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Introduction 

Many people find statistical analysis puzzling.  Why?  Because it demands new ways 

of thinking.  And how do you fathom these new ways of thinking?  In order to 

fathom statistical analysis properly, you need to understand a number of its key 

foundations.  Reading textbooks doesn’t work because textbooks don’t focus on 

foundations, and they cover so much ground in so much detail that readers are 

bound to lose sight of the forest for the trees.  I remedy this state of affairs in a 

number of ways.   

The first thing I do is focus on an application area that everyone should be familiar 

with—public opinion surveys.  Second, I focus on the most straightforward type of 

survey questions and responses—Do you agree or disagree?  Do you approve or 

disapprove?   

The third thing I do is focus on foundations that are essential to understanding the 

nature of statistical analysis and the interpretation of results, be they public opinion 

survey results or pharmaceutical drug trial results.  And fourth, I use a lot of 

illustrations.   

Even if you’ve taken statistics courses in the past, and even if you know the 

mechanics of performing statistical analysis, you’ll benefit from understanding 

these foundations.   

The first group of essential foundations concerns the nature of sample statistics.    

• Sampling distributions of statistic values are the key to everything.  That’s 

why there’s a sampling distribution illustration on the front cover, as well as 

sampling distribution illustrations throughout the book.   

• The lines we draw—literally and figuratively—define an interval that’s used to 

decide whether or not a hypothesis should be rejected.  You can see two 

interval lines on the cover too, superimposed on the sampling distribution.   

• Two key facets—variance and sample size—determine a sampling 

distribution’s shape and its interval’s width.  We’ll see how these things 

interact.   
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With sampling distributions and confidence intervals we can conduct statistical 

analysis to our heart’s content.  But we do need to be careful when interpreting our 

results.   

• Certain hypotheses can be accepted, but others can only be not rejected.  

There is a subtle but important difference between these two.   

• The meaning of statistical significance is limited and it does not imply that 

there are meaningful real-world implications at hand.   

• There are errors we will make that we will not know we’ve made, and 

probably never will know.  But we can try to set limits on how often they 

might occur.   

• Reducing the likelihood of one type of error increases the likelihood of the 

other.  We can reduce the likelihood of both, but that costs extra.   

• Strange things happen when we use a statistical analysis method without 

satisfying its assumptions.   

This book, as noted, concentrates on survey/response data such as “Do you agree 

or disagree?”  This allows us to concentrate on one type of sampling distribution: 

the normal distribution.  But we’ll look at more than that.   

• In the second to last chapter, we’ll look at other types of data and statistics.  

Through them, we will meet all of the “big four” distributions.   

And this book concentrates on the most common type of statistical analysis: 

Frequentist analysis.  But we won’t overlook its worthy competitor: Bayesian 

analysis.   

• In the last chapter, we’ll see the one key difference between Frequentist and 

Bayesian statistical analysis that makes a world of difference.  This chapter 

systematically introduces Bayesian analysis while pointing out where it 

differs from Frequentist analysis.   

Each of these essential foundations are explored with many illustrations 

accompanied by thorough explanations.  But even with this focused, streamlined, 

illustrated treatment, learning the foundations of statistical analysis is not easy.  It 

does demand new ways of thinking.  So please be patient and read carefully.   
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1. Sampling Distribution Basics 

Statistics and Their Sampling Distributions 

The town of Flowing Wells is a community of 80,000 residents.  Imagine that you 

and I serve on the Town Council and that we are members of its public affairs 

committee.  The council has recently drafted a new public health policy and we’re 

tasked with assessing the public’s opinion about it.  The public opinion statistic we’re 

interested in is the percentage of residents that are in favor of the proposed policy.  

We want to find out if a majority of residents are in favor of the policy.   

You and I realize that asking all 80,000 residents their opinions is next to 

impossible, so we’ll need to use statistical sampling and analysis.  To start with, we 

decide to survey 100 residents.  To avoid inadvertent bias when gathering sample 

opinions, everyone in the community must have an equal chance of being 

surveyed.  So, we’ll select 100 people at random from the town’s list of residents, 

giving us a random sample of 100 peoples’ opinion.   

After contacting the 100 randomly selected residents we find that 55 of the 100 

(55%) are in favor of the policy.  We next ask ourselves whether the sample 

percentage of 55% is high enough for us to be confident that a majority of at least 

40,001 (over 50%) of the town’s population favors the policy.  In other words, is the 

sample percentage of 55% high enough for us to be confident that the Flowing 

Wells population percentage exceeds 50%?  We need to do some statistical analysis.  

I volunteer to simulate the situation on the computer.  Since we are interested in 

whether a majority are in favor, I focus on the majority dividing line of 50% in favor 

and assume that we’re sampling from a population that is 50% in favor.  I use the 

computer to simulate what occurs when we randomly sample 100 people from a 

population that is 50% in favor of something.  Further, I simulate this random 

sampling many, many times to show us the range and frequency of sample 

percentage values to expect when we randomly sample 100 people from a 50%-in-

favor population.   
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Figure 1.1 is a chart (a histogram) showing what the simulations reveal.  It shows 

the frequency (out of 1,000) with which we should expect to get random samples 

that yield the various possible values for the percent-in-favor sample statistic.   

 

Figure 1.1 reflects the following theoretical scenario: 1) there is a large population 

that is 50% in favor of something; 2) 1,000 surveyors are hired and each one 

conducts a separate survey; 3) each of the 1,000 surveyors gathers a separate 

random sample of 100 people from the population to determine the percent in 

favor, and 4) the 1,000 separate sample percentages are used to make an 

aggregate chart, giving us Figure 1.1.   

This notion of “what to expect when we randomly sample from a population many, 

many times” forms the basis of the most common approach to statistical analysis—

Frequentist statistics: When we repeatedly sample from a given population, how 

frequently do we expect the various possible sample statistic values to arise?  The 

chart in Figure 1.1 shows us what to expect.  Charts like this illustrate what are 

called sampling distributions—the distribution of sample statistic values that occur 

with repeated random sampling from a population.  The concept of sampling 

distributions is perhaps the most important concept in Frequentist statistics.   

Looking at Figure 1.1, notice that the sampling distribution is centered on 50%, that 

most of the sample percentages we expect to get are relatively close to 50%, and 

that almost all of the sample percentages we expect to get are contained within the 

boundary lines of 35% and 65%.  The sample percentage of 55% that we actually 

got is well within the 35%-to-65% boundary lines.  What does that tell us?  It tells us 

that getting a sample percentage value of 55% is not particularly unusual when 

sampling 100 from a 50%-in-favor population.  So, we can’t rule out that we might 
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indeed be sampling from a population that is 50% in favor.  And since 50% is not a 

majority, we can’t say that a majority of the Flowing Wells population favors the 

new policy.  This type of logic, or statistical inference, is central to the Frequentist 

approach to statistical analysis.   

Now let’s suppose that our sample percentage is 70% instead of 55%.  What would 

we infer then?  Looking at Figure 1.1 (reproduced below) we can see that getting a 

sample percentage of 70% is highly unusual when randomly sampling 100 from a 

50%-in-favor population, and that 70% is clearly to the right of the sampling 

distribution for 50%.  Because of this, we’ll infer that we are not sampling from a 

50%-in-favor population, and that we are instead sampling from a population that 

is more than 50% in favor.  With a sample percentage of 70% we’ll say it seems 

likely that a majority of the Flowing Wells population favors the new policy.   

 

Next, let’s suppose that our sample percentage is 60% instead of 55% or 70%.  What 

would we infer then?  Looking at the sampling distribution in Figure 1.1, reproduced 

below, we can see that 60% is less clear cut.  It does occur sometimes, but not very 

often.  To make a judgment we’ll need to “split hairs” using what are called 

confidence intervals.  
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Sampling Distributions and Their Confidence Intervals 

Figure 1.2 shows what is called a 95% confidence interval.  It has the same sampling 

distribution as Figure 1.1, but now with two boundary lines added to indicate the 

95% confidence interval spanning from 40% to 60%.  That interval contains 95% 

(950/1,000) of the sample percentage values.  That’s what a 95% confidence means 

in this context: the interval containing 95% of the expected sample statistic values 

obtained by random sampling from a given population.  95% confidence intervals 

are widely used in statistical analysis.  Some people find the term “confidence” in 

“confidence interval” to be confusing at first, so I’ll often refer to it simply as the 

95% interval.i   

 

Recall that the survey sample percentage values we have considered so far are 

55%, 60%, and 70%.  Relative to the 40%-to-60% boundary lines, 55% and 60% are 

inside and 70% is outside.  Using the 95% interval, we would say that the sample 

percentage values 55% and 60% don’t allow us to infer that the (unknown) Flowing 

Wells population percentage value is different from 50%.  After all, it is not very 

unusual to get those sample percentage values when randomly sampling 100 from 

a 50%-in-favor population.  

On the other hand, the sample percentage value of 70% is outside the 40%-to-60% 

boundary lines, which does allow us to infer that the (unknown) Flowing Wells 

population percentage value is probably different from 50% and, further, is 

probably greater than 50%.   That’s because our sampling distribution shows that 

it’s extremely unusual to get a sample percentage value of 70% when randomly 

sampling 100 people from a 50%-in-favor population, so we infer that we are not 

sampling from a 50%-in-favor population.  With a 70% sample percentage value we 
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would say that we reject the hypothesis that the Flowing Wells population 

percentage is 50%.   

What we are doing here is called significance testing.  The difference between 50% 

and 70% is statistically significant.  The differences between 50%, 55%, and 60% are 

not statistically significant.   

It may seem like “hair splitting” to say that sample percentage values of 39%-or-less 

and 61%-or-more let us infer that a minority or a majority of the population is in 

favor of a policy, but that sample percentage values of 40%-to-60% do not.  

However, this is not the fault of statistical analysis itself, it’s just that many real-

world decisions force us to draw lines.   

Coin Flipping Analogy I 

To reinforce what we’ve covered so far, let’s consider an analogy: Flipping a fair 

coin.  A fair coin is perfectly balanced.  When you flip it, there is a 50% chance it will 

come up heads and a 50% chance it will come up tails.  This is analogous to 

randomly sampling from a population that is 50% in favor of and 50% not in favor 

of something: there is a 50% chance that a person randomly selected will be in 

favor and a 50% chance that a person randomly selected will not be in favor.  

In this coin flipping experiment, we’ll flip a fair coin 100 times in a trial, a trial being 

analogous to a sample.  We’ll perform 1,000 trials of 100 flips each.  Figure 1.3 

shows the results: the sampling distribution of the percentage of heads we expect 

to get with trial (sample) size of 100.   
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Notice that the sampling distribution in Figure 1.3 looks just like the sampling 

distribution in Figure 1.1 (reproduced below).  They only differ in the text-labeling 

that’s used to reflect the specific context (surveying vs. coin flipping).  

 

Figure 1.4 shows the 95% interval of 40%-to-60% heads. 

 

Notice that Figure 1.4 looks just like Figure 1.2 (reproduced below).   
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If someone gave us a coin and asked us to judge whether it is a fair coin, we could 

flip it 100 times, and if we get fewer than 40 (40%) heads or more than 60 (60%) 

heads, we would say we didn’t think the coin was fair.  If we got anywhere between 

40% and 60% heads, we would say we can’t rule out that the coin is fair.   

The reason these various Figures look alike is because they embody the same 

fundamental phenomenon.  1) They both involve randomness: random selection of 

respondents; randomness inherent in coin flips.  Because of this, the items of 

interest—percent in favor and percent of heads—are called random variables.  And 

2) They both concern outcomes that have only two possible values: in favor vs. not 

in favor; heads vs. tails.  Such things are called binomial random variables since 

there are only two possible values, and their sampling distributions are of a type 

called binomial distributions.  Phenomena that share these two characteristics are 

analogous and can be analyzed in the same way: e.g., the percentage of people 

with a particular health condition, the percentage of defective items in a shipment, 

the percentage of students who passed an exam, the percentage of people who 

approve of the job the president is doing.   
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2. Sampling Distribution Dynamics 

 

Sampling Distributions and Sample Sizes 

We had decided to gather 100 opinions.  Frankly, no deep thought went into that 

decision, 100 just seemed like a good sizable number.  But, all things considered, 

the 40%-to-60% boundary lines are quite wide apart, hindering their usefulness: 

even with a sample percent-in-favor of 60% we can’t infer that a majority of Flowing 

Wells residents are in favor of the new public health policy!  Professional pollsters 

most often survey about 1000 people.  Why is that?  Let’s see why.   

Figure 2.1 shows the sampling distribution when randomly sampling 1000 people 

from a 50%-in-favor population.  Notice how much narrower the sampling 

distribution is compared to our previous case of sampling 100 people.  Why is that?  

Because as the size of our sample increases, the closer we expect the sample 

percentage values to be to the actual (but unknown) population percentage value.  

This is the law of large numbers.ii  More evidence reduces our uncertainty and 

should get us closer to the truth.   Later on, we’ll see a simple formula that reflects 

the level of uncertainty due to sample size and its effect on the width of the 

sampling distribution.   
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Now let’s see how our 40%-to-60% boundary lines look when superimposed on the 

new, narrower sampling distribution.  Figure 2.2 shows that.   

 

The 40%-to-60% boundary lines have been transformed from a 95% interval into a 

99.99999% interval!   99.99999% of the sample percentage values we expect to get 

when sampling 1000 from a 50%-in-favor population are now within the 40%-to-

60% boundary lines!   

Let’s fit a new 95% interval.  Figure 2.3 shows the 95% interval superimposed on the 

new sampling distribution.  Since the sampling distribution has become narrower, 

so has the 95% interval.  With a sample size of 1000 the boundary lines are now 

47%-to-53%.  The 47%-to-53% boundary lines can also be expressed as 50%+3% 

(50% plus or minus 3%).  Pollsters then refer to the 3% as the margin of error of the 

poll.  (You may have noticed statements in the media such as “in the most recent 

poll the president’s job approval rating is 49% with a margin of error of plus or 

minus 3 percentage points at the 95% confidence level.”)   
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With the new 95% interval, the 55%, 60%, and 70% sample percentage values we’ve 

been considering are all outside the interval.  All of them allow us to say it seems 

likely that a majority of the Flowing Wells population is in favor of the newly 

proposed public health policy.  With sample size 100, we couldn’t say 55% or 60% 

were significantly different, statistically, from 50%.  With sample size 1000 we can.  

That’s what increasing the sample size does for us.  With the increased sample size, 

we’ve increased the power of our analysis.  (We’ll explore power in more detail 

later.)   

This is why professional pollsters often survey 1000 people.  It improves the power 

of the analysis over smaller sample sizes such as 100.  So, you might ask, why not 

survey 10,000 to improve power even more?  Because that would be more 

expensive.  For most purposes, pollsters find sample sizes of about 1000 provide a 

good balance between power and expense.  If more power is needed and the 

additional expense can be justified, larger sample sizes are used.   

Coin Flipping Analogy II 

In the next coin flipping experiment, we’ll perform 1,000 trials (samples) of 1000 

flips each (sample size).  Figure 2.4 shows the sampling distribution for 1000 fair 

coin flips per trial.  

 

Notice that the sampling distribution in Figure 2.4 looks just like the sampling 

distribution in Figure 2.1 (reproduced below).   
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Figure 2.5 shows the 95% interval of 47%-to-53% heads with 1000 flips per trial. 

 

Notice that Figure 2.5 looks just like Figure 2.3 (reproduced below).   
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If someone gave us a coin and asked us to judge whether it is a fair coin, we could 

flip it 1000 times, and, if we get fewer than 470 (47%) heads or more than 530 (53%) 

heads, we will say we think the coin is unfair.  If we get anywhere between 47% and 

53% heads, we will say we think the coin is fair.  (Actually, as we’ll delve into later, 

we’ll be more circumspect and say that we can’t rule out that the coin is fair rather 

than stick our neck out and say we think the coin is fair.)   

Sampling Distributions of Other Populations 

Let’s suppose that the Flowing Wells population is only 30% in favor of the new 

public health policy.  We’ll experiment and randomly sample 100 residents, and 

again we’ll amass 1,000 random samples.  Figure 2.6 shows what to expect.  The 

sampling distribution, as expected, is centered on 30%.  It is a “bell shaped” 

sampling distribution like we’ve been seeing all along (more on this later).   

 

Next, let’s look at the 95% confidence interval.  That’s shown in Figure 2.7.   
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This 95% interval has boundary lines of 21% and 39%.  When randomly sampling 

100 from a population that is 30%-in-favor, we expect 95% of the sample percent-

in-favor statistic values we get to be within this interval.   

This 95% interval for a sample size of 100 and a population that is 30%-in-favor is 

18 wide (39-21).  Earlier (Figure 1.2, reproduced below) the 95% interval for a 

sample size of 100 and a population that is 50%-in-favor is 20 wide (60-40).  Why is 

the interval in Figure 2.7 narrower than the interval in Figure 1.2?   

 

It has to do with uncertainty.  Imagine there are two contestants facing off in a judo 

match.  Who’s going to win?  If they are evenly matched, each with a 50% chance of 

winning, you would be wholly uncertain who the winner will be.  If the first 

contestant has a 70% chance of winning and the second has a 30% chance, you 

would be less uncertain who the winner will be.  If the first contestant has a 100% 

chance of winning and the second has a 0% chance, you would not be uncertain at 

all.  Likewise, if you were sampling from a population that is 0%-in-favor or 100%-in-

favor, there is no uncertainty in what your sample percentage values will be—they’ll 

all be 0% or 100%.  Figure 2.8 shows the sampling distribution for a population that 

is 0%-in-favor.  There’s no uncertainty about sample percentage values when 

sampling from a population that is 0%-in-favor.  



 - 19 - 

 

 

The width of the 95% interval reflects the level of uncertainty of our sample statistic 

values.  Populations that are 50%-in-favor are the most uncertain.  As the 

population percentage moves toward 100% or 0%, uncertainty decreases.  As 

uncertainty decreases, the width of the sampling distribution and its 95% interval 

decreases.  Next, we’ll see a simple formula that reflects the level of uncertainty due 

to the population percentage and sample size and their effects on the width of the 

sampling distribution.   
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3. Calculating Confidence Intervals 

Time for Some Standardization 

With random sampling of binomial values (in-favor vs. not-in-favor; heads vs. tails) 

we’ve seen that:   

1) Sampling from populations with percent-in-favor close to 50% have wider 

sampling distributions than populations with percentages closer to 0% or 100%.   

2) Larger sample sizes have narrower sampling distributions.  

The various sampling distributions we’ve seen have different locations on the 

horizontal axis and they have different widths.  It would be useful to convert them 

all to one standard scale.  We’ll need a common unit.  And the rescaling to that unit 

must account for the effects of the population percent-in-favor value (number 1 

above) and sample size (number 2 above).   

The unit to be used is called Standard Error.  It’s labeled “Standard” because it serves 

as a standard unit.  And it’s labelled “Error” because we don’t expect our sample 

statistic values to be exactly equal to the population statistic value; there will be 

some amount of error.   The Standard Error formula, which I’ll explain a piece at a 

time, is as follows:  The square root of p times (1-p) divided by n.   

√
𝑝 ∗ (1 − 𝑝)

𝑛
 

The variable p is the proportioniii rather than percentage: .5 rather than 50% (and 0 

rather than 0%; .01 rather than 1%; .1 rather than 10%; and 1 rather than 100%).  

The p*(1-p) term in the numerator is called the proportion variance.  Recall from the 

previous chapter that sampling from populations with percent-in-favor close to 50% 

have wider sampling distributions than populations with percentages closer to 0% 

or 100%.   
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The variance p*(1-p) reflects this dynamic:  

0.0*(1-0) =   0.00  

 .01*(1-.01) = .01 

 .1*(1-.1) =   .09 

 .3*(1-.3) =   .21 

 .5*(1-.5) =   .25 

 .7*(1-.7) =   .21 

 .9*(1-.9) =   .09 

 .99*(1-.99) = .01 

1.0*(1-1) =   0.00 

So, as p moves from .5 towards 0 or 1, variance decreases, and since variance is in 

the numerator, Standard Error decreases.  Decreases in Standard Error correspond 

to narrowing of the sampling distribution.  This reflects lower uncertainty.  Lower 

variance, lower uncertainty.   

Variance is itself a statistic and is very important in statistical analysis.  We’ll be 

seeing it in formulas from now on.   

Now let’s consider sample size, which is represented in the denominator of the 

formula by n.  Recall from the previous chapter that larger sample sizes have 

narrower sampling distributions.  Since n is in the denominator of the Standard 

Error formula, as n increases Standard Error decreases.  Again, decreases in 

Standard Error correspond to narrowing of the sampling distribution.  Again, this 

reflects lower uncertainty.  Larger sample size, lower uncertainty. 

Now we can use the Standard Error scale to determine 95% intervals.  First, an 

important fact: The boundary lines of the 95% interval on the Standard Error scale are 

always -2 and +2 (they’re actually -1.95996… and +1.95996…, but I’m rounding to -2 

and +2 for the present purposes).   Let’s clarify all this by looking at several example 

calculations and illustrations.   

Let’s start with random sampling of 100 from a population that is 50% in favor of 

the new public health policy (Figure 1.2, reproduced below).  Plugging in the 

numbers gives  

√
. 5 ∗ (1 − .5)

100
=  .05 
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Standard Error is .05 and two Standard Errors is .1 in proportions and 10% in 

percentages.  Since we want to center the interval on the percentage p of 50%, we’ll 

add and subtract 10% from 50%.  This yields a calculated 95% interval of 50%+10% 

(50% minus 10% to 50% plus 10%) or 40%-to-60%.  That’s also what Figure 1.2 

shows!   

 

Putting everything we just computed into a formula for calculating 95% intervals we 

get 

𝑝 ± 2 ∗ √
𝑝 ∗ (1 − 𝑝)

𝑛
  

Next let’s consider the 95% interval of random sampling of 100 from a population 

that is 30% in favor of the new public health policy (Figure 2.7, reproduced below).   

. 3 ± 2 ∗ √
. 3 ∗ (1 − .3)

100
=  .3 ± 2 ∗ .045 = 30% ± 9% 

Standard Error is .045 and two Standard Errors is .09 in proportions and 9% in 

percentages.  We want to center the interval on 30%, so we’ll add and subtract 9% 

from 30%.  This yields a 95% interval of 30%+9% (30% minus 9% to 30% plus 9%) or 

21%-to-39%. That’s also what Figure 2.7 shows!   
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Last let’s consider the 95% interval of random sampling of 1000 from a population 

that is 50% in favor of the new public health policy (Figure 2.3, reproduced below).   

. 5 ± 2 ∗ √
. 5 ∗ (1 − .5)

1000
=  .5 ± 2 ∗ .015 = 50% ± 3% 

Standard Error is .015 and two Standard Errors is .03 in proportions and 3% in 

percentages.  We want to center the interval on 50%, so we’ll add and subtract 3% 

from 50%.  This yields a 95% interval of 50%+3% or 47%-to-53%.  That’s also what 

Figure 2.3 shows!    

 

The formula works! 

The reason the formula works is because the sampling distributions are “bell 

shaped”.  More than that, they approximate the very special bell shape called the 

Normal distribution.iv   
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Let’s go one step further and standardize an entire sampling distribution to get 

what’s called the Standard Normal distribution.  The Standard Normal Distribution is 

a normal distribution that uses Standard Error as its unit (rather than percentages 

or proportions).  To illustrate, let’s standardize Figure 1.1 (reproduced below).   

 

Figure 3.1 is a standardized version of Figure 1.1.   

 

Notice that Standard Error is the unit used on the horizontal axis of Figure 3.1.  This 

is done by rescaling the horizontal axis unit of Figure 1.1 to the Standard Error unit 

of Figure 3.1 using the below formula.   

𝑝 − .5

√𝑝 ∗ (1 − 𝑝)
𝑛
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This formula gives us how many Standard Errors a proportion, p, is from .5.  First, 

we convert the percentages to proportions.  Next, we recenter the axis: whereas 

Figure 1.1 is centered on the proportion value .5 (50%), Figure 3.1 is centered on 

zero Standard Errors; the numerator p-.5 centers the horizonal axis of Figure 3.1 

onto zero.  Finally, these differences are divided by the Standard Error to rescale 

the horizontal axis.  Viola, Figure 1.1 has been standardized to the Standard Error 

scale of Figure 3.1.   

Figure 3.2 shows its 95% interval below Figure 1.2 (reproduced below).  Recall that 

the boundary lines of the 95% interval on the Standard Error scale are -2 and 2 

(rounded).  Plugging .4 (40%) and .6 (60%) from Figure 1.2 into the above formula 

gives us -2 and 2 Standard Errors as the 95% boundary lines in the Standard Error 

unit.  As emphasized above: The boundary lines of the 95% interval on the Standard 

Error scale are always -2 and +2 (rounded).  If we standardized Figures 2.3 and 2.7, 

we’ll again find the 95% interval boundary lines to be -2 and 2. (You can use the 

formula and do the arithmetic if you want to confirm this.) 
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We can convert our units (e.g., percent-in-favor, percent-heads) into the Standard 

Error unit and vice versa by multiplying and dividing by Standard Error.  That comes 

in very handy.  All of the sampling distributions we’ve looked at so far can be 

standardized in this way.  In practice, we don’t convert entire sampling distributions 

to the standardized distribution; we use Standard Error in formulas as multipliers 

and divisors to calculate individual values, like we do to calculate the boundary lines 

for 95% intervals and to convert proportions to the Standard Error scale.   

𝑝 ± 2 ∗ √
𝑝 ∗ (1 − 𝑝)

𝑛
 used to calculate 95% intervals for proportions. 

𝑝 − .5

√𝑝 ∗ (1 − 𝑝)
𝑛

 used to convert proportions to the Standard Error scale. 

We’ll further explore the Standard Normal distribution later on, but first let’s put 

some of what we’ve covered so far into action, while also expanding our horizons.   

1,000 Surveyors’ Sample Statistics and Their 1,000 95% Confidence Intervals 

In this section we’re going to look at things from a different perspective.  Surveyors 

won’t be comparing their sample statistics of public opinion with what to expect 

when the population opinion statistic equals a particular value, like 50%.  Instead, 

the surveyors want to determine, based on their sample statistic, what the value of 

the population statistic might be.  For example, a surveyor who gets a sample 

statistic value of 34% will want to calculate a 95% interval surrounding 34% and 

explain what that interval might tell us about the overall population’s opinions.   

We are going to explore the subtleties involved by sending out 1,000 surveyors to 

survey the same population and see what they come up with and how they should 

interpret what they come up with.  But first we’ll need to set the stage by inventing 

a population that has certain characteristics that we know, but none of the 

surveyors know.   

Our invented community, Artesian Wells, has about 70,000 residents.  There is a 

new public health policy being debated and, since we are all-knowing, we know that 

40% of the residents agree with the new policy.  Only we know this.  We want to 

know what to expect when many, many surveyors randomly sample 1000 people 
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from this population.  The survey respondents will be asked whether they “agree” 

or “disagree” with something, a binomial response.  We’ll use proportions rather 

than percentages, with the proportions rounded to two decimal places.  Figure 3.3 

shows us the sampling distribution of what to expect.  (Don’t get confused: There 

are 1,000 random samples, and each sample has a sample size of 1000.)   

 

Based on visual inspection, notice that the great majority of the sample proportions 

are in the interval 0.37 to 0.43.  Approximately 950 of the 1,000 sample proportions 

are contained within the interval 0.37 to 0.43, indicating that 0.37 to 0.43 is the 95% 

interval surrounding the population proportion of 0.40.  The formula will give us the 

same boundary lines.  (Feel free to double check.)   

As always, we expect the 95% interval around the population proportion to contain 

95% of all sample proportions obtained by random sampling.   

Now, we hire 1,000 independent surveyors who converge on the town to do the 

“agree” or “disagree” survey.  All 1,000 surveyors get their own random sample of 

1000 residents and calculate their own sample proportion-agree statistic.  How 

does each of the individual surveyors analyze their sample proportion?  

First, let’s look at the formula for calculating 95% confidence intervals for sample 

proportions. It looks much like the formula in the previous section.  The variable p 

with a hat on denotes the sample proportion (as opposed to the population 

proportion).  The square root term calculates the Standard Error for the sample 

proportion.  Sample size is again represented by n.  As for the constant 1.96, recall 

that earlier I rounded +1.95996… Standard Errors and used +2 Standard Errors; 
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now I’m being more precise by using +1.96 Standard Errors, which is more 

common.    

�̂� ± 1.96 ∗ √
�̂� ∗ (1 − �̂�)

𝑛
 

Each of the 1,000 surveyors calculates their individual interval using their sample 

proportion value, and we expect that 95% of the surveyors’ 95% confidence intervals 

will contain the population proportion (0.4 in this example).  You might want to 

reread that sentence a few times, keeping in mind that although we, as know-it-alls, 

know that the population proportion is 0.4, none of the surveyors have any idea 

what it is.   

It’s in this context that the term “confidence” in “confidence interval” came about: 

we are confident that 95% of all 95% confidence intervals for sample statistic values 

obtained via random sampling will contain the population statistic value.  (But no 

individual surveyor will know whether their confidence interval contains the 

population statistic value or not!)   

In a nutshell: 

The 1,000 surveyors calculate their individual 95% confidence intervals.   

About 950 of them will have an interval containing the population proportion.  

About 50 of them won’t.   

Let’s look at the 95% confidence intervals constructed via the formula by two 

surveyors: The first got a sample proportion of 0.38, and the second got a sample 

proportion of 0.34.   

Surveyor #1 Result.  

Using the formula with a sample proportion of 0.38 and a sample size of 1000,  

the 95% confidence interval is 0.35 to 0.41 (rounded).   

Only we, being know-it-alls, know that this 95% confidence interval contains the 

population proportion of 0.4  

Surveyor #2 Result.  

Using the formula with a sample proportion of 0.34 and a sample size of 1000,  

the 95% confidence interval is 0.31 to 0.37.   
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Only we, being know-it-alls, know that this 95% confidence interval does not contain 

the population proportion of 0.4.  Only we know that this surveyor is one of the 5% 

of unlucky surveyors who just happened to get a misleading random sample.  This 

is called a Type I Error, which is covered in depth in the next chapter.   

In summary,  

1) We expect the 95% confidence interval around the population proportion to 

contain 95% of all sample proportions obtained by random sampling.  We’ve been 

seeing this all along.  

2)  We expect 95% of all the 95% confidence intervals based on random sample 

proportions to contain the population proportion.  We see this for the first time 

here; more detail is given next.   

Table 3.1 is divided into three sections, left to right, and shows what the various 

surveyors will get.  Overall, the Table shows the confidence intervals for surveyors 

with sample proportions of 0.3 through 0.5; sample proportions 0.30 through 0.36 

are in the left section, 0.37 through 0.43 are in the middle section (shaded), and 

0.44 through 0.50 are in the right section.  Notice that the expected 950 surveyors 

in the middle section (shaded) with sample proportions within the interval of 0.37 

to 0.43 also have 95% confidence intervals that contain the population proportion 

of 0.40.  The expected 50 surveyors with sample proportions outside the interval of 

0.37 to 0.43—the left and right sections of the Table—do not have 95% confidence 

intervals that contain the population proportion of 0.40.   

Table 3.1 

 

Again, in summary, and for emphasis:  

1) We expect the 95% confidence interval around the population proportion to 

contain 95% of all sample proportions obtained by random sampling.   
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2)  We expect 95% of all the 95% confidence intervals based on random sample 

proportions to contain the population proportion.   

Because of these two facts, we will reach the same conclusion whether we (1) check 

if a sample proportion is outside the 95% interval surrounding a hypothesized 

population proportion, or (2) check if the hypothesized population proportion is 

outside the 95% interval surrounding a sample proportion.  The analysis can be 

done either way.   

Here’s a quick analogy: Suppose a stamping plant that makes coins was 

malfunctioning and produced unbalanced (i.e., unfair) coins.  Unbeknownst to 

anyone, these unfair coins favored tails, and the chance of coming up heads is only 

0.4.  Now say 1,000 people flip these coins 1000 times each, while counting and 

then determining the proportion of heads.  What would the 1,000 peoples’ results 

be like?  What would an analysis of a single coin and its 1000 flips be like?  Answer: 

Just like the survey example above.  Just replace the words “agree” and “disagree” 

with “heads” and “tails”.   

We expect 95% of the coin-flippers will get 95% confidence intervals that contain 

0.4, and 5% of the coin-flippers will get 95% confidence interval that do not contain 

0.4.  In other words, we expect 95% of the results to be veridical and 5% of the 

results to be misleading.  But no one knows whether their results are veridical or 

misleading.   

The reason I use the word “veridical” is because it’s the perfect word: “Coinciding 

with reality.”  I’m using it to mean the opposite of misleading.   
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4. Veridical vs. Misleading Results 

In this chapter we’ll start off using a sample size of 100 and its .4-to-.6 boundary 

lines to make a 95% confidence interval for testing coins.  Any coin whose 

proportion of heads lies outside the interval we’ll declare unfair.  Only 5% of the 

time will a fair coin mislead us and lie outside the interval, leading us to erroneously 

declare it unfair.  This is called Type I Error.   

What about unfair coins that mislead us and lie inside the interval?  That will lead us 

to erroneously declare them fair.  This is called Type II Error.  Let’s explore these two 

types of potential errors.   

Type I and II Error 

Imagine that I present you with a basket full of coins.  The basket has an unknown 

number of fair coins and an unknown number of unfair coins.  Your task is to test 

two arbitrary coins by flipping each one 100 times.   You’re going to use the 95% 

interval to make your judgment: If the number of heads is within the .4-to-.6 

interval then you’ll judge the coin to be fair, and if the number of heads is outside 

the .4-to-.6 interval then you’ll judge the coin to be unfair.   

Figure 4.1 highlights the four things that can happen with fair/unfair coins that are 

within/outside the 95% interval for the hypothesis that the coin is fair.  Table 4.1 

presents the information in a tabular format.  (Some readers prefer the Figure and 

others prefer the Table, so I’m including both.)    
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Table 4.1 Veridical and Misleading Results 

Statistical Result 

Unknown Truth  

Result is Within the Interval 

(Judge the Coin to be Fair) 

Result is Outside the Interval 

(Judge the Coin to be Unfair) 

Coin is Fair 

Veridical Result 

Correct Judgment 

Misleading Result 

Type I Error 

Coin is Unfair 

Misleading Result 

Type II Error 

Veridical Result 

Correct Judgement 

Let’s say you select a coin, flip it 100 times, and get a result of 55 heads.  That’s 

inside the interval, so you judge the coin to be fair.  If in fact the coin is fair, then the 

result is veridical and leads you to make a correct judgment.  If in fact the coin is 

unfair, then the result is misleading and leads you to make a Type II Error.   

Now let’s say you select another coin, flip it 100 times, and get a result of 65 heads.  

That’s outside the interval, so you judge the coin to be unfair.  If in fact the coin is 

unfair, then the result is veridical and leads you to make a correct judgment.  If in 

fact the coin is fair, then the result is misleading and leads you to make a Type I 

Error.   

At first, many people think (hope) that using a 95% confidence interval means that 

there is a 95% chance they’re correct and a 5% chance they’re incorrect.  But, 

unfortunately, that’s not what it means.  Its meaning is much more limited.  Remember 

that our sampling distribution and its confidence interval portrays a very specific 

situation.  In this case, it portrays the situation of flipping only fair coins.  It does not 

portray flipping unfair coins.   

When we are in fact flipping fair coins, we do in fact expect that 95% of the 

outcomes will be within the .4-to-.6 boundary lines and 5% will be outside.  But 

when we are in fact flipping unfair coins, this sampling distribution doesn’t tell us 

what to expect.   

What if all the coins in the basket are fair?  Then you expect to be correct 95% of the 

time and to fall victim to Type I Error 5% of the time.  Type II Error is irrelevant 

because it only applies to unfair coins.   

What if all the coins in the basket are unfair?  Then Type I Error is irrelevant because 

it only applies to fair coins.  And, we have no idea, at this point, how many times we 
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should expect to be correct or how many times we should expect to fall victim to 

Type II Error.  Our 95% interval has nothing definitive to say about unfair coins.   

If we knew, for example, (1) that ½ of the coins in the basket are fair and ½ are 

unfair, and (2) that the unfair coins are all identical and favor heads ¾ versus tails 

¼, then we could do some calculations to determine how likely it is that your 

judgments are correct.  But we don’t know those things.   

We can make use of estimates of those things.  In Frequentist statistics, we can, if we 

wish, estimate values for #2 in order to then estimate the likelihood of Type II Error.  

We’ll explore that next.  But we do not make nor use estimates for #1.  (Estimates 

for #1 are used to determine what’s called the false discovery rate, which is covered 

in an Addendum.)   

Exploring Type II Error 

Figure 4.2 shows the expected results of testing an unfair coin that comes up heads 

30% (.3) of the time and tails 70% (.7) of the time.  The person testing the coin has 

no knowledge of this.  This person is testing whether the coin is fair and so is using 

a 95% interval for a fair coin that comes up heads 50% (.5) of the time and tails 50% 

(.5) of the time.  Notice that the great majority of trials for the unfair coin will be 

outside the 95% interval for a fair coin and will lead to the correct judgment that the 

coin is unfair.  However, about 2% of the time the unfair coin will be within the 

interval and be incorrectly judged to be fair.  That is Type II Error.    

 

Using your imagination, you can envision that if the unfair coin is closer to fair—say 

it comes up heads 40% (.4) of the time—then the bell shape will be farther to the 
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right, so more of it will be between the boundary lines of .4-to-.6, and so there will 

be more frequent Type II Errors.  Figure 4.3 illustrates what you might have 

imagined.  The closer the unfair coin is to being fair, then the more Type II Errors 

we can expect.  In Figure 4.3 about 50% of the trials are Type II Errors!   

 

What if we increase our sample size?  Recall that the sampling distribution and the 

95% interval get narrower when we increase sample size (see Chapter 2 Section 1 

Sampling Distributions and Sample Sizes).  Using your imagination, narrow the bell 

shape and the 95% interval of Figure 4.2.  That should lead to fewer Type II Errors, 

shouldn’t it?  Yes.  Figure 4.4 illustrates what you might have imagined.  With a 

larger sample size of 1000 (rather than 100) Type II Error seems extremely unlikely.   

 

In summary, the closer something is to what we’re testing for, and the smaller the 

sample size, the more likely we are to suffer Type II Error.  There is another avenue to 

suffering higher Type II Error rates: making our Type I Error criterion stricter.   
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99% Intervals and Their Effects on Errors 

While 95% intervals are the most commonly used (except in sciences such as 

particle physics), some researchers argue for stricter lines to be drawn: in 

particular, they argue for use of 99% intervals to better avoid Type I Errors (particle 

physicists use even stricter lines).  Figure 4.5 shows the 99% interval for a fair coin 

and a sample size of 100.   

 

With a 99% interval, 99% of the expected sample proportion values with fair coins 

are contained within the interval.  Since it contains more of the expected outcomes 

than the 95% interval, it is wider.  In this case the boundary lines are .37-to-.63 

(wider than the .40-to-.60 we have with our 95% interval).  Now only 1% of the 

expected values are outside the boundary lines, ½% on each side.   

With a wider interval, our sample statistic value needs to be more extreme in order 

to fall outside the interval.  In that way, it is a stricter criterion with respect to Type I 

Error.  We can use the stricter criterion to lessen the chances of Type I Error.  But 

what happens with Type II Error?  As you might expect, since you can’t get 

something for nothing, Type II Error will become more likely.  First, look at Figure 4.6 

shown below.   
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As you can see when comparing Figure 4.6 with Figure 4.2 (reproduced below), 

more outcomes of the same unfair coin are now within the 99% interval than were 

within the 95% interval.   

 

This is not a surprise since the 99% interval is wider.  Whereas about 10% of the 

unfair coins result in Type II Error with the 99% interval, only about 2% of the unfair 

coins result in Type II Error with the 95% interval.  In short: When we make our Type 

I Error criterion stricter, we increase the likelihood of Type II Error.   

In practice, we determine the acceptable likelihood of Type I Error by the 

confidence interval we choose to use—95% and 99% intervals are the most 

common in the social sciences, whereas 99.9999% is used in particle physics.   

As we’ve just seen, the likelihood of Type II Error is determined by a number of 

factors, some within our control and some not.  In summary, the likelihood of Type 

II Errors increases:  
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1) the closer something is to what we’re testing for (.4 is closer to .5 than .3 is, and 

so .4 coins make Type II Errors more likely than .3 coins).  We don’t control this.    

2) when we use smaller sample sizes (a sample size of 100 makes Type II Errors 

more likely than a sample size of 1000).  We do control this, although larger 

samples cost more to gather.     

3) when we use stricter Type I Error criteria (a 99% interval is stricter for Type I Error 

and makes Type II Error more likely than a 95% interval—but keep in mind that 

Type I Error becomes less likely; it’s a trade-off).  We do control this, but in practice 

the strictness of our Type I Error criteria is usually set by convention (social sciences 

use 95% and sometimes 99%; physical sciences use 95% through 99.9999% 

depending on the specific field).   

Decreasing the likelihood of Type II Error increases the statistical power of our 

analysis (see Chapter 2 Section 1 Sampling Distributions and Sample Sizes, where we 

first met statistical power).  In practice, increasing the sample size is a common way 

to reduce the likelihood of Type II Error.  Moreover, there are formulas and 

software tools (including online calculators) available that help researchers 

estimate what their sample size should be in order to achieve their desired levels of 

Type I and Type II Error.   With these tools you enter your estimated value for the 

population proportion, your expected sample proportion value, and your desired 

Type I and II Error rates.  Keep in mind that, since you don’t actually know what the 

population proportion is nor what your sample proportion will be, the sample size 

recommendations of these tools are “educated-guess” estimates.   

In practice, Type I Error is feared more than Type II Error.  In the social sciences the 

Type I Error limit is most often set at 5% via a 95% confidence interval.  With 

surveys, for example, we want to limit how often we infer that a majority of the 

population is in favor of a new policy when in fact a majority is not in favor.  What 

about Type II Error?  That occurs if we infer that a majority of the population is not 

in favor of the new policy when in fact a majority is in favor.  There is no well-

established convention, but the most common guidance is to try and limit Type II 

Error to 20% (by having large enough sample sizes).  These guidelines of 5% and 

20% imply that we prefer to error on the conservative side, maintaining the status 

quo. Using our surveying context, this means that statistical survey evidence is 

more likely to erroneously undermine new policies than to erroneously provide 

support for them.v   



 - 38 - 

 

While 95% and 99% intervals are common, much stricter Type I Error criteria are 

used in particle physics: 99.9999% (approximately).  Using this interval with coin 

flipping, we would insist that a coin come up heads at least 75 times in 100 flips 

before declaring it unfair.  Biologists conducting what are called genome-wide 

association studies use a similarly strict interval.  Since these researchers test 

hundreds of thousands or even millions of separate genome locations, Type I 

Errors would be expected to occur far too frequently if they used a 95% or 99% 

interval.  After all, 5% of 1,000,000 is 50,000 and 1% of 1,000,000 is 10,000.   



 - 39 - 

 

5. A Series of Six Short Case Studies 

In order to help reinforce the concepts introduced so far, the following six short 

case studies explore Type I Error and Type II Error under various circumstances.   

The odd numbered cases concentrate on Type I Error.  These cases illustrate that 

the expected frequency of Type I Error does not change across the various 

circumstances.  The even numbered cases concentrate on Type II Error and 

illustrate that the expected frequency of Type II Error does change across the 

various circumstances.  Keep in mind that for all these cases we, being know-it-alls, 

know what the actual population percentages are, but the surveyors do not!   

Case 1 

Referring to Figure 5.1, suppose a population is 50% in favor of a new public health 

policy, and 1,000 surveyors survey the population using random sampling of 

sample size 100.  All 1,000 surveyors hypothesize that the population is 50% in 

favor, and they use the appropriate 95% confidence interval spanning from 40% to 

60%.  Expect 95% (within the interval) to not reject the hypothesis.  They don’t know 

it, but they are in fact correct.  Expect 5% (outside the interval) to reject the 

hypothesis and so suffer a Type I Error.  They don’t know it, but they are in fact 

incorrect.  They just happened to get a misleading random sample.  Type II is 

irrelevant because the hypothesis is in fact correct (unbeknownst to any of the 

surveyors).   

 

Now imagine that you are one of those surveyors.  There’s a 95% chance that you’re 

one of the ones whose random sample led you to the correct conclusion, and a 5% 

chance that you’re one of the ones whose random sample led you to the incorrect 

conclusion (Type I Error).   
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Case 2 

Referring to Figure 5.2, suppose a population is 55% in favor of a new public health 

policy, and 1,000 surveyors survey the population using random sampling of 

sample size 100.  All 1,000 surveyors hypothesize that the population is 50% in 

favor and use the appropriate 95% confidence interval spanning from 40% to 60%.  

Expect about 85% (within the interval) to not reject the hypothesis and so suffer 

Type II Error.  They don’t know it, but they are in fact incorrect.  Expect about 15% 

(outside the interval) to reject the hypothesis.  They don’t know it, but they are in 

fact correct.  Type I Error is irrelevant because the hypothesis is in fact incorrect 

(unbeknownst to any of the surveyors).  It may seem shocking, but because 55% is 

so close to 50% and because 100 is a somewhat small sample size, about 85% of 

the surveyors are expected to reach the wrong conclusion!   

 

Now imagine that you are one of those surveyors.  There’s a 15% chance that you’re 

one of the ones whose random sample led you to the correct conclusion, and an 

85% chance that you’re one of the ones whose random sample led you to the 

incorrect conclusion (Type II Error).   
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Case 3 

Let’s increase the sample size. 

Referring to Figure 5.3, suppose a population is 50% in favor of a new public health 

policy, and 1,000 surveyors survey the population using random sampling of 

sample size 1000.  All 1,000 surveyors hypothesize that the population is 50% in 

favor.  Nothing has changed regarding Type I Error because they’re all still using a 

95% interval, which now spans from 47% to 53%, and the hypothesis is true.  We 

still expect 95% to be correct and 5% to be incorrect.  Type II Error is irrelevant 

because the hypothesis is actually true.   

 

Now imagine that you are one of those surveyors.  There’s a 95% chance that you’re 

one of the ones whose random sample led you to the correct conclusion, and a 5% 

chance that you’re one of the ones whose random sample led you to the incorrect 

conclusion (Type I Error).   
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Case 4 

Referring to Figure 5.4, suppose a population is 55% in favor of a new public health 

policy, and 1,000 surveyors survey the population using random sampling of 

sample size 1000.  Their hypothesis is that the population is 50% in favor of the new 

policy, and they use the corresponding 95% interval of 47%-to-53%.  Because of the 

increased sample size—increased power—we now expect about 90% of the 

surveyors to be correct (rather than 15% in Case 2).  And we expect about 10% to 

be incorrect and suffer Type II Error (rather than 85% in Case 2).  That’s much 

better.  Type I Error is irrelevant because the hypothesis is actually false.   

 

Now imagine that you are one of those surveyors.  There’s a 90% chance that you’re 

one of the ones whose random sample led you to the correct conclusion, and a 

10% chance that you’re one of the ones whose random sample led you to the 

incorrect conclusion (Type II Error).  Much better odds than in Case 2!   
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Case 5 

Let’s make our Type I Error criterion stricter.   

As noted earlier, Type I Error is feared more than Type II Error, and since we’ve 

managed, in Case 4, to lower the expected Type II Error rate to about 10%, let’s take 

advantage of that and make our Type I Error criterion stricter, knowing full well that 

that will increase the likelihood of Type II Error. 

Referring to Figure 5.5, suppose a population is 50% in favor of a new public health 

policy, and 1,000 surveyors survey the population using random sampling of 

sample size 1000.  Their hypothesis is that the population is 50% in favor of the new 

policy.  Now they are going to use 99% intervals, which span from 46% to 54%.  

Now we expect 99% of the surveyors to be correct and 1% to be incorrect.  Type II 

Error is irrelevant.   

 

Now imagine that you are one of those surveyors.  There’s a 99% chance that you’re 

one of the ones whose random sample led you to the correct conclusion, and a 1% 

chance that you’re one of the ones whose random sample led you to the incorrect 

conclusion (Type I Error). 
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Case 6 

Referring to Figure 5.6, suppose a population is 55% in favor of a new public health 

policy, and 1,000 surveyors survey the population using random sampling of 

sample size 1000.  Their hypothesis is that the population is 50% in favor of the new 

policy, and they use the corresponding 99% interval of 46%-to-54%.  Because of the 

stricter Type I Error criterion and its wider 99% interval, we now expect about 70% 

of the surveyors to be correct (rather than 90% in Case 4).  And we expect about 

30% to be incorrect and suffer Type II Error (rather than 10% in Case 4).  Type I 

Error is irrelevant.   

 

Now imagine that you are one of those surveyors.  There’s a 70% chance that you’re 

one of the ones whose random sample led you to the correct conclusion, and a 

30% chance that you’re one of the ones whose random sample led you to the 

incorrect conclusion (Type II Error). 

With sample size 1000, which would you choose, the Type I and II Errors rates of 5% 

and 10% as in Cases 3 and 4, or 1% and 30% as in Cases 5 and 6?  Well, that 

depends on how costly making each kind of error is.  And that depends on context.  

If the repercussions of Type I Error are much worse than those of Type II Error, then 

you’d pick 1% and 30%.  If not, you’d pick 5% and 10%.   Or, you could pay to have 

even larger samples gathered and try for 1% and 10% to get the best of both!  (But 

remember, we’ve only considered Type II Error in cases where the population is 

55% in favor.  If we considered 51% to 54% we would see more Type II Error and if 

we considered 56% or more we would see less Type II Error.)   
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The Bottom Line: Sample size is an important way to manage error rates.  Larger 

sample sizes allow you to make your Type I Error level stricter, if desired, while also 

making sure your Type II Error level remains reasonable.   

Terminology and Notation:  Mathematically, the probability of Type I Error is denoted 

by the lower-case Greek letter alpha, α.  The percentage level for confidence—

which we’ve been referring to a lot—is (1- α)*100%.  So, an alpha-level of 0.05 is 

equivalent to a confidence level of 95%.  The probability of Type II Error is denoted 

by the lower-case Greek letter beta, β.  Power is 1-β (not made into a percentage).  

So, for example, a beta level of 0.20 is equivalent to a power level of 0.80.   
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6. Formalizing Hypotheses 

When we looked at Type I & II Error, I referenced various hypotheses.  And in 

Chapter 5 A Series of Six Short Case Studies, I casually posited the surveyors’ 

hypotheses that “the population is 50% in favor of the new policy”.  It’s time to get 

more formal.   

The central hypothesis is called the Null Hypothesis.  It’s central, not because you 

think or hope it’s true.  Usually, it’s the exact opposite.  For example, a 

pharmaceutical company testing a new drug obviously wants it to be shown 

effective via drug trial data, but their Null Hypothesis is that the drug is not 

effective.  Then, they hope to reject the Null Hypothesis.  The Null Hypothesis is 

central because it’s the hypothesis you are testing.  We can frame a statistical 

analysis simply by whether or not we reject the Null Hypothesis.  But if desired, we 

can also formally state an Alternate Hypothesis that is to be accepted if the Null 

Hypothesis is rejected.   As we’ll see, though, the Null Hypothesis is never accepted; 

it’s either rejected or not rejected—a subtle but fundamental difference.   

The Null Hypothesis is a statement that may be ruled out by evidence (the sample 

data).  Typically, the Null Hypothesis is an equality (and the optional Alternate 

Hypothesis is an opposing inequality).  For example   

Null:  The population percentage in favor is equal to 50%  

Alternate (optional):  The population percentage in favor is not equal to 50% 

With these terms, we can define Type I & II Errors more formally.   

Type I Error:   Rejecting the Null Hypothesis when it is actually true.   

Ex. The population is 50% in favor, but your sample leads you to reject that it’s 

50% in favor. 

Type II Error:  Not rejecting the Null Hypothesis when it is actually false.   

Ex. The population is not 50% in favor, but your sample leads you to not reject 

that it is 50% in favor.   

Let’s consider why the Null Hypothesis may be rejected or not rejected but never 

accepted.  We’ll look at it a few different ways, starting with a classic analogy:  There 

is a hypothesis that a certain animal native to Tasmania is extinct.  That is the Null 

Hypothesis.  A group of scientists goes out looking for it.  If they find one, can they 
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reject the Null Hypothesis that the animal is extinct?  Yes, of course.  But if they 

don’t find one, can they accept the Null Hypothesis that the animal is extinct?  Of 

course not.  The absence of evidence is not evidence of absence.   

Now let’s look at some cases closer to home:  Surveyor #1’s Null Hypothesis is that 

the Flowing Wells population is 50% in favor of a new public health policy.  Her 

frame of reference is Figure 5.1 (reproduced below).   

 

Surveyor #2’s Null Hypothesis is that the Flowing Wells population is 55% in favor of 

the same new public health policy.    His frame of reference is Figure 6.1.   

 

Both surveyors use the same survey sample of 100 random people, and the sample 

proportion turns out to be 53%.  53% is within both of the surveyors’ 95% intervals.  

If we allowed each of them to accept their Null Hypothesis, then she would accept 

the Null Hypothesis that the population proportion is 50%, and he would accept the 

Null Hypothesis that the population proportion is 55%.  They can’t both be right!  
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No, they can’t both be right, and so we can’t let them accept their Null Hypothesis.  

Each can only not reject their Null Hypothesis.   

Next, let’s look at a variation on that theme.  We’ll use Figure 5.2, reproduced below.  

The Null Hypothesis is that the Flowing Wells’ population proportion is equal to 

50%, but let’s say that we, as know-it-alls, know that it’s actually equal to 55%.   

 

Here, a population that is actually 55% in favor has a sampling distribution with the 

majority of sample percentages within the 95% interval for 50%.  Should all the 

surveyors who get sample proportions within the 40%-to-60% interval accept their 

Null Hypothesis and say they are confident that the population percentage is 50%?  

No.  All the surveyors whose percentages are outside the 40%-to-60% interval will 

reject the Null Hypothesis that the population percentage is 50%, and all the 

surveyors whose proportions are within the 40%-to-60% interval will not reject the 

Null Hypothesis (and unknowingly suffer Type II Error).   

And finally, in many cases it would actually be very unlikely for the Null Hypothesis 

to be true anyway.  Flowing Wells has 80,000 residents.   For the Null Hypothesis 

that 50% of the Flowing Wells’ population is in favor of the new public health policy 

to be true, 40,000 residents must be in favor of the policy.  Not 39,999.  Not 40,001.  

It must be exactly 40,000.  That’s another reason why we never accept the Null 

Hypothesis as true.  It’s often too exacting.  But always remember, the Null Hypothesis 

is something we want to see if we can reject; it’s not something we want to see if we can 

accept.vi   

In a nutshell:  We may infer that the Null Hypothesis is false, but we never infer that 

it’s true.  If the evidence is strong enough, we reject the Null Hypothesis.  And when 
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we reject the Null Hypothesis, we call the result statistically significant.  If the 

evidence is not strong enough, we don’t reject the Null Hypothesis.  We never 

accept the Null Hypothesis.   
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7. The Limited Meaning of Statistical Significance 

When our sample statistic is outside of our 95% confidence interval, we reject the 

Null Hypothesis and call the result statistically significant.  What does “statistically 

significant” mean?  What does it tell us?  Recall from Chapter 4 Veridical vs. 

Misleading Results that, at first, many people think that a statistically significant 

result using a 95% confidence interval tells them that there is a 95% chance they’re 

correct and a 5% chance they’re incorrect.  But, unfortunately, that’s not what it 

means.  Its meaning is much more limited.  It only tells us that there is a 95% 

chance we’re correct and a 5% chance we’re incorrect when the Null Hypothesis is 

true (see cases 1 and 3 in Chapter 5 A Series of Six Short Case Studies).  It’s on this 

basis that we reject the Null Hypothesis.   

The meaning of statistical significance is limited in another way as well.  Many 

people think, at first, that statistical significance tells them that the results must 

have meaningful real-world implications, that the results are practically significant.   

But, unfortunately, that’s not what it means either.  The term significant is qualified 

with the term statistically.  It doesn’t mean generally significant or practically 

significant or meaningfully significant.  To illustrate, let’s look at three examples, the 

first two of which we’ve seen before.  All involve calculating the 95% interval 

surrounding .5.  They involve sample sizes of 100, 1000, and 10,000.   

. 5 ± 2 ∗ √
. 5 ∗ (1 − .5)

100
= .5 ± 0.10 = 40% to 60% 

. 5 ± 2 ∗ √
. 5 ∗ (1 − .5)

1000
== .5 ± 0.03 = 47% to 53% 

. 5 ± 2 ∗ √
. 5 ∗ (1 − .5)

10,000
== .5 ± 0.01 = 49% to 51% 

As you know, the 95% interval narrows as sample size increases.  At some point the 

95% interval will narrow to effectively nothing.  In the case here of a sample size of 

10,000 the interval is very narrow.  The margin of error is only 0.01, or 1%.   While a 

sample size of ten thousand may seem ridiculously large, in the modern age of 

digitized “big data” it actually isn’t.  Regardless, the main point remains that with 

large enough sample sizes we can make nearly any result statistically significant.     
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So, if we had a sample of ten thousand and our sample percentage was 51.1% what 

would we infer?   Well, we would reject the Null Hypothesis that the population is 

50% in favor, and we would call the result statistically significant.  Because it is.  But 

what about practical significance?  Is 51.1% meaningfully different from 50% in 

terms of its practical implications?   Maybe, maybe not.   

Statistical significance is important when assessing the results of statistical analysis, 

but you also need to look at the actual statistic values involved and decide whether 

they are practically significant, with meaningful real-world implications.vii   

And while we do want to have sample sizes large enough to avoid undue risk of 

Type II Error, we also have to be wary when using sample sizes so large that 

negligible results become statistically significant.   

Here’s an example of that:  A study found that a certain dietary supplement 

lowered the risk of getting a certain minor ailment from 2 in a 1000 (0.2%) down to 

1 in a 1000 (0.1%).  The sample size of the study was 30,000, so the difference 

between 0.2% and 0.1% is statistically significant (at 95% confidence).  That gives a 

relative risk difference of 50% ((0.2%-0.1%)/.2%) but an absolute risk difference of 

only 0.1% (0.2%-0.1%).  Advertisements for the supplement highlighted the facts 

that the supplement’s positive effect was statistically significant and that the 

supplement reduced the risk of getting the ailment by 50%, but the advertisements 

did not mention that the absolute risk reduction was only 0.1%.  Many people 

would find that misleading.  And many people would consider an absolute risk 

difference of 0.1% to be negligible and practically insignificant.  Bottom line: You 

definitely want to know both the relative and absolute differences in order to better 

assess practical significance.   
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8. Approximating Binomial Distributions: The z-distribution 

Next, we need to finalize the Standard Normal distribution we met earlier (in 

Chapter 3 Section 1 Time for Some Standardization).  Here, we’ll go further and 

formulate something called the z-distribution.  The z-distribution is important 

because it is the ultimate source of the formulas we’ve been using; it is where 

+1.95996… comes from.   

The sampling distributions for binomial variables we’ve been looking at are discrete 

distributions (discrete values such as 0, .01, .02, …, 1 on the horizontal axis and 

discrete frequency counts on the vertical axis), but the equation we’ll see in a 

moment defines a continuous distribution (continuous values on the real number 

line for both the horizontal and vertical axes).   Let’s transform the discrete 

binomial distribution of Figure 8.1 to the Standard Error scale, as we did earlier, and 

then to the continuous Standard Normal distribution, which is most often called the 

z-distribution.   

 

First, on the horizontal axis we simply subtract .5 from each value (to center the 

distribution on zero) and divide each by the Standard Error determined using the 

below formula, as we saw earlier.   

𝑝 − .5

√𝑝 ∗ (1 − 𝑝)
𝑛
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Viola, we get Figure 8.2.   

 

Next, we connect the tops of all the bars to make a continuous distribution, and we 

replace the frequency scale on the vertical axis with a probability scale (more on 

this below).  Viola, we get Figure 8.3, the famous z-distribution.  The letter z denotes 

the Standard Error scale.   

 

The scale on the vertical axis in Figure 8.3 is now probability.  Probability is a 

continuous scale going from 0 to 1.  A probability of 1 means something will always 

happen and a probability of 0 means something will never happen.  A probability of 

0.5 means something will happen half the time.viii   

The z-distribution is a probability distribution that is normal, standardized, and 

continuous.   It is one of the most important standardized probability distributions in 

statistics.  Since it’s a probability distribution, the entire area under the curve is 1.  

And, since it is a continuous function, probabilities for specific values—such the 
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probability of z exactly equaling 1.96—are zero.  We always need to refer to the 

probability of ranges—such as the probability that z is less than -1.96 or greater 

than 1.96.   

Recall that the boundary lines for the 95% interval on the Standard Normal 

Distribution are always -1.96 and 1.96, as shown in Figure 8.4.  The area under the 

curve within the boundary lines is 0.95 and the total area outside is 0.05, with 0.025 

on each side.   

 

In light of the z-distribution and its Standard Error scale, let’s revisit the two primary 

formulas we’ve been using.  In the below formula, multiplying +1.96 times the 

Standard Error gives us the 95% interval expressed in proportions.   

𝑝 ± 1.96 ∗ √
𝑝 ∗ (1 − 𝑝)

𝑛
 the 95% interval scaled in proportions.  

And in the below formula, dividing the difference between a proportion and a fixed 

proportion value (such as .5) by Standard Error gives us the difference expressed in 

Standard Errors.   

𝑝 − .5

√𝑝 ∗ (1 − 𝑝)
𝑛

 proportion scaled to the z-distribution.  

Many statistical formulas are, or involve, such scale conversions.  Let’s go through 

complementary examples.   
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As examples of using each of the two formulas, with illustrations, let’s say we took a 

random sample of 100 and got a sample proportion of 0.62.  Our hypothesis is that 

the population proportion is 0.50.  The 95% interval calculation gives us 

. 5 ± 1.96 ∗ √
. 5 ∗ (1 − .5)

100
= 0.4 to 0.6 

Figure 8.1, annotated below, shows the sampling distribution along with the 

confidence interval of 0.4 to 0.6 and the sample proportion value of 0.62 

superimposed on it.   

 

Using the second formula we get  

. 62 − .5

√. 5 ∗ (1 − .5)
100

 = 2.40 

Figure 8.4, annotated below, shows the z-distribution along with its standard 

confidence interval of -1.96 to 1.96 and the Standard Error value of 2.40 

superimposed on it.   
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This illustrates the equivalence between the two: the statistical result is outside the 

95% interval in the same relative location.  You get the same result whether you 1) 

calculate the confidence interval boundaries in terms of proportions using the z-

distribution’s +1.96 multiplier, and then see if your sample proportion value is 

outside the interval, or 2) calculate the Standard Error for your sample proportion, 

and then see if the Standard Error value is outside the z-distribution’s standard 

+1.96 interval.  From here on, we’ll be using both types of calculation and 

illustration.   

The z-distribution approximates the binomial distribution.  It is not an exact match, 

because the binomial is a discrete distribution, but, as long as the sample size is 

large enough, it is a very useful approximation.  (We’ll look at exceptions in Chapter 

9 Addressing Assumptions.)   

Note: The equation for the continuous z-distribution curve itself is shown below.  

There is no practical need for you to know this equation.  I put it here so you could 

see that there is indeed an equation that defines the z-distribution curve.    

1

√2𝜋
𝑒

(−
𝑥2

2
)
 

where, x is Standard Error (the horizontal axis).  For those of you acquainted with 

calculus, you know that you can find the area under specific regions of the curve 

using integration to determine the probability of having values within those 

regions.ix   
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9. Addressing Assumptions 

Nearly all statistical tests make specific assumptions about the data being analyzed.  

If the assumptions are not met, then the statistical test will yield questionable 

results and shouldn’t be used.   The assumptions are often related to sample sizes 

and the nature of the distributions of the data values themselves.  This chapter 

overviews these types of assumptions for binomials to give you a feel for what they 

are and why they matter.  In practice, the assumptions for any given statistical 

analysis method must be carefully assessed prior to its use.  When a given 

method’s use cannot be justified, then a less restrictive method must be chosen—

one that makes fewer or different assumptions—or the data must be transparently 

“massaged” in a professionally appropriate way to make it better adhere to a 

method’s assumptions.  A professional will report everything that was done as part 

of any analysis.   

For binomial data the two most important assumptions have to do with sample size 

and extreme proportion values.  In §8. Approximating Binomial Distributions: The z-

Distribution, we saw that binomial sampling distributions can be approximated with 

the z-distribution—Figure 8.3, reproduced below—but only when sample sizes are 

large enough.  In addition, the proportion values cannot be too close to zero or one.  

These stipulations are critical because the formulas we’ve been using assume that 

the z-distribution is a proper approximation.  Let’s look at these issues in more 

detail.   

 

If the sample size is too small, the z-distribution is a poor approximation to the 

binomial distribution.  For example, if our sample size is only 2, then the z-

distribution is obviously a poor approximation as shown by the sampling 

distribution in Figure 9.1.   
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In the case of Figure 9.1, the approximation is so poor that the 95% confidence 

interval calculated via the formula, shown below, goes out-of-bounds on both sides 

with proportion boundary lines of -.2 and 1.2.  These are both infeasible values for 

proportions!   

. 5 ± 1.96 ∗ √
. 5 ∗ (1 − .5)

2
=  .5 ± .69 = -.2 to 1.2 (rounded) 

When p is too close to zero or one, then the binomial distribution will distort from 

the normal bell shape.  In such cases the z-distribution will also be a poor 

approximation.  Figure 9.2 shows that the sampling distribution for p of 0.9 with 

sample size of 30 is distorted from the normal bell shape.   

 

In the case of Figure 9.2, the 95% confidence interval calculated via the formula, 

shown below, has the extreme proportion boundary line value of 1 on the right-

hand side (prior to rounding, it actually calculates to slightly greater than 1).     
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. 9 ± 1.96 ∗ √
. 9 ∗ (1 − .9)

30
=  .9 ± .1 = .8 to 1.0 (rounded) 

How can we determine whether the z-distribution will be a good approximation for 

a given binomial sampling distribution?  Recall that both p and n influence the 

nature of the sampling distribution (Chapter 2 Sampling Distribution Dynamics).  So, 

the values of both n and p must be considered together.  A commonly used rule-of-

thumb for the minimum sample size, n, needed for any given proportion, p, is to 

make sure n is large enough so that 

𝑛 ∗ 𝑝 ≥ 10   and   𝑛 ∗ (1 − 𝑝) ≥ 10 

For Figure 9.1, by using this rule-of-thumb for p of 0.5 we can determine that n of 2 

is too small because 2*.5 only equals 1.   

On the other hand, with n of 20 we get 20*(.5) which equals 10.  Figure 9.3 

illustrates that with a sample size of 20, the sampling distribution has filled in and 

narrowed enough to attain a normal shape.   

 

And the 95% confidence interval calculated with the formula, shown below, appears 

to be accurate in light of Figure 9.3.   

. 5 ± 1.96 ∗ √
. 5 ∗ (1 − .5)

20
=  .5 ± .2 = .3 to .7 (rounded) 

For Figure 9.2, by using this rule-of-thumb for p of 0.9, we can determine that n of 

30 is too small because 30*(1-0.9) only equals 3.  On the other hand, with n of 100 

we get 100*(1-0.9) which equals 10.  Figure 9.4 illustrates that with a sample size of 

100, the sampling distribution has narrowed enough to attain a normal shape.   
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And the 95% confidence interval calculated with the formula, shown below, now 

appears to be accurate in light of Figure 9.4.   

. 9 ± 1.96 ∗ √
. 9 ∗ (1 − .9)

100
=  .9 ± .06 = .84 to .96 (rounded) 

So, in summary, the z-distribution approximates the binomial distribution, and 

sample sizes must be adequate for the formulas to work correctly, and p cannot be 

too close to zero or one.  With sample sizes that are too small and p that are too 

close to zero or one, alternatives called exact methods can be used.x     
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10. Analyzing the Difference Between Two Groups Using Binomial 

Proportions 

Now that we’ve covered many of the essential foundations laid out in the 

introduction, let’s put them into action while looking at another common type of 

analysis involving binomial proportions.  We’ll keep surveying the population in 

Flowing Well, but now we’ll compare them to the population in a neighboring town, 

Artesian Wells.  The reason for our surveys is to assess how residents feel about a 

newly proposed state government initiative.   

The state government is considering state tax increases to fund some new 

government programs.  We’re going to survey Flowing Wells residents as we have 

been doing, but we’re also going to survey residents in the nearby town of Artesian 

Wells.  Historically, the town of Flowing Wells is known to lean socialist and 

probably favors the new taxes and programs, but the town of Artesian Wells is 

thought to lean libertarian and probably doesn’t.  The survey is going to be 

conducted in each of the two towns to see if the proportions of residents that are in 

favor of the new taxes and programs are different in the two towns.  The 

corresponding Null Hypothesis is that they are not different:   

There is no difference between the Flowing Wells and the Artesian Wells 

communities’ population proportions.  That is, the difference between the Flowing 

Wells and the Artesian Wells population proportions equals zero.  

The relevant sample statistic is the Flowing Wells’ sample proportion minus the 

Artesian Wells’ sample proportion.  (Using the Artesian Wells’ sample proportion 

minus the Flowing Wells’ sample proportion will give us fundamentally the same 

results.)   

Unfortunately, the not-for-profit organization that is conducting the survey only has 

resources to survey 100 random residents in each town.   

First, let’s get a “bird’s eye view” of the situation.  The Null Hypothesis is that there’s 

no difference between the Flowing Wells and the Artesian Wells communities’ 

population proportions, so let’s look at simulation results that assume that is true.  

We’ll assume that both Flowing Wells and Artesian Wells have an overall community 

population opinion of 50% (0.50) agree, such that the difference in the population 

proportions equals zero.  If 100 people are randomly surveyed in each of the two 
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communities, how likely is it that various sample proportion differences could arise 

by chance, due to the randomness inherent in the sampling?  The simulation takes 

two random samples of size 100 from populations that are 50%-in-favor and 

subtracts one of the sample proportions from the other.  It does this over and over 

and over.   

Figure 10.1 illustrates the simulation results, which is the sampling distribution of 

what to expect when the Null Hypothesis is true.   

 

You can see that the sampling distribution for the difference between two sample 

proportions is a normal distribution.  And it appears the 95% interval for this 

situation has boundary lines of -.14 and .14.  So, if the difference between two 

sample proportions is within the interval -.14 to .14, then we won’t reject the Null 

Hypothesis.  If it’s outside the interval, then we will reject the Null Hypothesis and 

say that the difference between the two communities is statistically significant.  The 

limited resources that have constrained the sample sizes to 100 gives a fairly wide 

interval, where the two sample proportions have to be at least 0.15 apart to reject 

the Null Hypothesis.  The small samples and wide confidence interval raise 

concerns about Type II Error.   

The Standard Error formula for the difference between two population proportions 

is 

√
𝑝1(1 − 𝑝1)

𝑛1
+

𝑝2(1 − 𝑝2)

𝑛2
 



 - 63 - 

 

Notice that the terms within the square root follow the same “variance divided by 

sample size” structure we saw with the Standard Error for a single proportion.  Now 

there is a term for each of the two populations.   

Both samples are size 100, and we are assuming both have population p equal to 

.5, making their difference equal to zero.  Using the 95% confidence interval 

formula we get 

0.0 ± 1.96 ∗ √
. 5(1 − .5)

100
+

. 5(1 − .5)

100
= 0.0 ± .14 (rounded) 

That agrees with Figure 10.1; the sampling distribution is approximated nicely by 

the z-distribution that’s embodied in the formula.   

For an example analysis, let’s suppose the sample proportion for the survey in 

Flowing Wells is .52 and for Artesian Wells is .44.  The difference is .08, which is 

within the 95% interval.  Conclusion: Do not reject the Null Hypothesis.  

(Remember, we never accept the Null Hypothesis, we just don’t reject it.)   

Now that we’ve looked at the bird’s eye view, let’s get back to conducting the 

surveys.  The first survey is conducted in March.   We are going to analyze the 

survey data using the other primary formula type we’ve been utilizing.  We’ll convert 

a sample proportion difference to the Standard Error scale.  Below is the formula for 

the Standard Error of the difference between two sample proportions.   

�̂�1 − �̂�2

√
�̂�1(1 − �̂�1)

𝑛1
+

�̂�2(1 − �̂�2)
𝑛2

 

Let’s suppose the survey data yields a sample proportion for Flowing Wells of .52 

and for Artesian Wells of .44.  Are these two sample proportions far enough apart 

that we can say the difference is statistically significant?  First, we’ll calculate the 

Standard Error of the sample proportion difference.   

. 52 − .44

√. 52(1 − .52)
100 +

. 44(1 − .44)
100

= 1.136 (rounded) 
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The proportion difference of .08 (.52-.44) equates to 1.136 Standard Errors.  

Looking now at the Standard Normal Distribution (z-distribution) in Figure 10.2 we 

can see that the result is inside the 95% interval and so we do not reject the Null 

Hypothesis that Flowing Wells and Artesian Wells have equal population 

proportions.  The .08 sample proportion difference is not statistically significant.   

 

Someone from the not-for-profit organization raises the issue of practical 

significance and suggests that 52% and 44% are different enough to be considered 

politically meaningful…  Wait! you say.  Without statistical significance we really 

shouldn’t even be thinking about that! The results do not allow us to talk as if the 

population proportions are different at all!  Nonetheless, you add helpfully, with the 

small sample sizes, Type II Error does seem like a real possibility.   

Suppose the survey is conducted again a month later, in April, and the two sample 

proportions are farther apart: .52 and .34.   

First off, since .34 is closer to zero than most of the proportions we’ve encountered 

so far, let’s check the assumption rule-of-thumb we saw in the previous chapter: 

𝑛 ∗ 𝑝 ≥ 10   and   𝑛 ∗ (1 − 𝑝) ≥ 10 

With a sample size of 100 and proportion of .34 we get 

100 ∗ .34 = 34 ≥ 10   and   100 ∗ (1 − .34) = 66 ≥ 10 
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This assumption is met comfortably, so we’ll calculate the Standard Errors of the 

difference between .52 and .34 and then check it with the z-distribution.   

. 52 − .34

√. 52(1 − .52)
100 +

. 34(1 − .34)
100

= 2.614 (rounded) 

Looking at Figure 10.3 we see that 2.614 Standard Errors is outside the 95% 

interval.  The .18 difference between .52 and .34 is statistically significant, and we 

do reject the Null Hypothesis that Flowing Wells and Artesian Wells have equal 

population proportions.   

 

Plus, it does seem that 52% and 34% are different enough to claim practical 

significance—that the difference has meaningful political implications.   

Next, let’s say that for the following month’s survey, in May, additional resources 

are committed so that larger samples can be gathered.  The sample statistic values 

are the same as two months ago, in March—sample proportions of .52 and .44—

but now the sample sizes are 1000.   

. 52 − .44

√. 52(1 − .52)
1000 +

. 44(1 − .44)
1000

= 3.592 (rounded) 

Looking at Figure 10.4 we see that 3.592 Standard Errors is outside the 95% 

interval.  (It’s off the chart shown here, but the z-distribution itself actually goes 

from negative infinity to positive infinity.)  With sample sizes of 1000, the difference 
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of .08 between .52 and .44 is statistically significant, and we do reject the Null 

Hypothesis that Flowing Wells and Artesian Wells have equal population 

proportions.  While the .08 difference was not statistically significant in March with 

sample sizes of 100, it is statistically significant in May with sample sizes of 1000.  

The additional statistical power due to the larger sample size does that.  And while 

it is always possible that a Type I Error has occurred whenever we reject a Null 

Hypothesis, our experience over the last few months convinces us that this month’s 

difference is most likely real.   

 

It is unclear, however, whether 52% and 44% are different enough to have serious 

political implications.  Perhaps we need to ask some political scientists whether 

they think these statistically significant survey results have any practical 

significance.xi   
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11. The Rest of the (Frequentist) Iceberg 

At first blush, it seems that we have only explored the tip of the iceberg.  But really, 

you can learn many of the important characteristics of an iceberg by studying the 

tip of the iceberg: for one, you can learn all about its general composition.  

Likewise, by studying the analysis of binomials, you can learn the general 

composition of statistical analysis.  No matter what types of statistics you’re going 

to analyze, they are all going to have sampling distributions.  And those sampling 

distributions are all going to have corresponding standardized probability 

distributions.  And when using those distributions, you will always reject the null 

hypothesis when the statistic value is located far enough out in the tail of the 

distribution.  There will always be statistical and practical significance assessments 

to perform, and there will always be Type I and Type II Errors to worry about.  And 

there will always be assumptions that must be met.    

In addition to the z-distribution, there are three other types of standardized 

probability distributions that form the “big four” of Frequentist statistics: the t-

distributions, the χ2-distributions, and the F-distributions.  Each of these three 

distributions is really a family of distributions, with each of the three families 

comprised of many instances of the same type of distribution.  All four are 

highlighted below.  To streamline the highlights, I’ve relegated details to a number 

of endnotes.  (I hope to produce a sequel—tentatively titled Statistical Analysis 

Illustrated: Variance Everywhere—to cover these topics in depth.)   

For sample statistics related to binomials and ranksxii we use the z-distribution, 

illustrated in Figure 11.1.   
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For sample statistics related to averages—such as the average height of a sample of 

people, or the difference in average height between two samples of people—we 

use t-distributions, illustrated in Figure 11.2.  The t-distribution incorporates 

additional uncertainty into the equation.  When there is no additional uncertainty, it 

is the same as the z-distribution.  That’s the solid-line curve.  When there is 

additional uncertainty, the t-distribution is more spread out, reflecting the 

additional uncertainty.  The more additional uncertainty there is, the more spread 

out the t-distribution is and the wider the 95% confidence interval will be.  In Figure 

11.2, the dotted-line curve is the t-distribution with the most additional uncertainty 

of the three.xiii   

 

For sample statistics related to variances—such as the variance (variety) of heights 

within a sample of people—we use χ2-distributions, called Chi-squared distributions 

and illustrated in Figure 11.3.  As you can see by the horizontal axis, χ2-statistic 

values are always greater than or equal to zero.xiv   
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For comparing two sample variances—such as comparing the variety of heights 

between two samples of people—we use their ratio rather than their arithmetic 

difference, and we use F-distributions, illustrated in Figure 11.4.  F-statistic values 

are also always greater than or equal to zero.xv   

 

These four distributions are by far the most widely used standardized probability 

distributions in Frequentist statistics.  For all the types of data you are likely to 

analyze, there are statistics that can be used to summarize that data, and those 

statistics can be analyzed using a standardized probability distribution.xvi  When 

using any of these distributions, you’ll typically reject the null hypothesis when the 

statistic value is located far enough out in the tail.  And in all cases, assessments 

need to be made regarding assumptions, Type I and Type II Error probabilities, and 

statistical and practical significance.   

Frequentist statistics, which we’ve focused on, has been the dominant statistical 

analysis methodology for over a century.  However, a different methodology, with a 

long history itself, continues to challenge that dominance: Bayesian statistics.   
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12. Bayesian Analysis 

Two major approaches to statistical analysis are the Frequentist approach and the 

Bayesian approach.  This  book focuses on the Frequentist approach, but I couldn’t 

leave without introducing you to the Bayesian way.  Bayesian statistics provides a 

special method for calculating probability estimates, for choosing between 

hypotheses, and for learning about population statistic values. To explore its basic 

workings, we’ll start with a statistical scenario involving medical testing and 

diagnosis.   

Basics of Bayesian Analysis 

Table 12.1 shows the various possible conditions and outcomes of a diagnostic test 

for a fictional disease, Krobze.  The rows show the unknown truth of not having or 

having Krobze, and the columns show the known negative or positive test results.  

The four shaded “intersection” cells show the familiar breakdown into veridical 

results (true negative test results and true positive test results) and misleading 

results (Type I Error and Type II Error, which are false positive test results and false 

negative test results).  As we’ll see, and unlike Frequentist statistics, Bayesian 

statistics makes central use of assumptions about population statistic values in order 

to calculate probability estimates for the truth of hypotheses (something that’s 

considered unthinkable in Frequentist statistics!).   

Table 12.1 Medical Diagnosis Scenario Structure 

                                         Test 

                                     Result 

Unknown Truth  

Test Negative Test Positive 

Don’t have Krobze True Negative 
False Positive 

(Type I Error) 

Do have Krobze 
False Negative 

(Type II Error) 
True Positive 

In particular, Bayesian analysis can be used to estimate conditional (if…then…) 

probabilities like: 

1)  If you test negative, then what is the probability that you really don’t have 

Krobze? 

2)  If you test positive, then what is the probability that you really do have Krobze? 
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The first involves the Test Negative column: we need to calculate the probability of a 

true negative divided by the sum of the probabilities of true and false negatives.  The 

second involves the Test Positive column: we need to calculate the probability of a 

true positive divided by the sum of the probabilities of true and false positives.   

In order to calculate these, we need to know, or estimate, the probability of having 

the disease in general–that is, how prevalent Krobze is in the population.  Notice that 

this is really saying that we need to know, or estimate, the population proportion, 

and that we will incorporate it into the heart of the analysis (something that is not 

done in Frequentist statistics).  We also need to know how reliable the diagnostic test 

is.   

Listed below is this required information, which is then used to fill in Table 12.2.   

1 out of 100 have Krobze, for a probability of 0.01 of having Krobze and 0.99 of 

not.   

For the diagnostic test reliability, we are given the following information:  

For people who don’t have Krobze, 90% (0.9) test negative (true negative) and 

10% (0.1) test positive (false positive) 

For people who do have Krobze, 80% (0.8) test positive (true positive) and 20% 

(0.2) test negative (false negative) 

Notice that in addition to using the above information to fill in Table 12.2—shown in 

bold type—another row has been added to the bottom of the Table for column 

sums.   

Table 12.2 Probabilities after a Single Test 

                                         Test 

                                     Result 

Unknown Truth  

Test Negative Test Positive  

Don’t have Krobze 

(0.99 of the population) 

True Negative 

0.99*0.9=0.891 

False Positive 

0.99*0.1=0.099 

Do have Krobze 

(0.01 of the population) 

False Negative 

0.01*0.2=0.002 

True Positive 

0.01*0.8=0.008 

Column Probability 

Sums 

0.893 

(89.3% will test negative) 

0.107 

(10.7% will test positive) 
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Let’s use Table 12.2 to answer the questions posed above.   

1)  If you test negative, what is the probability that you don’t have Krobze? 

This asks for the true negative rate.  In jargon it’s called the specificity of the test.   

We use the Test Negative column.  

True negative/true and false negatives=0.891/0.893=0.99776 which is nearly 100%.   

2)  If you test positive, what is the probability that you do have Krobze? 

This asks for the true positive rate.  In jargon it’s called the sensitivity of the test. 

We use the Test Positive column. 

True positive/true and false positives=0.008/0.107=0.074766 which is between 7% 

and 8%.  It’s this low because Krobze is fairly rare, with only a 1% prevalence in the 

population, so false positives dominate the true positives.   

More key Bayesian terminology:   

The two Don’t & Do have Krobze cells show prior probabilities. 

The four shaded True False Negative Positive cells show joint probabilities. 

The two Column Probability Sums cells show marginal probabilities. 

The two calculated solutions 0.99776 and 0.074766 are posterior probabilities. 

Many people feel that all of this makes better sense when we use frequencies rather 

than probabilities, so let’s do it that way too.   

Consider 1,000 random people.  Below are the frequencies we expect, which are 

then used to fill in Table 12.3.   

990 won’t have Krobze (99 out of 100 don’t have it) and of those,  

891 (90% of 990) test negative (true negative)  

99 (10% of 990) test positive (false positive)  

10 will have Krobze (1 out of 100 have it), and of those  

8 (80% of 10) test positive (true positive)  

2 (20% of 10) test negative (false negative)  
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Table 12.3 Using Frequencies Instead of Probabilities 

                                         Test 

                                     Result 

Unknown Truth  

Test Negative Test Positive  

Don’t have Krobze 

(990 out of 1,000) 

True Negative 

990*0.9=891 

False Positive 

990*0.1=99 

Do have Krobze 

(10 out of 1,000) 

False Negative 

10*0.2=2 

True Positive 

10*0.8=8 

Column Frequency 

Sums 

893 

(893 will test negative) 

107 

(107 will test positive) 

1)  If you test negative, how likely is it that you don’t have Krobze? 

891/893=0.99776; same as above.  

2)  If you test positive, how likely is it that you do have Krobze? 

8/107=0.074766; same as above.   

The Bayesian method is especially useful because it can be used successively to 

update probability estimates.  Let’s say you tested positive the first time and want to 

have another type of test (with the same diagnostic reliability) performed.  Table 12.4 

shows the conditions and outcomes for the second test.  The posterior probability of 

0.074766 based on your first positive test now becomes the prior probability for the 

second test.   

Table 12.4 Second Test Following the First Positive Test Result 
                                       Second 

                                        Test 

                                       Result 

Unknown Truth 

(Given first positive test) 

Test Negative Test Positive  

Don’t have Krobze 

1-0.074766=0.925234 

True Negative 

0.925234*0.9=0.832711 

False Positive 

0.925234*0.1=0.092523 

Do have Krobze 

0.074766 

False Negative 

0.074766*0.2=0.014953 

True Positive 

0.074766*0.8=0.059813 

Column Probability 

Sums 
0.847664 0.152336 
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Say that you test negative the second time. The probability that you don’t have Krobze 

given that the second test is negative is:  

0.832711/0.847664=0.98236; about 98%  

Instead, say that you again test positive. The probability that you do have Krobze 

following the second positive test result is:  

0.059813/0.152336=0.392637; about 39%   

Keep in mind that Krobze is fairly rare (1 in a 100).  So, false positive test results tend 

to dominate the Test Positive column: that’s largely why we got 7% after the first 

positive test and 39% after the second positive test.  Test reliability matters too, as 

we’ll see next.   

Let’s say that instead, the doctor orders a much more reliable (and much more 

expensive) test the second time.  It detects both true negatives and true positives 

99% of the time.  Table 12.5 covers this situation.  

Table 12.5 Second Super-Test Following the First Positive Test Result 
                                       Second 

                                 Super Test 

                                       Result 

Unknown Truth 

(Given first positive test) 

Test Negative Test Positive  

Don’t have Krobze 

1-0.074766=0.925234 

True Negative 

0.925234*0.99=0.915982 

False Positive 

0.925234*0.01=0.009252 

Do have Krobze 

0.074766 

False Negative 

0.074766*0.01=0.000748 

True Positive 

0.074766*0.99=0.074018 

Column Probability 

Sums 
0.916729 0.083271 

Say that you test negative the second time with the super-test. The probability that 

you don’t have Krobze given the first positive test result and the second negative 

super-test result is:  

0.915982/0.916729=0.999184; nearly 100%  
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Finally, say that you test positive the second time with the super-test. The probability 

that you do have Krobze given the first positive test and the second positive 

super-test is:  

0.074018/0.083271=0.888888; about 89%  

Bayes’ Formula 

So far, I’ve used a table format to illustrate the application of Bayes’ Formula 

because I have found that people have an easier time following along than when I 

use the official formula.  That said, I would be remiss if I didn’t show you the 

formula. There are several renditions of Bayes’ formula to choose from.  This 

rendition aligns best with the table format we’ve been using.   

P(A) ∗ P(E|A)

P(A) ∗ P(E|A)  +  P(B) ∗ P(E|B)
= P(A|E) 

P(A) is the prior; the prevalence of Krobze in the population (.01) 

P(B) is the probability of not having Krobze in the population (1-.01=.99) 

E is the evidence of a positive test result (corresponding to the positive test column 

in the table) 

| is the symbol for “given that” 

P(E|A) is the probability of testing positive given that you do have Krobze (0.8) 

P(E|B) is the probability of testing positive given that you don't have Krobze (0.1) 

P(A|E) is what you want to know: the probability you have Krobze given that you test positive 

Using again the first Krobze example when you test positive the first time, we get 

. 01 ∗ .8

(.01 ∗ .8)  + (.99 ∗ .1)
= .074766 

This is the same posterior probability that we got earlier using the table format.   

A Note on Priors  

With the above analyses we were extremely fortunate to know that, in general, 1 in 

100 people have Krobze.  That gave us our initial prior probabilities (0.01 and 0.99) 

which we needed to get started.  What if we don’t know these initial prior 

probabilities?  One alternative is to use expert opinion, which is somewhat subjective 

and may be quite incorrect.  Another is to use what are called noninformative priors.  
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For example, if we have no idea what the initial prior probability of Krobze is, we 

could use the noninformative priors of equal probabilities for Don’t Have Krobze (0.5) 

and Have Krobze (0.5).  As you can imagine, we’ll get quite different results using 

priors of 0.5 and 0.5 instead of 0.99 and 0.01.  Determining valid priors is important, 

and it can be tricky.  But luckily, the more data we have to update the prior with, the 

less important the prior becomes.   

Frequentist statistics does not incorporate prior probabilities into the analysis and 

so it doesn’t need to make assumptions about priors.   

A Note on Testing Competing Hypotheses  

Let’s say we are planning to survey Flowing Wells regarding a new public health 

policy and that we have two competing hypotheses.  For a change of pace, we’ll use 

rational numbers (fractions) rather than decimal numbers.  Our two competing 

hypotheses are H1 that the population is 1/3 in favor and H2 that the population is 

2/3 in favor.  For the prior probabilities we’ll assume equal probabilities of 1/2 that 

each of the hypotheses is true.  Next, suppose we have a random sample of 10 

survey respondents and that 4 are in favor (4/10).  Based on this sample data, the 

Bayesian method updates the 1/2 prior probability for H1 to the posterior 

probability of 4/5 and updates the 1/2 prior probability for H2 to the posterior 

probability of 1/5.  Given these results we’d opt for H1 over H2.   

Since Frequentist statistics does not incorporate prior probabilities into its analysis, 

it never derives a probability that a given hypothesis is true (see Chapter 4 Veridical 

vs. Misleading Results).   

A Note on Estimating Population Statistic Values 

More sophisticated Bayesian analysis involves entire distributions.  For example, let’s 

say we are trying to estimate a population proportion for an agree-or-disagree 

opinion survey question.  Figure 12.1 shows 1) the prior distribution for the 

population proportion estimate proposed by an expert, 2) the proportion sampling 

distribution based on random sample data from the population, and 3) the resulting 

posterior distribution for the population proportion estimate derived via Bayesian 

updating of #1 using #2.   
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From the posterior, we can see that the most likely estimate for the population 

proportion is .375.  We can also determine the interval containing 95% of the 

posterior’s area: from .25 to .50.  This is called a Bayesian credible interval, which is 

subtly different from a Frequentist confidence interval.  Credible Interval: Given our 

priors and our sample data, there is a 95% chance that the population proportion 

falls within the 95% credible interval; valid priors and distributional assumptions 

need to be incorporated into the analysis.  Confidence Interval: 95% of the 95% 

confidence intervals derived from sample data will contain the population 

proportion; no priors are needed and the statistical methods themselves embody 

distributional assumptions (such as assuming that the z-distribution is an 

appropriate approximation to the binomial distribution).   

You can see that Bayesian analysis leads to stronger declarations than Frequentist 

analysis does, but that the legitimacy of those declarations rests, in part, on the 

validity of the prior probabilities.  Keep in mind, though, that the prior probabilities 

become less important as more data is used to update the probabilities.  Given 

truly realistic priors or noninformative priors plus adequate quantities of data, 

Bayesian analysis becomes—for those so inclined—an attractive alternative to 

Frequentist statistics.  Bayesian analysis is quite flexible, and it can get 

extraordinarily complicated.  Here, we’ve taken a peek at the tip of the Bayesian 

iceberg.   



 - 78 - 

 

Addendum. The False Discovery Rate 

Terminology and Notation (reproduced from the end of Chapter 5):  Mathematically, 

the probability of Type I Error is denoted by the lower-case Greek letter alpha, α.  

The percentage level for confidence—which we’ve been referring to a lot—is (1- 

α)*100%.  So, an alpha-level of 0.05 is equivalent to a confidence level of 95%.  The 

probability of Type II Error is denoted by the lower-case Greek letter beta, β.  Power 

is 1-β (not made into a percentage).  So, for example, a beta level of 0.20 is 

equivalent to a power level of 0.80.   

Imagine that there are 1000 hypotheses to be tested and that 100 of the Null 

Hypotheses are actually false and 900 of the Null Hypotheses are actually true.  

Let’s suppose that these are 1000 separate studies to determine whether certain 

foods and dietary supplements affect peoples’ health, and so each Null Hypothesis 

states that a certain food or dietary supplement has no effect on health.  Assume 

an alpha-level of 0.05 is used (95% confidence).  Also assume that the probability 

for Type II Error, beta, is 0.20 and so statistical power is 0.80.  These are fairly 

realistic levels, although 0.80 power is probably higher (better) than many studies 

would have.   

With a 0.05 alpha probability for Type I Error, expect 900*0.05=45 Type I Errors, and 

expect 900*0.95=855 correct non-rejections of the Null Hypothesis.   

With a 0.20 beta probability for Type II Error, expect 100*0.20=20 Type II Errors, and 

expect 100*0.80=80 correct rejections of the Null Hypothesis.    

Therefore, we expect a total of 45+80=125 rejected Null Hypotheses.   

What percentage of the rejected Null Hypotheses do we expect to be erroneously 

rejected?  This is called the false discovery rate.  Per the above, we expect 45 to be 

erroneously rejected, and we expect 80 to be correctly rejected.  Therefore, we 

expect 45/(45+80)=36% of the rejected Null Hypotheses to be erroneously rejected.  

Given that rejected Null Hypotheses tend to get all the publicity, you should find 

this eye-opening. (Headlines for rejected null hypotheses might be statements like 

"This supplement significantly improves health!" and "This food is a significant 

health risk!")   
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We can also lay this out in a Table (A.1) of probabilities.  Using the rightmost column 

to calculate the proportion of studies rejecting the Null Hypothesis that are Type I 

Errors gives us 0.045/0.125=0.360=36%.   

Table A.1 Correct and Incorrect Research Study Findings 

 Studies Not Rejecting Null Studies Rejecting Null 

Null Hypothesis true 

90% of the time 

0.9*0.95 = 0.855  

Correct Findings 

0.9*0.05 = 0.045  

Type I Error 

Null Hypothesis false 

10% of the time 

0.1*0.2 = 0.020  

Type II Error 

0.1*0.8 = 0.080  

Correct Findings 

Column Sums 
0.875 

87.5% of studies won’t reject Null 

0.125 

12.5% of studies will reject Null 

The 36% can be improved upon, as you know, by increasing the sample sizes in the 

1000 studies.  This will increase power.  If we increase power to 0.9, for example, 

we’ll increase the correct rejections from 80 to 90.  Ideally, if we can increase 

sample size sufficiently, we can set our alpha down to 0.01, thus decreasing the 45 

to 9, while also maintaining or even increasing power.  With alpha of 0.01, beta of 

0.10 and thus power of 0.90, we would reduce the false discovery rate to 

9/(9+90)=9%.  This is much better, but it’s also much more expensive to gather the 

large amounts of additional data that are required.   

Lastly, keep in mind that the 36% false discovery rate we came up with is contingent 

on our assumption that only 100 of the 1000 Null Hypotheses are actually false.  If 

researchers have good theories to guide their choice of hypotheses, then the 

proportion of Null Hypotheses that are truly false should be higher and the false 

discovery rate should be lower.   
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Next Book in the Series 

The second book in the series is expected sometime in late 2022 or early 2023 and 

is tentatively titled Statistical Analysis Illustrated: Variance Everywhere.  It will expand 

on Chapter 11 of this book and will show the key role that variance plays in 

statistical analysis methods of all sorts. Below is the tentative Table of Contents.   

Introduction  

1 Analyzing Multinomials 

Testing Multinomials for Goodness of Fit 1 

Degrees of Freedom 

Testing Multinomials for Goodness of Fit 2 

Testing Multinomials for Homogeneity 

Testing Multinomials for Independence 

2 Analyzing Sample Variances 

Scaled Variables 

Analyzing A Single Sample Variance 

Comparing Two Sample Variances 

3 Analyzing Sample Means 

Preparing to Analyze Sample Means 

  Sampling Distributions of Sample Means 

  Determining vs Estimating Standard Error 

  The t-Distribution 

Analyzing A Sample Mean 

Analyzing the Difference Between Two Groups Using Sample Means 

Analyzing Multiple Sample Means by Analysis of Variance (ANOVA) 

4 Covariance and Correlation 

Covariance 

Correlation 

Analyzing A Correlation 

  Special Considerations: Confidence Intervals for Sample Correlations 

Analyzing the Difference Between Two Sample Correlations 

  Special Considerations: Sample Correlation Differences 

Correlation Involving Binomials 

5 Linear Regression 

Simple Regression Involving Scaled Variables 

Simple Regression Involving Binomial Variables 

Multiple Regression 

Proportion of Variance Explained 

6 Variance’s (Over)Sensitivity 
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7 Tying Together the “Big Four” Distributions 

Appendix Generating the “Big Four” Distributions Via Simulation with Excel 

 

iSome people find the word “confidence” in “confidence interval” to be somewhat 

counterintuitive, but that’s been the term since the 1930’s. Some people think they 

should be called something like "uncertainty intervals."  Referring to Figure 1.2, if 

you get a sample percentage in the 40%-to-60% boundary lines, then you're too 

uncertain to be able to say that the population percentage is anything other than 

50%.  Another suggestion is to call them “expectation intervals” since they concern 

the sample statistic values we expect to get with random sampling. In fairness, the 

term “confidence interval” does enjoy more intuitive appeal in some other contexts, 

as we’ll see later on.    

ii Consider two extreme sample size examples on opposite sides of the continuum: 

surveying only two people and surveying everyone.  1) When surveying two random 

people in a 50%-in-favor population, ¼ of the time we’ll get the first and second 

who are both in favor, ¼ of the time we’ll get the first person in favor and the 

second not in favor, ¼ of the time we’ll get the first person not in favor and the 

second in favor, and ¼ of the time we’ll get both people not in favor.  So, ¼ of the 

time we’ll get the extremely far-off sample percentage value of 100% and ¼ of the 

time we’ll get the extremely far-off sample percentage value of 0%.  2) If we 

increased our sample size to the cover the entire population of 80,000, all our 

“sample” percentage values will be exactly equal to the population percentage 

value.  None are off even a small amount.  In general, the larger our sample size the 

closer we expect our sample percentages to be to the population percentage.  This 

is the law of large numbers.   

iii Officially, the Greek lowercase letter pi, π, is used.  Sometimes the Roman 

uppercase letter P is used.  I’ll use the Roman lowercase letter p.   

iv The mathematical proof of this is the de Moivre–Laplace Theorem, which is a 

special case of The Central Limit Theorem.   

v Likewise, in testing a new drug against an old drug (or a placebo), the working-

hypothesis is that the new drug is not better than the old drug.  The difference 

between the efficacy of the new drug and the old drug must be outside the 95% 

confidence interval for the new drug to be deemed more efficacious.  Being more 
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conservative in this case means that we’ll be less likely to approve an ineffective 

drug (Type I Error) but more likely to not approve an effective drug (Type II Error).  It 

is in the company’s interest to have large samples in order to decrease the Type II 

Error rate.   

vi So, if the results are close to the confidence interval borderline, a researcher 

would justifiably wonder about the possibility of Type II Error and whether the 

research should be conducted again with a larger sample size.   

vii There is a class of statistics called effect size statistics that have been developed to 

help address the issue of practical significance.  (The term “effect size” reflects the 

terminology used in experiments where researchers analyze the size of the effects 

of various treatments.)  For a binomial proportion the effect size statistic, denoted 

g, is simply the sample proportion minus the hypothesized proportion—in other 

words g is simply how far apart the sample and hypothesized proportion values 

are.  For example, if our actual sample proportion is 0.65 and our hypothesized 

value is 0.50, then g equals 0.15.  Rules-of-thumb Tables—such as the below, 

intended primarily for the behavioral sciences—are then used to categorize and 

label the practical significance of a statistical result.  Given this Table the practical 

significance of our g of 0.15 is “medium”.   

Effect Size, g Strength of Effect 

Near 0.05 small 

Near 0.15 medium 

Near or above 0.25 large 

Keep in mind that effect sizes don’t take real-world context into account.  So, even 

though g of 0.15 is categorized as “medium” by the generic Rules-of-thumb, in a 

particular situation this survey result may well have “large” (or “small”) practical 

implications.   

viii Probability is similar to relative frequency, although relative frequency is a 

discrete scale not a continuous scale.  For example, if something happens 500 out 

of a thousand times, the relative frequency is 500/1000=0.5.  That corresponds to a 

probability of 0.5.  But relative frequency is a discrete scale (1/1000, 2/1000, …, 

1000/1000) and probability is a continuous scale from 0 to 1.   
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ix Technical research reports often refer to what are called alpha-levels and p-values.  

Together they comprise an alternate way of specifying a confidence interval and 

whether a statistical result is outside the confidence interval.  Alpha-levels and p-

values both specify probabilities—areas under specific regions of a probability 

distribution curve such as the z-distribution.   

Alpha-levels specify the area under the curve outside the confidence interval.  So, 

using a 0.05 alpha-level is equivalent to using a 95% confidence interval, and using 

a 0.01 alpha-level is equivalent to using a 99% confidence interval.  Since the 

probabilities in these cases involve the areas outside the confidence interval on 

both sides, they are called two-tail probabilities (each side of the probability 

distribution is thought of as a tail).   

P-values also refer to areas under a probability distribution curve and they indicate 

how far out a statistical result is on the tail of a probability distribution.  Figure 8.5 

illustrates.  When a statistical result has a two-tail p-value less than the alpha-level 

of .05, that means it lies outside the 95% interval, and the result is said to be 

statistically significant at the 0.05 alpha-level (or, equivalently, statistically significant 

at the 95% confidence level).   

 

The farther out a statistical result is on the tail, the smaller the p-value area 

becomes: When a statistical result has a p-value less than the alpha-level of .01, that 

means it lies outside the 99% interval, and the result is said to be statistically 

significant at the 0.01 alpha-level (or, equivalently, statistically significant at the 99% 

confidence level).   
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The use of p-values has come under substantial criticism because they can be 

misleading and are frequently misinterpreted.  The use of confidence intervals is 

often suggested as a better alternative.  That’s why we are using confidence 

intervals and not p-values.  Nonetheless, I thought I should at least describe what 

they are since they are still commonly used in reporting research results.  Simply 

remember that p-value<0.05 means a statistical result is outside the 95% confidence 

interval, and p-value<0.01 means a statistical result is outside the 99% confidence 

interval.    

x With binomials, the various possible combinations of outcomes can be 

enumerated mathematically.  Let’s use coin flipping for an example, and we’ll flip 

the coin 10 times.  Since each coin flip has two possible outcomes and we are 

considering ten separate outcomes together, there are a total of 210=1024 unique 

possible patterns (called permutations) of heads and tails with 10 flips of a coin.  Of 

these, there is only one with 0 heads and only one with 10 heads.  These are the 

least likely outcomes.   

TTTTTTTTTT   HHHHHHHHHH 

So, no heads will occur 1/1024 of the time, as will all heads.   

There are ten combinations with 1 head, and ten combinations with 9 heads: 

HTTTTTTTTT   THHHHHHHHH 

THTTTTTTTT   HTHHHHHHHH 

TTHTTTTTTT   HHTHHHHHHH 

TTTHTTTTTT   HHHTHHHHHH 

TTTTHTTTTT   HHHHTHHHHH 

TTTTTHTTTT   HHHHHTHHHH 

TTTTTTHTTT   HHHHHHTHHH 

TTTTTTTHTT   HHHHHHHTHH 

TTTTTTTTHT  HHHHHHHHTH 

TTTTTTTTTH   HHHHHHHHHT 

So, one head will occur 10/1024 of the time, as will nine heads.  
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The formula for the number of combinations is n!/[h!*(n-h)!] where n is the number 

of flips, h is the number of heads you’re interested in, and ! is the factorial 

operation (for example: 5!=5*4*3*2*1=120).   

Going further using the formula, there are 45 combinations with 2 or 8 heads, so 

they will each occur 45/1024 of the time.  There are 120 combinations with 3 or 7 

heads, so they will each occur 120/1024 of the time.  There are 210 combinations 

with 4 or 6 heads, so each will occur 210/1024 of the time.  Finally, there are 252 

combinations with 5 heads, which is the most likely outcome at 252/1024 and 

therefore the most frequently expected outcome.  With this mathematical 

approach we can calculate exact probabilities for all the possible outcomes, hence 

the term exact methods.  With large sample sizes this method becomes 

computationally intensive.   

Also, using simulation to create sampling distributions is always a viable alternative.  

Figure 9.1 (reproduced below), for example, was generated using simulation and 

can be used to analyze results with sample size of two.  You can tell that one-

quarter of the expected results are 0, one-half are 0.5 and one-quarter are 1.  We 

can see that there is no way to make a 95% confidence interval.  Figure 9.2 

(reproduced below) was also generated using simulation and shows that the 

sampling distribution is asymmetric (not normal).  Nonetheless, we can make an 

approximate (and asymmetrical) 95% confidence interval from 0.8 to 0.967.   
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xi The reason I say that we need to consult some political scientists is because 

specific domain expertise is often needed to assess practical significance.  

Nonetheless, as noted in a Chapter 7 endnote, general methods for quantifying 

practical significance have been developed and go by the name of effect sizes.  (The 

term “effect size” reflects the terminology used in experiments where researchers 

analyze the size of the effects of various treatments.)  Below I’ll calculate and 

interpret the effect size, denoted h, for the sample proportion difference between 

0.52 and 0.44.   

First, each of the two sample proportions is rescaled using the below formula.  (The 

rescaling adjusts the effect sizes as sample proportions approach 0 or 1.)   

2 ∗ 𝑎𝑟𝑐𝑠𝑖𝑛𝑒(√𝑝) 

For 0.52, this gives 1.61, and for 0.44 this gives 1.45.  Then we take the difference, 

which gives 0.52-0.44=0.16.  Finally, the below Table shows Rules-of-thumb 

(intended primarily for the behavioral sciences) to categorize and label the strength 

of the effect size, h.  Our h of 0.16 is categorized as a “small” effect size.    

Effect Size, h Strength of Effect 

Near 0.2 small 

Near 0.5 medium 

Near or above 0.8 large 

Keep in mind that effect sizes don’t take real-world context into account.  So, even 

though the quantified effect size of 0.52 versus 0.44 is categorized as “small” using 

the generic Rules-of-thumb, a political scientist might well tell us that this 



 - 88 - 

 

 

statistically significant difference in this particular context actually represents a 

meaningful difference of opinion with “large” political implications.   

xii We’ve looked at many analyses involving binomial data and statistics, but none 

with rank data and statistics.  As an example, students’ class rank is rank data, with 

the valedictorian = 1, the salutatorian = 2, etc.  We can also assign rank numbers 

ourselves and use them to perform statistical analysis.  For example, let’s say we 

have a sample of 100 people, 50 males and 50 females, and their heights.  We can 

sort the 100 by height and assign rank numbers 1 to 100 based on the sorted 

order.  After that, we can separately add up the rank numbers for the males and for 

the females.  Based on those rank sums we can see whether males or females rank 

higher with respect to height.  In fact, we can use a statistical method called the 

Mann-Whitney test that uses the z-distribution to assess whether rank sums are 

statistically significant.   

xiii For example, one common type of “average” is the arithmetic mean or mean for 

short.  Below is the formula for the sample mean.  Its symbol is an x with a bar on 

top.  I imagine everyone has calculated a mean before:  sum (Σ) all the numbers (x) 

and divide by the number of numbers (n).   

�̅� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

If we have, for example, a sample of 100 people and their heights, we can calculate 

the sample mean for heights.  The additional uncertainty comes in when we try to 

calculate the Standard Error of the sample mean.  There is no way to calculate the 

true Standard Error unless we know the true value of the population variance, which 

we almost never do.  So, we’re stuck using the sample variance (see next endnote) 

as an estimate for the population variance.  This makes our calculated Standard 

Error an estimate too.  This is the source of the additional uncertainty.  Notice that 

the horizontal axis for the t-distribution of Figure 11.2 is labelled Standard Error 

estimate.   

The amount of additional uncertainty is a function of sample size.  Since we expect 

larger sample sizes to improve our sample variance estimates (law of large 

numbers), they also improve our Standard Error estimates, thereby lessening the 

additional uncertainty.  Thus, the selection of which specific t-distribution to use is a 

function of sample size.  (Recall that with binomial variables, which only have two 
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possible values, we can calculate the true variance via p*(1-p) and use it to calculate 

the true Standard Error.  Notice that the horizontal axis for the z-distribution in 

Figure 11.1 is labelled Standard Error, without the estimate qualifier.  This is also 

true when calculating the variance and standard error for rank sums (see prior 

endnote).)   

xiv For example, below is the formula for the sample variance.  Its symbol is s2.  It 

sums (Σ) squared differences as a measure of how spread out the data is around 

the sample mean (see previous endnote).  In other words, it’s a measure of how 

much the data values vary from the mean.  Because of the squaring, variances are 

always greater than or equal to zero.   

𝑠2 =
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
 where x̅ is the sample mean 

If we have, for example, a sample of 100 people and their heights, we can calculate 

the sample mean for heights and then calculate the sample variance for heights.   

For binomials, which only have two possible values, the variance formula can be 

simplified to 

𝑝 ∗ (1 − 𝑝) 

which is also always positive.   

One widely used application of Chi-squared distributions is to analyze multinomial 

variables.  Whereas a binomial variable has only two possible values, a multinomial 

variable has two or more values (e.g., a political affiliation variable may have the 

three possible values of Democrat, Republican, and Independent).  The formula for 

the Chi-squared statistic shown below is a variance formula because it calculates 

the squared differences between the counts we observed in our sample and the 

counts we expect under our Null Hypothesis.  In other words, it’s a measure of how 

much the observed counts vary from the hypothesized counts.  And since it is a 

variance formula, we use the Chi-squared distribution to assess it.  The farther 

apart the observed and expected values are, the larger the Chi-squared statistic 

value becomes, and the farther out in the tail of the distribution it is located.   

∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
  for all the categories =the χ2 (Chi-squared) statistic 
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xv Let’s say we want to know whether there is a difference in the variance of 

opinions between Flowing Wells and Artesian Wells.  The Null Hypothesis is that 

there is no difference.  We are going to sample 100 from each community, calculate 

the sample variances of each, and then divide one sample variance by the other to 

get the F value.   

𝐹 =
𝑠1

2

𝑠2
2 

The F-distribution used for sample sizes of 100 and 100 is shown below in Figure 

11.5.  The 95% confidence for the F value is from 0.67 to 1.5.  If our F value is 

outside this interval, we will reject the Null Hypothesis. 

 

One widely used application of F-distributions—one that might initially seem 

counterintuitive—is to compare multiple sample means simultaneously via a 

method called Analysis of Variance (ANOVA).  Let’s explore how it works—hang on 

to your hats.  Imagine a survey that asks for respondents’ political affiliation 

(Democrat, Republican, or Independent) as well as their opinion on a 1-to-7 scale.  

We want to know if the sample mean opinion for each of the three political 

affiliations indicate that there are differences of opinion across political affiliations 

in the population.  The Null Hypothesis is that all three groups have the same 

population mean.   

First, we administer the survey to Flowing Wells residents and calculate the sample 

mean and sample variance for each of the three political affiliations. Let’s say the 

sample means are 3, 4, and 5, and the sample variances are 0.9, 1.0, and 1.1.  
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ANOVA first calculates an estimate for the overall population variance by averaging 

the sample variances 0.9, 1.0, and 1.1.  That gives 1.0.   

Next, recall that the larger a population variance is the wider the sampling 

distribution becomes (Chapter 2 Sampling Distribution Dynamics).  So, ANOVA 

determines how large the population variance would need to be for all the sample 

means—3, 4, and 5—to be contained within one and the same sampling 

distribution.  Let’s say that works out to be 30.0.   

Now we have the required population variance of 30 and the estimate for the 

actual population variance of 1.  We look up the F value of 30/1 on the F-

distribution and find that it is way, way out in the tail.  That suggests that these 

sample means didn’t come from the same population.  So, we reject the Null 

Hypothesis that Democrats, Republicans, and Independents in Flowing Wells have 

the same average opinion.   

xvi  Examples: binomials (z), rank sums (z), means (t or F), correlations(t), variances 

(χ2), multinomials (χ2), regression coefficients (t), regression models (F).   
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