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1 Ridge regression

High-throughput techniques measure many characteristics of a single sample simultaneously. The number
of characteristics p measured may easily exceed ten thousand. In most medical studies the number of
samples n involved often falls behind the number of characteristics measured, i.e: p > n. The resulting
(n× p)-dimensional data matrix X:

X = (X∗,1 | . . . |X∗,p) =







X1,∗

...
Xn,∗






=







X1,1 . . . X1,p

...
. . .

...
Xn,1 . . . Xn,p







from such a study contains a larger number of covariates than samples. When p > n the data matrix X

is said to be high-dimensional.
In these notes we adopt the traditional statistical notation of the data matrix. An alternative notation

would be X⊤ (rather than X), which is employed in the field of (statistical) bioinformatics. In X⊤ the
rows comprise the samples rather than the covariates. The case for the bioinformatics notation stems
from practical arguments. A spreadsheet is designed to have more rows than columns. In case p > n the
traditional notation yields a spreadsheet with more columns than rows. When p > 10000 the conventional
display is impractical. In these notes we stick to the conventional statistical notation of the data matrix as
all mathematical expressions involving X are then in line with those of standard textbooks on regression.

The information contained in X is often used to explain a particular property of the samples involved.
In applications in molecular biologyX may contain microRNA expression data from which the expression
levels of a gene are to be described. When the gene’s expression levels are denoted by Y = (Y1, . . . , Yn)

⊤,
the aim is to find the linear relation Yi = Xi,∗β from the data at hand by means of regression analysis.
Regression is however frustrated by the high-dimensionality of X (illustrated in Section 1.1 and at the
end of Section 1.4). These notes discuss how regression may be modified to accommodate the high-
dimensionality of X.

1.1 Ridge regression

When the design matrix is high-dimensional, the covariates (the columns ofX) are super-collinear. Recall
collinearity in regression analysis refers to the event of two (or multiple) covariates being highly linearly
related. Consequently, the subspace spanned by collinear covariates may not be (or close to not being)
of full rank. When the subspace (onto which Y is projected) is (close to) rank deficient, it is (almost)
impossible to separate the contribution of the individual covariates. The uncertainty with respect to the
covariate responsible for the variation explained in Y is often reflected in the fit of the linear regression
model to data by a large error of the estimates of the regression parameters corresponding to the collinear
covariates.

Example 1.1 The flotillins (the FLOT-1 and FLOT-2 genes) have been observed to regulate the proto-
oncogene ERBB2 in vitro (Pust et al., 2013). One may wish to corroborate this in vivo. To this end we
use gene expression data of a breast cancer study, available as a Bioconductor package: breastCancerVDX.
From this study the expression levels of probes interrogating the FLOT-1 and ERBB2 genes are retrieved.
For clarity of the illustration the FLOT-2 gene is ignored. After centering, the expression levels of the
first ERBB2 probe are regressed on those of the four FLOT-1 probes. The R-code below carries out the
data retrieval and analysis.

Listing 1.1 R code

# load packages
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library (Biobase )

library (breastCancerVDX )

# ids of genes FLOT1

idFLOT1 <- which(fData(vdx)[ ,5] == 10211)

# ids of ERBB2

idERBB2 <- which(fData(vdx)[ ,5] == 2064)

# get expression levels of probes mapping to FLOT genes

X <- t(exprs(vdx)[idFLOT1 ,])

X <- sweep(X, 2, colMeans (X))

# get expression levels of probes mapping to FLOT genes

Y <- t(exprs(vdx)[idERBB2 ,])

Y <- sweep(Y, 2, colMeans (Y))

# regression analysis

summary (lm(formula = Y[ ,1] ~ X[ ,1] + X[ ,2] + X[ ,3] + X[ ,4]))

# correlation among the covariates

cor(X)

Prior to the regression analysis, we first assess whether there is collinearity among the FLOT-1 probes
through evaluation of the correlation matrix. This reveals a strong correlation (ρ̂ = 0.91) between the
second and third probe. All other cross-correlations do not exceed the 0.20 (in an absolute sense). Hence,
there is collinearity among the columns of the design matrix in the to-be-performed regression analysis.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0000 0.0633 0.0000 1.0000

X[, 1] 0.1641 0.0616 2.6637 0.0081 **

X[, 2] 0.3203 0.3773 0.8490 0.3965

X[, 3] 0.0393 0.2974 0.1321 0.8949

X[, 4] 0.1117 0.0773 1.4444 0.1496

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.175 on 339 degrees of freedom

Multiple R-squared: 0.04834,Adjusted R-squared: 0.03711

F-statistic: 4.305 on 4 and 339 DF, p-value: 0.002072

The output of the regression analysis above shows the first probe to be significantly associated to the
expression levels of ERBB2. The collinearity of the second and third probe reveals itself in the standard
errors of the effect size: for these probes the standard error is much larger than those of the other two
probes. This reflects the uncertainty in the estimates. Regression analysis has difficulty to decide to
which covariate the explained proportion of variation in the response should be attributed. The large
standard error of these effect sizes propagates to the testing as the Wald test statistic is the ratio of the
estimated effect size and its standard error. Collinear covariates are thus less likely pass the significance
threshold. �

The case of two (or multiple) covariates being perfectly linearly dependent is referred as super-collinearity.
The rank of a high-dimensional design matrix is maximally equal to n: rank(X) ≤ n. Consequently,
the dimension of subspace spanned by the columns of X is smaller than or equal to n. As p > n, this
implies that columns of X are linearly dependent. Put differently, a high-dimensional X suffers from
super-collinearity.

Example 1.2 Super-collinearity
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Consider the design matrix:

X =









1 −1 2
1 0 1
1 2 −1
1 1 0









The columns of X are linearly dependent: the first column is the row-wise sum of the other two columns.
The rank (more correct, the column rank) of a matrix is the dimension of space spanned by the column
vectors. Hence, the rank of X is equal to the number of linearly independent columns: rank(X) = 2. �

Super-collinearity of an (n × p)-dimensional design matrix X implies∗ that the rank of the (p × p)-
dimensional matrix X⊤X is smaller than p, and, consequently, it is singular. A square matrix that does
not have an inverse is called singular. A matrix A is singular if and only if its determinant is zero:
det(A) = 0.

Example 1.3 Singularity
Consider the matrix A given by:

A =

(

1 2
2 4

)

Clearly, det(A) = a11a22−a12a21 = 1×4−2×2 = 0. Hence, A is singular and its inverse is undefined.�

As det(A) is equal to the product of the eigenvalues λj of A, the matrix A is singular if one (or more)
of the eigenvalues of A is zero. To see this, consider the spectral decomposition of A:

A =

p
∑

j=1

λj vj v
⊤
j ,

where vj is the eigenvector corresponding to λj . The inverse of A is then:

A−1 =

p
∑

j=1

λ−1

j vj v
⊤
j .

The right-hand side is undefined if λj = 0 for any j.

Example 1.3 Singularity (continued)
Revisit Example 1.3. Matrix A has eigenvalues λ1 = 5 and λ2 = 0. According to the spectral decompo-
sition, the inverse of A is:

A−1 =
1

5
v1 v

⊤
1 +

1

0
v2 v

⊤
2 .

This expression is undefined as we divide by zero in the second summand on the right-hand side. �

In summary, the columns of a high-dimensional design matrix X are linearly dependent and this super-
collinearity causes X⊤X to be singular. Now recall the ML estimator of the parameter of the linear
regression model:

β̂ = (X⊤X)−1X⊤Y. (1.1)

This estimator is only well-defined if (X⊤X)−1 exits. Hence, when X is high-dimensional the regression
parameter β cannot be estimated.

Above only the practical consequence of high-dimensionality is presented: the expression (X⊤X)−1X⊤Y

∗If the (column) rank of X is smaller than p, there exists a non-trivial v ∈ R
p such that Xv = 0p×1. Multiplication of

this inequality by X⊤ yields X⊤Xv = 0p×1. As v 6= 0p×1, this implies that X⊤X is not invertible.
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cannot be evaluated numerically. But the problem arising from the high-dimensionality of the data is
more fundamental. To appreciate this, consider the normal equations:

X⊤Xβ = X⊤Y.

The matrix X⊤X is of rank n, while β is a vector of length p. Hence, while there are p unknowns, the
system of linear equations from which these are to be solved effectively comprises n degrees of freedom.
If p > n, the vector β cannot uniquely be determined from this system of equations. To make this more
specific let U be the n-dimensional space spanned by the columns of X and the p− n-dimensional space
V be orthogonal complement of U , i.e. V = U⊥. Then, Xv = 0p×1 for all v ∈ V . So, V is the non-trivial
null space of X. Consequently, as X⊤Xv = X⊤0p×1 = 0n×1, the solution of the normal equations is:

β̂ = (X⊤X)−X⊤Y + v for all v ∈ V,

where A− denotes the Moore-Penrose inverse of the matrix A, which is defined as:

A− =

p
∑

j=1

λ−1

j I{λj 6=0} vj v
⊤
j .

The solution of the normal equations is thus only determined up to an element from a non-trivial space
V , and there is no unique estimator of the regression parameter.

To obtain an estimate of the regression parameter β whenX is (close to) super-collinearity, Hoerl and Kennard
(1970) proposed an ad-hoc fix to resolve the (almost) singularity of X⊤X. Simply replace X⊤X by
X⊤X + λIp×p with λ ∈ [0,∞). The scalar λ is a tuning parameter, henceforth called the penalty
parameter.

Example 1.2 Super-collinearity (continued)
Recall the super-collinear design matrix X of Example 1.2. Then, for (say) λ = 1:

X⊤X+ λIp×p =





5 2 2
2 7 −4
2 −4 7



 .

The eigenvalues of this matrix are 11, 7, and 1. Hence, X⊤X + λIp×p has no zero eigenvalue and its
inverse is well-defined. �

With the ad-hoc fix for the singularity of X⊤X, Hoerl and Kennard (1970) proceed to define the ridge
regression estimator :

β̂(λ) = (X⊤X+ λIp×p)
−1X⊤Y, (1.2)

for λ ∈ [0,∞). Clearly, this is a well-defined estimator, even if X is high-dimensional (for λ strictly
positive). However, each choice of λ leads to a different ridge regression estimate. The set of all ridge

regression estimates {β̂(λ) : λ ∈ [0,∞)} is called the solution path of the ridge estimator.

Example 1.2 Super-collinearity (continued)
Recall the super-collinear design matrix X of Example 1.2. Suppose that the corresponding response
vector is Y = (1.3,−0.5, 2.6, 0.9)⊤. The ridge regression estimates for, e.g. λ = 1, 2, and 10 are then:

β̂(1) = (0.614, 0.548, 0.066)⊤,

β̂(2) = (0.537, 0.490, 0.048)⊤,

β̂(10) = (0.269, 0.267, 0.002)⊤.

The full solution path of the ridge estimator is plotted in Figure 1.1.

Having obtained an estimate of the regression parameter β, one can define the fit Ŷ. It is defined
analogous to the standard case:

Ŷ(λ) = Xβ̂(λ) = X(X⊤X+ λIp×p)
−1X⊤Y := H(λ)Y.

Previously, when using the ML estimator, the fit could be understood as a projection of Y onto the
subspace spanned by the columns of X. The fit Ŷ(λ) corresponding to the ridge estimator is not a

projection of Y onto X (confer Exercise 1.3 a). Consequently, the ‘ridge residuals’ Y − Ŷ(λ) are not

orthogonal to the fit Ŷ(λ) (confer Exercise 1.3 b).
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Figure 1.1 : Solution path of the ridge estimator and its variance. The left panel shows the solution path of the ridge
estimator for the data of Example 1.2. In the right panel the corresponding variance of the ridge estimator is plotted
against the (logarithm of the) penalty parameter.

1.2 Expectation

The left panel of Figure 1.1 shows ridge estimates of the regression parameters converging to zero as
the penalty parameter tends to infinity. This behaviour of the ridge estimator does not depend on the
specifics of the data set. To see this study the expectation of the ridge estimator:

E
[

β̂(λ)
]

= E
[

(X⊤X+ λIp×p)
−1X⊤Y

]

= E
{

[Ip×p + λ (X⊤X)−1]−1(X⊤X)−1 X⊤Y
}

= E
{

[Ip×p + λ (X⊤X)−1]−1 β̂
}

= [Ip×p + λ (X⊤X)−1]−1 E
(

β̂
)

= [Ip×p + λ (X⊤X)−1]−1 β

= X⊤X(λIp×p +X⊤X)−1 β.

Clearly, E
[

β̂(λ)
]

6= β for any λ > 0. Hence, the ridge estimator is biased.
From the expression above it is clear that the expectation of the ridge estimator vanishes as λ tends

to infinity:

lim
λ→∞

E
[

β̂(λ)
]

= lim
λ→∞

X⊤X(λIp×p +X⊤X)−1 β = 0p×1.

Hence, all regression coefficients are shrunken towards zero as the penalty parameter increases. This also
holds for X with p > n. Furthermore, this behaviour is not strictly monotone in λ: λa > λb does not
necessarily imply |β̂j(λa)| < |β̂j(λb)|. Upon close inspection this can witnessed from the ridge solution
path of β3 in Figure 1.1.

Example 1.4 Orthonormal design matrix
Consider an orthonormal design matrix X, i.e.:

X⊤X = Ip×p = (X⊤X)−1.

An example of an orthonormal design matrix would be:

X =
1

2









−1 −1
−1 1
1 −1
1 1









.
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This design matrix is orthonormal as X⊤X = I2×2, which is easily verified:

X⊤X =
1

4

(

−1 −1 1 1
−1 1 −1 1

)









−1 −1
−1 1
1 −1
1 1









=
1

4

(

4 0
0 4

)

.

In case of an orthonormal design matrix the relation between the OLS and ridge estimator is:

β̂(λ) = (X⊤X+ λIp×p)
−1X⊤Y

= (Ip×p + λIp×p)
−1X⊤Y

= (1 + λ)−1Ip×pX
⊤Y

= (1 + λ)−1(X⊤X)−1X⊤Y

= (1 + λ)−1β̂.

Hence, the ridge estimator scales the OLS estimator by a factor. When taking the expectation on both
sides, it is evident that the ridge estimator converges to zero as λ → ∞. �

1.3 Variance

As for the ML estimate of the regression parameter β of the linear regression model we may derive the
second moment of the ridge estimator. Hereto define:

Wλ = [I+ λ(X⊤X)−1]−1.

Using Wλ the ridge estimator β̂(λ) can be expressed as Wλβ̂ for:

Wλβ̂ = Wλ(X
⊤X)−1X⊤Y

= {(X⊤X)−1[X⊤X+ λIp×p]}−1(X⊤X)−1X⊤Y

= [X⊤X+ λIp×p]
−1X⊤X(X⊤X)−1X⊤Y

= [X⊤X+ λIp×p]
−1X⊤Y

= β̂(λ).

The linear operator Wλ thus transforms the ML estimator of the regression parameter into the ridge
estimator.

It is now easily seen that:

Var[β̂(λ)] = Var[Wλβ̂]

= WλVar[β̂]W
⊤
λ

= σ2Wλ(X
⊤X)−1W⊤

λ ,

= σ2[X⊤X+ λIp×p]
−1X⊤X{[X⊤X+ λIp×p]

−1}⊤,

in which we have used Var(AY) = AVar(Y)A⊤ for a non-random matrix A, the fact that Wλ is

non-random, and Var[β̂] = σ2(X⊤X)−1.
Like the expectation the variance of the ridge estimator vanishes as λ tends to infinity:

lim
λ→∞

Var
[

β̂(λ)
]

= lim
λ→∞

σ2Wλ(X
⊤X)−1W⊤

λ = 0p×p.

Hence, the variance of the ridge regression coefficient estimates decreases towards zero as the penalty
parameter becomes large. This is illustrated in the right panel of Figure 1.1 for the data of Example 1.2.

With an explicit expression of the variance of the ridge estimator at hand, we can compare it to that
of the OLS estimator:

Var[β̂]−Var[β̂(λ)] = σ2[(X⊤X)−1 −Wλ(X
⊤X)−1W⊤

λ ]

= σ2Wλ{[I+ λ(X⊤X)−1](X⊤X)−1[I+ λ(X⊤X)−1]⊤ − (X⊤X)−1}W⊤
λ

= σ2Wλ[2λ (X
⊤X)−2 + λ2(X⊤X)−3]W⊤

λ

= σ2[X⊤X+ λIp×p]
−1[2λ Ip×p + λ2(X⊤X)−1]{[X⊤X+ λIp×p]

−1}⊤.
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The difference is non-negative definite as each component in the matrix product is non-negative definite.
Hence,

Var[β̂] � Var[β̂(λ)]. (1.3)

In words, the variance of the ML estimator is larger than that of the ridge estimator (in the sense that
their difference is non-negative definite). The variance inequality (1.3) can be interpreted in terms of the
uncertainty of the estimate. This is illustrated by the next example.

Example 1.5 Variance comparison
Consider the design matrix:

X =









−1 2
0 1
2 −1
1 0









.

The variances of the ML and ridge (with λ = 1) estimates of the regression coefficients then are:

Var(β̂) = σ2

(

0.3 0.2
0.2 0.3

)

and Var(β̂) = σ2

(

0.1524 0.0698
0.0698 0.1524

)

.

These variance can be used to construct confidence intervals of the estimates. The 50%, 75% and 95%
confidence intervals for the ML and ridge estimates are plotted in Figure 1.2. In line with inequality
(1.3) the confidence intervals of the ridge estimate are smaller than that of the ML estimate. �
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Figure 1.2 : Solution path of the ridge estimator and its variance. The left panel shows the solution path of the ridge
estimator for the data of Example 1.2. In the right panel the corresponding variance of the ridge estimator is plotted
against the (logarithm of the) penalty parameter.

Example 1.4 Orthonormal design matrix (continued)

Assume the design matrix X is orthonormal. Then, Var[β̂] = σ2Ip×p and

Var[β̂(λ)] = σ2Wλ(X
⊤X)−1W⊤

λ

= σ2[Ip×p + λIp×p]
−1Ip×p{[Ip×p + λIp×p]

−1}⊤
= σ2(1 + λ)−2Ip×p.

As the penalty parameter λ is non-negative the former exceeds the latter. In particular, this expression
vanishes as λ → ∞. �
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1.4 Constrained estimation

The ad-hoc fix of Hoerl and Kennard (1970) to super-collinearity of the design matrix (and, consequently
the singularity of the matrix X⊤X) has been motivated post-hoc. The ridge estimator minimizes the
ridge loss function, which is defined as:

Lridge(β;λ) = ‖Y −Xβ‖22 + λ‖β‖22

=

n
∑

i=1

(Yi −Xi∗ β)
2 + λ

p
∑

j=1

β2
j .

This loss function is the traditional sum-of-squares augmented with a penalty. The particular form of the
penalty, λ‖β‖22 is referred to as the ridge penalty and λ as the penalty parameter. For λ = 0, minimization
of the ridge loss function yields the ML estimator. For any λ > 0, the ridge penalty contributes to the loss
function, affecting its minimum and its location. The minimum of the sum-of-squares is well-known. The
minimum of the ridge penalty is attained at β = 0p×1 whenever λ > 0. The β that minimizes Lridge(β;λ)
then balances the sum-of-squares and the penalty. The effect of the penalty in this balancing act is to
shrink the regression coefficients towards zero, its minimum. In particular, the larger λ, the larger the
contribution of the penalty to the loss function, the stronger the tendency to shrink non-zero regression
coefficients to zero (and decrease the contribution of the penalty to the loss function). This motivates
the name ‘penalty’ as non-zero elements of β increase (or penalize) the loss function.

To verify that the ridge estimator indeed minimizes the ridge loss function, proceed as usual. Take
the derivative with respect to β:

∂

∂β
Lridge(β;λ) = −2X⊤(Y −Xβ) + 2λ Ip×p β

= −2X⊤Y + 2 (X⊤X+ λ Ip×p)β.

Equate the derivative to zero and solve for β. This yields the ridge regression estimator.
The ridge estimator is thus a stationary point of the ridge loss function. A stationary point corre-

sponds to a minimum if the Hessian matrix with second order partial derivatives is positive definite. The
Hessian of the ridge loss function is

∂2

∂β ∂β⊤
Lridge(β;λ) = 2 (X⊤X+ λ Ip×p).

This Hessian is the sum of the semi-positive definite matrix X⊤X and the positive definite matrix λ Ip×p.
Lemma 14.2.4 of Harville (2008) then states that the sum of these matrices is itself a positive definite
matrix. Hence, the Hessian is positive definite and the ridge loss function has a stationary point at the
ridge estimator, which is a minimum.

The ridge regression estimator minimizes the ridge loss function. It rests to verify that is a global
minimum. To this end of we introduce the concept of a convex function. As a prerequisite, a set S ⊂ R

p

is called convex if for all β1,β2 ∈ S their weighted average βθ = (1− θ)β1 + θβ2 for all θ ∈ [0, 1] is itself
an element of S, thus βθ ∈ S. Examples of convex and nonconvex sets are depicted in Figure 1.3. A
function f(·) is convex if the set {y : y ≥ f(β) for all β ∈ S for any convex S}, called the epigraph of
f(·), is convex. Examples of convex and nonconvex functions are depicted in Figure 1.3. The ridge loss
function is the sum of two parabola’s, both convex functions in β. The sum of two convex functions is
itself convex (confer Lemma 9.4.2 of Fletcher 2008). The ridge loss function is thus convex. Theorem
9.4.1 of Fletcher 2008 then warrants, by the convexity of the ridge loss function, that the ridge estimator
is a global minimum.

From the ridge loss function the limiting behavior of the variance of the ridge regression estimator
can be understood. The ridge penalty with its minimum β = 0p×1 does not involve data and, conse-
quently, the variance of its minimum equals zero. With the ridge regression being a compromise between
the ML estimator and the minimum of the penalty, so is its variance a compromise of their variances.
As λ tends to infinity, the ridge estimator and its variance converge to the minimum and the variance of
the minimum, respectively. Hence, in the limit (large λ) the variance of the ridge regression estimator
vanishes. Understandably, as the penalty now fully dominates the loss function and, consequently, it
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Figure 1.3 : Top panels show examples of convex (left) and nonconvex (right) sets. Middle panels show examples
of convex (left) and nonconvex (right) functions. The left bottom left illustrates the ridge estimation as a constrained
estimation problem. The ellipses represent the contours of the ML loss function, with the blue dot at the center the
ML estimate. The circle is the ridge parameter constraint. The red dot is the ridge estimate. It is at the intersection
of the ridge constraint and the smallest contour with a non-empty intersection with the constraint. The right bottom
panel shows the data corresponding to Example 1.6. The grey line represents the ‘true’ relationship, while the black
line the fitted one.
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does no longer involve data (i.e. randomness).

Above it has been shown that the ridge estimator can be defined as:

β̂(λ) = argmin
β

‖Y −Xβ‖22 + λ‖β‖22. (1.4)

This minimization problem can be reformulated into the following constrained optimization problem
(illustrated in Figure 1.3):

β̂(λ) = arg min
‖β‖2

2≤c
‖Y −Xβ‖22, (1.5)

for some suitable c > 0. The constrained optimization problem (1.5) can be solved by means of the
Karush-Kuhn-Tucker (KKT) multiplier method, which minimizes a function subject to inequality con-
straints. The KKT multiplier method states that, under some regularity conditions (all met here), there

exists a constant ν ≥ 0, called the multiplier, such that the solution β̂(ν) of the constrained minimiza-
tion problem (1.5) satisfies the so-called KKT conditions. The first KKT condition (referred to as the
stationarity condition) demands that the gradient (with respect to β) of the Lagrangian associated with

the minimization problem equals zero at the solution β̂(ν). The Lagrangian for problem (1.5) is:

‖Y −Xβ‖22 + ν(‖β‖22 − c).

The second KKT condition (the complementarity condition) requires that ν(‖β̂(ν)‖22 − c) = 0. If ν = λ

and c = ‖β̂(λ)‖22, the ridge estimator β(λ) satisfies both KKT conditions. Hence, both problems have

the same solution when c = ‖β̂(λ)‖22.

The relevance of viewing the ridge regression estimator as the solution to a constrained estimation
problem becomes obvious when considering a typical threat to high-dimensional data analysis: overfit-
ting. Overfitting refers to the phenomenon of modelling the noise rather than the signal. In case the true
model is parsimonious (few covariates driving the response) and data on many covariates are available,
it is likely that a linear combination of all covariates yields a higher likelihood than a combination of the
few that are actually related to the response. As only the few covariates related to the response contain
the signal, the model involving all covariates then cannot but explain more than the signal alone: it also
models the error. Hence, it overfits the data. In high-dimensional settings overfitting is a real threat.
The number of explanatory variables exceeds the number of observations. It is thus possible to form a
linear combination of the covariates that perfectly explains the response, including the noise.

Large estimates of regression coefficients are often an indication of overfitting. Augmentation of the
estimation procedure with a constraint on the regression coefficients is a simple remedy to large parameter
estimates. As a conseuence it decreases the probability of overfitting. Overfitting is illustrated in the
next Example.

Example 1.6 (Overfitting)
Consider an artificial data set comprising of ten observations on a response Yi and nine covariates Xi,j .
All covariate data are sampled from the standard normal distribution: Xi,j ∼ N (0, 1). The response
is generated by Yi = Xi,1 + εi with εi ∼ N (0, 1/4). Hence, only the first covariate contributes to the
response.

The regression model :

Yi =

9
∑

j=1

Xi,jβj + εi

is fitted to the artificial data using R. This yields the regression parameter estimates:

β̂⊤ = (0.048,−2.386,−5.528, 6.243,−4.819, 0.760,−3.345,−4.748, 2.136).

As β⊤ = (1, 0, . . . , 0), many regression coefficient are clearly over-estimated.

The fitted values Ŷi = Xiβ̂ are plotted against the values of the first covariates in the right bottom
panel of Figure 1.3. As a reference the line x = y is added, which represents the ‘true’ model. The fitted
model follows the ‘true’ relationship. But it also captures the deviations from this line that represent
the errors. �
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1.5 Mean squared error

Previously, we motivated the ridge estimator as i) an ad hoc solution to collinearity, ii) a minimizer of
a penalized sum of squares. An alternative motivation comes from studying the Mean Squared Error
(MSE) of the ridge regression estimator: for a suitable choice of λ the ridge regression estimator may
outperform the ML regression estimator in terms of the MSE. Before we prove this, we first derive the
MSE of the ridge estimator and quote some auxiliary results.

Recall that (in general) for any estimator of a parameter θ:

MSE(θ̂) = E[(θ̂ − θ)2] = Var(θ̂) + [Bias(θ̂)]2.

Hence, the MSE is a measure of the quality of the estimator.
The MSE of the ridge estimator is:

MSE[β̂(λ)] = E[(Wλ β̂ − β)⊤ (Wλ β̂ − β)]

= E(β̂⊤W⊤
λ Wλ β̂)− E(β⊤ Wλ β̂)− E(β̂⊤W⊤

λ β) + E(β⊤β)

= E(β̂⊤W⊤
λ Wλ β̂)− E(β⊤ W⊤

λ Wλ β̂)− E(β̂⊤W⊤
λ Wλβ) + E(β⊤W⊤

λ Wλ β)

−E(β⊤W⊤
λ Wλ β) + E(β⊤ W⊤

λ Wλ β̂) + E(β̂⊤W⊤
λ Wλβ)

−E(β⊤Wλ β̂)− E(β̂⊤W⊤
λ β) + E(β⊤β)

= E[(β̂ − β)⊤W⊤
λ Wλ (β̂ − β)]

−β⊤W⊤
λ Wλ β + β⊤ W⊤

λ Wλ β + β⊤W⊤
λ Wλβ

−β⊤Wλ β − β⊤W⊤
λ β + β⊤β

= E
{

(β̂ − β)⊤W⊤
λ Wλ (β̂ − β)

}

+ β⊤(Wλ − Ip×p)
⊤(Wλ − Ip×p)β

= σ2 tr
{

Wλ (X
⊤X)−1 W⊤

λ

}

+ β⊤(Wλ − Ip×p)
⊤(Wλ − Ip×p)β.

In the last step we have used β̂ ∼ N (β, σ2 [X⊤X]−1) and the expectation of the quadratic form of a
multivariate random variable ε ∼ N (µε,Σε) is:

E(ε⊤ Λ ε) = tr(ΛΣε) + µ⊤
ε Λµε,

of course replacing ε by β̂ in this expectation. The first summand in the final derived expression for
MSE[β̂(λ)] is the sum of the variances of the ridge estimator, while the second summand can be thought

of the “squared bias” of the ridge estimator. In particular, limλ→∞ MSE[β̂(λ)] = β⊤β, which is the
squared biased for an estimator that equals zero (as does the ridge estimator in the limit).

Example 1.7 Orthonormal design matrix
Assume the design matrix X is orthonormal. Then, MSE[β̂] = p σ2 and

MSE[β̂(λ)] =
p σ2

(1 + λ)2
+

λ2

(1 + λ)2
β⊤β.

The latter achieves its minimum at: λ = pσ2/β⊤β. �

The following theorem and proposition are required for the proof of the main result.

Theorem 1.1 (Theorem 1 of Theobald, 1974)

Let θ̂1 and θ̂2 be (different) estimators of θ with second order moments:

Mk = E[(θ̂k − θ)(θ̂k − θ)⊤] for k = 1, 2,

and

MSE(θ̂k) = E[(θ̂k − θ)⊤A(θ̂k − θ)] for k = 1, 2,

where A � 0. Then, M1 −M2 � 0 if and only if MSE(θ̂1)−MSE(θ̂2) ≥ 0 for all A � 0.
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Proposition 1.1 (Farebrother, 1976)
Let A be a p×p dimensional, positive definite matrix, b be a nonzero p dimensional vector, and c ∈ R+.
Then, cA− bb⊤ ≻ 0 if and only if b⊤A−1b > c.

We are now ready to proof the main result, formalized as Theorem 1.2, that for the some λ the ridge
regression estimator yields a lower MSE than the ML regression estimator.

Theorem 1.2 (Theorem 2 of Theobald, 1974)

There exists λ > 0 such that MSE[β̂(λ)] < MSE[β̂(0)] = MSE[β̂].

Proof The second order moment matrix of the ridge estimator is:

M(λ) := E[(β̂(λ)− β)(β̂(λ) − β)⊤]

= E{β̂(λ)[β̂(λ)]⊤} − E[β̂(λ)]{E[β̂(λ)]}⊤ + E[β̂(λ)− β)]{E[β̂(λ) − β)]}⊤

= Var[β̂(λ)] + E[β̂(λ) − β)]{E[β̂(λ)− β)]}⊤.

Then:

M(0)−M(λ) = σ2(X⊤X)−1 − σ2Wλ(X
⊤X)−1W⊤

λ ]

−(Wλ − Ip×p)ββ
⊤(Wλ − Ip×p)

⊤

= σ2Wλ[2λ (X
⊤X)−2 + λ2(X⊤X)−3]W⊤

λ

−λ2[X⊤X+ λIp×p]
−1ββ⊤{[X⊤X+ λIp×p]

−1}⊤
= σ2[X⊤X+ λIp×p]

−1[2λ Ip×p + λ2(X⊤X)−1]{[X⊤X+ λIp×p]
−1}⊤

−λ2[X⊤X+ λIp×p]
−1ββ⊤{[X⊤X+ λIp×p]

−1}⊤
= λ[X⊤X+ λIp×p]

−1[2 σ2 Ip×p + λσ2(X⊤X)−1 − λββ⊤]{[X⊤X+ λIp×p]
−1}⊤

This is positive definite if and only if 2 σ2 Ip×p + λσ2(X⊤X)−1 − λββ⊤ ≻ 0. Hereto is suffices to show
that 2 σ2 Ip×p −λββ⊤ ≻ 0. By Proposition 1.1 this holds for λ such that 2σ2(β⊤β)−1 > λ. For these λ,
we thus have M(0)−M(λ). Application of Theorem 1.1 now concludes the proof. �

This result of Theobald (1974) is generalized by Farebrother (1976) to the class of design matrices X

with rank(X) < p.

Theorem 1.2 can be used to illustrate that the ridge regression estimator strikes a balance between
the variance and bias. This is illustrated in the left panel of Figure 1.4. For small λ, the variance of the
ridge estimator dominates the MSE. This may be understood when realizing that in this domain of λ
the ridge estimator is close to the unbiased ML regression estimator. For large λ, the variance vanishes
and the bias dominates the MSE. For small enough values of λ, the decrease in variance of the ridge
regression estimator exceeds the increase in its bias. As the MSE is the sum of these two, the MSE first
decreases as λ moves away from zero. In particular, as λ = 0 corresponds to the ML regression estimator,
the ridge regression estimator yields a lower MSE for these values of λ. In the right panel of Figure 1.4
MSE[β̂(λ)] < MSE[β̂(0)] for λ < 7 (roughly) and the ridge estimator outperforms the ML estimator.

Besides another motivation behind the ridge regression estimator, the use of Theorem 1.2 is limited.
The optimal choice of λ depends on the quantities β and σ2. These are unknown in practice. Then,
the penalty parameter is chosen in a data-driven fashion by means of cross-validation (see Section 1.10.2).

Remark 1.1

Theorem 1.2 can also be used to conclude on the biasedness of the ridge regression estimator. The
Gauss-Markov theorem (Rao, 1973) states (under some assumptions) that the ML regression estimator
is the best linear unbiased estimator (BLUE) with the smallest MSE. As the ridge regression estimator
is a linear estimator and outperforms (in terms of MSE) this ML estimator, it must be biased (for it
would otherwise refute the Gauss-Markov theorem).
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Figure 1.4 : Left panel: mean squared error, and its ‘bias’ and ‘variance’ parts, of the ridge regression estimator (for
artificial data). Right panel: mean squared error of the ridge and ML estimator of the regression coefficient vector
(for the same artificial data).

1.6 Bayesian regression

Ridge regression has a close connection to Bayesian linear regression. Bayesian linear regression assumes
the parameters β and σ2 to be the random variables, while at the same time considering X and Y as
fixed. Within the regression context, the conjugate priors of β and σ2 are:

β |σ2 ∼ N (0,
σ2

λ
Ip×p) and σ2 ∼ IG(α0, β0),

where IG denotes the inverse Gamma distribution with shape parameter α0 and scale parameter β0.
The penalty parameter can be interpreted as the precision of the prior, determining how informative the
prior should be. A smaller penalty (i.e. precision) corresponds to a wider prior, and a larger penalty to
a more informative, concentrated prior (Figure 1.5).

Under the assumption of the conjugate priors above, the joint posterior distribution of β and σ2 is
then:

fβ,σ2(β, σ2 |Y,X)

= fY (Y |X,β, σ2) fβ(β|σ2) fσ(σ
2)

∝ σ−n exp
[

− 1

2σ2
(Y −Xβ)⊤(Y −Xβ)

]

× σ−p exp
[

− 1

2σ2
λβ⊤β

]

× [σ2]−α0−1 exp
[

− β0

2σ2

]

.

As

(Y −Xβ)⊤(Y −Xβ) + λβ⊤β

= Y⊤Y − β⊤X⊤Y −Y⊤Xβ + β⊤X⊤Xβ + λβ⊤β

= Y⊤Y − β⊤(X⊤X+ λIp×p)(X
⊤X+ λIp×p)

−1X⊤Y

−Y⊤X(X⊤X+ λIp×p)
−1(X⊤X+ λIp×p)β + β⊤(X⊤X+ λIp×p)β

= Y⊤Y − β⊤(X⊤X+ λIp×p)β̂(λ)

− [β̂(λ)]⊤(X⊤X+ λIp×p)β + β⊤(X⊤X+ λIp×p)β

= Y⊤Y −Y⊤X(X⊤X+ λIp×p)
−1X⊤Y

+
[

β − β̂(λ)
]⊤

(X⊤X+ λIp×p)
[

β − β̂(λ)
]

,
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Figure 1.5 : Conjugate prior of the regression parameter β for various choices of λ, the penalty parameters c.q.
precision.

the posterior distribution can be rewritten to:

fβ,σ2(β, σ2 |Y,X) ∝ gβ(β |σ2,Y,X) gσ2 (σ2 |Y,X)

with

gβ(β |σ2,Y,X) ∝ exp
{

− 1

2σ2

[

β − β̂(λ)
]⊤

(X⊤X+ λIp×p)
[

β − β̂(λ)
]

}

.

Then, clearly the posterior mean of β is E(β) = β̂(λ). Hence, the ridge regression estimator can be
viewed as the Bayesian posterior mean estimator of β when imposing a Gaussian prior on the regression
parameter.

1.7 Degrees of freedom

The degrees of freedom consumed by ridge regression is calculated. The degrees of freedom may be used
in combination with an information criterion to decide on the value of the penalty parameter. Recall
from ordinary regression that:

Ŷ = X(X⊤X)−1X⊤Y = HY,

where H is the hat matrix. The degrees of freedom used in the regression is then equal to tr(H), the
trace of H. In particular, if X is of full rank, i.e. rank(X) = p, then tr(H) = p.

By analogy, the ridge-version of the hat matrix is:

H(λ) = X(X⊤X+ λIp×p)
−1X⊤.

Continuing this analogy, the degrees of freedom of ridge regression is given by the trace of the ridge hat
matrix H(λ):

tr[H(λ)] = tr[X(X⊤X+ λIp×p)
−1X⊤]

=

p
∑

j=1

d2jj
d2jj + λ

.
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The degrees of freedom consumed by ridge regression is monotone decreasing in λ. In particular:

lim
λ→∞

tr[H(λ)] = 0.

That is, in the limit no information from X is used. Indeed, β is forced to equal 0p×1 which is not
derived from data.

1.8 Eigenvalue shrinkage

The effect of the ridge penalty may also studied from the perspective of singular values. Let the singular
value decomposition of the n× p design matrix X be:

X = UDV⊤,

where D an n × n-diagonal matrix with the singular values, U an n × n dimensional matrix with
columns containing the left singular vectors (denoted ui), and V a p × n dimensional matrix with
columns containing the right singular vectors (denoted vi). The columns of U and V are orthogonal:
U⊤U = In×n = V⊤V.

The OLS estimator can then be rewritten in terms of the SVD-matrices as:

β̂ = (X⊤X)−1X⊤Y

= (VDU⊤UDV⊤)−1VDU⊤Y

= (VD2V⊤)−1VDU⊤Y

= VD−2V⊤VDU⊤Y

= VD−2DU⊤Y,

where D−2D is not simplified further to emphasize the effect of the ridge penalty. Similarly, the ridge
estimator can be rewritten in terms of the SVD-matrices as:

β̂ = (X⊤X+ λIp×p)
−1X⊤Y

= (VDU⊤UDV⊤ + λIp×p)
−1VDU⊤Y

= (VD2V⊤ + λVV⊤)−1VDU⊤Y

= V(D2 + λIn×n)
−1V⊤VDU⊤Y

= V(D2 + λIn×n)
−1DU⊤Y.

Combining the two results and writing (D)jj = djj we have:

djj ≥ djj
d2jj + λ

for all λ > 0.

Thus, the ridge penalty shrinks the singular values.

Return to the problem of the super-collinearity of X in the high-dimensional setting (p > n). The
super-collinearity implies the singularity of X⊤X and prevents the calculation of the OLS estimator of
the regression coefficients. However, X⊤X+ λIp×p is non-singular, with inverse:

(X⊤X+ λIp×p)
−1 =

p
∑

j=1

(d2jj + λ)−1vjv
⊤
j .

The right-hand side is well-defined for λ > 0.

1.9 Efficient calculation

In the high-dimensional setting the number of covariates p is large compared to the number of samples
n. In a microarray experiment p = 40000 and n = 100 is not uncommon. To perform ridge regression in
this context, the following expression needs to be evaluated numerically:

(X⊤X+ λIp×p)
−1X⊤Y.
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For p = 40000 this requires the inversion of a 40000× 40000 dimensional matrix. This is not feasible on
most desktop computers. However, there is a workaround.

Revisit the singular value decomposition of X = UDV⊤ and write R = UD. As both U and D are
(n × n)-dimensional matrices, so is R. Consequently, X is now decomposed as X = RV⊤. The ridge
estimator can be rewritten in terms of R and V:

β̂ = (X⊤X+ λIp×p)
−1X⊤Y

= (VR⊤RV⊤ + λIp×p)
−1VR⊤Y

= (VR⊤RV⊤ + λVV⊤)−1VR⊤Y

= V(R⊤R + λIn×n)
−1V⊤VR⊤Y

= V(R⊤R + λIn×n)
−1R⊤Y.

Hence, the reformulated ridge estimator involves the inversion of an (n × n)-dimensional matrix. With
n = 100 this is feasible on most standard computer.

Hastie and Tibshirani (2004) point out that the number of computation operations reduces from
O(p3) to O(pn2). In addition, they point out that this computational short-cut can be used in combina-
tion with other loss functions, for instance that of a GLM.

Avoidance of the inversion of the p × p matrix may be achieved in an other way. Hereto one needs
the Woodbury identity. Let A, U and V be p × p, p × n and n × p dimensional matrices, respectively.
The (simplified form of the) Woodbury identity then is:

(A+UV)−1 = A−1 −A−1U(In×n +VA−1U)−1VA−1.

Application of the Woodbury identity to the matrix inverse in the ridge estimator of the regression
parameter gives:

(λIp×p +X⊤X)−1 =
1

λ
Ip×p −

1

λ2
X⊤(In×n +

1

λ
XX⊤)−1X.

This gives:

(λIp×p +X⊤X)−1X⊤Y =
1

λ
X⊤Y − 1

λ2
X⊤(In×n +

1

λ
XX⊤)−1XX⊤Y

=
1

λ
X⊤

[

Y − 1

λ
X⊤(In×n +

1

λ
XX⊤)−1XY

]

.

The inversion of the p × p dimensional matrix λIp×p + X⊤X is thus replaced by that of the n × n
dimensional matrix In×n + 1

λ
XX⊤. In addition, this expression of the ridge regression estimator avoids

the singular value decomposition of X, which may in some cases introduce additional numerical errors
(e.g. at the level of machine precision).

1.10 Choice of the penalty parameter

Throughout the introduction of ridge regression and the subsequent discussion of its properties the
penalty parameter is considered known or ‘given’. In practice, it is unknown and the user needs to make
an informed decision on its value. Several strategies to facilitate such a decision are presented.

1.10.1 Information criterion

A popular strategy is to choose a penalty parameter that yields a good but parsimonious model. In-
formation criteria measure the balance between model fit and model complexity. Here we present the
Aikaike’s information criterion (AIC), but may other criteria have been presented in the literature (e.g.
Akaike, 1974, Schwarz, 1978). The AIC measures model fit by the log-likelihood and model complexity is
measured by the number of parameters used by the model. The number of model parameters in regular
regression simply corresponds to the number of covariates in the model. Or, by the degrees of freedom
consumed by the model, which is equivalent to the trace of the hat matrix. For ridge regression it thus
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seems natural to define model complexity analogously by the trace of the hat matrix. This yields the
AIC for the linear regression model with ridge estimates:

AIC(λ) = 2 p− 2 log(L̂)

= 2 tr[H(λ)]− 2 log{L[β̂(λ), σ̂2(λ)]}

= 2

p
∑

j=1

d2jj
d2jj + λ

+ 2n log[
√
2 π σ̂(λ)] +

1

σ̂2(λ)

n
∑

i=1

[yi −Xi,∗ β̂(λ)]
2.

The value of λ which minimizes AIC(λ) corresponds to the ‘optimal’ balance of model complexity and
overfitting.

Information criteria guide the decision process when having to decide among various different models.
Different models use different sets of explanatory variables to explain the behaviour of the response
variable. In that sense, the use of information criteria for the deciding on the ridge penalty parameter
may be considered inappropriate: ridge regression uses the same set of explanatory variables irrespective
of the value of the penalty parameter. Moreover, often ridge regression is employed to predict a response
and not to provide an insightful explanatory model. The latter need not yield the best predictions.
Finally, empirically we observe that the AIC often does not show an optimum inside the domain of the
ridge penalty parameter. Henceforth, we refrain from the use of the AIC (or any of its relatives) in
determining the optimal ridge penalty parameter.

1.10.2 Cross-validation

Instead of choosing the penalty parameter to balance model fit with model complexity, cross-validation
requires it (i.e. the penalty parameter) to yield a model with good prediction performance. Commonly,
this performance is evaluated on novel data. Novel data need not be easy to come by and one has to make
do with the data at hand. The setting of ‘original’ and novel data is then mimicked by sample splitting:
the data set is divided into two (groups of samples). One of these two data sets, called the training
set, plays the role of ‘original’ data on which the model is build. The second of these data sets, called
the test set, plays the role of the ‘novel’ data and is used to evaluate the prediction performance (often
operationalized as the log-likelihood or the prediction error) of the model built on the training data set.
This procedure (model building and prediction evaluation on training and test set, respectively) is done
for a collection of possible penalty parameter choices. The penalty parameter that yields the model with
the best prediction performance is to be preferred. The thus obtained performance evaluation depends
on actual split of the data set. To remove this dependence the data set is split many times into a training
and test set. For each split the model parameters are estimated for all choices of λ using the training
data and estimated parameters are evaluated on the corresponding test set. The penalty parameter that
on average over the test sets performs best (in some sense) is then selected.

When the repetitive splitting of the data set is done randomly, samples may accidently end up in a
fast majority of the splits in either training or test set. Such samples may have an unbalanced influence
on either model building or prediction evaluation. To avoid this K-fold cross-validation structures the
data splitting. The samples are divided into K more or less equally sized subsets. In turn (at each split)
one of these subsets plays the role of the test set while the union of the remaining subsets constitute the
training set. Such a splitting warrants a balanced representation of each sample in both training and test
set over the splits. Still the division into the K subsets involves a degree of randomness. This may be
fully excluded when choosing K = n. This particular case is referred to as leave-one-out cross-validation
(LOOCV). For illustration purposes the LOOCV procedure is detailed fully below:

0) Define a range of interest for the penalty parameter.
1) Divide the data set into training and test set comprising samples {1, . . . , n}\i and {i}, respectively.
2) Fit the linear regression model by means of ridge estimation for each λ in the grid using the training

set. This yields:

β̂−i(λ) = (X⊤
−i,∗X−i,∗ + λIp×p)

−1X⊤
−i,∗Y−i

and the corresponding estimate of the error variance σ̂2
−i(λ).

3) Evaluate the prediction performance of these models on the test set by log{L[Yi,Xi,∗; β̂−i(λ), σ̂
2
−i(λ)]}.

Or, by the prediction error |Yi −Xi,∗β̂−i(λ)|, possibly squared.
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4) Repeat steps 1) to 3) such that each sample plays the role of the test set once.
5) Average the prediction performances of the test sets at each grid point of the penalty parameter:

1

n

n
∑

i=1

log{L[Yi,Xi,∗; β̂−i(λ), σ̂
2
−i(λ)]}.

The quantity above is called the cross-validated log-likelihood. It is an estimate of the prediction
performance of the model corresponding to this value of the penalty parameter on novel data.

6) The value of the penalty parameter that maximizes the cross-validated log-likelihood is the value
of choice.

Finally, we refer to Meijer and Goeman (2013) for efficient calculations of the LOOCV scheme in a ridge
penalized context.

1.11 Simulations

Simulations are presented that illustrate properties of the ridge estimator not discussed explicitly in the
previous sections of these notes.

1.11.1 Role of the variance of the covariates

In many applications of high-dimensional data the covariates are standardized prior to the execution of
the ridge regression. Before we discuss whether this is appropriate, we first illustrate the effect of ridge
penalization on covariates with distinct variances using simulated data.

The simulation involves one response to be (ridge) regressed on fifty covariates. Data (with n = 1000)
for the covariates, denoted X, are drawn from a multivariate normal distribution: X ∼ N (050×1,Σ) with
Σ diagonal and (Σ)jj = j/10. From this the response is generated through Y = Xβ+ ε with β = 150×1

and ε ∼ N (050×1, I50×50).
With the simulated data at hand the ridge regression estimates of β are evaluated for a large grid of

the penalty parameter λ. The resulting ridge regularization paths of the regression coefficients are plotted
(Figure 1.6). All paths start (λ = 0) close to one and vanish as λ → ∞. However, ridge regularization
paths of regression coefficients corresponding to covariates with a large variance dominate those with a
low variance.
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Figure 1.6 : Ridge regularization paths for coefficients of the 50 covariates. Left panel: uncorrelated covariates
with distinct variances. Color and line type indicated the grouping of the covariates by their variance. Right panel:
correlated covariates with equal variance. Color and line type correspond to the five blocks of the covariate matrix
Σ.
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Ridge regression’s preference of covariates with a large variance can be understood as follows. First
note that the ridge regression estimator now can be written as:

β(λ) = [Var(X) + λI50×50]
−1Cov(X,Y)

= (Σ+ λI50×50)
−1Σ[Var(X)]−1Cov(X,Y)

= (Σ+ λI50×50)
−1Σβ.

Plug in the employed parametrization of Σ, which gives:

[β(λ)]j =
j

j + 50λ
(β)j .

Hence, the larger the covariate’s variance (corresponding to the larger j), the larger its ridge regression
coefficient estimate. Ridge regression thus prefers (among a set of covariates with comparable effect
sizes) those with larger variances.

Should one thus standardize the covariates prior to ridge regression analysis? When dealing with
gene expression data from microarrays, the data have been subjected to a series of pre-processing steps
(e.g. quality control, background correction, within- and between-normalization). The purpose of these
steps is to make the expression levels of genes comparable both within and between hybridizations.
The preprocessing should thus be considered an inherent part of the measurement. As such it is to be
done independently of whatever down-stream analysis is to follow and further tinkering with the data is
preferably to be avoided (as it may mess up the ‘comparable-ness’ of the expression levels as achieved
by the preprocessing). For other data types different considerations may apply.

Among the considerations to decide on standardization of the covariates, one should also include the
fact ridge estimates prior and posterior to scaling do not simply differ by a factor. To see this assume
that the covariates have been centered. Scaling of the covariates amounts to post-multiplication of the
design matrix by a p× p diagonal matrix A with the reciprocals of the covariates’ scale estimates on its
diagonal (Sardy, 2008). Hence, the ridge estimator (for the rescaled data) is then given by:

min
β

‖Y −XAβ‖22 + λ‖β‖22.

Apply the change-of-variable γ = Aβ and obtain:

min
γ

‖Y −Xγ‖22 + λ‖A−1γ‖22 = min
β

‖Y −Xγ‖22 +
p

∑

j=1

λ[(A)jj ]
−2γ2

j .

Effectively, the scaling is equivalent to covariate-wise penalization. The ‘scaled’ ridge estimator may then
be derived along the same lines as before in Section 1.4:

β̂(scaled)(λ) = A−1γ̂(λ) = A−1(X⊤X+ λA−2)−1X⊤Y.

In general, this is unequal to the ridge estimator without the rescaling of the columns of the design
matrix. Moreover, it should be clear that β̂(scaled)(λ) 6= Aβ̂(λ).

1.11.2 Ridge regression and collinearity

Initially, ridge regression was motivated as an ad-hoc fix of (super)-collinear covariates in order to obtain
a well-defined estimator. We now study the effect of this ad-hoc fix on the regression coefficient estimates
of collinear covariates. In particular, their ridge regularization paths are contrasted to those of ‘non-
collinear’ covariates.

To this end, we consider a simulation in which one response is regressed on 50 covariates. The
data of these covariates, stored in a design matrix denoted X, are sampled from a multivariate normal
distribution, with mean zero and a 5× 5 blocked covariance matrix:

Σ =













Σ11 010×10 010×10 010×10 010×10

010×10 Σ22 010×10 010×10 010×10

010×10 010×10 Σ33 010×10 010×10

010×10 010×10 010×10 Σ44 010×10

010×10 010×10 010×10 010×10 Σ55
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with

Σkk =
k − 1

5
110×10 +

6− k

5
I10×10.

The data of the response variable Y are then obtained through: Y = Xβ + ε, with ε ∼ N (0n, In×n)
and β = 150×1. Hence, all covariates contribute equally to the response. Would the columns of X be
orthogonal, little difference in the ridge estimates of the regression coefficients is expected.

The results of this simulation study with sample size n = 1000 are presented in Figure 1.6. All 50
regularization paths start close to one as λ is small and converge to zero as λ → ∞. But the paths of
covariates of the same block of the covariance matrix Σ quickly group, with those corresponding to a
block with larger off-diagonal elements above those with smaller ones. Thus, ridge regression prefers (i.e.
shrinks less) coefficient estimates of strongly positively correlated covariates.

Intuitive understanding of the observed behaviour may be obtained from the p = 2 case. Let U ,
V and ε be independent random variables with zero mean. Define X1 = U + V , X2 = U − V , and
Y = β1X1 + β2X2 + ε with β1 and β2 constants. Hence, E(Y ) = 0. Then:

Y = (β1 + β2)U + (β1 − β2)V + ε

= γuU + γvV + ε

and Cor(X1, X2) = [Var(U)−Var(V )]/[Var(U)+Var(V )]. The random variables X1 and X2 are strongly
positively correlated if Var(U) ≫ Var(V ).

The ridge regression estimator associated with regression of Y on U and V is:

γ(λ) =

(

Var(U) + λ 0
0 Var(V ) + λ

)−1 (

Cov(U, Y )
Cov(V, Y )

)

.

For large enough λ

γ(λ) ≈ 1

λ

(

Var(U) 0
0 Var(V )

)(

β1 + β2

β1 − β2

)

.

When Var(U) ≫ Var(V ) and β1 ≈ β2, the ridge estimate of γv vanishes for large λ. Hence, ridge
regression prefers positively covariates with similar effect sizes.

The above needs some attenuation. Among others it depends on: i) the number of covariates in
each block, ii) the size of the effects, i.e. regression coefficients of each covariate, and iii) the degree of
collinearity. Possibly, there are more factors influencing the behaviour of the ridge estimator presented
in this subsection.

This behaviour of ridge regression is to be understood when using (say) gene expression data to predict
a certain clinical outcome. Genes work in concert to fulfil a certain function in the cell. Consequently,
one expects their expression levels to be correlated. Indeed, gene expression studies exhibit many co-
expressed genes, that is, genes with correlating transcript levels.

1.12 Illustration

The application of ridge regression to actual data aims to illustrates its use in practice.

1.12.1 MCM7 expression regulation by microRNAs

Recently, a new class of RNA was discovered, referred to as microRNA. MicroRNAs are non-coding,
single stranded RNAs of approximately 22 nucleotides. Like mRNAs, microRNAs are encoded in and
transcribed from the DNA. MicroRNAs play an important role in the regulatory mechanism of the cell.
MicroRNAs down-regulate gene expression by either of two post-transcriptional mechanisms: mRNA
cleavage or transcriptional repression. This depends on the degree of complementarity between the
microRNA and the target. Perfect or nearly perfect complementarity of the mRNA to the microRNA
will lead to cleavage and degradation of the target mRNA. Imperfect complementarity will repress the
productive translation and reduction in protein levels without affecting the mRNA levels. A single
microRNA can bind to and regulate many different mRNA targets. Conversely, several microRNAs can
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bind to and cooperatively control a single mRNA target (Bartel, 2004; Esquela-Kerscher and Slack, 2006;
Kim and Nam, 2006).

In this illustration we wish to confirm the regulation of mRNA expression by microRNAs in an
independent data set. We cherry pick an arbitrary finding from literature reported in Ambs et al. (2008),
which focusses on the microRNA regulation of the MCM7 gene in prostate cancer. The MCM7 gene is
involved in DNA replication (Tye, 1999), a cellular process often derailed in cancer. Furthermore, MCM7
interacts with the tumor-suppressor gene RB1 (Sterner et al., 1998). Several studies indeed confirm the
involvement of MCM7 in prostate cancer (Padmanabhan et al., 2004). And recently, it has been reported
that in prostate cancer MCM7 may be regulated by microRNAs (Ambs et al., 2008).

We here assess whether the MCM7 down-regulation by microRNAs can be observed in a data set
other than the one upon which the microRNA-regulation of MCM7 claim has been based. To this
end we download from the Gene Expression Omnibus (GEO) a prostate cancer data set (presented by
Wang et al., 2009). This data set (with GEO identifier: GSE20161) has both mRNA and microRNA
profiles for all samples available. The preprocessed (as detailed in Wang et al., 2009) data are downloaded
and require only minor further manipulations to suit our purpose. These manipulations comprise i)
averaging of duplicated profiles of several samples, ii) gene- and mir-wise zero-centering of the expression
data, iii) averaging the expression levels of the probes that interrogate MCM7. Eventually, this leaves
90 profiles each comprising of 735 microRNA expression measurements.

Listing 1.2 R code

# load libraries

library (GEOquery )

library (RmiR .hsa)

library (penalized )

# extract data

slh <- getGEO("GSE20161 ", GSEMatrix =TRUE )

GEdata <- slh[1][[1]]

MIRdata <- slh[2][[1]]

# average duplicate profiles

Yge <- numeric()

Xmir <- numeric()

for (sName in 1:90){

Yge <- cbind(Yge , apply(exprs(GEdata)[,sName ,drop =FALSE], 1, mean ))

Xmir <- cbind(Xmir , apply(exprs(MIRdata )[,sName ,drop =FALSE], 1, mean ))

}

colnames (Yge) <- paste("S", 1:90, sep="")

colnames (Xmir ) <- paste("S", 1:90, sep="")

# extact mRNA expression of the MCM7N tumor suppressor gene

entrezID <- c("4176 ")

geneName <- "MCM7 "

Y <- Yge[which(levels(fData(GEdata)[ ,6])[fData(GEdata)[ ,6]] == geneName ),]

# average gene expression levels over probes

Y <- apply(Y, 2, mean )

# mir -wise centering mir expression data

X <- t( sweep(Xmir , 1, rowMeans (Xmir)))

# generate cross -validated likelihood profile

profL2(Y, penalized =X, minlambda2 =1, maxlambda2 =20000 , plot =TRUE )

# decide on the optimal penalty value directly

optLambda <- optL2(Y, penalized =X)$ lambda

# obtain the ridge regression estimages

ridgeFit <- penalized (Y, penalized =X, lambda2=optLambda )
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# plot them as histogram

hist (coef (ridgeFit , " penalized "), n=50, col="blue ", border="lightblue ", xlab="

ridge regression  estimates  with  optimal  lambda", main ="Histogram  of ridge 

estimates ")

# linear prediction from ridge

Yhat <- predict(ridgeFit , X)[ ,1]

plot (Y ~ Yhat , pch =20, xlab ="pred . MCM7  expression ", ylab ="obs. MCM7  expression

")

With this prostate data set at hand we now investigate whether MCM7 is regulated by microRNAs.
Hereto we fit a linear regression model regressing the expression levels of MCM7 onto those of the
microRNAs. As the number of microRNAs exceeds the number of samples, ordinary least squares fails
and we resort to the ridge estimator of the regression coefficients. First, an informed choice of the penalty
parameter is made through maximization of the LOOCV log-likelihood, resulting in λopt = 1812.826.
Having decided on the value of the to-be-employed penalty parameter, the ridge regression estimator
can now readily be evaluated. The thus fitted model allows for the evaluation of microRNA-regulation
of MCM7. E.g., by the proportion of variation of the MCM7 expression levels by the microRNAs as
expressed in coefficient of determination: R2 = 0.4492. Alternatively, but closely related, observed
expression levels may be related to the linear predictor of the MCM7 expression levels: Ŷ(λopt) =

Xβ̂(λopt). The Spearman correlation of response and predictor equals 0.6295. A visual inspection is
provided by the top-left panel of Figure 1.7. Note the difference in scale of the x- and y-axes. This is
due to the fact that the regression coefficients have been estimated in penalized fashion, consequently
shrinking estimates of the regression coefficients towards zero leading to small estimates and in turn
compressing the range of the linear prediction. The above suggests there is indeed association between
the microRNA expression levels and those of MCM7.
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Figure 1.7 : Left panel: Observed vs. (ridge) fitted MCM7 expression values. Right panel: Histogram of the ridge
regression coefficient estimates.

The overall aim of this illustration was to assess whether microRNA-regulation of MCM7 could also
be observed in this prostate cancer data set. In this endeavour the dogma (stating this regulation
should be negative) has nowhere been used. A first simple assessment of the validity of this dogma
studies the signs of the estimated regression coefficients. The ridge regression estimate has 394 out of
the 735 microRNA probes with a negative coefficient. Hence, a small majority has a sign in line with
the ‘microRNA ↓ mRNA’ dogma. When, in addition, taking the size of these coefficients into account
(Figure 1.7, right panel), the negative regression coefficient estimates do not substantially differ from
their positive counterparts (as can be witnessed from their almost symmetrical distribution around zero).
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Hence, the value of the ‘microRNA ↓ mRNA’ dogma is not confirmed by this ridge regression analysis
of the MCM7-regulation by microRNAs. Nor is it refuted.

The implementation of ridge regression in the penalized-package offers the possibility to fully obey
the dogma on negative regulation of mRNA expression by microRNAs. This requires all regression
coefficients to be negative. Incorporation of the requirement into the ridge estimation augments the
constrained estimation problem with an additional constraint:

β̂(λ) = arg min
‖β‖22≤c(λ)

βj≤0 for all j

‖Y −Xβ‖22.

With the additional non-positivity constraint on the parameters, there is no explicit solution for the
estimator. The ridge estimate of the regression parameters is then found by numerical optimization
using e.g. the Newton-Raphson algorithm or a gradient descent approach. The next listing gives the
R-code for ridge estimation with the non-positivity constraint of the linear regression model.

Listing 1.3 R code

# decide on the optimal penalty value with sign constraint on paramers

optLambda <- optL2(Y, penalized =-X, positive =rep(TRUE , ncol (X)))$lambda

# obtain the ridge regression estimages

ridgeFit <- penalized (Y, penalized =-X, lambda2=optLambda , positive =rep(TRUE ,

ncol (X)))

# linear prediction from ridge

Yhat <- predict(ridgeFit , -X)[ ,1]

plot (Y ~ Yhat , pch =20, xlab ="predicted  MCM7  expression  level", ylab ="observed  

MCM7  expression  level")

cor(Y, Yhat , m="s")

summary (lm(Y ~ Yhat ))[8]

The linear regression model linking MCM7 expression to that of the microRNAs is fitted by ridge
regression while simultaneously obeying the ‘negative regulation of mRNA by microRNA’-dogma to the
prostate cancer data. In the resulting model 401 out of 735 microRNA probes have a nonzero (and
negative) coefficient. There is a large overlap in microRNAs with a negative coefficient between those
from this and the previous fit. The models are also compared in terms of their fit to the data. The
Spearman rank correlation coefficient between response and predictor for the model without positive
regression coefficients equals 0.679 and its coefficient of determination 0.524 (confer the left panel of 1.8
for a visualization). This is a slight improvement upon the unconstrained ridge estimated model. The
improvement may be small but it should be kept in mind that the number of parameters used by both
models is 401 (for the model without positive regression coefficients) vs. 735. Hence, with close to half
the number of parameters the dogma-obeying model gives a somewhat better description of the data.
This may suggest that there is some value in the dogma as inclusion of this prior information leads to a
more parsimonious model without any loss in fit.

The dogma-obeying model selects 401 microRNAs that aid in the explanation of the variation in the
gene expression levels of MCM7. There is an active field of research, called target prediction, trying to
identify which microRNAs target the mRNA of which genes. Within R there is a collection of packages
that provide the target prediction of known microRNAs. The packages differ on the method (e.g. exper-
imental or sequence comparison) that has been used to arrive at the prediction. These target predictions
may be used to evaluate the value of the found 401 microRNAs. Ideally, there would be a substantial
amount of overlap. The R-script that loads the target predictions and does the comparison is below.

Listing 1.4 R code

# extract mir names and their (hypothesized ) mrna target

mir2target <- numeric ()

mirPredProgram <- c(" targetscan ", " miranda", "mirbase ", "pictar", "mirtarget2 ")

for (program in mirPredProgram ){

slh <- dbReadTable (RmiR .hsa_dbconn (), program )

slh <- cbind(program , slh[ ,1:2])

colnames (slh) <- c("method", "mir", "target")
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Figure 1.8 : Left panel: Observed vs. (ridge) fitted MCM7 expression values (with the non-positive constraint on the
parameters in place). Right panel: Histogram of the ridge regression coefficient estimates (from the non-positivity
constrained analysis).

mir2target <- rbind(mir2target , slh)

}

mir2target <- unique( mir2target )

mir2target <- mir2target [which(mir2target [ ,3] == entrezID ),]

uniqMirs <- tolower(unique(mir2target [,2]))

# extract names of mir -probe on array

arrayMirs <- tolower(levels(fData(MIRdata )[ ,3])[ fData(MIRdata)[ ,3]])

# which mir -probes are predicted to down -regulate MCM7

selMirs <- intersect (arrayMirs , uniqMirs )

ids <- which(arrayMirs %in% selMirs)

# which ridge estimates are non -zero

nonzeroBetas <- (coef (ridgeFit , "penalized ") != 0)

# which mirs are predicted to

nonzeroPred <- 0 * betas

nonzeroPred [ids] <- 1

# contingency table and chi -square test

table(nonzeroBetas , nonzeroPred )

chisq.test (table(nonzeroBetas , nonzeroPred ))

β̂j = 0 β̂j < 0

microRNA not target 323 390
microRNA target 11 11

Table 1.1 : Cross-tabulation of the microRNAs being a potential target of MCM7 vs. the value of its regression
coefficient in the dogma-obeying model.

With knowledge available on each microRNA whether it is predicted (by at least one target prediction
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package) to be a potential target of MCM7, it may be cross-tabulated against its corresponding regression
coefficient estimate in the dogma-obeying model being equal to zero or not. Table 1.1 contains the
result. Somewhat superfluous considering the data, we may test whether the targets of MCM7 are
overrepresented in the group of strictly negatively estimated regression coefficients. The corresponding
chi-squared test (with Yates’ continuity correction) yields the test statistic χ2 = 0.0478 with a p-value
equal to 0.827. Hence, there is no enrichment among the 401 microRNAS of those that have been
predicted to target MCM7. This may seem worrisome. However, the microRNAs have been selected
for their predictive power of the expression levels of MCM7. Variable selection has not been a criterion
(although the sign constraint implies selection). Moreover, criticism on the value of the microRNA target
prediction has been accumulating in recent years.

1.13 Conclusion

We discussed ridge regression as a modification of linear regression to overcome the empirical non-
identifiability of the latter when confronted with high-dimensional data. The means to this end was the
addition of a (ridge) penalty to the sum-of-squares loss function of the linear regression model, which
turned out to be equivalent to constraining the parameter domain. This warranted the identification of
the regression coefficients, but came at the cost of introducing bias in the estimates. Several properties
of ridge regression like moments, MSE, and its Bayesian interpretation have been reviewed. Finally,
its behaviour and use have been illustrated in simulation and omics data. In all, these notes hopefully
present a useful overview of the potential and limitations of ridge regression.

Throughout the response variable has been assumed to be continuous. Often, this is not the case
and it is e.g. binary (assuming only two values) or a survival outcome. When linking such a response
to a high-dimensional set of covariates, the empirical identifiability problem is encountered. Again,
penalization comes to the rescue: the ridge penalty may be combined with other link functions.

1.14 Exercises

Question 1.1 †

Find the ridge regression solution for the data below for a general value of λ and for the straight line
model Y = β0+β1X+ε (only apply the ridge penalty to the slope parameter, not to the intercept). Show
that when λ is chosen as 0.4, the ridge solution fit is Ŷ = 40+1.75X . Data: X⊤ = (X1, X2, . . . , X8)

⊤ =
(−2,−1,−1,−1, 0, 1, 2, 2)⊤, and Y⊤ = (Y1, Y2, . . . , Y8)

⊤ = (35, 40, 36, 38, 40, 43, 45, 43)⊤.

Question 1.2 ‡

Show that the ridge regression estimates can be obtained by ordinary least squares regression on an
augmented data set. We augment the centered matrix X with p additional row

√
λI, and augment y

with p zeros.

Question 1.3

The coefficients β of a linear regression model, Y = Xβ+ ε, are estimated by β̂ = (X⊤X)−1X⊤Y. The

associated fitted values then given by Ŷ = X β̂ = X(X⊤X)−1X⊤Y = PY, where P = X(X⊤X)−1X⊤.
The matrix P is a projection matrix and satisfies P = P2. Hence, linear regression projects the response
Y onto the vector space spanned by the columns of Y. Consequently, the residuals ε̂ and Ŷ are
orthogonal.

Now consider the ridge estimator of the regression coefficients: β̂(λ) = (X⊤X + λIpp)
−1X⊤Y. Let

Ŷ(λ) = Xβ̂(λ) be the vector of associated fitted values.

Question 1.3 a
Show that the matrix Q = X(X⊤X + λIpp)

−1X⊤, associated with ridge regression, is not a projection
matrix (for any λ > 0).

Question 1.3 b
Show that the ‘ridge fit’ Ŷ(λ) is not orthogonal to the associated ‘ridge residuals’ ε̂(λ) (for any λ > 0).

Question 1.4
†This exercise is freely rendered from Draper and Smith (1998)
‡This exercise is freely rendered from Hastie et al. (2009), but can be found in many other places. The original source

is unknown to the author.
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The ridge penalty may be interpreted as a multivariate normal prior on the regression coefficients:
β ∼ N (0, λ−1Ipp). Different priors may be considered. In case the covariates are spatially related
in some sense (e.g. genomically), it may of interest to assume a first-order autoregressive prior: β ∼
N (0, λ−1ΣA), in which ΣA is a p × p-correlation matrix with (ΣA)j1,j2 = ρ|j1−j2| for some correlation
coefficient ρ ∈ [0, 1). Hence,

ΣA =











1 ρ . . . ρp−1

ρ 1 . . . ρp−2

...
...

. . .
...

ρp−1 ρp−2 . . . 1











.

Question 1.4 a
The penalized loss function associated with this AR(1) prior is:

L(β;λ,ΣA) = ‖Y −Xβ‖22 + λβ⊤Σ−1

A β.

Find the minimizer of this loss function.

Question 1.4 b
What is the effect of ρ on the ridge estimates? Contrast this to the effect of λ. Illustrate this on (simu-
lated) data.

Question 1.4 c
Instead of an AR(1) prior assume a prior with a uniform correlation between the elements of β. That
is, replace ΣA by ΣU , given by:

ΣU =





1 ρ ρ
ρ 1 ρ
ρ ρ 1





Investigate (again on data) the effect of changing from the AR(1) to the uniform prior on the ridge
regression estimates.

Question 1.5

Consider an experiment involving n cancer samples. For each sample i the transcriptome of its tumor
has been profiled and is denoted Xi = (Xi1, . . . , Xip)

⊤ where Xij represents the gene j = 1, . . . , p in
sample i. Additionally, the tumors of the samples are classified as benign and malignant.

Question 1.5 a
Write down the logistic regression model that links tumor status (as the response variable) to the ex-
pression levels.

Question 1.5 b
Specify its loss function for penalized maximum likelihood estimation of the parameters. Penalization is
via the ridge penalty.

Question 1.5 c
From this loss function, derive the estimation equation for the logistic regression coefficients.

Question 1.5 d
Describe (in words) how you would find the ‘ridge ML estimate’.

Question 1.6

Download the multtest package from BioConductor:
> source("http://www.bioconductor.org/biocLite.R")
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> biocLite("multtest")

Activate the library and load leukemia data from the package:
> library(multtest)

> data(golub)

The objects golub and golub.cl are now available. The matrix-object golub contains the expression
profiles of 38 leukemia patients. Each profile comprises expression levels of 3051 genes. The numeric-
object golub.cl is an indicator variable for the leukemia type (AML or ALL) of the patient.

Question 1.6 a
Relate the leukemia subtype and the gene expression levels by a logistic regression model. Fit this model
by means of penalized maximum likelihood, employing the ridge penalty with penalty parameter λ = 1.
This is implemented in the penalized-packages available from CRAN. Note: center (gene-wise) the ex-
pression levels around zero.

Question 1.6 b
Obtain the fits from the regression model. The fit is almost perfect. Could this be due to overfitting
the data? Alternatively, could it be that the biological information in the gene expression levels indeed
determines the leukemia subtype almost perfectly?

Question 1.6 c
To discern between the two explanations for the almost perfect fit, randomly shuffle the subtypes. Refit
the logistic regression model and obtain the fits. On the basis of this and the previous fit, which expla-
nation is more plausible?

Question 1.6 d
Compare the fit of the logistic model with different penalty parameters, say λ = 1 and λ = 1000. How
does λ influence the possibility of overfitting the data?

Question 1.6 e
Describe what you would do to prevent overfitting.

Question 1.7

Download the breastCancerNKI package from BioConductor:
> source("http://www.bioconductor.org/biocLite.R")

> biocLite("breastCancerNKI")

Activate the library and load leukemia data from the package:
> library(breastCancerNKI)

> data(nki)

The eset-object nki is now available. It contains the expression profiles of 337 breast cancer patients.
Each profile comprises expression levels of 24481 genes. Extract the expression data from the object,
remove all genes with missing values, center the gene expression gene-wise around zero, and limit the
data set to the first thousand genes. The reduction of the gene dimensionality is only for computational
speed.

X <- exprs(nki)

X <- X[-which(rowSums(is.na(X)) > 0),]

X <- apply(X[1:1000,], 1, function(X) X - mean(X) ) .
Furthermore, extract the estrogen receptor status (short: ER status), an important prognostic indicator
for breast cancer.

Y <- pData(nki)[,8]

Question 1.7 a
Relate the ER status and the gene expression levels by a logistic regression model, which is fitted by
means of ridge penalized maximum likelihood. First, find the optimal value of the penalty parameter of λ
by means of cross-validation. This is implemented in optL2-function of the penalized-package available
from CRAN.

Question 1.7 b
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Evaluate whether the cross-validated likelihood indeed attains a maximum at the optimal value of λ.
This can be done with the profL2-function of the penalized-package available from CRAN.

Question 1.7 c
Investigate the sensitivity of the penalty parameter selection with respect to the choice of the cross-
validation fold.

Question 1.7 d
Does the optimal lambda produce a reasonable fit?
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