
ar
X

iv
:1

60
1.

02
71

9v
1 

 [
m

at
h.

H
O

] 
 1

2 
Ja

n 
20

16

Another Proof of Darboux’s Theorem

Dr. Mukta Bhandari

Abstract. We know that a continuous function on a closed interval satis-
fies the Intermediate Value Property. Likewise, the derivative function of a
differentiable function on a closed interval satisfies the IVP property which
is known as the Darboux’s theorem in any real analysis course. Most of the
proofs found in the literature use the Extreme Value Property of a continuous
function. In this paper, I am going to present a simple and elegant proof of
the Darboux’s theorem using the Intermediate Value Theorem and the Rolles
theorem

1. Some Preliminary Background and Known Proofs

In this section we state the Darboux’s theorem and give the known proofs from
various literatures.

A function f : [a, b] → R is said to satify the intermediate value property on [a, b]
if for every λ between f(a) and f(b), there exists c ∈ (a, b) such that f(c) = λ. We
know, from intermediate value theorem, that a function f : [a, b] → R continuous
on [a, b] satisfies the intermediate value property on [a, b]. That is

continuous function ⇒ Intermediate Value Property.

However, the converse of the intermediate value theorem is not necessarily true.
The function f : R → R defined by

f(t) =







sin

(

1

t

)

for t 6= 0,

0 for t = 0,

which is discontinuous at t = 0, provides a counter example. Indeed, the French
mathematician Darboux, proves in 1875 that derivative function of a differentiable
function satisfies the intermediate value property [5]. Darboux also provides an
example of a differentiable function with discontinuous derivative.
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The statement of the Darboux’s theorem follows here.

Theorem 1.1 (Darboux’s Theorem). If f is differentiable on [a, b] and if λ is

a number between f ′(a) and f ′(b), then there is at least one point c ∈ (a, b) such

that f ′(c) = λ.

This indicates clearly that the converse of the intermediate value theorem is
not necessarily true because derivative function of a differentiable function is not
necessarily continuous. For example

f(t) =







t2 sin

(

1

t

)

for t 6= 0,

0 for t = 0

is continuous and has discontinuous derivative which satisfies the intermediate value
property by the Darboux’s theorem 1.1. Thus Draboux’s provides a huge class of
functions satisfying the intermediate value property, namely the derivative functions
of differentiable functions. The main purpose of this short note is to provide an
alternate proof of this theorem different from the standard proofs found in many
textbooks on real analysis.

The standard proofs found in various literatures goes as follows:

Proof. Suppose that f ′(a) < λ < f ′(b). Let F : [a, b] → R be defined by
F (x) = f(x) − λx so that F ′(x) = f ′(x) − λ. Then F is differentiable on [a, b]
because so is the function f by hypothesis. We find F ′(a) = f ′(a) − λ < 0 and
F ′(b) = f ′(b)−λ > 0. Note that F ′(a) < 0 means F (t1) < F (a) for some t1 ∈ (a, b).
Also, for F ′(b) > 0, we can find t2 ∈ (a, b) such that F (t2) < F (b). Thus neither
a nor b can be a point where F attains absolute minimum. Since F is continuous
on [a, b], it must attain its relative minimum at some point c ∈ (a, b) by Extreme
value theorem for a continuous function. This means that F ′(c) = 0 by Fermat’s
theorem and therefore f ′(c) = λ as desired. The proof follows by similar arguments
if f ′(b) < λ < f ′(a). �

The above proof can be found in various textbooks of undergraduate level real
analysis course including W. Rudin [11], M. Spivak [13], Bartle and Sherbert [2],
K. Ross [10], W. R. Wade [14], J. M. Howe [7], T. M. Apostol [1], R. Boas [3],
G. Darboux [5], S. Krantz [8]. It is left as an exercise with some hints in some
of the textbooks while others give incomplete proofs leaving readers to fill in the
gaps. The main trouble is in the argument that the function F can attain minimum
neither at x = a nor at x = b. Some authors provide the ǫ − δ proof for this part
of the argument. Lars Oslen, in his paper [9], makes the following comment:

“Most students typically either think that this is obvious (and that the lecture
is being over pedantic by insisting on a proof), or they see the need for a proof but
find the ǫ− δ-gymnastics in the proof less than convincing.”

Lars Oslen then provides an new proof of the Darboux’s theorem based only
on the Mean Value theorem for a differentiable function and intermediate value
theorem for a continuous function. The author, Lars Oslen, claims that his proof
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is more convincing than the standard proofs found in many textbooks. I am going
to present his proof as it is from his paper [9].

Proof of Darboux’s Theorem by Lars Oslen [9]:

We may clearly assume that y lies stricly between f ′(a) and f ′(b). Define
continuous functions fa, fb : [a, b] → R by

fa(t) =







f ′(a) for t = a,
f(a)− f(t)

a− t
for t 6= a,

and

fb(t) =







f ′(b) for t = b,
f(t)− f(b)

t− b
for t 6= b.

It follows that fa(a) = f ′(a), fa(b) = fb(a), and fb(b) = f ′(b). Hence, y lies
between fa(a) and fa(b), or y lies between fb(a) and fb(b).

If y lies between fa(a) and fa(b), then (by continuity of fa) there exists s in
(a, b] with

y = fa(s) =
f(s)− f(a)

s− a
.

The mean value theorem ensures that there exists x in [a, s] such that

y =
f(s)− f(a)

s− a
= f ′(x).

If y lies between fb(a) and fb(b), then an analogous argument (exploiting the
continuity of fb) shows that there exists s in [a, b) such that

y =
f(b)− f(s)

b− s
= f ′(x).

This completes the proof.
This proof is more convincing as the author has claimed in his paper in the sense

that it avoids the ǫ−δ-arguments. Author has used the Carathéodory’s theorem for
the existence of the auxiliary functions fa and fb. See T. M. Apostol [1], Bartle and
Sherbert [2] for example. Use of this theorem for the existence of the functions fa
and fb may still be rather too much for an undergraduate students beginning real
analysis course. The proof I am going to give in the next section uses monotonicity
property of a differentiable function, and the two standard and familiar theorems
intermediate value theorem and the Rolle’s theorem from the first year calculus
course. This also uses no ǫ− δ-arguments.
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2. Another Proof of Darboux’s Theorem

Proof. We assume that f ′(a) < λ < f ′(b), and consider a function F : [a, b] →
R defined by F (x) = f(x) − λx. Then F ′(x) = f ′(x) − λ, and find that F ′(a) =
f ′(a) − λ < 0 and F ′(b) = f ′(b) − λ > 0. This means that the function F is not
monotonic on [a, b] in the sense that there exist x, y, z ∈ [a, b] such that x < y < z

satisfying exactly one and only one of the following conditions (a) or (b).

(a) F (x) < F (y) and F (y) > F (z) We prove the theorem for this case.
(b) F (x) > F (y) and F (y) < F (z). Proof in this case follows by a similar argument.

Suppose (a) holds. Then we encounter three cases:

(i) F (x) < F (z)
(ii) F (z) < F (x)
(iii) F (z) = F (x).

Case(i): Assume that F (x) < F (z). Then F (x) < F (z) < F (y). F is differentiable
on [a, b] because so is f by hypothesis. That is F is continuous as well on [a, b].
So the Intermediate Value theorem applies to F on [x, y] ⊆ [a, b] and we obtain
d ∈ (x, y) ⊆ (a, b) such that F (d) = F (z). Note that

a 6 x < d < y < z 6 b.

Now we can apply the Rolles theorem to F on the closed interval [d, z] and
obtain c ∈ (d, z) ⊆ (x, z) ⊆ (a, b) such that F ′(c) = 0 which leads to f ′(c) = λ as
desired.

Case (ii): Assume that F (z) < F (x). Then F (z) < F (x) < F (y). The theorem
then follows by arguments similar to that of case (i).

Case (iii): Assume that F (z) = F (x). Then we can use the Rolle’s theorem for F
directly on [x, z] and obtain a c ∈ (x, z) ⊆ (a, b) such that F ′(c) = 0 leading to
f ′(c) = λ as desired.

We arrive at the same conclusion if (b) holds by similar argument. This com-
pletes the proof of the theorem.

�
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