2. 00

1. 99

1. 97

1. 95

1. 92

1. 88

1. 85

1.81

1. 78

1. 74

0.00

-0. 15

-0. 23

-0. 28

-0. 31

-0. 33

-0. 35

-0. 36

--0. 38

-0.39

0.0

0.1

0. 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1. 0

1. 1

1. 2

1. 3

1. 4

1. 5

1. 6

1. 7

1. 8

1. 9

1. 33

1. 21

1. 09

0.95

0. 80

0. 64

0. 47

0. 28

0, 09

-0. 11

-1 . 15

-1. 24

- 1. 34

-1 . 44

- 1. 54

- 1. 65

-1 . 77

- 1. 88

-2.00

-2. 10

1 , 51

1. 43

1. 34

1. 25

1. 15

1. 04

0.92

0.80

0. 65

0. 50

-0. 78

-0.83

-0. 89

-0. 96

-1 . 04

- 1. 12

-1 . 23

- 1. 35

- 1. 49

- 1. 65

1. 70

1. 66

1. 61

1. 57

1. 52

1. 47

1. 42

1. 36

1. 30

1. 24

-0. 41

-0. 43

-0. 44

-0. 46

-0. 49

-0.51

-0. 54

-0. 58

-0. 62

-0. 67

1. O

1. 1

1. 2

1. 3

1. 4

1. 5

1. 6

1. 7

1. 8

1. 9

2. 0

2. 1

2. 2

2. 3

2. 4

2. 5

2. 6

2. 7

2.8

2. 9

-0. 33

-0. 55

-0. 77

--0. 99

- 1. 20

- 1. 39

- 1. 56

- 1. 71

- 1. 82

- 1. 91

- 2. 18

- 2. 22

-2, 22

-2. 15

-- 2. 02

- 1. 83

- 1. 58

- 1. 29

-1.00

-0.71

0, 32

0. 13

-0.08

-0. 32

--0. 58

-0 . 84

-1 . 11

- 1. 35

- 1. 57

- 1. 74

-1.83

-2. 04

-- 2. 25

-2. 46

- 2. 62

-- 2. 68

-- 2. 59

- 2. 34

-1.95

- 1. 48

1. 17

1. 09

1 , 01

0.91

0.81

0. 69

0. 54

0. 37

0. 17

-0.09

-0. 73

-0.80

-0.88

-0.99

-- 1. 13

- 1. 32

- 1. 56

- 1. 87

- 2. 28

- 2. 79

2.0

2. 1

2. 2

2. 3

2. 4

2. 5

2. 6

2. 7

2.8

2. 9
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v' V

-

-

- 1. 96

- 1. 99

-2. 00

- 1. 99

- 1. 96

- 1. 92

- 1. 86

- 1. 80

-1 . 72

- 1. 63

-0. 39

-0.75

- 1. 13

- 1. 48

– 1. 74

-1 . 90

- 1. 99

-2.00

-2. 00

-2. 00

-3. 34.

-3.75

- 3. 74

-3. 11

- 2. 11

-1 . 18

-0. 52

-0. 14

-

- 1. 54

- 1. 44

-1 . 32

-1 . 20

- 1.07

-0.93

-0. 78

-0. 62

-0. 45

-0.27

TABLE III - Continued

€=0.5 e= 1.0 e= 2.0

1

3. O

3. 1

3. 2

3. 3

3. 4

3. 5

3. 6

3. 7

3. 8

3. 9

-0. 43

-- 0.19

0.02

0. 20

0. 36

0. 50

0.61

0.72

0. 81

0. 90

-1 . 87

- 1. 95

- 1. 99

-2.00

-2.00

-1 . 98

- 1. 95

-1.91

-1 . 86

- 1. 80

- 1. 02

-0. 62

-0. 29

-0.04

0. 14

0. 28

0. 38

0. 46

0. 52

0.58

0.08

0. 19

3. O

3. 1

3. 2

3. 3

3. 4

3. 5

3. 6

3. 7

3. 8

3. 9

4. O

4. 1

4. 2

4. 3

4. 4

4. 5

4. 6

4. 7

4. 8

4 , 9

0.99

1.08

1. 16

1. 25

1. 35

1. 45

1. 55

1. 67

1. 78

1. 90

- 1. 74

- 1. 68

-1.61

- 1. 53

- 1. 45

- 1. 37

- 1. 28

- 1. 18

- 1.08

-0. 96

0. 62

0. 67

0. 72

0. 77

0.82

0.87

0. 94

1. 01

1. 10

1. 19

- 1. 98

- 1. 95

- 1. 92

-1 . 89

- 1. 86

-1.82

- 1. 78

- 1. 74

- 1. 70

- 1. 66

0. 26

0. 29

0. 32

0. 34

0. 35

0. 36

0. 38

0. 39

0. 41

0. 42

4. 0

4, 1

4. 2

4. 3

4. 4

4. 5

4 , 6

4. 7

4. 8

4. 9

5. 0

5. 1

5. 2

5. 3

5. 4

5. 5

5. 6

5. 7

5. 8

5. 9

-0.07

0. 13

0. 35

0. 57

0. 79

1. 01

1. 22

1. 41

1. 58

1. 72

2.01

2. 11

2. 18

2. 22

2. 21

2. 14

2. 01

1. 81

1. 55

1. 27

-0. 84

-0. 70

-0. 55

-0. 38

-0. 19

0.01

0. 24

0. 49

0. 75

1. 02

1. 31

1. 44

1. 59

1. 77

1. 97

2. 19

2. 40

2. 58

2. 67

2. 64

- 1. 62

- 1. 57

- 1. 53

- 1. 48

- 1. 43

-1.37

- 1. 31

-1 . 25

- 1. 18

- 1. 10

0. 44

0. 46

0. 48

0. 51

0. 54

0. 57

0. 61

0. 66

0. 72

0. 78

5. 0

5. 1

5. 2

5. 3

5. 4

5. 5

5. 6

5. 7

5. 8

5. 9

6. O

6. 1

6. 2

6. 3

6. 4

6. 5

6. 6

6. 7

6. 8

6. 9

1. 83

1. 91

1. 97

2. 00

2. 00

1. 99

1. 96

1. 91

1. 86

1. 79

0. 97

0. 68

0.41

0. 17

-0.04

-0. 22

-0, 37

-0. 51

-0. 62

-0. 73

1. 28

1. 51

1. 69

1. 83

1. 93

1. 98

2. 00

2. 00

1. 99

1. 96

2. 44

2. 08

1. 63

1. 16

0. 73

0. 38

0.11

-0.09

-0. 24

-0. 35

-1 . 02

-0. 93

-0.83

-0. 71

-0. 57

-0. 40

-0. 20

0.05

0. 34

0. 69

0.87

0. 98

1. 11

1. 29

1. 52

1. 82

2. 21

2. 71

3. 26

3. 71

6. 0

6. 1

6. 2

6. 3

6. 4

6. 5

6. 6

6. 7

6. 8

6. 9
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TABLE III - Continued

€=0.5 e= 1.0 e= 2.0

I I

y y ' V y ' V '

-0. 82

-0. 91

- 1. 00

- 1. 09

- 1. 17

- 1. 26

- 1. 36

- 1. 46

-1 . 56

- 1. 68

-0. 44

-0. 50

-0. 56

-0. 61

-0. 66

-0. 70

-0. 75

-0. 80

-0. 86

-0.92

-

- 1. 79

-- 1. 91

-2. 02

-2. 12

-2. 19

- 2. 23

- 2. 21

-2. 13

- 1. 99

- 1. 78

-0. 99

- 1.07

- 1. 16

- 1. 27

- 1. 40

-1.54

- 1. 71

- 1. 91

-- 2. 12

- 2. 33

-2. 53

-2 . 65

- 2. 67

--- 2. 52

- 2. 21

- !. 78

- 1. 31

-0. 86

-0. 49

-0. 19

-0. 33

7.0

7. 1

7. 2

7.3

7. 4

7.5

7.6

7. 7

7.8

7. 9

1. 71

1. 63

1. 53

1. 43

1. 31

1. 19

1. 06

0. 92

0. 77

0. 61

1. 92

1. 87

1. 82

1. 76

1. 70

1. 63

1. 56

1. 48

1. 40

1. 31

1. 07

1. 43

1. 71

1. 88

1. 98

2. 00

2. 00

2. 00

1. 99

1. 96

3. 78

3. 24

2. 28

1. 30

0. 60

0. 18

-0. 05

-0. 18

– 0. 25

-0. 29

7.0

7. 1

7. 2

7. 3

7. 4

7. 5

7.6

7. 7

7.8

7. 9

8. 0

8. 1

8. 2

8. 3

8. 4

8. 5

8. 6

8. 7

8. 8

8. 9

0. 43

0. 25

0. 05

-0. 16

-0. 37

-0. 59

-0. 81

-1.03

- 1. 24

- 1. 43

1. 21

1. 11

1. 00

0.88

0. 74

0. 60

0. 44

0. 25

0.05

-0. 17

1. 93

1. 90

1. 86

1. 83

1. 79

1. 75

1. 71

1. 67

1. 63

1. 58

-0. 32

-0. 33

-0. 35

0. 36

-0. 38

-0. 39

-0. 40

-0. 42

-0. 44

-0. 46

8. 0

8. J

8. 2

8. 3

8. 4

8. 5

8. 6

8. 7

8. 8

8. 9

9. O

9. 1

9. 2

9. 3

9. 4

9. 5

9. 6

9. 7

9. 8

9. 9

10. O

-1.59

- 1. 73

- 1. 84

- 1. 92

- 1. 97

-2. 00

- 2. 00

- 1. 99

- 1. 96

- 1. 91

- 1. 85

- 1. 53

- 1. 24

-0. 94

-0. 65

-0. 38

-0. 15

0.06

0. 24

0. 39

0. 52

0. 63

-0. 41

-0. 67

-0.94

1. 20

1. 44

- 1. 64

- 1. 79

- 1. 90

- 1. 97

-- 2. 00

-2. 00

1. 53

1. 49

1. 43

1. 38

1. 32

1. 26

1. 19

1. 12

1. 03

0. 94

0.84

-0. 48

-0. 50

-0. 53

-0. 57

-0. 61

-0. 65

-0. 71

-0 . 77

-0. 86

-0 . 96

- 1. 09

9. 0

9. 1

9. 2

9. 3

9. 4

9. 5

9. 6

9. 7

9. 8

9. 9

10.0
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TABLE III - Continued

€=3.0 e= 4.0 <= 5.0

1

y D ' y v '

0.0

0.1

0.2

0. 3

0.4

0.5

0.6

0.7

0.8

0.9

2. 00

1. 99

1. 98

1. 96

1. 93

1. 91

1. 89

1. 86

1. 84

1. 81

0.00

-0. 13

-0. 19

-0. 21

-0. 22

-0. 23

-0. 24

-0. 24

-0. 25

-0. 26

2. 00

1. 99

1. 98

1. 96

1. 95

1. 93

1. 91

1. 89

1. 88

1. 86

0.00

-0. 12

-0. 15

-0. 17

-0. 17

-0. 17

-0. 18

-0. 18

-0. 18

-0. 19

2. 00

1. 99

1. 98

1. 97

1. 95

1. 94

1. 93

1. 91

1. 90

1. 88

0.00

-0. 10

0. 13

-0. 13

-0. 14

-0. 14

-0. 14

0. 14

-0.14

-0. 15

0.0

0.1

0.2

0.3

0. 4

0.5

0. 6

0.7

0.8

0.9

1.0

1. 1

1. 2

1. 3

1. 4

1. 5

1. 6

1. 7

1. 8

1. 9

1. 79

1. 76

1. 73

1. 71

1. 68

1. 65

1. 62

1. 59

1. 55

1. 52

-0. 26

-0.27

-0. 28

-0. 28

-0. 29

-0. 30

-0. 31

-0. 32

-0. 34

-0. 35

1. 84

1. 82

1. 80

1. 78

1. 76

1. 74

1. 72

1. 70

1. 67

1. 65

-0. 19

-0. 19

-0. 20

-0. 20

-0. 20

- 0.21

-0.21

-0. 22

-0. 22

-0. 23

1. 87

1. 85

1. 84

1. 82

1. 81

1. 79

1. 78

1. 76

1 , 74

1. 73

-0.15

--0. 15

-0. 15

-0.15

-0. 16

-0. 16

-0. 16

-0. 17

-0. 17

-0.17

1.0

1. 1

1. 2

1. 3

1. 4

1. 5

1. 6

1.7

1.8

1. 9

2.0

2. 1

2. 2

2. 3

2. 4

2. 5

2. 6

2. 7

2. 8

2. 9

1. 48

1. 44

1. 41

1. 37

1. 32

1. 27

1. 22

1. 17

1. 11

1. 04.

-0.37

-0. 38

-0. 40

-0. 43

-0. 46

-0. 49

-0. 53

-0. 58

-0. 64

-0. 71

1. 63 -0. 24

1. 60 -0.24

1. 58 -0. 25

1. 55 -0. 26

1. 53 -0. 27

1. 50 -0.28

1. 47 -0.29

1. 44 -0.30

1. 41 -0. 32

1. 38 -0, 33

1. 71

1. 69

1. 67

1. 66

1. 64

1. 62

1. 60

1. 58

1. 56

1. 54

-0. 17

-0. 18

-0. 18

-0. 19

-0. 19

-0. 19

-0. 20

-0. 20

-0.21

-0. 22

2. O

2. 1

2. 2

2. 3

2. 4

2. 5

2. 6

2. 7

2. 8

2. 9

3. 0

3. 1

3. 2

3. 3

3. 4

3. 5

3. 6

3. 7

3. 8

3. 9

0. 96

0.88

0.77

0. 65

0. 49

0. 29

0.24

-0. 34

-0.80

- 1. 29

-0. 81

-0. 95

- 1. 13

- 1. 38

- 1. 75

- 2. 30

- 3. 10

- 4. 12

-4. 98

- 4. 71

1. 34

1. 31

1. 27

1. 23

1. 18

1. 13

1. 08

1. 01

0.94

0. 86

-0. 35

-0. 38

-0. 40

-0. 43

-0. 47

-0.52

-0. 58

-0. 66

-0. 77

-0.93

1. 51

1. 49

1. 47

1. 44

1. 42

1. 39

1. 36

1. 33

1. 30

1. 27

-0. 22

-0. 23

-0. 24

-0. 25

-0. 26

-0. 27

-0. 28

-0. 30

-0. 32

0. 34

3. O

3. 1

3. 2

3. 3

3. 4

3. 5

3. 6

3. 7

3.8

3. 9
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TABLE III - Continued

(-3.0 e = 4.0 €= 5.0

I

V V V V ' v

- 1. 69

– 1. 91

-2.00

-2.00

-2.00

-2. 00

- 1. 98

- 1. 96

- 1. 94

- 1. 92

- 1. 90

- 1. 87

- 1. 85

- 1. 82

- 1. 80

-1.77

- 1. 74

- 1. 72

- 1. 69

- 1. 66

-1, 63

- 1. 60

- 1. 56

- 1. 53

- 1. 49

- 1. 46

- 1. 42

- 1. 38

- 1. 33

- 1. 29

-

- 1. 24

-1.18

- 1. 13

-1 . 06

-0. 99

-0.90

-0. 81

-0. 69

-0. 54

-0. 36

4. O

4. 1

4. 2

4. 3

4. 4

4. 5

4. 6

4. 7

4. 8

4. 9

-- 3. 08

- 1. 42

-0. 47

-0. 57

0. 11

0. 18

0. 20

0. 22

0. 23

0. 23

0. 76

0. 62

0. 45

0. 20

-0. 16

-0. 68

- 1. 30

-1 , 77

- 1. 96

- 2. 00

- 1. 15

- 1. 50

-2. 05

- 2. 95

- 4. 39

- 6. 03

- 5. 88

- 3. 18

- 1. 03

-0. 20

1. 24

1. 20

1. 16

1. 11

1. 06

1. 00

0. 93

0. 85

0. 74

0. 60

-0. 36

-0. 39

-0. 43

-0. 48

-0. 54

-0. 63

-0. 75

-0. 92

- 1. 19

- 1. 64

4, 0

4. 1

4. 2

4. 3

4. 4

4. 5

4. 6

4. 7

4. 8

4. 9

5. O

5. 1

5. 2

5. 3

5. 4

5. 5

5. 6

5. 7

5. 8

5. 9

0. 24

0. 24

0. 25

0. 25

0. 26

0. 27

0. 27

0. 28

0. 29

0. 30

-2. 00

-2.00

-2.00

- 1. 98

- 1. 96

- 1. 95

- 1. 93

- 1. 91

- 1. 89

- 1. 88

0. 06

0. 13

0. 16

0. 16

0. 17

0. 17

0.17

0. 18

0. 18

0. 18

0. 40

0. 09

-0. 41

- 1. 13

-1 . 74

- 1. 97

-2. 00

-2.00

-2. 00

-2. 00

- 2. 44

- 3. 90

- 6. 29

-7. 53

-4. 07

- 1.04

-0. 13

0. 08

0. 12

0. 13

5. 0

5. 1

5. 2

5. 3

5. 4

5. 5

5. 6

5. 7

5. 8

5. 9

6. 0

6. 1

6. 2

6. 3

6. 4

6. 5

6. 6

6. 7

6. 8

6. 9

0. 31

0. 32

0. 33

0. 34

0. 36

0. 38

0. 40

0. 42

0. 45

0. 48

- 1. 86

- 1. 84

--- 1. 82

- 1. 80

- 1. 78

-1 . 76

- 1. 74

- 1. 72

- 1. 70

-1 . 67

0. 19

0. 19

0. 19

0. 20

0. 20

0. 20

0.21

0. 21

0. 22

0. 22

- 1. 98

- 1. 97

- 1. 96

- 1. 94

-1. 93

- 1. 91

- 1. 90

- 1. 89

- 1. 87

-1 . 86

13

0. 14

14

0. 14

0. 14

0.14

0.14

0. 15

0. 15

0. 15

6. O

6. 1

6. 2

6. 3

6. 4

6. 5

6. 6

6. 7

6. 8

6. 9

7.0

7. 1

7.2

7. 3

7. 4

7. 5

7.6

7. 7

7.8

7. 9

0. 52

0. 56

0. 62

0. 69

0.78

0.90

1. 07

1. 30

1. 63

2. 12

- 1. 65

-1 . 63

- 1. 60

- 1. 58

- 1. 55

- 1. 53

- 1. 50

- 1. 47

- 1. 44

1. 41

0. 23

0. 24

0. 24

0. 25

0. 26

0. 27

0. 28

0. 29

0. 30

0. 32

- 1. 84

- 1. 82

- 1.81

- 1. 79

- 1. 78

- 1. 76

- 1. 74

-1 . 73

- 1. 71

- 1. 69

0. 15

0. 15

0. 16

0. 16

0. 16

0. 16

0. 17

0. 17

0. 17

0. 18

7.0

7. 1

7. 2

7. 3

7. 4

7. 5

7. 6

7. 7

7.8

7. 9
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TABLE III - Continued

e= 3.0 €= 4.0 (= 5.0

1 I

D' g '

8. 0

8. 1

8. 2

8. 3

8. 4

8. 5

8. 6

8. 7

8.8

8. 9

-0.11

0. 22

0. 65

1. 15

1. 59

1. 86

1. 98

2. 00

2. 00

2. 00

2. 83

3. 81

4. 80

4. 96

3. 64

1. 84

0. 68

0.14

-0.08

-0. 16

- 1. 38

-1 . 34

- 1. 31

- 1. 27

-1 . 23

- 1. 18

- 1. 13

- 1. 08

-1 . 02

-0.94

0. 33

0. 35

0. 37

0. 40

0. 43

0. 47

0. 52

0. 58

0. 66

0. 77

- 1. 67

-1.65

- 1. 64

- 1. 62

- 1. 60

- 1. 58

- 1. 56

-1 . 54

-1.51

- 1. 49

0. 18

0. 19

0. 19

0. 19

0. 20

0. 20

0. 21

0. 22

0. 22

0. 23

8. O

8. 1

8. 2

8. 3

8. 4

8. 5

8. 6

8. 7

8. 8

8. 9

9. O

9. 1

9. 2

9. 3

9. 4

9. 5

9. 6

9. 7

9. 8

9. 9

1. 99

1. 97

1. 95

1. 92

1. 90

1. 88

1. 85

1. 83

1. 80

1. 78

-0. 20

-0.21

-0. 22

-0. 23

-0. 24

-0. 24

-0. 25

-0.25

-0. 26

- 0.26

-0. 86

-0. 76

-0. 63

-0. 45

-0. 21

0. 15

0. 67

1. 29

1. 76

1. 96

0. 92

1. 15

1. 49

2. 03

2. 93

4. 36

6. 01

5. 91

3. 23

1. 06

- 1. 47

- 1. 44

-1 . 42

- 1. 39

-1 . 36

- 1. 34

- 1. 31

-1 , 27

-1 . 24

- 1. 20

0. 24

0. 25

0. 26

0. 27

0. 28

0. 30

0. 32

0. 34

0. 36

0. 39

9. 0

9. 1

9. 2

9. 3

9. 4

9. 5

9. 6

9. 7

9. 8

9. 9

10. O

10. 1

10. 2

10. 3

10. 4

10. 5

10. 6

10.7

10. 8

10.9

1. 75

1. 72

1. 70

1. 67

1. 64

1. 60

1. 57

1. 54

1. 50

1. 47

-0. 27

-0.28

-0. 29

- 0. 30

-0. 31

-0. 32

-0. 33

-0. 34

-0. 36

-0. 37

2. 00

2. 00

2. 00

2. 00

1. 98

1. 96

1. 95

1. 93

1. 91

1. 89

0. 20

-0.06

-0. 13

-0. 16

-0. 16

-0. 17

-0.17

-0.17

-0. 18

-0.18

-1 . 16

- 1. 11

-1 . 06

- 1. 00

-0. 94

-0.85

-0.75

-0. 61

-0. 42

-0. 12

0. 43

0. 48

0. 54

0. 62

0. 74

0.91

1. 17

1. 61

2. 37

3. 79

10. O

10. 1

10. 2

10. 3

10. 4

10. 5

10.6

10.7

10. 8

10. 9

11. 0

11. 1

11. 2

11.3

11. 4

11. 5

11. 6

11. 7

11. 8

11. 9

1. 43

1. 39

1. 35

1. 30

1. 25

1. 20

1. 14

1. 09

1. 01

0.93

-0. 39

-- 0. 41

-0. 44

-0. 47

-0. 50

-0. 55

-0. 60

-0. 67

-0. 75

-0. 86

1. 88

1. 86

1. 84

1. 82

1. 80

1. 78

1. 76

1. 74

1. 72

1. 70

-0.18

-0. 19

-0. 19

-0. 19

-0. 20

-0. 20

-0. 20

-0. 21

-0.21

-0. 22

0. 37

1. 08

1. 71

1. 96

2. 00

2. 00

2. 00

2. 00

1. 98

1. 97

6. 13

7. 59

4. 34

1. 15

0. 15

-0.07

-0. 12

-0. 13

-0. 13

-0.14

11. 0

11.1

11. 2

11. 3

11. 4

11.5

11. 6

11. 7

11. 8

11. 9

12.0 0. 86 - 1. 01 1. 67 -0.22 1. 96 - 0.14 12. O
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TABLE IV

The values tabulated are approximations of y (x) and y' (x) , where y ( x ) is the

solution of Volterra's equations :

day
ข

dx ( hy ) + (-u +ya)on +2(00–go),

for the initial values :

y (0) = 1 , y ' (0) = -4.

1

0.00

0.01

0. 02

0.03

0.04

0.05

0.06

0.07

0.08

0. 09

1. 000 - 4.000

0. 961 -3. 842

0. 923 -3. 688

0. 887 - 3. 539

0. 852-3. 394

0. 819 -3. 254

0. 787-3. 118

0. 757 -2. 987

0.728 -2 . 860

0. 700 -2.738

0. 30

0. 31

0. 32

0. 33

0. 34

0. 35

0. 36

0. 37

0. 38

0. 39

0. 326 - 1. 077

0. 315 -- 1. 031

0. 305 -0. 987

0. 295 -0 . 945

0. 286 -0. 904

0. 277 -0. 866

0. 269 -0. 830

0. 261 -0. 795

0. 253 -0. 762

0. 245 -0. 730

0. 60

0. 61

0. 62

0. 63

0. 64

0. 65

0. 66

0. 67

0. 68

0. 69

0. 143

0. 140

0. 137

0. 134

0. 131

0. 128

0. 126

0. 123

0. 121

0. 119

-0. 313

-0. 301

-0. 290

-0. 279

-0. 269

-0. 259

-0. 250

-0. 240

-0. 232

- 0.223

0. 10

0.11

0. 12

0. 13

0. 14

0. 15

0. 16

0. 17

0. 18

0. 19

0. 673 - 2. 621

0. 647 - 2. 508

0. 623 - 2. 400

0. 599 - 2. 296

0. 577 - 2. 196

0. 555 -2 . 100

0. 535 -2. 008

0. 515 - 1. 920

0. 496 - 1. 836

0. 478 - 1. 756

0. 40

0. 41

0. 42

0. 43

0. 44

0. 45

0. 46

0. 47

0. 48

0. 49

0. 238 -0.700

0. 231 -0. 671

0. 225 -0. 644

0. 219 -0.617

0. 212 -0 . 592

0. 207 -0. 568

0. 201 -0 . 545

0. 196 -0. 523

0. 191 -0. 503

0. 186 -0. 483

0. 70

0. 71

0. 72

0. 73

0. 74

0.75

0. 76

0. 77

0. 78

0. 79

0. 117

0. 115

0. 112

0. 111

0. 109

0. 107

0. 105

0. 103

0. 102

0. 100

-0. 215

-0. 207

-0. 200

-0. 193

-0. 186

-0. 179

-0. 173

-0. 167

-0. 161

-0. 155

0.62

0. 20

0. 21

0. 22

0. 23

0. 24

0. 25

0. 26

0.27

0. 28

0. 29

0. 461 - 1. 679

0. 445 - 1. 606

0. 429-1. 535

0. 414 - 1. 468

0. 400 - 1. 404

0. 386 -- 1. 343

0. 373 - 1. 285

0. 360 - 1. 229

0. 348 - 1. 176

0. 337 - 1. 125

0. 50

0. 51

0. 52

0. 53

0. 54

0. 55

0. 56

0. 57

0. 58

0. 59

0. 181 -0. 464

0. 176 -0. 445

0. 172 -0. 428

0. 168 -0. 411

0. 164 -0. 395

0. 160 -0. 380

0. 156 -0. 366

0. 153 -0. 352

0. 149 -0. 338

0. 146 -0. 325

0. 80

0.81

0. 82

0.83

0. 84

0.85

0. 86

0. 87

0. 88

0.89

0. 099

0.097

0.096

0. 094

0. 093

0. 092

0. 091

0. 089

0. 088

0. 087

-0. 149

-0. 144

-0. 139

-0. 134

-0. 129

-0. 125

-0. 120

-0. 116

-0.112

-0. 108
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1 V y T N

0. 90

0. 91

0.92

0.93

0. 94

0. 95

0. 96

0.97

0. 98

0. 99

0. 086 -0. 104

085 0. 100

084 -0. 097

083 -- 0. 093

0. 082 -0. 090

0.081 --0. 087

080 0. 084

080 -0. 081

079 -0. 078

0. 078 -0.075

1. 30

1. 31

1. 32

1. 33

1. 34

1. 35

1. 36

1. 37

1. 38

1. 39

0.065 -0.014

0.065 -0. 013

0. 065 -0.011

0. 065 -0.010

0. 065 -0. 009

0.065 -0.007

0. 065 -0.006

0. 065 -0. 005

0. 065 -0.004

0. 065 -0.002

1. 70

1. 71

1. 72

1. 73

1. 74

1. 75

1. 76

1. 77

1. 78

1. 79

0. 070

0. 070

0. 070

0.071

0. 071

0. 071

0. 072

0. 072

0. 073

0. 073

0. 033

0. 034

0. 035

0. 036

0. 038

0. 039

0. 040

0. 041

0. 042

0. 044

1. 00

1. 01

1. 02

1. 03

1. 04

1. 05

1. 06

1. 07

1. 08

1. 09

077 -0. 072

077 -0.069

076 -0. 066

075 0. 064

075 -0. 061

074 -0. 059

074 -0.057

073 -0. 054

0. 072 -0. 052

. 072 -0. 050

1. 40

1. 41

1. 42

1. 43

1. 44

1. 45

1. 46

1. 47

1. 48

1. 49

0. 065

0. 065

0. 065

0. 065

0. 065

0. 065

0. 065

0. 065

0. 065

0. 065

-0.001

0.000

0.001

0.002

0. 004

0. 005

0.006

0. 007

1. 80

1. 81

1. 82

1. 83

1. 84

1. 85

1. 86

1. 87

1. 88

1. 89

0. 073

0.074

0.074

0. 075

0. 075

0. 076

0. 076

0. 077

0. 077

0. 078

0. 045

0. 046

0. 047

0. 049

0. 050

0. 051

0. 052

0. 054

0. 055

0. 056

|

0 .

|

1. 10

1. 11

1. 12

1. 13

1. 14

1. 15

1. 16

1. 17

1. 18

1. 19

071 0.048

071 -0. 046

070 -0. 044

070 -0.042

070 - 0. 040

069 -0.038

069 -0.036

069 -0.034

1. 50

1. 51

1. 52

1. 53

1. 54

1. 55

1. 56

1. 57

1. 58

1. 59

1. 90

1. 91

1. 92

1. 93

1. 94

1. 95

1. 96

1. 97

1. 98

1. 99

0. 079

0. 079

0. 080

0. 080

0. 081

0. 082

0. 082

0.083

0. 084

0. 084

0. 058

0. 059

0. 060

0. 062

0. 063

0. 064

0. 066

0. 067

0. 069

0. 070

0.009

068 -0. 033

0. 068 -0.031

0. 065

0. 065

0. 065

0. 066

0. 066

0. 066

0. 066

0. 066

0. 066

0. 067

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0. 020

0. 021

1. 20 0. 068 -0 . 029

1. 21 0. 067 -0.028

1. 22 0. 067 -0. 026

1. 23 0. 067 0. 024

1. 24 0. 067 -0.023

1. 25 0. 066 -0.021

1. 26 0. 06 -0. 020

1. 27 0. 066 --0.018

1. 28 0.066 -0.017

1. 29 0. 066 -0.016

1. 60

1. 61

1. 62

1. 63

1. 64

1. 65

1. 66

1. 67

1. 68

1. 69

0. 067

0. 067

0. 067

0. 067

0.068

0. 068

0. 068

0. 069

0.069

0.069

0. 022

0. 023

0.024

0.025

0. 026

0.027

0. 028

0.030

0. 031

0. 032

2. 00

2. 01

2. 02

2. 03

2. 04

2. 05

2. 06

2. 07

2. 08

2. 09

0. 085

0. 086

0. 086

0.087

0. 088

0. 089

0. 090

0. 090

0. 091

0. 092

0. 072

0. 073

0. 075

0. 076

0. 078

0.079

0. 081

0. 083

0. 084

0. 086
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2. 10

2. 11

2. 12

2. 13

2. 14

2. 15

2. 16

2. 17

2. 18

2. 19

0. 145

0. 147

0. 149

0. 151

0. 153

0. 155

0. 157

0. 159

0. 161

0. 163

2. 20

2. 21

2. 22

2. 23

2. 24

2. 25

2. 26

2. 27

2. 28

2. 29

0. 165

0. 167

0. 169

0. 172

0. 174

0. 176

0. 179

181

0. 184

0. 186

0 .

2. 30

2. 31

2. 32

2. 33

2. 34

2. 35

2. 36

2. 37

2. 38

2. 39

28 .

0. 189

0. 191

0. 194

0. 197

0. 200

0. 202

0. 205

0. 208

0. 211

0. 214

0. 217

0. 220

0. 223

0. 227

0. 230

0. 233

0. 237

0. 240

0. 244

0. 247

30

0. 093

0.094

0. 095

0. 096

0.097

0. 098

0. 099

0. 100

0. 101

0. 102

0. 088

0. 090

0. 091

0.093

0. 095

0. 097

0. 099

0. 100

0. 102

0. 104

2. 50

2. 51

2. 52

2. 53

2. 54

2. 55

2. 56

2. 57

2. 58

2. 59

0. 183

0. 186

0. 189

0. 193

0. 196

0. 199

0. 203

0. 207

0. 210

0. 214

2. 90

2. 91

2. 92

2. 93

2. 94

2. 95

2. 96

2. 97

2. 98

2. 99

0. 251

0. 255

0. 258

0. 262

0. 266

0. 270

0. 274

0. 278

0. 282

0. 287

0. 367

0. 374

0. 380

0. 387

0. 394

0. 400

0. 407

0. 415

0. 422

0. 429

0. 103

0. 104

0. 105

0. 106

0. 107

0. 108

0. 109

0. 111

0. 112

0. 113

0. 106

0. 108

0. 110

0. 112

0. 114

0. 117

0. 119

0. 121

0. 123

0. 125

2. 60

2. 61

2. 62

2. 63

2. 64

2. 65

2. 66

2. 67

2. 68

2. 69

0. 291

0. 295

0. 300

0. 304

0. 309

0. 218

0. 222

0. 225

0. 229

0. 233

0. 238

0. 242

0. 246

0. 250

0. 255

3. 00

3. 01

3. 02

3. 03

3. 04

3. 05

3. 06

3. 07

3. 08

3. 09

0. 437

0. 444

0. 452

0. 460

0. 468

0. 476

0. 485

0. 493

0. 502

0. 511

0. 319

0. 323

0. 328

0. 333

0. 114

0. 116

0. 117

0. 118

0. 120

0. 121

0. 122

0. 124

0. 125

0. 127

0. 128

0. 130

0. 133

0. 135

0. 137

0. 140

0. 142

0. 145

0. 148

0. 150

2. 70

2. 71

2. 72

2. 73

2. 74

2. 75

2. 76

2. 77

2. 78

2. 79

0. 259

0. 264

0. 268

0. 273

0. 278

0. 283

0. 288

0. 293

0. 298

0. 303

3. 10

3. 11

3. 12

3. 13

3. 14

3. 15

3. 16

3. 17

3. 18

3. 19

0. 339

0. 344

0. 349

0. 355

0. 360

0. 366

0. 371

0. 377

0. 383

0. 389

0. 520

0. 529

0. 538

0. 547

0. 557

0. 567

0. 577

0. 587

0. 597

0. 607

2. 40

2. 41

2. 42

2. 43

2. 44

2. 45

2. 46

2. 47

2. 48

2. 49

0. 128

0. 130

0. 131

0. 133

0. 135

0. 136

0. 138

0. 140

0. 141

0. 143

0. 153

0. 156

0. 159

0. 161

0. 164

0. 167

0. 170

0. 173

0. 176

0. 179

2. 80

2. 81

2. 82

2. 83

2. 84

2. 85

2. 86

2. 87

2. 88

2. 89

0. 309

0. 314

0. 319

0. 325

0. 331

0. 337

0. 342

0. 348

0, 355

0. 361

3. 20

3. 21

3. 22

3. 23

3. 24

3. 25

3. 26

3. 27

3. 28

3. 29

0. 395

0. 402

0. 408

0. 414

0. 421

0. 428

0. 434

0. 441

0. 448

0. 456

0. 618

0. 629

0. 640

0. 651

0. 662

0. 674

0. 686

0. 698

0.710

0.722

8
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3. 30

3. 31

3. 32

3. 33

3. 34

3. 35

3. 36

3. 37

3. 38

3. 39

0. 463

0. 470

0. 478

0. 485

0. 493

0. 501

0. 509

0. 517

0. 526

0. 534

0. 735

0. 747

0.760

0. 774

0. 787

0. 801

0. 815

0.829

0. 843

0. 858

3. 70

3. 71

3. 72

3. 73

3. 74

3. 75

3. 76

3. 77

3. 78

3. 79

0. 885

0. 899

0.914

0. 930

0. 945

0. 961

0.976

0. 993

1. 009

1. 026

1. 452

1. 477

1. 501

1. 527

1. 552

1. 578

1. 604

1. 631

1. 658

1. 685

4. 10 1. 700

4. 11 1. 728

4. 12 1. 756

4. 13 1. 784

4. 14 1. 812

4. 15 1. 841
4. 16 1. 871

4. 17 1. 901

4. 18 1. 931

4. 19 1. 962

2. 726

2. 766

2. 805

2. 845

2. 884

2. 924

2. 964

3. 005

3. 045

3. 086

4, 203. 40

3. 41

3. 42

3. 43

3. 44

3. 45

3. 46

3. 47

3. 48

3. 49

0. 543

0. 552

0. 561

0. 570

0. 579

0. 589

0. 598

0. 608

0. 618

0. 628

0. 873

0. 888

0. 903

0.919

0. 935

0. 951

0. 967

0. 984

1. 001

1. 018

3. 80

3. 81

3. 82

3. 83

3. 84

3. 85

3. 86

3. 87

3. 88

1. 043

1. 060

1. 078

1. 095

1. 114

1. 132

1. 151

1. 170

1. 189

1. 209

1. 713

1. 741

1. 770

1. 799

1. 828

1. 858

1. 888

1. 918

1. 949

1. 981

4. 21

4. 22

4. 23

4. 24

4. 25

4. 26

4. 27

4. 28

4. 29

1. 993

2. 024

2. 056

2. 088

2. 121

2. 154

2. 188

2. 221

2. 256

2. 290

3. 126

3. 167

3. 207

3. 247

3. 288

3. 328

3. 368

3. 408

3. 447

3. 486

/

3. 50

3. 51

3. 52

3. 53

3. 54

3. 55

3. 56

3. 57

3. 58

3. 59

0. 638

0. 649

0. 659

0. 670

0. 681

0. 692

0. 704

0. 715

0. 727

0. 739

1. 036

1. 054

1. 072

1. 090

1. 109

1. 128

1. 147

1. 167

1. 187

1. 207

3. 90

3. 91

3. 92

3. 93

3. 94

3. 95

3. 96

3. 97

3. 98

3. 99

1. 229 2. 013

1. 249 2. 045

1. 270 2. 077

1. 291 2. 110

1. 312 2. 143

1. 333 2. 177

1. 355 2. 211

1. 378 2. 246

1. 400 2. 281
1. 423 2. 316

4. 30

4. 31

4. 32

4. 33

4. 34

4. 35

4. 36

4. 37

4. 38

4. 39

2. 325

2. 361

2. 397

2. 433

2. 469

2. 506

2. 544

2. 581

2. 619

2. 658

3. 525

3. 563

3. 601

3. 638

3. 675

3. 710

3. 745

3. 779

3. 812

3. 844

The
2. 696

2. 735

2. 774

3. 60

3. 61

3. 62

3. 63

3. 64

3. 65

3. 66

3. 67

3. 68

3. 69

0. 751

0.763

0. 776

0. 789

0. 802

0.815

0. 829

0. 842

0. 856

0. 870

1. 228

1. 249

1. 270

1. 292

1. 313

1. 336

1. 358

1. 381

1. 405

1. 428

4. 00

4. 01

4. 02

4. 03

4. 04

4. 05

4. 06

4. 07

4. 08

4. 09

1. 447

1. 470

1. 494

1. 519

1. 544

1. 569

1. 594

1. 620

1. 646

1. 673

2. 352

2. 388

2. 424

2. 461

2. 498

2. 535

2. 573

2. 611

2. 649

2. 688

4. 40

4. 41

4. 42

4. 43

4. 44

4. 45

4. 46

4. 47

4. 48

4. 49

2. 853

2. 893

2. 933

2. 974

3. 014

3. 055

3. 875

3. 904

3. 932

3. 958

3. 982

4. 005

4. 026

4. 044

4. 061

4. 074
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4. 50

4. 51

4. 52

4. 53

4. 54

4. 55

4. 56

4. 57

4. 58

4. 59

3. 096

3. 137

3. 178

3. 219

3. 260

3. 301

3. 342

3. 382

3. 423

3. 464

4. 086

4. 094

4. 099

4. 101

4. 100

4. 095

4. 086

4. 073

4. 056

4. 034

1

4. 90

4. 91

4. 92

4. 93

4. 94

4. 95

4. 96

4. 97

4. 98

4. 99

4. 247 -0. 406

4. 241 -0. 699

4. 233 -0. 999

4. 221 - 1. 306

4. 207 - 1. 619

4. 189-1. 937

4. 168 -2. 258

4.

4. 116 - 2. 909

4. 085 -3. 236

5. 30

5. 31

5. 32

5. 33

5. 34

5. 35

5. 36

5.

5. 38

5. 39

2. 057

1. 986

1. 917

1. 849

1. 782

1. 717

1. 654

1. 592

1. 533

1. 475

-7. 168

- 7. 033

-6. 888

- 6. 735

- 6. 575

- 6. 409

- 6. 238

- 6. 063

- 5. 886

-5. 707

4. 60

4. 61

4. 62

4. 63

4. 64

4. 65

4. 66

4. 67

4. 68

4. 69

3. 504

3. 544

3. 583

3. 622

3. 661

3. 699

3. 737

3. 774

3. 810

3. 845

4. 007

3. 975

3. 938

3. 895

3. 846

3. 791

3. 729

3. 660

3. 584

3. 501

5. 00

5. 01

5. 02

5. 03

5. 04

5. 05

5. 06

5. 07

5. 08

5. 09

4. 051

4. 014

3. 974

3. 930

3. 883

3. 834

3. 781

3. 725

3. 667

3. 606

-3. 561

-3 . 884

- 4. 204

- 4. 518

-- 4. 825

- 5. 123

-5. 412

-5. 690

-5. 954

- 6. 205

5. 40

5. 41

5. 42

5. 43

5. 44

5. 45

5.

5. 47

5. 48

5. 49

1. 418

1. 364

1. 312

1. 261

1. 212

1. 165

1. 119

1. 075

1. 033

0. 993

- 5. 527

-5. 346

-5. 167

-4. 988

-4, 811

- 4. 637

-4. 465

-4. 297

- 4. 132

- 3. 970

-

-

-3. 813

-3. 660

-3. 512

- 3. 367

-3. 228

-3. 093

-2. 963

-2. 837

-2. 716

- 2. 600

4. 70

4. 71

4. 72

4. 73

4. 74

4. 75

4. 76

4. 77

4. 78

4. 79

3. 880

3. 914

3. 946

3. 978

4. 008

4. 037

4. 064

4. 090

4. 115

4. 138

3. 409

3. 310

3. 202

3. 085

2. 960

2. 825

2. 680

2. 526

2. 362

2. 188

5. 10

5. 11

5. 12

5. 13

5. 14

5. 15

5. 16

5. 17

5. 18

5. 19

3. 543 – 6. 440

3. 478 -6. 658

3. 410 -6. 859

3. 341 -7. 041

3. 269–7. 204

3. 1971-7. 348

3. 122–7. 470

3. 047 - 72

2. 971 –7. 653

2. 894 -7. 714

5. 50

5. 51

5. 52

5. 53

5. 54

5. 55

5. 56

5. 57

5. 58

5. 59

0. 954

0. 916

0. 880

0. 846

0. 813

0. 781

0. 751

0. 722

0. 694

0. 668

4. 80

4. 81

4. 82

4. 83

4. 84

4. 85

4. 86

4. 87

4. 88

4. 89

4. 159

4. 178

4. 195

4. 210

4. 222

4. 233

4. 241

4. 246

4. 249

4. 249

2. 003

1. 808

1. 603

1. 387

1. 160

0. 924

0. 677

0. 420

0. 154

-0. 122

5. 20

5. 21

5. 22

5. 23

5. 24

5. 25

5. 26

5. 27

5. 28

5. 29

2. 817 -7. 754

2. 739 -7. 774

2. 661-7. 774

2. 584 1-7. 755

2. 506-7. 718

2. 430 - 7. 664

2. 353-7. 593

2. 278 – 7. 507

2. 203 -7. 407

2. 130 -7. 293

5. 60

5. 61

5. 62

5. 63

5. 64

5. 65

5. 66

5. 67

5. 68

5. 69

0. 642

0. 618

0. 595

0. 573

0. 551

0. 531

0. 511

0. 493

0. 475

0. 458

- 2. 488

-2. 380

- 2. 277

-2. 178

-2. 083

– 1. 992

- 1. 904

- 1. 821

-- 1. 741

- 1. 665



542 INTRO . TO NONLINEAR DIFF . AND INTEGRAL EQUS.

TABLE IV - Continued

1 y ' 1 V y ! 1 v'

-0. 666

-0. 639

-0. 612

-0. 588

-0. 564

-0. 541

-0. 519

-0. 499

-0 . 479

-0. 460

-

5. 70

5. 71

5. 72

5. 73

5. 74

5. 75

5. 76

5. 77

5. 78

5. 79

0. 442

0.426

0. 411

0. 397

0. 383

0. 370

0. 358

0. 346

0. 335

0. 324

-1. 592

- 1. 523

- 1. 456

- 1. 393

- 1. 332

- 1. 274

- 1. 219

- 1. 166

- 1. 116

- 1. 068

5. 80

5. 81

5. 82

5. 83

5. 84

5. 85

5. 86

5. 87

5. 88

5. 89

0. 313 - 1. 022

0. 303 -0.979

0. 294 -0.937

0. 284 -0. 897

0. 276 -0.859

0. 267 -0. 823

0. 259 -0. 789

0. 251 -0. 756

0. 244 -0. 724

0. 237 -0. 694

5. 90

5. 91

5. 92

5. 93

5. 94

5. 95

5. 96

5. 97

5. 98

5. 99

0. 230

0. 224

0. 217

0. 211

0. 206

0. 200

0. 195

0. 190

0. 185

0. 180

6. 00 0. 176 -0. 442
1
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ton's principle ). 501-502 ; numerical solution of, 258

Legendre's condition , 449 . 260 ; transformation of, 232–234 ;

Leibniz, rule of, 82. second, 239,244 ; coefficients in ex

Liénard -plane, 305 . pansion of, 503-504 ; numerical solu

Limit cycles, definition of, 269 ; 331-339 ; tion of, 260-261 ; transformation of,

number of, 346 . 242-244 .

Limit in the mean , definition of, 279 . Partial differential equations, nonlinear ,

Limits, calculus of, 79-83 ; 190-191. 18-24 .

Linear deficiency, 2 . p -discriminant, 54 .

Linear fractional transformation, prop- Peano's curve , 284 .

erties of, 213-218 ; application of, Pendulum , problem of, 192–194 ; as

218–221; groups associated with , 222 ; Fourier series , 291-297 ; spherical,

elements of , 499-500 . 465.

Linear operator, definition , 2 . Periodic solutions , 297-299 ; in homo

Liouville's equation , 20, 377 . geneous polynomial case , 339-343 ; in

Logistic curve , 96-98 . quadratic polynomial case , 343–351 .

Lunar perigee, problem of, 302. Periodicity, as phenomenon of the

phase -plane, 303-308 ; Floquet's theory

Majorante , definition of, 80 . of, 300-303.

Mathieu's functions , 303 . Period parallelogram , 159 .

Mean curvature , 453 . Pfaff's problem , 19 .

Method of Cauchy -Lipschitz, 88–93 . Phase curves and forcing functions , 273

Method of successive approximations, 283 .

83-88. Phase-plane , Chap . 10 ; definition of ,

Milne's method , 486-488, 491 . 268.

Minimal surface, problem of, 452-456 . Phase trajectories , 101 , 268 .

Minimum surface of revolution , 444 . Plateau's problem , 20, 454 .

Modulus of elliptic integrals, 131 . Poincaré's index, 352–354.

Movable singular points, 8 , 185. Poisson's equation , 19 .

Pole-vaulting, method of, 245 .

Navier-Stokes equations , 21 . Pursuit , curves of, 113–127 ; linear , 115–

Natural boundary , 7 . 119; circular, 119–125, 332–334 ; gen

Necessary conditions for extremals , eral , 115-116, 125–127 .

449-450 .

Newton's problem , 448. Quintic equation , solution of, 172-175 .

Nodal locus, 54-56.

Nodal point, 312–314 . Rayleigh's equation , 15 , 181 , 186-187.

Nonlinear equations, solution of , 3-9; Relaxation oscillations, 273 .

origin of, 9-12 ; problem of , 12–16 ; Resonance , definition of , 275 ; nonlinear,

systems of, 16-18 ; partial differential, 395–400 .

18-24 . Ricatti's equation , Chap . 3 ; 11 , 12-13 ,

Nonlinear integral equations . (See In- 188, 368 ; cross-ratio theorem of, 62

tegral equations . ) 63 ; integration of , 63-65 ; solution by

Nonlinear mechanics, Chap . 11 ; 17 . continued fractions, 70-72 ; singulari
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ties of, 73–74 ; generalized , 76–79, 186, | Tac -locus, 54-56.

218-221 . Thermionic currents, 378-380 .

Rule of Leibniz , 82 . Theta functions , Chap . 6 ; 162–167;

Runge -Kutta method, 482-486. differential equation of, 165.

Thomas- Fermi's equation , 16 , 405–407 .

Saddle point , 270, 314 ; definition of, 321. Topological considerations, 351-355.

Schwarzian derivative , 224 . Transcendental functions , 7 .

Secular terms , 300-301 . Trapezoidal formula, 108 .

Separatrix, definition of, 270. Triode oscillator, 271–273 .

Series, asymptotic, 5 ; semiconvergent ,

5 ; Fourier , 167-169 , 291-300 ; 388- Van der Pol's equation , 15, 17, 181 , 186

396 . 187, 270, 358–368; analytic approxi

Simpson's one -third rule , 478. mation of, 364-368 ; values of, 531

Sigma function , 161 . 536.

Singular points, 14, 111 , 185 , 225. Variation , first, 442 ; second, 443 ; con

Singular solutions, 49 , 53-56 . ditions pertaining to sign of second,

Space-filling curves , 284 . 449,450 .

Spherical pendulum, 465. Variations , calculus of . (See Calculus

Stability theorem , 317-322 ; application of variations . )

of, 322–331 . Volterra's equation , 102, 180, 270, 324

Stationary motion, 457 . 327, 355 ; values of, 537-542.

Stellar pulsation and limit cycles , 368– Volterra's integral equation , Chap . 13 .

371 . Volterra's problem , 13-14 , 101-109 ;

Successive approximations , method of, generalization of , 109-111 , 413 , 417–

83-88 . 423 .

Sylvester's dialytic method, 431 . Vortex cycle, 101 .

Systems of nonlinear equations , 16-18 , Vortex points, 111 , 315 ; number of, 346

190 , 419-423, 489-491 . 348 .

Tables , of elliptic integrals , 142–143 ; Weierstrass, elliptic function of,156-161;

of Jacobi elliptic functions , 175–178 ; table of, 206 ; sigma function of, 161 ;

of Weierstrass function , 206 ; of first zeta function of, 161 .

Painlevé transcendent , 507–518; of White -dwarf equation , 16 , 408 .

second Painlevé transcendent, 519

530 ; of Van der Pol's equation, 531- Zeta elliptic function , of Jacobi, 155 ; of

536 ; of Volterra's equation , 537-542 . I Weierstrass, 161 .
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