ASYMPTOTES OF RATIONAL FUNCTIONS

 $y = f(x) = \frac{N(x)}{D(x)}$

where N(x) and D(x) are polynomials

HORIZONTAL ASYMPTOTES, **y** = **b**

A horizontal asymptote is a horizontal line that is not part of a graph of a function but guides it for x-values "far" to the right and/or "far" to the left. The graph may cross it but eventually, for large enough or small enough values of x (approaching $\pm \infty$), the graph would get closer and closer to the asymptote without touching it. A horizontal asymptote is a special case of a slant asymptote.

A "recipe" for finding a horizontal asymptote of a rational function:

```
Let
```

deg N(x) = the degree of a numerator and deg D(x) = the degree of a denominator.

$\deg N(x) = \deg D(x)$	$\deg N(x) < \deg D(x)$	deg N(x) > deg D(x)
$y = \frac{\text{leading coefficient of N(x)}}{\text{leading coefficient of D(x)}}$	y = 0 which is the x - axis	There is no horizontal asymptote.

Another way of finding a horizontal asymptote of a rational function:

Divide N(x) by D(x). If the quotient is constant, then y = this constant is the equation of a horizontal asymptote.

Examples

Ex. 1

$$y = \frac{-2x^3 - 3x + 5}{x^3 + 1} = -2 + \frac{-3x + 7}{x^3 + 1}$$

HA: y = -2because $\frac{-3x+7}{x^3+1}$ approaches 0 as x increases.

Ex. 2
$$y = \frac{2x+1}{x} = 2 + \frac{1}{x}$$

HA: y = 2because $\frac{1}{x}$ approaches 0 as x increases.

Ex. 3 $y = \frac{3x^2}{x+1} = (3x - 3) + \frac{3}{x+1}$ approaches ∞ as x increases (y = 3x - 3 is a slant asymptote.)

By Joanna Gutt-Lehr, Pinnacle Learning Lab, last updated 1/2010

ASYMPTOTES OF RATIONAL FUNCTIONS

$$y = f(x) = \frac{N(x)}{D(x)}$$

where N(x) and D(x) are polynomials

SLANT (OBLIQUE) ASYMPTOTE, y = mx + b, $m \neq 0$

A slant asymptote, just like a horizontal asymptote, guides the graph of a function only when x is close to $\pm \infty$ but it is a slanted line, i.e. neither vertical nor horizontal. A rational function has a slant asymptote if the degree of a numerator polynomial is 1 more than the degree of the denominator polynomial.

A "recipe" for finding a slant asymptote of a rational function:

Divide the numerator N(x) by the denominator D(x). Use long division of polynomials or, in case of D(x) being of the form: (x-c), you can use synthetic division.

The equation of the asymptote is y = mx + b which is the quotient of the polynomial division (ignore remainder)

Examples

By Joanna Gutt-Lehr, Pinnacle Learning Lab, last updated 1/2010