
THE MODELS OF WHITTAKER AND KIRILLOV

GURBIR DHILLON

Abstract. We motivate why one would look for Whittaker and Kirillov models and
state the basic theorem on their existence and uniqueness for GLn.

1. Introduction

In the theory of representations, it can be conceptually helpful to treat representations
as abstract vector spaces with a desired form of symmetry. On the other hand, it tends
to be the case that to really get anywhere, you need a more concrete model. A beautiful
and staggeringly successful strategy is to realize a family of representations as functions
(or global sections of line bundles, D-modules, etc.) on a fixed space. The geometry of the
space then teaches us many properties of the realized representations.

In the situation at hand, we are considering representations of GLn(k), where k is a
nonarchimedean local field, e.g. Fq((t)). The relevant concrete realizations will be the
Whittaker and Kirillov models. To understand what is going on, we will first describe an
analogous and simpler theory for GLn(C), and then in parallel illustrate how subtleties in
adapting this for GLn(Fq) and GLn(k) lead naturally to the Whittaker model.

1.1. Intended audience. These notes are geared towards readers who are comfortable
with the representation theory of GLn(C), but have not spent much time around p-adic
groups or finite groups of Lie type. We will focus mostly on heuristics and small examples
which motivate the statements of theorems, and only prove things which we did not learn
from a reference. We hope accordingly that the novice reader can enjoy this as a storybook,
and leave with more context to approach the standard references.

2. GLn(C) and the universal principal series

In this section, we will replace GLn(C) with any connected, reductive group G over
the complex numbers. The simple representations of G are classified by the ‘theorem of
the highest weight’. Recall that this means the following: if we fix a Borus T ⊂ B ⊂ G,
then any simple representation L has a unique B stable line, and the eigenvalue of T on it
determines L up to isomorphism. Let us tautologically rephrase this in a way which will
motivate Whittaker’s model.

To do so, we will use U , the unipotent radical of B. Recall that we have a functor ResUG
which takes a G module and remembers only the action of U . This admits a right adjoint
IndGU . Finally, let me remind that in any finite length abelian category, such as U modules,
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one has the functor Cosoc, which takes an object to its maximal semisimple quotient, the
cosocle.

Theorem 2.1. Let L be a simple representation of G(C). Consider the associated U
modules:

Q = Cosoc ◦ResUG L.

Then we have:

(i) Q is one dimensional, and there is a natural action of T on Q, which identifies Q
with the lowest weight space of L.

(ii) There is a unique up to scaling nonzero map

L→ IndGU C0,

where C0 is the trivial representation of U .
(iii) Every simple G module shows up in IndGU C0 with multiplicity one.

Proof. We remind that, as with any cosocle, there is a canonical isomorphism

Q '
⊕
V

HomU (ResUG L, V )∨ ⊗ V,

where V runs over the isomorphism classes of simple modules of U . Since U is unipotent,
the only simple module is C0. Accordingly, Q is simply the coinvariants of ResUG L, i.e.

Q ' L/〈ul − l〉, u ∈ U, l ∈ L.
Equivalently, writing u for the Lie algebra of U , we have

Q ' L/uL.
Since U is normalized by T , uL is preserved by the action of T . Given a nonzero vector of
Q, take a nonzero weight component of it q. By the representation theory of sl2, q must
be lowest weight for each sl2 triple associated to a simple root of G, i.e. a lowest weight
vector, which proves (i).

Assertion (ii) now follows from (i) by adjunction. Also (iii) follows from (ii), using the
complete reducibility of G modules. �

We have therefore seen the remarkable representation IndGU C0, sometimes called the
universal principal series, stores every simple representation of G exactly once. Who is
this remarkable creature? Let us recall that for any representation V of U , we have the
explicit model of the induction:

IndGU V = {f : G→ V : f(ug) = h · f(h), u ∈ U, g ∈ G}. (2.2)

Here, by f : G→ V we mean regular maps, i.e. V ∨ → Fun(G), where Fun(G) denotes the
algebra of polynomial functions of G. In the case of V = C0, the formula (2.2) is simply
Fun(U\G). I.e., the base affine space G/U knows the entire representation theory of G!

Let us conclude this section with two comments. First, G/U has a right action of T ,
with associated quotient G/B. Functions on G/U become sections of line bundles on G/B
(the Borel-Weil theorem). As alluded to in the introduction, the geometry of G/B knows
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essentially everything about the category of G representations. For example, for a simple
module L, the decomposition of ResTG L into eigenlines is given by the Weyl character
formula. This formula can be fruitfully thought of as a ‘linearization’ of the Schubert
stratification of G/B.

Second, one can also deduce the remarkable isotypic decomposition of Fun(G/U), and
hence the rest of Theorem 2.1 from the Peter–Weyl theorem. This says that as a G × G
module, we have

Fun(G) '
⊕
L

L� L∨,

where L ranges over the isomorphism classes of simple modules of G. It follows that

Fun(G/U) '
⊕
L

L� (L∨)U ,

where the upper U denotes the functor of invariants. By the highest weight theory, this is
always one dimensional for the simple modules L∨, as desired.

3. A universal principal series for G(Fq) or G(k)?

Suppose we considering L, a simple complex representation of G(Fq) or G(k), where k
is a local field. Let us emphasize that e.g. in the case of Fq or Fq((t)), we are crossing
characteristics when talking about L. I.e., these are not at all algebraic representations.
So, for G(Fq) we look at it as an abstract group, and for G(k) we use its p-adic topology.
The canonical example is Ga, and k = Fq((t)). In this case, Ga(k) is the additive group
of Laurent polynomials, topologized so that high powers of t are small. We will work in
the category of smooth representations of G(k), i.e. representations V for which the action
map G × V → V is continuous, where a complex vector space V is given the discrete
topology. Equivalently, we want the stabilizer of any point of V to be open in G(k).

We can still make sense of IndGU C0. In the case of a finite group of Lie type, this will
again be Fun(G(Fq)/U(Fq)), i.e. C valued functions on the discrete coset space. In the
case of a nonarchimedean local field k, this will be Funsm(G(k)/U(k)), i.e. the subspace
of smooth vectors in the space of all C set-theoretic functions G(k)/U(k) → C. To what
extent does this function space continue to enjoy the beautiful properties we saw for G(C)?

It turns out two important things fail. First, not every simple representation shows
up in this universal principal series IndGU C0. Second, those that show up can appear with
multiplicity greater than one. Both of these properties can be seen explicitly in the example
of GL2(Fq). Indeed, let us recall the classification of simple GL2(Fq) modules.1 There are:

(1) q − 1 determinant characters,
(2) q − 1 twists of the Steinberg representation by a character,

(3)
(
q−1
2

)
irreducible principal series representations, and

(4)
(
q
2

)
cuspidal representations.

1This is a very useful example to internalize, if you have not done so already. Some friendly sources are
Fulton and Harris [5, 5.2] and Bump [2, 4.1].
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The definition of cuspidal, in the case of GL2(Fq), amounts to having no maps to the
universal principal series, which accounts for the first issue.2 For the second issue, a direct
calculation gives:

Proposition 3.1. For any character χ of B(Fq), we have Ind
GL2(Fq)
B(Fq)

χ has a two dimen-

sional space of U invariants.

Proof. A U invariant function in the induction is an f : GL2(Fq)→ C satisfying

f(ugb) = f(g)χ(b), u ∈ U, b ∈ B, g ∈ G.
There are two Bruhat cells in P1(Fq), and each can support such a twisted function since
sUs ∩ B = e, where s denotes the nontrivial element of the Weyl group (‘the open cell
Uw◦ → G/B is an embedding’). �

In particular, we see that the determinants and twisted Steinbergs show up in Fun(G/U)
with multiplicity one, but the irreducible principal series show up with multiplicity two.

4. Twisting the universal principal series I: GL2

We have seen that the universal principal series has some drawbacks. I.e., it fails to
see some interesting representations, and sees others too many times. So, the most naive
highest weight theory in this context fails! To fix this, we should go back to what led us
to it for G(C), i.e.

Cosoc ◦ResUG L.

For U(C), the coinvariants were the same as the cosocle. But for U(Fq) or U(k), there are
more simple representations.

Example 4.1. If we take U inside GL2(Fp), then U(Fp) ' Z/pZ, so its simple represen-

tations F̂p ' µp, i.e. the generator acts by some pth root of unity.

For U(Fq) of G or semisimple rank greater than 1, e.g. GL3(Fq), some of its represen-
tations are not characters, and presumably something similar holds for U(k). A priori, we
might need to look at these subtler representations. Before worrying about this, let us see
whether in the simplest example GL2(Fq) looking at a nontrivial character χ of U suffices,
i.e. take ‘twisted highest weight vectors’. So, let us look at the space of twisted functions:

Funχ(G/U) := IndGU Cχ,
and try sticking representations inside this. Which should χ should we pick? We will see in
a second that the action of T on U permutes all its nontrivial characters, hence the choice
will be irrelevant – the interested reader can check this now for Fp.

To understand this gadget Funχ(G/U), let us see what it does to our simplest represen-
tations, namely those arising from induction from the split torus, the types (1)-(3).

2Up to ignoring determinantal characters, the universal principal series is what one induces from a split
torus, and the cuspidals are what one induces from a nonsplit torus. For more details on this remarkable
story, look up Deligne–Lusztig theory. To our knowledge, the version of this story one loop up is still largely
a mystery!
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Lemma 4.2. For any G module V , we have canonical isomorphisms:

HomG(V, IndGU Cχ) ' Jχ(V )∨,

where Jχ(V ) denotes Jacquet’s module of twisted coinvariants:

Jχ(V ) = V/〈uv − χ(u)v〉, u ∈ U, v ∈ V.

Proof. This is an immediate consequence of adjunction. Namely,

HomG(V, IndGU Cχ) ' HomU (ResUG V,Cχ),

so we are picking out the χ isotypic component of Cosoc ◦ResUG V . �

Proposition 4.3. For any character η of B, the space of intertwiners

HomG(IndGB η, IndGU χ)

is one dimensional.

Proof. By complete reducibility of representations of finite groups, Jχ(IndGB η) is explicitly
the space of functions

f : G→ C : f(bgu) = η(b)f(g)χ(u), b ∈ B, u ∈ U.

Again, B\G/U is the Schubert stratification of P1. The open cell still supports an inter-
twiner, but the point orbit does not, since η(U) = 1, unlike χ(U). �

Corollary 4.4. The characters (1) of GL2(Fq) do not show up in Funχ(G/U), and the
twisted Steinbergs (2) and irreducible principal series representations (3) show up with
multiplicity one.

Okay, what about the representations of type (4), i.e. the cuspidals? To figure this out,
we will use a result we will discuss later, namely Funχ(G/U) is multiplicity free. Roughly,
its endomorphism algebra will be the convolution algebra Funχ,χ(U\G/U), and there will
be a Gelfand trick to switch the two Us. In any case, U\G/U consists of 2(q − 1)2 double
cosets, namely (q−1)2 from each Bruhat cell. Of these, a little arithmetic shows only q−1
from the small cell, coming from the central torus, and all (q − 1)2 from the big cell will
support intertwiners. Using the q − 1 to account for the twisted Steinbergs, and writing
(q − 1)2 =

(
q
2

)
+
(
q−1
2

)
, we deduce every cuspidal shows up in Funχ(G/U) with multiplicity

one.
Summarizing, we have shown, modulo some facts to be given later, that for GL2(Fq),

Funχ(G/U) breaks up as the sum of all the representations of types (2)-(4), with each
showing up once. I.e., the twisted coinvariants Jχ of a simple module are always zero or
one dimensional. So, we have recovered for GL2(Fq) a fairly robust theory ‘of the highest
weight’.

With this, we might hope a similar twisted universal principal series Funχ(G/U) for
GLn(k), GLn(Fq), might give a highest weight theory. We will show this is the case, but
we will need to pick a χ, and so we had better understand what the characters of U look
like.
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4.1. Why coinvariants and not invariants? Before moving on, the reader can reason-
ably object that nothing up until now has dictated that we use coinvariants rather than
invariants. Of course, for a finite field, there is no difference. For k a local field, suppose
we have a vector in a representation stable under U . By smoothness, it is stable under U
and an open subgroup U ′ of GL2(k). Since U ′ is open, it must meet the other Bruhat cell
of GL2, and a little fiddling shows v must be invariant under all of SL2(F ). In particular,
if an irreducible representation has U invariants, then it is a determinantal character.3

5. Characters of U(k) and U(Fq)

As before, U denotes the unipotent radical of a Borel in G, a split reductive group. In
this section, we only work things out for U(K),K = Fq or Fq((t)); similar things hold in
the number field setting. In our case, every element of U(K) is torsion, so there is no

difference between characters valued in S1 and C×. Let us write Û(K) for the space of
all characters of U(K). The natural action of T (K) on U(K) by conjugation induces an

action on Û(K). This tells us that if L is a G(K) module, ResUG L will have a T ’s worth of

additional symmetry. This is analogous to the functor Res
T (C)
G(C), where the extra symmetry

comes from Weyl group.
In any case, we would like to understand:

(1) What does Û(K) look like?

(2) What does Û(K)/T (K) look like?

For any Dynkin type, the first question has a simple answer provided one avoids some small
characteristics. It turns out the second question can be rather subtle, so we only answer it
for GLn.

5.1. Classifying the characters. Let us answer question (1). To do so, recall that we
have in good characteristics the root group parametrization of U :

U(K) =
∏
α>0

Uα(K),

where α > 0 denote the positive roots of G, and moreover

[U(K), U(K)] =
∏

α>0 non-simple

Uα(K).

It follows that characters of U(K) are the same as characters of the abelian group

U(K)/[U(K), U(K)] =
∏

α simple

Ga(K).

For example, for GLn, this is the usual business of only looking at matrix entries ei,i+1,
i.e. one above the diagonal. In any case, we have shown:

3There is a slightly subtlety here, since GL2(k) is not the product of the central torus and SL2(k), but
this is nonetheless true.
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Proposition 5.1. There is a canonical isomorphism

Û(K) '
∏

α simple

Ĝa(K).

So, we are reduced to understanding the characters of Fq and Fq((t)). Again, for the
latter, we will only look at the smooth characters. First, as alluded to above, mapping to
S1 or C× are essentially a red herring in our case.

Lemma 5.2. Pick any nontrivial character Fp → C×. This induces isomorphisms:

ι∗ : HomAb(Ga(K),Fp) ' HomAb(Ga(K),C×).

So, we need to classify smooth homomorphisms to Fp. To do so, recall that there is a
trace map tr : Fq → Fp, which sends an element of Fq to the trace of multiplication by it,
viewed as an endomorphism of the Fp vector space Fq.

Proposition 5.3. The natural map

Fq → HomAb(Fq,Fp) : x→ tr(x−),

is an isomorphism.

Proof. Since both sides are size q, this follows from the nondegeneracy of the trace pairing.
�

To understand what Û(K) looks like for K = Fq((t)), let us recall that there is a natural
residue pairing:

Res : Fq((t))⊗ Fq((t))dt→ Fq,
given by ‘integration on the boundary circle of our punctured disk’, i.e. the coefficient of
t−1. After tracing down to Fp, this accounts for everything:

Proposition 5.4. The natural map:

tr ◦Res : Fq((t))dt→ Homsm
Ab (Fq((t)),Fp)

is an isomorphism.

Proof. Given an element of φ of Homsm
Ab (Fq((t)),Fp), let us restrict it to the subgroup

Fqtn ' Fq. By Proposition 5.3, we know this restriction is given by tracing against some
unique an ∈ Fq. Smoothness means that φ annihilates tnFq[[t]] for some n � 0, so φ is
given by tr ◦Res against

φ(t)dt =
∑
n∈Z

ant
−n−1dt;

where by smoothness this is indeed a Laurent series. �

Let us summarize what happened. Up to an exponential, we thought about Fq just as
an (abelian) Lie algebra h over Fp equipped with a nondegenerate invariant bilinear form
κ. When looping, if we write Kx for Fq((t)) and ωx for Fq((t))dt, we used the pairing:

〈X ⊗ f, Y ⊗ α〉 = κ(X,Y ) Res fα, f ∈ Kx, α ∈ ωx.
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Up to taking a d, and replacing Fp with C, this is essentially the cocycle defining Heisenberg
and affine Lie algebras!

5.2. Classifying T (K) orbits. Let αi, i ∈ I be the simple roots of G. It is not hard to say
what t ∈ T (K) does to a character (ψi)i∈I of U . Namely, we replace ψi(u) with ψi(t

αiu).
For example, for SL2, if we had a character:

ψ :

(
1 u

1

)
7→ ψ(u),

then we have (
t
t−1

)
· ψ :

(
1 u

1

)
7→ ψ(t2u).

From the results in the previous section, if ψ is a nontrivial character, then all the other
nontrivial characters can written uniquely as ψ(tu), i.e. for SL2 we run into the issue of not
enough square roots in our field K. There are similar issues for other semisimple groups
G.4 For GL2, by contrast, we can take(

t
1

)
ψ(u) = ψ(tu).

This is the simplification afforded by working with GLn alluded to earlier.
For general n, let T ′(K) ⊂ T (K) be the subgroup whose last diagonal entry is 1. Then,

in appropriate coordinates, we have the action of T ′(K) on Û(K) is on rational points the
usual diagonal action

Gn−1
m × An−1 → An−1.

In particular, there is no different between T ′(K) and T (K) orbits (aside from stabilizers),
and they are indexed by subsets of 1, . . . , n − 1, i.e. how many coordinates of a vector in
Kn−1 are nonzero. We deduce:

Proposition 5.5. For G = GLn, there is a canonical bijection:

Û(K)/T (K) ' { subsets of the simple roots }.

Let us call a point of the open orbit, i.e. all coordinates nonzero, generic. I.e., if we pick
a nontrivial character ψ of Ga(K), the generic characters are the orbit of

1 u1,2 ∗ ∗ ∗
1 u2,3 ∗ ∗

. . .
. . . ∗
1 un−1,n

1

→ ψ(u1,2 + u2,3 + . . . un−1,n).

4There won’t be an issue for some of them, i.e. G2, F4, E8, whose simply connected and adjoint forms
coincide.
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Here are some comments. First, if we are working with G(C), for any connected reductive
group, we have all the roots we like. So, Proposition 5.5 applies to the characters of U(C),
i.e. T (C) orbits are in canonical bijection with parabolics up to conjugacy. Second, a
similar classification, for almost the same reasons, shows up when classifying singular oper
connections on a (punctured) formal disk.

6. Twisted universal principal series II: GLn

In the following statements, we continue for the nonarchimedean case to work in the
category of smooth, admissible representaions.

Let us phrase the results of Section 4.1 in terms of 5.2. Namely, we saw that the naive
universal principal series Fun(G/U) failed to have two properties we enjoyed with G(C)
- containing most of the interesting representations of GL2 and being multiplicity free.

There are two orbits of T (K) on Û(K), namely trivial and nontrivial characters. When we
twisted by a nontrivial character, Funχ(G/U) had the desired properties, trading seeing
the determinantal characters for seeing cuspidals.

ForGLn, we will again take the most nondegenerate orbit, i.e. let us look at Funχ(G/U) =
IndGU Cχ, where χ is generic. The big theorem is:

Theorem 6.1. (Multiplicity one) For χ a generic character, and L a simple G(K) module,
we have:

(1) Hom(L, IndGU Cχ) is at most one dimensional.

(2) If L is cuspidal, then Hom(L, IndGU Cχ) is one dimensional.

Let us tautologically rephrase Theorem 6.1. Namely, for a G module V , we have as in
the case of GL2 the Jacquet module of twisted coinvariants:

Jχ(V ) = V/〈uv − χ(u)v〉, u ∈ U, v ∈ V.
For the same reasons as for GL2, we have natural isomorphisms

Jχ(V )∨ ' HomG(V, IndGU Cχ).

Corollary 6.2. For any simple G(K) module L, the Jacquet module Jχ(L) is at most one
dimensional, and is one dimensional if L is cuspidal.

An element of Jχ(V )∨ is called a Whittaker function, i.e. a functional

f : V → C f(uv) = χ(u)v u ∈ U, v ∈ V.
The image of the associated morphism V → Funχ(G/U) is called the Whittaker model.

As to proofs of Theorem 6.1, I have nothing to say other than the standard proofs.
So, for GLn(Fq) a friendly reference is the notes of Bump [3, § 4-6], and for GLn(k), for
K a local field, I do not know a better reference than the original (legendary!) paper of
Bernstein–Zelevinsky [1, Ch. 3]. For just GL2, one can also see the book of Bump [2, Ch.
4]. In reading them, it may be helpful to start with GLn(Fq). This often contains many
representative ideas from proofs for GLn(k), but has the significant simplification that one
has to deal with functions rather than distributions, e.g. already for the characters of
representations.
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6.1. Whittaker models elsewhere in representation theory. As an aside, let us
mentioned some related interesting phenomena.

6.1.1. G(C). For a connected reductive group G(C), the only simple representation of U(C)
is the trivial module. However, the Lie algebra u(C) has many nonintegrable characters,
which again are classified up to T conjugacy by subsets of the simple roots. There is a
notion of Whittaker function for a g = Lie(G) module, and these were pioneered in the
generic case by Kostant [6]. In geometry, they correspond to certain irregular holonomic
D-modules on the flag variety [7]. As one degenerates the character χ to 0, these relate
(nearby cycles) in an interesting way to the usual Category O in a manner which is not
yet fully understood.

6.1.2. G(C((z))) and beyond. For a loop group over the complex numbers, you should ex-
pect there is a similar notion of Whittaker model to the local field case k discussed here.
Naively, Funχ(G(k)/U(k)) should correspond to twisted D-modules on G((z))/U((z)).
However, making sense of this kind of gadget is famously subtle, see e.g. [8].

To compare with Kostant’s notion, we are using a ‘semi-infinite’ Borel and working one
categorical level up. For the naive Whittaker model with respect to the Iwahori subgroup,
there has been some work done in recent years [4]. It seems reasonable to wish there should
be a similar story for any Coxeter group in the spirit of Soergel’s modules.

7. Kirillov’s model: GL2

Finally, we should mention another model for representations for GLn, which to my
knowledge does not have a reasonable analogue for groups outside type A. Let us start
with GL2(Fq).

7.1. Finite fields. We saw that the cuspidals for GL2(Fq) all showed up in Funχ(G/U)
once, and in Fun(G/U) zero times. We saw the twisted Steinbergs show up in both with
multiplicity one. Finally, we saw that the simple principal series showed up in Fun(G/U)
twice, and in Funχ(G/U) once.

Unwinding, we are saying that (i) if L is cuspidal, we have

ResUG L '
⊕
χ 6=0

Cχ.

Similarly, if (ii) L is a twisted Steinberg, we have

ResUG L ' C0 ⊕
⊕
χ 6=0

Cχ,

and if (iii) L is a simple principal series, we have

ResUG L ' C⊕20 ⊕
⊕
χ 6=0

Cχ.

This can be thought of as a strengthening of the statement that cuspidals have dimension
q−1, twisted Steinbergs have dimension q, and simple principal series have dimension q+1.
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How can we see this q− 1 dimensional subspace that they all have ‘in common’? Let us

recall the smaller torus T ′ =

(
t

1

)
which permuted the nontrivial characters of χ. If we

form the subgroup M = T ′U of GL2, the so-called mirabolic, then for the usual reasons:

ResUM IndMU Cη '
⊕
χ 6=0

Cχ,

for any nonzero η. The space IndMU Cη is called Kirillov’s module.
In what way does Kirillov’s module realize the q−1 dimensional subspace all these have

in common? Well, we should produce a map, and we unwind:

HomM (ResMG L, IndMU Cη) ' HomU (ResUM ResMG L,Cη) ' HomU (ResUG L,Cη) ' Jη(L)∨,

so by our previous results, the space of intertwiners is one dimensional. In all cases, the
map is surjective, and has kernel the trivial isotypic component of the module, i.e. is 0, 1,
or 2 dimensional as in the decompositions deduced above.

In particular, for L cuspidal, we have ResMG L ' IndMU Cη, and this isomorphism is known
as Kirillov’s model. We should also mention:

Proposition 7.1. Kirillov’s model is a simple M representation.

7.2. Local fields. One can mimick the definitions and arguments from above. First, we
should note that similarly to GL2(Fq), we have:

Proposition 7.2. Every simple module L of GL2(k) which is not a character embeds
(uniquely) into IndGU Cχ, i.e. has a Whittaker model.

Unlike GL2(Fq), the actual coinvariants J0(L) cannot be split back into L as a U module
i.e. the U invariants of L vanish when L is a non-character. This implies, with a little
work, that:

Proposition 7.3. For a simple module L which is not a character, the canonical up to
scalars map

ResMG L→ IndMU Cχ
is an embedding. When L is cuspidal, the image is always the compactly supported twisted
funtions in Funχ(M/U).

By the way, the numbers 0, 1, 2 for cuspidals, twisted Steinbergs, and simple principal
series do show up here too. Namely, if we think of IndMU Cχ as Funχ(M/U), the twisted
functions of compact support are of codimension 0, 1, 2 in the image of L in these three
cases, respectively.

8. Kirillov’s model: GLn

Let us outline how this extends to GLn, with proofs and more discussion to be found
in the same references discussed earlier. The analogue of T ′ for GL2 is still called the
mirabolic M for GLn. It consists of matrices whose last row consists of zeroes, safe for
the bottom right corner, which is a one. In particular, its unipotent radical is roughly



12 GURBIR DHILLON

the last column, and reductive quotient is GLn−1. This absolutely should be compared to
restricting from Sn to Sn−1, but padding with the nth Jucy–Murphys operator.

In any case, for a generic character χ of U , we can produce Kirillov’s module IndMU Cχ.

8.1. Finite fields. In this case, we have:

Theorem 8.1. Kirillov’s module is simple. For a simple G module L with a Whittaker
model, the associated map of M modules

M → IndMU Cχ
is surjective, and if L is cuspidal is an isomorphism.

8.2. Local fields. In this case, we have:

Theorem 8.2. For a simple G module L witha Whittaker model, the associated map of
M modules

M → IndMU Cχ
is an embedding. Moreover, if L is cuspidal, the image is always the compactly supported
twisted functions in Funχ(M/U).
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