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Abstract 
The parameter estimation method based on minimum residual sum of 

squares is unsatisfactory in the presence of multicollinearity. Hoerl and Kennard 
[1] introduced alternative method called ridge regression estimator. In ridge 
regression, ridge parameter or biasing constant plays an important role in 
parameter estimation. Many researchers are suggested various methods for 
determining the ridge parameter. In this article, we have proposed new method for 
choosing the ridge parameter. The performance of the proposed method is 
evaluated and compared with through simulation study in terms of mean square 
error (MSE). The technique developed in this communication seems to be very 
reasonable because of having smaller MSE. 
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1. Introduction 
 

The ordinary least squares (OLS) estimator is unbiased estimator. In the 
presence of multicollinearity OLS estimator could becomes unstable due to their 
large variance, which leads to poor prediction. The one of the popular solution of 
this problem is ridge regression. The concept of ridge regression is first introduced 
by Hoerl and Kennard [1]. This method is the modification of the least squares 
method that allows biased estimators of the regression coefficients. Therefore, 
these biased estimators are preferred over estimator, because they will have a 
larger probability of being close to the true parameter values with smaller MSE of 
regression coefficients. In presence of multicollinearity, selection of ridge 
parameter plays an important role, because the idea of that adding a small constant 
to the diagonal elements of the matrix XX ' will improve the conditioning of a  
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matrix has been recognized by numerical analysis, because this would 
dramatically decrease its ‘condition number’(Vinod and Ullah, [8]).   

Ridge parameter ‘ k ’ ( HKBk ) proposed by Hoerl and Kennard [2] perform 
fairly well. Recently, many researchers are suggested various methods for 
choosing ridge parameter in ridge regression. These methods have been suggested 
by Lawless and Wang [4], McDonald and Galarneau (1975), Mallows (1973), 
Wahba, Golub and Farebrother (1975), Health (1979), Khalaf and Shukur [3] and 
others.  

In this article, we suggest an alternative method for choosing ridge 
parameter and hence ridge estimator. This article is organized as: In Section 2, 
model and estimators are described. New method for choosing ridge parameter 
and some results are given in Section 3. In Section 4, performance of new method 
is evaluated by simulation technique in terms of MSE. Some conclusions are 
drawn at the end of this article.  

 
 

2. Model and Estimators 
 

Consider widely used linear regression model   
                                   Y= Xβ +ε,                                                                   (1)                            
  where Y is a n×1 vector of observations on a response variable Y. β is a p×1 
vector of unknown regression coefficients, X is a matrix of order (n × p) of 
observations on p predictor (regressor) variables X1, X2,…,Xp  and  ε is an n × 1 
vector of random variables which are  distributed as   nIN 2,0( σ ). The most 
common estimator for β is the least squares estimator YX)XX(ˆ '1' '−=β . For the 
sake of convenience, we assume that the matrix X is standardized in such a way 
that XX '  is a non-singular correlation matrix. This paper is concerned with 
dealing the situation XX '  has at least one small eigen value leading to a high 
MSE for β meaning that β̂  is an unreliable estimator of β. 

Let ∧  and T be the matrices of eigen values and eigen vectors of XX ' , 
respectively, satisfying XTXT ′'  =  ∧  = diagonal ( 1λ , 2λ ,..., pλ ),    where iλ  being 

the ith eigen value of XX '  and TT '  = 'TT  = Ip. We obtain the equivalent model  
                  Y=Zα+ε ,                                                                         (2)     

where Z = XT , it implies that ZZ '  =∧ , and α = β'T    (see Montgomery et al. 
[7])                                                                                     
Then Ordinary least squares (OLS) estimator of α is given by 
                                                 YZZZ '1' )(ˆ −=α = 1−∧ YZ ' .                            (3)     
Therefore, OLS estimator of β is given by 
                                                         β̂ = Tα̂ .                                                                                 
The ordinary ridge regression (ORR) estimator of α suggested by Hoerl and 
Kennard [1] is written as  
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         RRα̂  = [ ]1−− kkAI   α̂ .     k ≥ 0,                                                        (4)     

         where kA = ( )pkI+∧   and 
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Hence ridge regression estimator of β  is    
                                                               β̂ RR =T RRα̂   
and mean square error of RRα̂ is  
                              MSE ( RRα̂ ) = Variance ( RRα̂ ) + [Bias ( RRα̂ )] 2 
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where 2σ̂  is the OLS estimator of 2σ i.e. 2σ̂
1

ˆ '''

−−
−

=
pn

YZYY α  , α = β'T .  

We observe that, when k  = 0 in equation (4), OLS estimator of α is recovered. As 
k  increases the ridge regression estimators are biased but more precise than OLS 
estimator (Mardikyan and Cetin, [5]). Hoerl et al. [2] suggested that, the value of 
‘ k ’ is chosen small enough, for which the mean squared error of ridge estimator, 
is less than the mean squared error of OLS estimator.  

Many researchers have been suggested different ways of estimating the 
ridge parameter. Some of the well known methods for choosing ridge parameter 
value are listed below.  

(1)  
αα
σ

ˆˆ
ˆ
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2pkHKB =                              (Hoerl, Kennard, [1])                            (6)                                          
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                                                      (Masuo Nomura, [6])       
(4) max

2
max

22
max ˆˆ)1(()ˆ( αλσσλ +−−= pnkKS (Khalaf and Shukur, [3])  (9) 

All the methods of estimating ridge parameter are used in section 4. 
 
 
3. Proposed ridge parameter 
 

Hoerl and Kennard [1] showed that ridge estimator is biased estimator and 
its squared bias is continuous and monotonically increasing function of ‘ k ’. Also 

they proved that the MSE of α̂ RR is less than MSE of α̂  when 
max

2

2

ˆ
0

α
σ

≤≤ k  

where 2
maxα̂ is the largest element of 2α and 2σ is replaced by its  
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estimate 2σ̂

pn
YZYY

−
−

=
''' α̂  . Many researchers are interested in ridge estimator, such 

that this estimator having smaller total MSE than OLS estimator. The MSE of 
ridge estimator is depends on the ridge parameter ( k ).  
 In this article, we have suggested a new method for determining ridge 
parameter ‘ k ’ and it is defined as  

         Dk = ⎟
⎟
⎠
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=     is variance inflation factor of jth regressor.   

Our suggested estimator is modification of ‘ HKBk ’. The small 
amount

max)(
1

jVIFn
 is subtracted from‘ HKBk ’. This amount, however varies with 

the size of the sample (n) used and strength of the multicollinearity in the model.  
Now we discuss results related to the proposed method.  
 
 

Some Results 
 
 
Result 1 If    max)( jVIF   is too large then Dk  is an approximately ‘ HKBk ’. 

Proof: The proposed ridge parameter is        
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Hence; we rewrite the proposed estimator as  

              Dk = ⎟⎟
⎠
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     HKBD kk ≅⇒                                       since    0≥HKBk  

Result 2 If    max)( jVIF   is close to one then Dk  is either 0 or
n

kHKB
1

− . 

Proof:           If    max)( jVIF is close to 1 

           then the quantity  
max)(

1

jVIFn
 is approximately 

n
1 . 
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Hence 
n

kHKB
1

− may be positive or negative. So that, we have considered two 

cases 

Case I: If 
n

kHKB
1

≤  then 01
≤−

n
kHKB  

             Hence by definition of Dk , .0=Dk  

Case II: If 
n

kHKB
1

>  that implies  01
>−=

n
kk HKBD  

                        Therefore  
n

kk HKBD
1

−=  

 
Result 3   HKBD kk ≤≤0  
Proof:  The proposed ridge parameter Dk  is 

                   Dk = ⎟
⎟
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The possible values of Dk  are  

               0=Dk                            if 
max)(

1

j
HKB VIFn

k ≤  

               0>Dk                            if 
max)(

1

j
HKB VIFn

k >  

from above relations, 
                    0≥Dk                                                                                    (11) 
Let HKBk , n  and max)(VIF be the nonnegative. Hence 

          HKB
j

HKB k
VIFn

k ≤−
max)(

1  

Therefore,       HKBD kk ≤                                                                              (12) 
 
 
from inequality (11) and (12) 
                         HKBD kk ≤≤0                                                                      (13) 
 

Hoerl et al. [2] have shown that  
max

2

2

α̂
σ

≤HKBk . Using this, inequality (13) 

becomes
max

2

2

α̂
σ

≤≤ HKBD kk . Hence proposed ridge parameter ( Dk ) satisfy the 

upper bound of ridge parameter stated by Hoerl and Kennard [1]. 
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4. Performance of the proposed ridge parameter 
 

 
In this section, we examined the performance of the ridge estimator using 

the proposed ridge parameter Dk over the different ridge parameters ( k ). We 
examined the MSE ratio of the ridge estimator using proposed ridge parameter 
and other ridge parameters over OLS estimator. 

We have considered two examples. In example 1, we generate data for two 
predictor variables with different combinations of sample size, correlation 
between predictor variables and variance of the error terms. In example 2, same 
simulation study is carried out for 4 predictor variables.  

 
 

Example 1  
 
We have generated random sample of size n for two predictor variables. 

To exhibit multicollinearity in the simulated data, we use the different degree of 
correlation between the variables included in the model. Here we put correlation 
values ρ  = 0.999 and 0.9999. We have used sample size n = 20, 50, 75, and 100. 
The variance of the error terms are taken as 2σ  = 5, 10, 25 and 100. Ridge 
estimates are computed using different ridge parameters given in Eq. (6) to (10). 
The MSE of such ridge regression parameters are obtained using Eq. (5). This 
experiment is repeated 1500 times and obtains the average MSE (AMSE). Firstly, 
we computed the AMSE ratios of OLS estimator over different estimators. 
Secondly, AMSE ratios of ridge estimator using ridge parameter ‘ HKBk ’, over 
OLS and different ridge estimators are computed and these ratios are reported in 
Table 4.1. We consider the method that lead to the maximum ratio to the best 
from the MSE point of view. 

 
From Table 4.1 we observe that performance of the proposed ridge 

parameter ( Dk ) is better than other ridge parameters for all combinations of 
correlation between predictors ( ρ ), variance of the error term ( 2σ ) and sample 
size (n) used in this simulation study. 
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Table 4.1Ratio of AMSE of OLS over various ridge estimators for different ‘ k ’ 
 
  

ρ 
 σ2   5                      10 
k   n= 20 50 75 100 20 50 75 100 

  
  
  
  

0.999 
  
  
  
  
  

LS / HKB 2.821 2.739 2.714 2.826 2.482 2.847 2.836 2.704
LS / LW 1.776 1.401 1.151 1.164 1.969 2.013 1.589 1.115
LS / HMO 1.903 1.829 1.819 1.974 1.783 1.973 1.950 1.827
LS / KS 2.212 1.762 1.742 1.652 2.102 2.230 2.299 1.766
LS / Dk  2.875 2.806 2.787 2.896 2.480 2.866 2.863 2.736
HKB / LS 0.354 0.365 0.368 0.354 0.403 0.351 0.353 0.370
HKB / LW 0.630 0.512 0.424 0.412 0.793 0.707 0.560 0.412
HKB / HMO 0.674 0.668 0.670 0.699 0.718 0.693 0.688 0.676
HKB / KS 0.784 0.643 0.642 0.585 0.847 0.783 0.811 0.653
HKB / Dk  1.019 1.025 1.027 1.025 0.999 1.006 1.009 1.012

  
  
  
  

0.9999 
  
  
  
  
  

LS / HKB 3.078 2.806 2.781 3.011 3.304 2.712 3.406 2.797
LS / LW 1.095 0.909 0.934 1.239 1.954 1.234 1.302 1.051
LS / HMO 1.999 1.823 1.888 2.117 2.424 1.875 2.335 1.928
LS / KS 1.701 1.588 1.447 1.941 2.784 1.734 2.223 1.745
LS / Dk  3.177 2.889 2.846 3.088 3.329 2.741 3.445 2.828
HKB / LS 0.325 0.356 0.360 0.332 0.303 0.369 0.294 0.358
HKB / LW 0.356 0.324 0.336 0.411 0.591 0.455 0.382 0.376
HKB / HMO 0.649 0.649 0.679 0.703 0.734 0.691 0.686 0.690
HKB / KS 0.553 0.566 0.520 0.644 0.842 0.640 0.653 0.624
HKB / Dk  3.078 2.806 2.781 3.011 3.304 2.712 3.406 2.797

  σ2  25 100 

  
  
  
  

0.999 
  
  
  
  
  

LS / HKB 2.221 2.562 2.796 2.635 2.088 2.489 2.862 2.695
LS / LW 1.804 1.988 1.625 1.198 1.719 1.990 1.957 1.208
LS / HMO 1.730 1.801 1.856 1.799 1.874 1.843 1.961 1.802
LS / KS 1.864 2.137 2.046 1.699 1.735 2.087 2.351 1.775
LS / Dk  2.222 2.567 2.816 2.655 2.087 2.487 2.874 2.711
HKB / LS 0.447 0.390 0.358 0.379 0.474 0.402 0.349 0.371
HKB / LW 0.807 0.776 0.581 0.455 0.815 0.799 0.684 0.448
HKB / HMO 0.774 0.703 0.664 0.683 0.889 0.740 0.685 0.669
HKB / KS 0.834 0.834 0.732 0.645 0.823 0.839 0.821 0.659
HKB / Dk  0.994 1.002 1.007 1.007 0.990 0.999 1.004 1.006

  
  
  
  

0.9999 
  
  
  
  
  

LS / HKB 2.759 2.409 3.107 2.864 2.543 2.977 2.530 2.396
LS / LW 1.471 1.003 1.283 1.297 1.424 1.335 0.960 0.932
LS / HMO 1.896 1.588 2.124 2.072 1.706 2.001 1.658 1.626
LS / KS 1.966 1.445 1.758 2.048 1.726 1.904 1.425 1.508
LS / Dk  2.777 2.430 3.131 2.882 2.556 2.995 2.547 2.410
HKB / LS 0.362 0.415 0.322 0.349 0.393 0.336 0.395 0.417
HKB / LW 0.533 0.416 0.413 0.453 0.560 0.448 0.379 0.389
HKB / HMO 0.687 0.659 0.684 0.723 0.671 0.672 0.655 0.679
HKB / KS 0.713 0.600 0.566 0.715 0.679 0.640 0.563 0.629
HKB / Dk  1.007 1.008 1.008 1.006 1.005 1.006 1.007 1.006
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Example 2  

We have generated random sample of size n from N4 (0, Σ1) on X1, X2, X3 
and X4  
where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−
−−

=Σ

1030.0973.02450.0
030.01139.08240.0
973.0139.012290.0
2450.08240.02290.01

1
 

We consider the model as,       
                            Y = 10+X1 + X2 +2 X3+ X4+ ε ,       where ),0(~ 2σε N . 

We have generated the data with sample sizes n = 20, 50, 75, and 100. The 
variance of the error terms are taken as 2σ  = 1, 5, 10 and 25. Same simulation 
study carried out as in Example 1 and the MSE ratios of different estimators over 
OLS estimator are reported in Table 4.2.  

 
 

Table 4.2 Ratio of AMSE of OLS over various ridge estimators for different ‘ k ’ 
 

σ2  1 5 
k  n=20 50 75 100 20 50 75 100 

LS / HKB 1.82 2.0768 2.25 2.13 2.35 2.2058 2.31 2.15 
LS / LW 1.61 1.5289 1.53 1.24 1.58 1.1154 1.12 1.01 
LS / HMO 1.2 1.4589 1.63 1.54 1.74 1.6039 1.69 1.56 
LS / KS 1.64 1.8551 2.07 1.84 1.96 1.783 1.84 1.68 
LS / Dk  1.83 2.1011 2.28 2.16 2.38 2.2334 2.34 2.18 
HKB / LS 0.548 0.482 0.443 0.469 0.425 0.453 0.434 0.465 
HKB / LW 0.881 0.736 0.677 0.584 0.672 0.506 0.487 0.467 
HKB / HMO 0.659 0.702 0.724 0.721 0.737 0.727 0.733 0.727 
HKB / KS 0.900 0.893 0.920 0.862 0.834 0.808 0.797 0.779 
HKB / Dk  1.002 1.012 1.011 1.013 1.010 1.013 1.012 1.014 

σ2  10 25 
LS / HKB 2.17 2.25266 2.15 1.99 2.4 2.20892 2.2 2.283053 
LS / LW 1.02 1.01283 0.98 0.86 1.17 0.96391 1.01 1.035561 
LS / HMO 1.57 1.63747 1.57 1.41 1.82 1.59446 1.62 1.666361 
LS / KS 1.7 1.75973 1.56 1.41 1.9 1.60854 1.72 1.852263 
LS / Dk  2.2 2.2817 2.18 2.02 2.43 2.23914 2.22 2.311604 
HKB / LS 0.461 0.444 0.466 0.503 0.416 0.453 0.455 0.438 
HKB / LW 0.472 0.450 0.457 0.433 0.486 0.436 0.461 0.454 
HKB / HMO 0.723 0.727 0.729 0.709 0.755 0.722 0.739 0.730 
HKB / KS 0.784 0.781 0.727 0.707 0.789 0.728 0.783 0.811 
HKB / Dk  1.014 1.013 1.013 1.016 1.010 1.014 1.012 1.013 

 
From Table 4.2 we conclude that new method for ridge parameter performs quite 
well than all other ridge parameters for all combinations of variance of the error 
term ( 2σ ) and sample sizes (n) in our study. 
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5. Conclusion 
 

The new method for estimating the ridge parameter in ridge regression has 
been given. The proposed ridge estimator ( Dk ) is based on number data points (n) 
and strength of multicollinearity in the data. The performance of the proposed 
ridge parameter is evaluated through the simulation study. Also, we compare the 
ratio of average MSE with ridge parameter proposed by Hoerl and Kennard [2], 
Khalaf and Shukur [3] and others. The performance of the proposed ridge 
parameter is better than other ridge parameters used in ridge regression. 
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