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Abstract

The parameter estimation method based on minimum residual sum of
squares is unsatisfactory in the presence of multicollinearity. Hoerl and Kennard
[1] introduced alternative method called ridge regression estimator. In ridge
regression, ridge parameter or biasing constant plays an important role in
parameter estimation. Many researchers are suggested various methods for
determining the ridge parameter. In this article, we have proposed new method for
choosing the ridge parameter. The performance of the proposed method is
evaluated and compared with through simulation study in terms of mean square
error (MSE). The technique developed in this communication seems to be very
reasonable because of having smaller MSE.
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1. Introduction

The ordinary least squares (OLS) estimator is unbiased estimator. In the
presence of multicollinearity OLS estimator could becomes unstable due to their
large variance, which leads to poor prediction. The one of the popular solution of
this problem is ridge regression. The concept of ridge regression is first introduced
by Hoerl and Kennard [1]. This method is the modification of the least squares
method that allows biased estimators of the regression coefficients. Therefore,
these biased estimators are preferred over estimator, because they will have a
larger probability of being close to the true parameter values with smaller MSE of
regression coefficients. In presence of multicollinearity, selection of ridge
parameter plays an important role, because the idea of that adding a small constant

to the diagonal elements of the matrix X X will improve the conditioning of a
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matrix has been recognized by numerical analysis, because this would
dramatically decrease its ‘condition number’(Vinod and Ullah, [8]).
Ridge parameter ‘K’ (K ) proposed by Hoerl and Kennard [2] perform

fairly well. Recently, many researchers are suggested various methods for
choosing ridge parameter in ridge regression. These methods have been suggested
by Lawless and Wang [4], McDonald and Galarneau (1975), Mallows (1973),
Wahba, Golub and Farebrother (1975), Health (1979), Khalaf and Shukur [3] and
others.

In this article, we suggest an alternative method for choosing ridge
parameter and hence ridge estimator. This article is organized as: In Section 2,
model and estimators are described. New method for choosing ridge parameter
and some results are given in Section 3. In Section 4, performance of new method
is evaluated by simulation technique in terms of MSE. Some conclusions are
drawn at the end of this article.

2. Model and Estimators

Consider widely used linear regression model
Y=XB +e, (1)
where Y is a nx1 vector of observations on a response variable Y. B is a px1
vector of unknown regression coefficients, X is a matrix of order (n x p) of
observations on p predictor (regressor) variables X, Xo,...,X, and €isann x 1
vector of random variables which are distributed as  N(0,0°1,). The most

common estimator for B is the least squares estimator f =(X'X) " XY . For the

sake of convenience, we assume that the matrix X is standardized in such a way
that X X is a non-singular correlation matrix. This paper is concerned with
dealing the situation X X has at least one small eigen value leading to a high
MSE for B meaning that § is an unreliable estimator of p.

Let A and T be the matrices of eigen values and eigen vectors of X X ,
respectively, satisfying T' X XT = A = diagonal (4, yAysendy),  Where J; being

the i" eigen value of X' X and TT =TT = I,. We obtain the equivalent model

Y=Zo+e, 2
where Z = XT , it implies that Z'z =A,and a = T'ﬂ (see Montgomery et al.
[7])

Then Ordinary least squares (OLS) estimator of a is given by
a=(Z2)y'ZY=n"2ZY. 3)
Therefore, OLS estimator of B is given by
B=Té.

The ordinary ridge regression (ORR) estimator of « suggested by Hoerl and
Kennard [1] is written as
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b = 1 -KA] &, k=0, 4)
whereAkZ(/\+kIp) and k = pAoA'f
aa

Hence ridge regression estimator of £ is
Brr =T ag

and mean square error of &g is
MSE (@gg ) = Variance (g ) + [Bias (gg )] 2

P p
=62 4/ +02 k2 o [ +0* (5)
i=l1 i=1

where &7 is the OLS estimator of o> i.e. 6> _YY-4ZY =T B,
n-p-1

We observe that, when k = 0 in equation (4), OLS estimator of o is recovered. As
k increases the ridge regression estimators are biased but more precise than OLS
estimator (Mardikyan and Cetin, [5]). Hoerl et al. [2] suggested that, the value of
‘k ’ is chosen small enough, for which the mean squared error of ridge estimator,
is less than the mean squared error of OLS estimator.

Many researchers have been suggested different ways of estimating the
ridge parameter. Some of the well known methods for choosing ridge parameter
value are listed below.

~2

(1) Ky :-E%%?— (Hoerl, Kennard, [1]) 6)
ps’

) ky = — (Lawless and Wang, [4]) (7)

izi&f
(3)kHMO—p(5-/Z[ 5.2 1+(1+/1(o?2/‘2)”2)}] i—12..p. (8

(Masuo Nomura, [6])
DKy =(4,,.6° )/ (n—-p-1)6°+4,,,0 m  (Khalaf and Shukur, [3]) (9)
All the methods of estimating ridge parameter are used in section 4.

3. Proposed ridge parameter

Hoerl and Kennard [1] showed that ridge estimator is biased estimator and

its squared bias is continuous and monotonically increasing function of ‘k ’. Also

2
o

they proved that the MSE of & grg is less than MSE of & when 0 <k <
0{ max

where &2, is the largest element of «? and ¢ is replaced by its
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estimate 6% _YY-azY | Many researchers are interested in ridge estimator, such
n-p
that this estimator having smaller total MSE than OLS estimator. The MSE of
ridge estimator is depends on the ridge parameter (k).
In this article, we have suggested a new method for determining ridge
parameter ‘K > and it is defined as

ps? 1
kp,=max| 0,——— (10)
aa NVIF)max
where VIF ji= ;2 j=12...p 1is variance inflation factor of jth regressor.

1-R;
j
Our suggested estimator is modification of ‘K,;’. The small

amount___ 1 is subtracted from‘k,,,’. This amount, however varies with
NVIF)) max

the size of the sample (n) used and strength of the multicollinearity in the model.
Now we discuss results related to the proposed method.

Some Results

Result 1If  (VIF, )max is too large then Kk, is an approximately ‘K,z .

Proof: The proposed ridge parameter is

~2
k,=max| 0, po" ~ !
aa NVIFj))nax
If  (VIF;) is too large then _ — 0.
max NVIF)) max
~2 ~2
Therefore, p(,j - ! - p(,j
aa NVIFj))nax & é

Hence; we rewrite the proposed estimator as

~2
szmax(O, [{gA )
aa

= Kp =Kiks since Ky 20

Result 2 If  (VIF, )max is close to one then Kk is either 0 ork . — E
n

Proof: If (VIF, )max is close to 1
. 1 . ) 1
then the quantity ————— is approximately —.
NVIF)) max n
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1 . . .
Hence k. ——may be positive or negative. So that, we have considered two
n

cases

Case I: If Ky Sl then K, g L <0
n n
Hence by definition of k,, k,=0.

Case II: If K, >l that implies Ky = K, g L >0
n n

Therefore Ky =K ——
n

Result3 0<ky <K,
Proof: The proposed ridge parameter K, is

1
kp=max| 0, Kyyp ————
i ( NVIF ) max
The possible values of k, are
1
NVIFj) max
1
NVIFj) max
from above relations,
kg 20 (11)
Let Kz, N and (V IF)maX be the nonnegative. Hence
1
Kikg ———=——— <Knks
NVIFj) max
Therefore, Ky <Kixs (12)
from inequality (11) and (12)
0<kp <Kyys (13)

2
Hoerl et al. [2] have shown that K S%. Using this, inequality (13)

max
2

becomesk, <K, < %. Hence proposed ridge parameter (k) satisfy the

max

upper bound of ridge parameter stated by Hoerl and Kennard [1].
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4. Performance of the proposed ridge parameter

In this section, we examined the performance of the ridge estimator using
the proposed ridge parameterk, over the different ridge parameters (k). We

examined the MSE ratio of the ridge estimator using proposed ridge parameter
and other ridge parameters over OLS estimator.

We have considered two examples. In example 1, we generate data for two
predictor variables with different combinations of sample size, correlation
between predictor variables and variance of the error terms. In example 2, same
simulation study is carried out for 4 predictor variables.

Example 1

We have generated random sample of size n for two predictor variables.
To exhibit multicollinearity in the simulated data, we use the different degree of
correlation between the variables included in the model. Here we put correlation
values p =0.999 and 0.9999. We have used sample size n = 20, 50, 75, and 100.

The variance of the error terms are taken as o = 5, 10, 25 and 100. Ridge
estimates are computed using different ridge parameters given in Eq. (6) to (10).
The MSE of such ridge regression parameters are obtained using Eq. (5). This
experiment is repeated 1500 times and obtains the average MSE (AMSE). Firstly,
we computed the AMSE ratios of OLS estimator over different estimators.
Secondly, AMSE ratios of ridge estimator using ridge parameter ‘K, , over
OLS and different ridge estimators are computed and these ratios are reported in
Table 4.1. We consider the method that lead to the maximum ratio to the best
from the MSE point of view.

From Table 4.1 we observe that performance of the proposed ridge
parameter (k) is better than other ridge parameters for all combinations of

correlation between predictors (o), variance of the error term (o) and sample
size (n) used in this simulation study.
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Table 4.1Ratio of AMSE of OLS over various ridge estimators for different ‘K’

o? 5 10
p k n= 20 50 75 100 20 50 75 100
LS/ HKB 2821 2739 2714 2826 |2.482 2847 2.836 2.704
LS /LW 1776 1401 1.151 1164 [1.969 2.013 1589 1.115
LS / HMO 1903 1.829 1.819 1.974 |1.783 1.973 1.950 1.827
LS/KS 2212 1762 1.742 1652 | 2102 2230 2299 1.766
LS/ kp 2.875 2.806 2.787 2.896 | 2.480 2.866 2.863 2.736
0999 | HkB/LS 0.354 0.365 0.368 0.354 | 0.403 0.351 0.353 0.370
HKB/LW | 0630 0.512 0.424 0.412 |0.793 0.707 0.560 0.412
HKB/HMO | 0.674 0.668 0.670 0.699 | 0.718 0.693 0.688 0.676
HKB / KS 0.784 0643 0.642 0.585 |0.847 0.783 0.811 0.653
HKB/ kp 1.019 1.025 1.027 1.025 | 0.999 1.006 1.009 1.012
LS/ HKB 3.078 2.806 2.781 3.011 |3.304 2712 3.406 2.797
LS /LW 1.095 0.909 0934 1.239 [1.954 1.234 1.302 1.051
LS / HMO 1.999 1.823 1.888 2117 |2424 1.875 2335 1.928
LS /KS 1.701 1588 1.447 1.941 |2784 1.734 2223 1.745
LS/ kp 3.177 2.889 2.846 3.088 | 3.329 2741 3.445 2828
0.9999 'HkB/LS | 0.325 0356 0360 0332 |0303 0.369 0294 0.358
HKB/LW | 0.356 0.324 0.336 0.411 | 0.591 0.455 0.382 0.376
HKB/HMO | 0.649 0.649 0.679 0.703 | 0.734 0.691 0.686 0.690
HKB / KS 0.553 0.566 0.520 0.644 |0.842 0.640 0.653 0.624
HKB/ kp 3.078 2.806 2.781 3.011 |3.304 2.712 3.406 2.797
o’ 25 100

LS/ HKB 2221 2562 2796 2635 |2.088 2489 2.862 2.695
LS /LW 1.804 1.988 1625 1.198 |1.719 1.990 1.957 1.208
LS / HMO 1730 1.801 1.856 1.799 | 1.874 1.843 1.961 1.802
LS/KS 1.864 2137 2046 1.699 |1.735 2.087 2.351 1.775
LS/ kp 2222 2567 2816 2655 |2.087 2487 2.874 2711
0.999 [ HykB/LS 0.447 0.390 0.358 0.379 | 0.474 0.402 0.349 0.371
HKB/LW | 0.807 0.776 0.581 0.455 | 0.815 0.799 0.684 0.448
HKB/HMO | 0.774 0.703 0.664 0.683 | 0.889 0.740 0.685 0.669
HKB / KS 0.834 0.834 0.732 0645 |0.823 0.839 0.821 0.659
HKB / kp 0.994 1.002 1.007 1.007 |0.990 0.999 1.004 1.006
LS/ HKB 2759 2409 3107 2.864 |2.543 2977 2530 2.396
LS /LW 1.471 1.003 1.283 1.297 |1.424 1.335 0.960 0.932
LS / HMO 1.896 1.588 2.124 2072 |1.706 2.001 1.658 1.626
LS/KS 1966 1.445 1.758 2.048 |1.726 1.904 1.425 1.508
LS/ kp 2777 2430 3.131 2.882 | 2556 2.995 2547 2.410
0.9999 'kB/LS | 0.362 0415 0322 0349 | 0393 0.336 0395 0.417
HKB/LW | 0533 0416 0413 0.453 |0.560 0.448 0.379 0.389
HKB/HMO | 0.687 0.659 0.684 0.723 | 0.671 0.672 0.655 0.679
HKB / KS 0.713 0.600 0.566 0.715 | 0.679 0.640 0.563 0.629
HKB/ kp 1.007 1.008 1.008 1.006 |1.005 1.006 1.007 1.006
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We have generated random sample of size n from Ny (0, Z;) on X, X, X3

and X4
where
1
0.2290
T -0.8240
—0.2450

We consider the model as,

0.2290

—0.8240

-0.139

-0.139
-0.973

1
—-0.030

Y= 10+X1 + X2 +2 X3+ X4+8 ,
We have generated the data with sample sizes n = 20, 50, 75, and 100. The

variance of the error terms are taken as o = 1, 5, 10 and 25. Same simulation
study carried out as in Example 1 and the MSE ratios of different estimators over
OLS estimator are reported in Table 4.2.

—0.2450
-0.973
—-0.030

1

where € ~N(0,5%).

Table 4.2 Ratio of AMSE of OLS over various ridge estimators for different ‘ Kk *

o’ 1 5

k n=20 50 75 100 | 20 50 75 100
LS / HKB 1.82 20768 225 213 | 235 22058 2.31 2.15
LS /LW 161 15289 153 124 | 158 11154 1.12 1.01
LS / HMO 12 14589 163 154 | 1.74 16039 1.69 1.56
LS /KS 164 18551 207 184 | 196 1783 1.84 1.68
LS/ kp 183 21011 228 216 | 2.38 22334 234 2.18
HKB /LS 0.548 0.482 0.443 0469 | 0425 0453 0434 0.465
HKB/LW | 0.881 0.736 0.677 0.584 | 0.672 0.506 0.487  0.467
HKB/HMO | 0.659 0.702 0.724 0.721 | 0.737 0.727 0.733  0.727
HKB / KS 0.900 0.893 0920 0.862 |0.834 0.808 0.797 0.779
HKB/ kp 1.002 1.012 1.011 1.013|1.010 1.013 1.012 1.014

o? 10 25
LS / HKB 217 225266 215 1.99 | 24 220892 22 2283053
LS /LW 1.02 1.01283 0.98 086 | 1.17 0.96391 1.01 1.035561
LS / HMO 157 1.63747 157 141 | 1.82 159446 1.62 1.666361
LS /KS 17 175973 156 141 | 1.9 160854 1.72 1.852263
LS/ kp 22 22817 218 202 | 243 223914 222 2311604
HKB /LS 0461 0444 0466 0.503 | 0.416 0.453 0.455 0.438
HKB/LW | 0472 0450 0.457 0433|0486 0436 0461 0.454
HKB/HMO | 0.723 0.727 0.729 0.709 | 0.755 0.722 0.739  0.730
HKB / KS 0.784 0.781 0.727 0.707 | 0.789 0.728 0.783  0.811
HKB / kp 1.014 1.013 1.013 1.016 | 1.010 1.014 1.012  1.013

From Table 4.2 we conclude that new method for ridge parameter performs quite
well than all other ridge parameters for all combinations of variance of the error

term (o) and sample sizes (n) in our study.
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5. Conclusion

The new method for estimating the ridge parameter in ridge regression has
been given. The proposed ridge estimator (K, ) is based on number data points (n)

and strength of multicollinearity in the data. The performance of the proposed
ridge parameter is evaluated through the simulation study. Also, we compare the
ratio of average MSE with ridge parameter proposed by Hoerl and Kennard [2],
Khalaf and Shukur [3] and others. The performance of the proposed ridge
parameter is better than other ridge parameters used in ridge regression.
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