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Classical Regularization Methods

In this section we review some of the most commonly used methods used when
ill-posed inverse problems are treated. These methods are called regulariza-
tion methods. Although the emphasis in this book is not on regularization
techniques, it is important to understand the philosophy behind them and
how the methods work. Later we analyze these methods also from the point
of view of statistics which is one of the main themes in this book.

2.1 Introduction: Fredholm Equation

To explain the basic ideas of regularization, we consider a simple linear inverse
problem. Following the traditions, the discussion in this chapter is formulated
in terms of Hilbert spaces. A brief review of some of the functional analytic
results can be found in Appendix A of the book.

Let H1 and H2 be separable Hilbert spaces of finite or infinite dimensions
and A : H1 → H2 a compact operator. Consider first the problem of finding
x ∈ H1 satisfying the equation

Ax = y, (2.1)

where y ∈ H2 is given. This equation is said to be a Fredholm equation of the
first kind. Since, clearly

1. the solution exists if and only if y ∈ Ran(A), and
2. the solution is unique if and only if Ker(A) = {0},

both conditions must be satisfied to ensure that the problem has a unique
solution. From the practical point of view, there is a third obstacle for finding
a useful solution. The vector y typically represents measured data which is
therefore contaminated by errors, i.e., instead of the exact equation (2.1), we
have an approximate equation

Ax ≈ y.
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It is well known that even when the inverse of A exists, it cannot be continuous
unless the spaces Hj are finite-dimensional. Thus, small errors in y may cause
errors of arbitrary size in x.

Example 1: A classical ill-posed inverse problem is the deconvolution
problem. Let H1 = H2 = L2(R) and define

A : L2(R) → L2(R),
(
Af

)
(x) = φ ∗ f(x) =

∫ ∞

−∞
φ(x − y)f(y)dy,

where φ is a Gaussian convolution kernel,

φ(x) =
1√
2π

e−x2/2.

The operator A is injective, which is seen by applying the Fourier transform
on Af , yielding

F(
Af

)
(ξ) =

∫ ∞

−∞
e−iξxAf(x)dx = φ̂(ξ)f̂(ξ)

with
φ̂(ξ) =

1√
2π

e−ξ2/2 > 0.

Therefore, if Af = 0, we have f̂ = 0, hence f = 0. Formally, the solution to
the equation Af = g is

f(x) = F−1
(
φ̂−1ĝ

)
(x).

However, the above formula is not well defined for general g ∈ L2(R) (or
even in the space of tempered distributions) since the inverse of φ̂ grows
exponentially. Measurement errors of arbitrarily small L2-norm in g can cause
g to be not in Ran(A) and the integral not to converge, thus making the
inversion formula practically useless. �

The following example shows that even when the Hilbert spaces are finite-
dimensional, serious practical problems may occur.

Example 2: Let f be a real function defined over the interval [0,∞). The
Laplace transform Lf of f is defined as the integral

Lf(s) =
∫ ∞

0

e−stf(t)dt,

provided that the integral is convergent. We consider the following problem:
Given the values of the Laplace transform at points sj , 0 < s1 < · · · < sn < ∞,
we want to estimate the function f . To this end, we approximate first the
integral defining the Laplace transform by a finite sum,∫ ∞

0

e−sjtf(t)dt ≈
n∑

k=1

wke−sjtkf(tk),
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where, wk’s are the weights and tk’s are the nodes of the quadrature rule, e.g.,
Gauss quadrature, Simpson’s rule or the trapezoid rule. Let xk = f(tk), yj =
Lf(sj) and ajk = wke−sjtk , and write the numerical approximation of the
Laplace transform in the form (2.1), where A is an n×n square matrix. Here,
H1 = H2 = Rn. In this example, we choose the data points logarithmically
distributed, e.g.,

log(sj) =
(
−1 +

j − 1
20

)
log 10, 1 ≤ j ≤ 40,

to guarantee denser sampling near the origin. The quadrature rule is the 40-
point Gauss–Legendre rule and the truncated interval of integration (0, 5).
Hence, A ∈ R

40×40.
Let the function f be

f(t) =


t, if 0 ≤ t < 1,
3
2 − 1

2 t, if 1 ≤ t < 3,
0, if t ≥ 3,

The Laplace transform can then be calculated analytically. We have

Lf(s) =
1

2s2
(2 − 3e−s + e−3s).

The function f and its Laplace transform are depicted in Figure 2.1.
An attempt to estimate the values xj = f(tj) by direct solution of the

system (2.1) even without adding any error leads to the catastrophic results
shown also in Figure 2.1. The reason for the bad behaviour of this solution is
that in this example, the condition number of the matrix A, defined as

κ(A) = ‖A‖ ‖A−1‖
is very large, i.e., κ(A) ≈ 8.5×1020. Hence, even roundoff errors that in double
precision are numerical zeroes are negatively affecting the solution. �

The above example demonstrates that the conditions 1 and 2 that guar-
antee the unique existence of a solution of equation (2.1) are not sufficient in
practical applications. Even in the finite-dimensional problems, we must re-
quire further that the condition number is not excessively large. This can be
formulated more precisely using the singular value decomposition of operators
discussed in the following section.

Classical regularization methods are designed to overcome the obstacles
illustrated in the examples above. To summarize, the basic idea of regular-
ization methods is that, instead of trying to solve equation (2.1) exactly, one
seeks to find a nearby problem that is uniquely solvable and that is robust in
the sense that small errors in the data do not corrupt excessively this approx-
imate solution.

In this chapter, we review three families of classical methods. These meth-
ods are (1) regularization by singular value truncation, (2) the Tikhonov reg-
ularization and (3) regularization by truncated iterative methods.
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Figure 2.1. The original function (top), its Laplace transform (center) and the
estimator obtained by solving the linear system (bottom).

2.2 Truncated Singular Value Decomposition

In this section, H1 and H2 are Hilbert spaces of finite or infinite dimension,
equipped with the inner products 〈x, y〉j , x, y ∈ Hj , j = 1, 2, and A : H1 → H2

is a compact operator. When there is no risk of confusion, the subindices in
the inner products are suppressed. For the sake of keeping the notation fairly
straightforward, we assume that both H1 and H2 are infinite-dimensional.

The starting point in this section is the following proposition.

Proposition 2.1. Let H1, H2 and A be as above, and let A∗ be the adjoint
operator of A. Then

1. The spaces Hj, j = 1, 2, allow orthogonal decompositions

H1 = Ker(A) ⊕ (
Ker(A)

)⊥ = Ker(A) ⊕ Ran(A∗),

H2 = Ran(A) ⊕ (
Ran(A)

)⊥ = Ran(A) ⊕ Ker(A∗).

2. There exists orthonormal sets of vectors (vn) ∈ H1, (un) ∈ H2 and a
sequence (λj) of positive numbers, λ ↘ 0+ such that
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Ran(A) = span{un | n ∈ N}, (
Ker(A)

)⊥ = span{vn | n ∈ N},

and the operator A can be represented as

Ax =
∑

n

λj〈x, vn〉un.

The system (vn, un, λn) is called the singular system of the operator A.
3. The equation Ax = y has a solution if and only if

y =
∑

n

〈y, un〉un,
∑

n

1
λ2

n

|〈y, un〉|2 < ∞.

In this case a solution is of the form

x = x0 +
∑

n

1
λj

〈y, un〉vn,

where x0 ∈ Ker(A) can be chosen arbitrarily.

The proofs of these results, with proper references, are briefly outlined in
Appendix A.

The representation of the operator A in terms of its singular system is
called the singular value decomposition of A, abbreviated as SVD of A. The
above proposition gives a good picture of the possible difficulties in solving
the equation Ax = y. First of all, let P denote the orthogonal projection on
the closure of the range of A. By the above proposition, we see that P is given
as

P : H2 → Ran(A), y �→
∑

n

〈y, un〉un. (2.2)

It follows that for any x ∈ H1, we have

‖Ax − y‖2 = ‖Ax − Py‖2 + ‖(1 − P )y‖2 ≥ ‖(1 − P )y‖2.

Hence, if y has a nonzero component in the subspace orthogonal to the range
of A, the equation Ax = y cannot be satisfied exactly. Thus, the best we can
do is to solve the projected equation,

Ax = PAx = Py. (2.3)

This projection removes the most obvious obstruction of the solvability of the
equation by replacing it with another substitute equation. However, given a
noisy data vector y, there is in general no guarantee that the components
〈y, un〉 tend to zero rapidly enough to guarantee convergence of the quadratic
sum in the solvability condition 3 of Proposition 2.1.

Let Pk denote the finite-dimensional orthogonal projection
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Pk : H2 → span{u1, . . . , uk}, y �→
k∑

n=1

〈y, un〉un. (2.4)

Since Pk is finite dimensional, we have Pky ∈ Ran(A) for all k ∈ N, and more
importantly, Pky → Py in H2 as k → ∞. Thus, instead of equation (2.3), we
consider the projected equation

Ax = Pky, k ∈ N. (2.5)

This equation is always solvable. Taking on both sides the inner product with
un, we find that

λn〈x, vn〉 =
{ 〈y, un〉, 1 ≤ n ≤ k,

0, n > k.

Hence, the solution to equation (2.5) is

xk = x0 +
k∑

n=1

1
λj

〈y, un〉,

for some x0 ∈ Ker(A). Observe that since for increasing k,

‖Axk − Py‖2 = ‖(P − Pk)y‖2 → 0,

the residual of the projected equation can be made arbitrarily small.
Finally, to remove the ambiguity of the sought solution due to the possible

noninjectivity of A, we select x0 = 0. This choice minimizes the norm of xk,
since by orthogonality,

‖xk‖2 = ‖x0‖2 +
k∑

j=1

1
λ2

j

|〈y, uj〉|2.

These considerations lead us to the following definition.

Definition 2.2. let A : H1 → H2 be a compact operator with the singular sys-
tem (λn, vn, un). By the truncated SVD approximation (TSVD) of the problem
Ax = y we mean the problem of finding x ∈ H1 such that

Ax = Pky, x ⊥ Ker(A)

for some k ≥ 1.

We are now ready to state the following result.

Theorem 2.3. The problem given in Definition 2.2 has a unique solution xk,
called the truncated SVD (or TSVD) solution, which is

xk =
k∑

n=1

1
λj

〈y, un〉vn.
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Furthermore, the TSVD solution satisfies

‖Axk − y‖2 = ‖(1 − P )y‖2 + ‖(P − Pk)y‖2 → ‖(1 − P )y‖2

as k → ∞, where the projections P and Pk are given by formulas (2.2) and
(2.4), respectively.

Before presenting numerical examples, we briefly discuss the above reg-
ularization scheme in the finite-dimensional case. Therefore, let A ∈ Rm×n,
A �= 0, be a matrix defining a linear mapping Rn → Rm, and consider the
matrix equation

Ax = y.

In Appendix A, it is shown that the matrix A has a singular value decompo-
sition

A = UΛV T,

where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices, i.e.,

UT = U−1, V T = V −1,

and Λ ∈ Rm×n is a diagonal matrix with diagonal elements

λ1 ≥ λ2 ≥ · · ·λmin(m,n) ≥ 0.

Let us denote by p, 1 ≤ p ≤ min(m, n), the largest index for which λp > 0,
and let us think of U = [u1, u2, . . . , um] and V = [v1, v2, . . . , vn] as arrays
of column vectors. The orthogonality of the matrices U and V is equivalent
to saying that the vectors vj and uj form orthonormal base for Rn and Rm,
respectively. Hence, the singular system of the mapping A is (vj , uj , λj)1≤j≤p.

We observe that If p = n,

R
n = span{v1, . . . , vn} = Ran(AT),

and consequently, Ker(A) = {0}. If p < n, then we have

Ker(A) = span{vp+1, . . . , vn}.
Hence, any vector x0 in the kernel of A is of the form

x0 = V0c, V0 = [vp+1, . . . , vn] ∈ R
n×(n−p)

for some c ∈ Rn−p.
In the finite-dimensional case, we need not to worry about the convergence

condition 3 of Proposition 2.1; hence the projected equation (2.3) always has
a solution,

x = x0 + A†y,

where x0 is an arbitrary vector in the kernel of A. The matrix A† is called the
pseudoinverse or Moore–Penrose inverse of A, and it is defined as



14 2 Classical Regularization Methods

A† = V Λ†UT,

where

Λ† =



1/λ1 0 · · · 0
0 1/λ2

. . .
... 1/λp

...
0

. . .
0 · · · 0


∈ R

n×m.

Properties of the pseudoinverse are listed in the “Notes and Comments” at
the end of this chapter.

When x0 = 0, the solution x = A†y is called simply the minimum norm
solution of the problem Ax = y, since

‖A†y‖ = min{‖x‖ | ‖Ax − y‖ = ‖(1 − P )y‖},
where P is the projection onto the range of A. Thus, the minimum norm
solution is the solution that minimizes the residual error and that has the
minimum norm. Observe that in this definition, there is no truncation since
we keep all the nonzero singular values.

In the case of inverse problems, the minimum norm solution is often useless
due to the ill-conditioning of the matrix A. The smallest positive singular
values are very close to zero and the minimum norm solution is sensitive to
errors in the vector y. Therefore, in practice we need to choose the truncation
index k < p in Definition 2.2. The question that arises is: what is a judicious
choice for the value of the for the truncation level k? There is a rule of thumb
that is often referred to as the discrepancy principle. Assume that the data
vector y is a noisy approximation of a noiseless vector y0. While y0 is unknown
to us, we may have an estimate of the noise level, e.g., we may have

‖y − y0‖ � ε (2.6)

for some ε > 0. The discrepancy principle states that we cannot expect the
approximate solution to yield a smaller residual error than the measurement
error, since otherwise we would be fitting the solution to the noise. This prin-
ciple leads to the following selection criterion for the truncation parameter k:
choose k, 1 ≤ k ≤ m the largest index that satisfies

‖y − Axk‖ = ‖y − Pky‖ ≤ ε.

In the following example, the use of the minimum norm solution and the
TSVD solution are demonstrated.

Example 3: We return to the Laplace inversion problem of Example 2.
Let A be the same matrix as before. A plot of the logarthms of its singular
values is shown in Figure 2.2.
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Figure 2.2. The singular values of the discretized Laplace transform on a loga-
rithmic scale. The solid line indicates the level of the machine epsilon.

Let ε0 denote the machine epsilon, i.e., the smallest floating point number
that the machine recognizes to be nonzero. In IEEE double precision arith-
metic, this number is of the order 10−16. In Figure 2.2, we have marked this
level by a solid horizontal line. The plot clearly demonstrates that the ma-
trix is numerically singular: Singular values smaller than ε0 represent roundoff
errors and should be treated as zeros.

First, we consider the case where only the roundoff error is present and
the data is precise within the arithmetic. We denote in this case y = y0. Here,
the minimum norm solution x = A†y0 should give a reasonable estimate for
the discrete values of f . It is also clear that although 22 of the singular values
are larger than ε0, the smallest ones above this level are quite close to ε0.

In Figure 2.3 we have plotted the reconstruction of f with x = A†y0

computed with p = 20, 21 and 22 singular values retained.
For comparison, let us add artificial noise, i.e., the data vector is

y = y0 + e,

where the noise vector e is normally distributed zero mean noise with the
standard deviation (STD) σ being 1% of the maximal data component, i.e.,
σ = 0.01 ‖y0‖∞. The logarithm of this level is marked in Figure 2.2 by a
dashed horizontal line. In this case only five singular values remain above σ.

When the standard deviation of the noise is given, it is not clear without
further analysis how one should select the parameter ε in the dsicrepancy
principle. In this example, expect somewhat arbitrarily the norm of the noise
to be of the order of σ. Figure 2.3 depicts the reconstructions of f obtained
from the TSVD solutions xk with k = 4, 5 and 6. We observe that for k = 6,
the solution is oscillatory.

Let us remark here that the noise level criterion in the discrepancy prin-
ciple does not take into account the stochastic properties of the noise. Later
in this chapter, we discuss in more detail how to choose the cutoff level.
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Let us further remark that single reconstructions such as those displayed
in Figure 2.3 are far from giving a complete picture of the stability of the
reconstruction. Instead, one should analyze the variance of the solutions by
performing several runs from independently generated data. This issue will be
discussed in Chapter 5, where the classical methods are revisited and analyzed
from the statistical point of view. �
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Figure 2.3. The inverse Laplace transform by using the singular value truncation.
The top figure corresponds to no artificial noise in the data, the bottom one with
1% additive artificial noise.

2.3 Tikhonov Regularization

The discussion in Section 2.2 demonstrates that when solving the equation
Ax = y, problems occur when the singular values of the operator A tend to
zero rapidly, causing the norm of the approximate solution xk to go to infinity
when k → ∞. The idea in the basic regularization scheme discussed in this
section is to control simultaneously the norm of the residual r = Ax − y and
the norm of the approximate solution x. We start with the following definition.

Definition 2.4. Let δ > 0 be a given constant. The Tikhonov regularized
solution xδ ∈ H1 is the minimizer of the functional

Fδ(x) = ‖Ax − y‖2 + δ‖x‖2,

provided that a minimizer exists. The parameter δ > 0 is called the regular-
ization parameter.
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Observe that the regularization parameter plays essentially the role of a
Lagrange multiplier, i.e., we may think that we are solving a minimization
problem with the constraint ‖x‖ = R, for some R > 0.

The following theorem shows that Definition 2.4 is reasonable.

Theorem 2.5. Let A : H1 → H2 be a compact operator with the singular
system (λn, vn, un). Then the Tikhonov regularized solution exists, is unique,
and is given by the formula

xδ = (A∗A + δI)−1A∗y =
∑

n

λn

λ2
n + δ

〈y, un〉vn. (2.7)

Proof: We have
〈x, (A∗A + δI)x〉 ≥ δ‖x‖2,

i.e., the operator (A∗A+ δI) is bounded from below. It follows from the Riesz
representation theorem (see Appendix A) that the inverse of this operator
exists and

‖(A∗A + δI)−1‖ ≤ 1
δ
. (2.8)

Hence, xδ in (2.7) is well defined. Furthermore, expressing the equation

(A∗A + δI)x = A∗y

in terms of the singular system of A, we have∑
n

(λ2
n + δ)〈x, vn〉vn + Px =

∑
λn〈y, un〉vn,

where P : H1 → Ker(A) is the orthogonal projector. By projecting onto the
eigenspaces sp{vn}, we find that Px = 0 and (λ2

n + δ)〈x, vn〉 = λn〈y, un〉.
To show that xδ minimizes the quadratic functional Fδ, let x be any vector

in H1. By decomposing x as

x = xδ + z, z = x − xδ,

and arranging the terms in Fδ(x) according to the degree with respect to z,
we obtain

Fδ(xδ + z) = Fδ(xδ) + 〈z, (A∗A + δI)xδ − A∗y〉 + 〈z, (A∗A + δI)z〉
= Fδ(xδ) + 〈z, (A∗A + δI)z〉

by definition of xδ. The last term is nonnegative and vanishes only if z = 0.
This proves the claim. �

Remark: When the spaces Hj are finite-dimensional and A is a matrix,
we may write

Fδ(x) =
∥∥∥∥[

A√
δI

]
x −

[
y
0

]∥∥∥∥2

.
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From the inequality (2.8) it follows that the singular values of the matrix

Kδ =
[

A√
δI

]
are bounded from below by

√
δ, so the minimizer of the functional Fδ is simply

xδ = K†
δ

[
y
0

]
.

This formula is particularly handy in numerical implementation of the Tikhonov
regularization method.

The choice of the value of the regularization parameter δ based on the
noise level of the measurement y is a central issue in the literature discussing
Tikhonov regularization. Several methods for choosing δ have been proposed.
Here, we discuss briefly only one of them, known as the Morozov discrepancy
principle. This principle is essentially the same as the discrepancy principle
discussed in connection with the singular value truncation method.

Let us assume that we have an estimate ε > 0 of the norm of the error in
the data vector as in (2.6). Then any x ∈ H1 such that

‖Ax − y‖ ≤ ε

should be considered an acceptable approximate solution. Let xδ be defined
by (2.7), and

f : R+ → R+, f(δ) = ‖Axδ − y‖ (2.9)

the discrepancy related to the parameter δ. The Morozov discrepancy principle
says that the regularization parameter δ should be chosen from the condition

f(δ) = ‖Axδ − y‖ = ε, (2.10)

if possible, i.e., the regularized solution should not try to satisfy the data more
accurately than up to the noise level.

The following theorem gives a condition when the discrepancy principle
can be used.

Theorem 2.6. The discrepancy function (2.9) is strictly increasing and

‖Py‖ ≤ f(δ) ≤ ‖y‖, (2.11)

where P : H2 → Ker(A∗) = Ran(A)⊥ is the orthogonal projector. Hence, the
equation (2.10) has a unique solution δ = δ(ε) if and only if ‖Py‖ ≤ ε ≤ ‖y‖.

Proof: By using the singular system representation of the vector xδ, we
have

‖Axδ − y‖2 =
∑(

λ2
n

λ2
n + δ

− 1
)2

〈y, un〉2 + ‖Py‖2

=
∑(

δ

λ2
n + δ

)2

〈y, un〉2 + ‖Py‖2.
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Since, for each term of the sum,

d

dδ

(
δ

λ2
n + δ

)2

=
2δλ2

n

(λ2
n + δ)3

> 0, (2.12)

the mapping δ �→ ‖Axδ − y‖2 is strictly increasing, and

‖Py‖2 = lim
δ→0+

‖Axδ − y‖2 ≤ ‖Axδ − y‖2 ≤ lim
δ→∞

‖Axδ − y‖2 = ‖y‖2,

as claimed. �

Remark The condition ‖Py‖ ≤ ε is natural in the sense that any compo-
nent in the data y that is orthogonal to the range of A must be due to noise.
On the other hand, the condition ε < ‖y‖ can be understood in the sense
that the error level should not exceed the signal level. Indeed, if ‖y‖ < ε, we
might argue that, from the viewpoint of the discrepancy principle, x = 0 is
an acceptable solution.

The Morozov discrepancy principle is rather straightforward to implement
numerically, apart of problems that arise from the size of the matrices. Indeed,
if A is a matrix with nonzero singular values λ1 ≥ · · · ≥ λr, one can employ
e.g., Newton’s method to find the unique zero of the function

f(δ) =
r∑

j=1

(
δ

λ2
n + δ

)2

〈y, un〉2 + ‖Py‖2 − ε2.

The derivative of this function with respect to the parameter δ can be ex-
pressed without a reference to the singular value decomposition. Indeed, from
formula (2.12), we find that

f ′(δ) =
∑ 2δλ2

n

(λ2
n + δ)3

〈un, y〉2 = 〈xδ , δ(A∗A + δI)−1xδ〉.

This formula is valuable in particular when A is a large sparse matrix and the
linear system with the matrix A∗A+δI is easier to calculate than the singular
value decomposition.

Example 4: Anticipating the statistical analysis of the inverse problems,
we consider the problem of how to set the noise level ε appearing in the
discrepancy principle. Assume that we have a linear inverse problem with
additive noise model, i.e., A ∈ R

k×m is a known matrix and the model is

y = Ax + e = y0 + e.

Furthermore, assume that we have information about the statistics of the noise
vector e ∈ R

k. The problem is, how does one determine a reasonable noise
level based on the probability distribution of the noise. In principle, there
are several possible candidates. Remembering that e is a random variable, we
might in fact define
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ε = E
{‖e‖}, (2.13)

where E is the expectation (see Appendix B). Equally well, one could argue
that another judicious choice is to set

ε2 = E
{‖e‖2

}
, (2.14)

leading to a slightly different value of ε. In general, these levels can be com-
puted either numerically by generating randomly a sample of noise vectors and
averaging, or analytically, if the explicit integrals of the probability densities
are available.

For a simple illustration of how (2.13) and (2.14) differ from each other,
assume that k = 1, i.e., the data y is a real number and e ∼ U(0, 1), i.e., e has
a uniform probability distribution on the interval [0, 1]. The criterion (2.13)
would give

ε =
∫ 1

0

tdt =
1
2
,

while the second criterion leads to

ε =
(∫ 1

0

t2dt

)1/2

=
1√
3
.

for another, more frequently encountered example, consider k-variate zero
mean Gaussian noise with independent components, i.e., e ∼ N (0, σ2I), where
σ2 is the variance and I is the unit matrix of dimension k. In this case, the
criterion (2.14) immediately yields

ε2 = E
{‖e‖2

}
= kσ2.

The first criterion requires more work. We have

ε =
1

(2πσ2)k/2

∫
Rk

‖t‖exp
(
− 1

2σ2
‖t‖2

)
dt,

which, after passing to polar coordinates and properly scaling the variables,
yields

ε =
|Sk−1|
(2π)k/2

σ

∫ ∞

0

tkexp
(
−1

2
‖t‖2

)
dt = γkσ.

Here, |Sk−1| denotes the surface area of the unit ball. It is left as an excercise
to evaluate the scaling factor γk. The important thing to notice is that both
results scale linearly with σ.

The important thing to notice here that ‖e‖ is a random variable. For
example, taking above k = 100 and σ = 1, the probability of 9 < ‖e‖ ≤ 11 is
approximately 0.84.

Often, in classical regularization literature, the noise level used in the
Morozov discrepancy principle is adjusted by an extra parameter τ > 1 to
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avoid underregularization. Using the k-variate Gaussian white noise model,
the discrepancy condition would give

‖Axα − y‖ = τ
√

kσ.

A common choice is τ = 1.1. �
Example 5: As an example of the use of the Tikhonov regularization

method, consider the image deblurring problem, i.e., a deconvolution problem
in the plane, introduced in Example 1. It is instructive to express the Tikhonov
regularized solution using Fourier analysis. Therefore, let H1 = H2 = L2(R2).
To guarantee the integrabilty of the image, we assume that f is compactly
supported. With respect to the inner product of L2(R2), the adjoint of the
convolution operator with a real valued kernel is

A∗f(x) =
∫

R2
φ(y − x)f(y)dy.

Moreover, if the kernel is even, i.e., φ(−x) = φ(x), A is self-adjoint. Since
Âf = φ̂f̂ , the operator A allows a Fourier representation

Af(x) = F−1(φ̂ f̂)(ξ) =
1

(2π)2

∫
R2

ei〈ξ,x〉φ̂(ξ)f̂ (ξ)dξ.

Similarly, the adjoint operator can be written as

A∗f(x) = F−1(φ̂ f̂)(ξ).

Based on this representation, we have

(A∗A + δI)f(x) = F−1
(
(|φ̂|2 + δ)f̂

)
(x)

and further, the operator defining the Tikhonov regularized solution is simply

(A∗A + δI)−1A∗g(x) = F−1

(
φ̂

|φ̂|2 + δ
ĝ

)
(x).

We have ∣∣∣∣∣ φ̂(ξ)

|φ̂(ξ)|2 + δ

∣∣∣∣∣ ≤ 1
δ
,

so the operator is well defined in L2(R2) as the theory predicts.
Although is possible to determine a numerical solution based on the above

formula, we represent the numerical solution here by using direct matrix dis-
cretization.

Let the image area be the unit rectangle [0, 1]×[0, 1], the true image f being
identically zero outside this area. Assume that the image area is divided into
pixels of equal size, Pjk = [(j−1)∆, j∆]× [(k−1)∆, k∆], 1 ≤ j, k ≤ N , where
∆ = 1/N . If pjk denotes the centerpoint of Pjk, we write the approximation
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g(pjk) ≈
N∑

�,m=1

∆2φ(pjk − p�m)f(p�m),

or, in the matrix form,
y = Ax,

where x, y ∈ RN2
are vectors with the pixel values stacked in a long vector

and A ∈ RN2×N2
a convolution matrix arranged accordingly.

In our numerical example, we consider the convolution kernel

φ(x) = e−α|x|

with α = 20. The convolution kernel is plotted in Figure 2.4.
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Figure 2.4. The convolution kernel used for image blurring.

To avoid the infamous inverse crime - or at least the most evident version
of it - we have computed the blurred data using a finer mesh (size 50×50
pixels) than the one in which the blurred image is given (size 32×32). The
true and the blurred images are shown in Figure 2.5.

The noise model we use here is Gaussian additive noise,

y = Ax + e,

where e is a random vector with independent components, each component
being zero mean normally distributed. The standard deviation of each com-
ponent of e is σ = 0.01 max(Ax), i.e., 1% of the maximum pixel value in the
blurred noiseless image. To fix the noise level used in the Morozov discrep-
ancy principle, we use the criterion (2.14) of the previous example, i.e., in this
example we set
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Figure 2.5. Original image and the noisy blurred image.

ε = Nσ.

In Figure 2.6, we have plotted a piece of the curve δ �→ ‖Axδ − y‖. The
noise level is marked with a dashed line. Evidently, in this case, the condition
(2.11) of the Theorem 2.6 is satisfied, so the Morozov discrepancy principle is
applicable.
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Figure 2.6. The discrepancy versus the regularization parameter δ. The estimated
noise level is marked by a dashed line. The asterisks mark the values of the regular-
ization parameters corresponding to the regularised solutions of the Figure 2.7

The value δ = δ(ε) in this example is calculated using a bisection method.
To illustrate the effect on the solution of the regularization parameter, we
calculate Tikhonov regularized solutions with nine different values of the reg-
ularization parameter. These values of δ are marked in Figure 2.6 by an as-
terisk. The outcomes are shown in Figure 2.7. When the regularization pa-
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rameter is significantly below δ(ε), the outcome is noisy, i.e., the solution is
underregularized, while for large values, the results get again blurred. These
solutions are often said to be overregularized. �
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Figure 2.7. Nine reconstructions from the same noisy data with various values of
the regularization parameter δ. The reconstruction that corresponds to the Morozov
discrepancy principle is in the second row at right.

2.3.1 Generalizations of the Tikhonov Regularization

The Tikhonov regularization method is sometimes applicable also when non-
linear problems are considered, i.e., to find x ∈ H1 satisfying

y = A(x) + e,
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where A : H1 → H2 is a nonlinear mapping and e is observation noise. If
the mapping A is such that large changes in the vector x may produce small
changes in A(x), the problem is ill-posed and numerical methods, typically,
iterative ones, may fail to find a satisfactory estimate of x. The nonlinear
Tikhonov regularization scheme amounts to searching for an x that minimizes
the functional

Fδ(x) = ‖A(x) − y‖2 + δ‖x‖2.

As this functional is no longer a quadratic one, it is not clear whether a
minimizer exists, it is unique or how to determine it. The most common
method to search for a feasible solution is to use an iterative scheme based on
successive linearizations of A.

Definition 2.7. The operator A : H1 → H2 is Fréchet differentiable at a
point x0 if it allows an expansion

A(x0 + z) = A(x0) + Rx0z + W (x0, z).

Here Rx0 : H1 → H2 is a continuous linear operator and

‖W (x0, z)‖ ≤ ‖z‖ε(x0, z),

where the functional z �→ ε(x0, z) tends to zero as z → 0.

Let A be Fréchet differentiable. The linearization of A around a given point
x0 leads to the approximation of the functional Fδ,

Fδ(x) ≈ F̃δ(x; x0) = ‖A(x0) + Rx0(x − x0) − y‖2 + δ‖x‖2

= ‖Rx0x − g(y, x0)‖2 + δ‖x‖2,

where
g(y, x0) = y − A(x0) + Rx0x0.

From the previous section we know that the minimizer of the functional
Fδ(x; x0) is

x = (R∗
x0

Rx0 + δI)−1R∗
x0

g(y, x0).

While a straightforward approach would suggest to choose the new approxi-
mate solution as the base point for a new linearization, it may happen that
the solution of the linearized problem does not reflect adequately the nonlin-
earities of the original function. Therefore a better strategy is to implement
some form of stepsize control. This leads us to the following iterative method.

1. Pick an initial guess x0 and set k = 0.
2. Calculate the Fréchet derivative Rxk

.
3. Determine

x = (R∗
xk

Rxk
+ δI)−1R∗

xk
g(y, xk), g(y, xk) = y − A(xk) + Rxk

xk,

and define δx = x − xk.
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4. Find s > 0 by minimizing the function

f(s) = ‖A(xk + sδx) − y‖2 + ‖xk + sδx‖2.

5. Set xk+1 = xk + sδx and increase k ← k + 1.
6. Repeat steps 2.–5. until the method converges.

In the generalization of Tikhonov regularization that we just described,
the linear operator A has been replaced by a nonlinear one. Another way
of generalizing Tikhonov regularization method is concerned with the choice
of the penalty term.1 Indeed, we may consider the following minimization
problem: Find x ∈ H1 that minimizes the functional

‖Ax − y‖2 + δG(x),

where G : H1 → R is a nonnegative functional. The existence and uniqueness
of the solution of this problem depends on the choice of the functional G.

The most common version of this generalization sets

G(x) = ‖L(x − x0)‖2, (2.15)

where L : D(L) → H2, D(L) ⊂ H1 is a linear operator and x0 ∈ H1 is given.
Typically, when H1 is a function space, L will be a differential operator. This
choice forces the solutions of the corresponding minimization problem to be
smooth.

In the finite-dimensional case, the operator L is a matrix in Rk×n. The
Tikhonov functional to be minimized can then be written as

‖Ax − y‖2 + δ‖L(x − x0)‖2 =
∥∥∥∥[

A√
δL

]
x −

[
y√

δLx0

]∥∥∥∥2

.

The minimizer of this functional is

xδ = K†
[

y√
δLx0

]
, K =

[
A√
δL

]
,

provided that the singular values of K are all positive. If some of the singular
values of K vanish, one may argue that the choice of L does not regularize
the problem properly.

Finally, we may combine both the generalizations above and consider the
problem of minimizing a functional of the type

Fδ(x) = ‖A(x) − y‖2 + δG(x).

This problem leads to a general nonlinear optimization problem which is not
discussed in detail here.

1This, in fact is the original form of Tikhonov regularization; see; “Notes and
Comments.”
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2.4 Regularization by Truncated Iterative Methods

Consider again the simple linear matrix equation (2.1), Ax = y. Numerical
analysis offers a rich selection of various iterative solvers for this equation. It
turns out that these solvers, albeit not originally designed for regularization
purposes, can often be used as regularizers when the data y are corrupted by
noise. In this section, we discuss three different iterative methods and their
regularizing properties.

2.4.1 Landweber–Fridman Iteration

The first iterative scheme discussed here is a method based on fixed point
iteration. We start recalling a few concepts. Let H be a Hilbert space and
S ⊂ H . Consider a mapping, not necessarily linear, T : H → H . We say that
S is an invariant set for T if x ∈ S implies T (x) ∈ S, or briefly T (S) ⊂ S.
The operator T is said to be a contraction on an invariant set S if there is
κ ∈ R, 0 ≤ κ < 1 such that for all x, z ∈ S,

‖T (x) − T (z)‖ < κ‖x − z‖.

A vector x ∈ H is called a fixed point of T if we have

T (x) = x.

The following elementary result, known as the fixed point theorem, is proved
in Appendix A.

Proposition 2.8. Let H be a Hilbert space and S ⊂ H a closed invariant set
for the mapping T : H → H. Assume further that T is a contraction in S.
Then there is a unique x ∈ S such that T (x) = x. The fixed point x can be
found by the fixed point iteration as

x = lim
k→∞

xk, xk+1 = T (xk),

where the initial value x0 ∈ S is arbitrary.

Consider now the linear equation (2.1). By using the notation of Section
2.2, we write first the right-hand side y as

y = Py + (1 − P )y, Py ∈ Ran(A), (1 − P )y ∈ Ker(A∗).

Since there is no way of matching Ax with the vector (1−P )y that is orthog-
onal to the range of A, we filter it out by applying A∗ to both sides of the
equation. This leads to the normal equations

A∗Ax = A∗Py + A∗(1 − P )y = A∗y. (2.16)
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We then seek to solve this normal equations by an iterative method. To this
end, observe that when the normal equations are satisfied, we have

x = x + β(A∗y − A∗Ax) = T (x) (2.17)

for all β ∈ R. Therefore the solution x of the equation is a fixed point for
the affine map T . Our aim is to solve this equation by fixed point iterations.
Hence, let x0 = 0 and define

xk+1 = T (xk).

In the following theorem, we assume that the dimension of Ran(A) is finite.
For finite-dimensional matrix equations, this is always true. More generally,
this assumption means that there are only finitely many nonzero singular
values in the singular system of A, and we can write Ax as

Ax =
N∑

j=1

λj〈vj , x〉uj .

We are now ready to prove the following result.

Theorem 2.9. Let dim(Ran(A)) = N < ∞ and let 0 < β < 2/λ2
1, where λ1

is the largest singular value of A. Then the fixed point iteration sequence (xk)
converges to an x ∈ Ker(A)⊥ which satisfies the normal equations (2.16).

Proof: Let S = Ker(A)⊥ = Ran(A∗). First we observe that S is an invariant
set for the affine mapping T given by the formula (2.17), i.e., T (S) ⊂ S. We
show that the mapping T is a contraction on S. Indeed, if (vn, un, λn) is the
singular system of A, then for any x, z ∈ S = sp{v1, . . . , vN}, we have

‖T (x) − T (z)‖2 = ‖(1 − βA∗A)(x − z)‖2

=
N∑

j=1

(1 − βλ2
j )

2〈vj , x − z〉2 ≤ κ2‖x − z‖2,

where
κ2 = max

1≤j≤N
(1 − βλ2

j )
2.

We observe that κ < 1 provided that for all j, 1 ≤ j ≤ N ,

0 < βλ2
j < 2,

which holds true when 0 < β < 2/λ2
1.

Let x = lim xn. We have

0 = T (x) − x = β(A∗y − A∗Ax),

i.e., the limit satisfies the normal equations (2.16). �
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In general, when dim(Ran(A)) = ∞ and A is compact, we cannot hope
that the Landweber–Fridman iteration converges because the normal equa-
tions do not, in general, have a solution. This does not prevent us from using
the iteration provided that we truncate it after finitely many steps.

To understand the regularization aspect of this iterative scheme, let us
introduce

R = 1 − βA∗A : S → S.

Inductively, we see that the kth iterate xk can be written simply as

xk =
k∑

j=0

RjβA∗y,

and in particular,

〈xk, vn〉 =
k∑

j=0

βλn(1 − βλ2
n)j〈y, un〉 =

1
λn

(1 − (1 − βλ2
n)k+1)〈y, un〉

by the geometric series sum formula. From this formula it is evident that
when the singular value λn is small, the factor (1 − (1 − βλ2

n)k+1) < 1 in the
numerator is also small. Therefore, one can expect that the sum

∑〈xk, vn〉 is
less sensitive to noise in y than the minimum norm solution.

When iterative methods are applied for regularization, the crucial issue is
to equip the algorithm with a good stopping criterion. It should be pointed
out that none of the criteria proposed in the literature has been proved to be
failproof. Similar to the TSVD and Tikhonov regularization, one can try to
apply also here the discrepancy principle and stop the iterations when

‖Axk − y‖ = ε, (2.18)

where ε is the estimated noise level.
We illustrate the behavior of this method with the stopping criterion just

described in the following simple example.
Example 6: Consider the one-dimensional deconvolution problem of find-

ing f(t), 0 ≤ t ≤ 1 from noisy observations of the function

g(s) =
∫ 1

0

φ(s − t)f(t)dt, 0 ≤ s ≤ 1,

where the convolution kernel is

φ(t) = e−a|t|, a = 20.

As a test function, we use
f(t) = t(1 − t).

The function g can be computed analytically, yielding
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g(s) =
2
a
s(1 − s) +

1
a2

(e−as + e−a(1−s)) +
2
a3

(e−as + e−a(1−s) − 2).

The data is recorded on an even mesh with mesh size 1/100. Random normally
distributed zero mean noise is added to the exact data with independent
components and standard deviation 5% of the maximum value of the noiseless
data. The reconstruction mesh is also an equispaced mesh with mesh size 1/80.
The matrix A has entries

Aij =
1
80

e−a|ti−sj |, ti =
i

80
, sj =

j

100
, 0 ≤ i ≤ 80, 0 ≤ j ≤ 100.

The condition number of the matrix A is κ(A) ≈ 110, so it is possible to
calculate directly the minimum norm solution f † = K†g. In Figure 2.8, the
noiseless and noisy data are displayed, as well as the exact f and the minimum
norm solution f †. The latter is essentially pure noise, showing that some form
of regularization is required. We apply the Landweber–Fridman iteration. The
relaxation parameter of the iterative scheme was chosen as β = 0.1βmax,
where βmax = 2/‖A‖2. We terminate the iteration according to the stopping
criterion (2.18) with ε =

√
81σ, σ being the standard deviation of the added

noise. With the simulated data, the requested discrepancy level is attained
after 38 iterations. In Figure 2.9, the final solution is displayed against the
true solution (left). To get an idea of the convergence, we also display the
iterated solutions fn (right). �
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Figure 2.8. Noisy and noiseless data and the minimum norm solution.

Usually, the Landweber–Fridman iteration progresses much slower than
several other iterative methods. The slow convergence of the method is some-
times argued to be a positive feature of the algorithm, since a fast progress
would bring us quickly close to the minimum norm solution that is usually
nonsense, as in the previous example.
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Figure 2.9. Iterated solutions. The final solution satisfies the discrepancy criterion.

2.4.2 Kaczmarz Iteration and ART

The idea of the Kaczmarz iteration to solve the matrix equation (2.1), Ax = y,
is to partition the system rowwise, either into single rows or into blocks of
rows. For the sake of definiteness, we consider first the single-row version.
Writing

A =

 aT
1
...

aT
m

 ∈ R
m×n, aj ∈ R

n,

where aT
j �= 0 is the jth row of the matrix A, the equation Ax = y can be

thought of as a system of equations

Ajx = aT
j x = yj, 1 ≤ j ≤ m,

where Aj : Rn → R. Each of these underdetermined equations define a hyper-
plane of dimension n−1. The idea of the Kaczmarz iteration is to project the
current approximate solution successively onto each one of these hyperplanes.
It turns out that such a procedure converges to the solution of the system,
provided that a solution exists.

More generally, we may write

A =

A1

...
A�

 ∈ R
m×n, Aj ∈ R

kj×n,

where k1+· · ·+k� = m. In this block decomposition of A, we must require that
each row block Aj has full row rank and defines thus a surjective mapping.

In the following discussion, we generalize the setting slightly. Let us denote
by H and Hj , 1 ≤ j ≤ m denote separable Hilbert spaces. We consider the
system
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Ajx = yj, 1 ≤ j ≤ m,

where the operators
Aj : H → Hj , 1 ≤ j ≤ m

are given linear bounded operators and yj ∈ Ran(Aj). Let

Xj = {x ∈ H | Ajx = yj},
and denote by Pj : H → Xj the orthogonal projectors onto these affine
subspaces. Furthermore, we define the sequential projection

P = PmPm−1 · · ·P2P1.

The following definition essentially defines the Kaczmarz iteration.

Definition 2.10. With the notations introduced above, we define the Kacz-
marz sequence (xk) ⊂ H recursively as

xk+1 = Pxk, x0 = 0.

The following theorem is helpful in understanding the behavior of the
Kaczmarz iteration.

Theorem 2.11. Assume that X = ∩m
j=1Xj �= ∅. Then the Kaczmarz sequence

converges to the minimum norm solution of the equation Ax = y, i.e.,

lim
k→∞

xk = x, Ax = y, x ⊥ Ker(A).

To sketch the main idea of the proof, let us denote by Q the orthogonal
projection

Q : H →
m⋂

j=1

Ker(Aj) = Ker(A),

and let z ∈ X be arbitrary. We shall prove that

xk −→ x = z −Qz, as k → ∞.

Clearly, this limit x satisfies

Ajx = Ajz − AjQz = yj , 1 ≤ j ≤ m,

and furthermore, x is by definition perpendicular to Ker(A).
To relate the partial projections Pj to Q, let us denote by Qj the orthog-

onal projections
Qj : H → Ker(Aj), 1 ≤ j ≤ m,

and by Q the sequential projection

Q = QmQm−1 · · ·Q2Q1. (2.19)
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For any z ∈ X , we have

Pjx = z + Qj(x − z).

Indeed,
AjPjx = Ajz + AjQj(x − z) = yj ,

and for arbitrary z1, z2 ∈ Xj , the difference δz = z1 − z2 is in Ker(Aj).
Therefore, it follows that

〈x − (z + Qj(x − z)), δz〉 = 〈(1 − Qj)(x − z), δx〉 = 0.

Now we may write the sequential projection P in terms of Q as follows. For
z ∈ X , and x ∈ H , we have

P2P1x = z + Q2(P1x − z) = z + Q2Q1(x − z),

and inductively,
Px = z + Q(x − z).

Similarly, it holds that

P 2x = z + Q(Px − z) = z + Q2(x − z),

and again inductively,
P kx = z + Qk(x − z),

i.e., by the definition of the Kaczmarz sequence, we have

xk = z − Qkz.

Hence, it suffices to show that for any z ∈ H , we have

lim
k→∞

Qkz = Qz.

This result is the consequence of the following three technical lemmas.

Lemma 2.12. Let (xk) ⊂ H be a sequence satisfying

‖xk‖ ≤ 1, lim
k→∞

‖Qxk‖ = 1,

where Q is given by (2.19). Then

lim
k→∞

(1 − Q)xk = 0.

Proof: The proof is given by induction on the number of the projections
Qj . For Q1, the claim is immediate since, by orthogonality,

‖(1 − Q1)xk‖2 = ‖xk‖2 − ‖Q1xk‖2 ≤ 1 − ‖Q1xk‖2 → 0,
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as k increases.
Next, assume that the claim holds for Qj · · ·Q1. We have

‖Qj+1Qj · · ·Q1xk‖ ≤ ‖Qj · · ·Q1xk‖ ≤ 1,

so limk→∞ ‖Qj+1Qj · · ·Q1xk‖ = 1 implies limk→∞ ‖Qj · · ·Q1xk‖ = 1, and
the induction assumption implies that

(1 − Qj · · ·Q1)xk → 0.

We write

(1 − Qj+1Qj · · ·Q1)xk = (1 − Qj · · ·Q1)xk + (1 − Qj+1)Qj · · ·Q1xk.

Here, the first term on the right tends to zero as we have seen. Similarly, by
denoting zk = Qj · · ·Q1xk, it holds that

‖zk‖ = ‖Qj · · ·Q1xk‖ ≤ 1

and
‖Qj+1zk‖ = ‖Qj+1Qj · · ·Q1xk‖ → 1,

proving that the second term tends also to zero. �

Lemma 2.13. We have

Ker(1 − Q) = Ker(1 −Q) =
m⋂

j=1

Ker(Aj).

Proof: Let x ∈ Ker(1 − Q). Then x ∈ Ker(Aj) for all j and so x = Qjx,
implying that x = Qm · · ·Q1x = Qx, i.e., x ∈ Ker(1 − Q).

To prove the converse inclusion Ker(1 − Q) ⊂ Ker(1 − Q), assume that
x = Qx. We have

‖x‖ = ‖Qm · · ·Q2Q1x‖ ≤ ‖Q1x‖ ≤ ‖x‖,

i.e., ‖Q1x‖ = ‖x‖. By the orthogonality,

‖(1 − Q1)x‖2 = ‖x‖2 − ‖Q1x‖2 = 0,

i.e., x = Q1x. Hence, x = Qm · · ·Q2x. Inductively, we show that x = Qjx for
all j, i.e., x ∈ ∩m

j=1Ker(Aj) = KerQ. �

We have the following decomposition result.

Lemma 2.14. Assume that Q : H → H is linear and ‖Q‖ ≤ 1. Then H can
be decomposed into orthogonal subspaces,

H = Ker(1 − Q) ⊕ Ran(1 − Q).



2.4 Regularization by Truncated Iterative Methods 35

Proof: Since the decomposition claim 1 of Proposition 2.1 is valid for all
continuous linear operators, not just for compact ones (see Appendix A), it
suffices to show that Ker(1−Q) = Ker(1−Q∗). Assume therefore that Qx = x.
It follows that

‖x − Q∗x‖2 = ‖x‖2 − 2〈x, Q∗x〉 + ‖Q∗x‖2

= ‖x‖2 − 2〈Qx, x〉 + ‖Q∗x‖2

= −‖x‖2 + ‖Q∗x‖2 ≤ −‖x‖2 + ‖x‖2 = 0,

implying that x = Q∗x.
The converse inclusion Ker(1 − Q∗) ⊂ Ker(1 − Q) follows similarly. �

Now we are ready to prove Theorem 2.11.
Proof of Theorem 2.11: As we saw, it suffices to prove that

lim
j→∞

Qjx = Qx.

Since ‖Q‖ ≤ 1, the decomposition result of the previous lemma holds. For
any x ∈ H , it follows from Lemma 2.13 that Qx ∈ Ker(1−Q) = Ker(1− Q),
hence

x = Qx + (1 −Q)x ∈ Ker(1 − Q) ⊕ Ran(1 − Q),

and furthermore,

Qkx = Qx + Qkz, z = (1 −Q)x ∈ Ran(1 − Q).

Hence we need to show that Qkz → 0 for every z ∈ Ran(1 − Q). Assume first
that z ∈ Ran(1−Q), or z = (1−Q)y for some y ∈ H . Consider the sequence
ck = ‖Qky‖. This sequence is decreasing and positive. Let c = lim ck. If c = 0,
then

Qkz = Qky − Qk+1y → 0,

as claimed. Assume next that c > 0, and define the sequence

yk =
Qky

ck
,

having the properties

‖yk‖ = 1, lim ‖Qyk‖ = 1.

By Lemma 2.12, we have lim(1 − Q)yk = 0, or

Qkz = Qky − Qk+1y = ck(1 − Q)yk → 0.

This result extends also to the closure of Ran(1 − Q). If z ∈ Ran(1 − Q), we
choose z0 ∈ Ran(1 − Q) with ‖z − z0‖ < ε, for arbitrary ε > 0. Then

‖Qkz‖ ≤ ‖Qk(z − z0)‖ + ‖Qkz0‖ < ε + ‖Qkz0‖ → ε,
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i.e., we must have limk→∞ ‖Qz‖ = 0. This completes the proof. �

Finally, we discuss the implementation of the Kaczmarz iteration in finite-
dimensional spaces. The iterative algorithm that we present is commonly used
especially in tomographic applications. The following lemma gives the explicit
form of the projections Pj appearing in the algorithm.

Lemma 2.15. Let Aj ∈ Rkj×n be a matrix such that the mapping Aj : Rn →
R

kj is surjective. For yj ∈ R
kj , the orthogonal projection Pj to the affine

subspace Xj is given by the formula

Pjx = x + AT
j (AjA

T
j )−1(yj − Ajx). (2.20)

Proof: We observe first that the matrix AjA
T
j is invertible. From the sur-

jectivity of the mapping Aj ,

R
kj = Ran(Aj) = Ker(AT

j )⊥,

i.e., the mapping defined by the matrix AT
j and consequently AjA

T
j are injec-

tive. Furthermore, if z ⊥ Ran(AjA
T
j ), we have in particular that

0 = zTAjA
T
j z = ‖AT

j z‖2,

so z = 0 by the injectivity of AT
j .

As before, we may express Pj in terms of the projection Qj as

Pjx = zj + Qj(x − zj), zj ∈ Xj .

Since
x − Pjx = (1 − Qj)(x − z) ∈ Ker(Aj)⊥ = Ran(AT),

there is a u ∈ Rkj such that

x − Pjx = AT
j u. (2.21)

Multiplying both sides by Aj , we obtain

AjA
T
j u = Ajx − yj ,

hence
u = (AjA

T
j )−1(Ajx − yj).

Substituting this expression for u into formula (2.21) proves the claim. �

Remark: The Kaczmarz iteration allows a slightly more general form
than the one given above. Instead of the projections Pj , one can use Pjω =
(1 − ω)I + ωPj , where ω is a relaxation parameter, 0 < ω < 2. The proofs
above hold also in this more general setting, too. The formula (2.20) takes the
form

Pjωx = x + ωAT
j (AjA

T
j )−1(yj − Ajx).
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Example 7: Probably the most typical application of the Kaczmarz it-
eration to inverse problems is in X-ray tomography. 2 Here we consider the
two-dimensional discretized problem. The tomography data consists of projec-
tions, or shadow images, of the image into given directions. These projections
can be described in terms of a linear operator that is approximated by a ma-
trix. Thus, let x ∈ R

N2
be a vector containing the stacked pixel values of an

N ×N image, and A ∈ RM×N2
the sparse tomography matrix. We apply the

Kaczmarz iteration row by row. Let

A =

 aT
1
...

aT
M

 ∈ R
M×N2

, aj ∈ R
N2

.

The iterative scheme to solve the equation Ax = y, known in the context of
X-ray tomography as the algebraic reconstruction technique, or ART for short,
proceeds as follows:

Set k = 0, x0 = 0;
Repeat until convergence:

z0 = xk;
for j = 1 : M repeat

zj = zj−1 + (1/‖aj‖2)(yj − aT
j zj−1)aj ;

end
xk+1 = zM ; k ← k + 1;

end

To illustrate this algorithm, we apply it to both full angle data and lim-
ited angle data. The data is best understood by considering Figure 2.10. The
original image is pixelized into 80×80 pixels. First, we compute the full angle
data. The data consists of one-dimensional shadow images of the true image
in different directions of projection. Let the projection angle vary over an in-
terval of length π. We discretize the arc of a semicircle into 40 equal intervals
and increase the look angle by π/40 each step, yielding to discrete angles φi,
1 ≤ i ≤ 40. The line of projection is divided into 41 intervals. Hence, the
projection data has the size 40 × 41. This data is the full angle data.

In Figure 2.10 this data without added noise is plotted with the angular
variable on the horizontal axis. This representation is called the sinogram for
rather obvious reasons. Now we apply the ART algorithm. To avoid an inverse
crime, we use a different grid for the reconstruction. We seek to find an image
in a pixel map of size 50 × 50. We add noise to the sinogram data by adding
to each data entry independent uniformly distributed noise drawn from the
interval [0, σ], where σ is 2% of the maximum value of the data matrix.

In Figure 2.11 we display three ART reconstructions: The first one is
after one iteration round; the second is the one that satisfies the discrepancy
condition

2The X-ray tomography is discussed further in Chapter 6.
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Figure 2.10. Original image and the sinogram data, the abscissa being the illumi-
nation angle. The limited angle data is the part of the sinogram between the vertical
dashed lines.

‖Axj − y‖ ≤ ε = 50σ,

where σ is the standard deviation of the additive noise, and the factor 50
comes from the image size (see Example 4). Finally, the third reconstruction
corresponds to 30 iterations. Evidently, the full angle data is so good that
already after one single iteration the reconstruction is visually rather satisfac-
tory. In fact, one can see some slight artifacts in the 30 iterations image.

δ=3.9754, iteration=1 δ=0.41981, iteration=7 δ=0.27094, iteration=30

Figure 2.11. ART reconstruction from the full angle tomography data.

To get an idea of the convergence of the ART algorithm, we have also
plotted the discrepancies in Figure 2.12

Now we repeat the computation starting with limited angle data. We as-
sume that the look angle varies from −π/4 to π/4 around the vertical direc-
tion, i.e., the image is illuminated from below in an angle of π/2 opening. We
do this by discarding from the full angle data those illumination lines where
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Figure 2.12. The full angle discrepancies. The estimated noise level is marked
with a dashed line.

look angle differs from the vertical more than π/4, i.e., we use only the central
part of the sinogram data. Figure 2.13 displays the ART reconstructions with
limitid angle data analogous to those ones with full angle data. The fact that
no horizontal or close to horizontal integration lines are included is reflected
in the reconstructions that show long shadows in directions close to vertical.
These reconstructions demonstrate the limitation of ART (or in fact, any in-
version scheme) when data is scarce and no additional or prior information is
used in the reconstruction. �

δ=3.9754, iteration=1 δ=0.41981, iteration=7 δ=0.27094, iteration=30

Figure 2.13. ART reconstruction from the limited angle tomography data.

2.4.3 Krylov Subspace Methods

The Krylov subspace methods refer to a class of iterative solvers of large
linear equations of the form Ax = y. Roughly, the idea is to produce a se-
quence of approximate solutions as linear combinations of vectors of the type
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u, Au, A2u, . . .. The best known of these methods when the matrix A is sym-
metric and positive definite is the conjugate gradient method (CG). Here, we
restrict the discussion to that method.

In the sequel, we assume that A ∈ Rn×n is a symmetric and strictly
positive definite matrix, i.e.,

AT = A, uTAu > 0 for u �= 0.

In particular, all the eigenvalues of A must be positive, and hence matrix A
is invertible. The objective of the CG method is to find an approximating
sequence (xj) converging to the solution of the equation Ax = y by solving a
sequence of minimization problems. Let us denote by

x∗ = A−1y

the exact solution, and denote by e and r the error and the residual of a given
approximation x,

e = x∗ − x, r = y − Ax = Ae.

Consider the quadratic functional

φ(x) = eTAe = rTA−1r.

It is not possible to calculate the value of this functional for a given x with-
out the knowledge of the exact solution x∗ or, alternatively, A−1. However,
it is possible to consider the problem of minimizing this functional over a
nested sequence of Krylov subspaces. First, let us observe that by the positive
definiteness of A,

φ(x) = 0 = min
x∈Rn

φ(x) if and only if x = x∗.

Assume that we have an initial guess x1 and an initial direction s1, and we
consider the problem of minimizing the function

R → R, α �→ φ(x1 + αs1).

Interestingly, we can solve this minimization problem without knowing the
value of φ.

Lemma 2.16. The function α �→ φ(x1 + αs1) has a minimum at

α = α1 =
sT
1 r1

sT
1 As1

,

where r1 is the residual of the initial guess,

r1 = y − Ax1.
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Proof: The residual corresponding to x = x1 + αs1 is

y − Ax = y − Ax1 − αAs1 = r1 − αAs1,

and so

φ(x) = (r1 − αAs1)TA−1(r1 − αAs1)

= α2sT
1 As1 − 2αsT

1 r1 + rT
1 A−1r1.

The claim follows immediately from this formula. �

Hence, given a sequence (sk) of directions, we may produce a sequence
(xk) of approximate solutions by setting

xk+1 = xk + αksk, αk =
sT

k rk

sT
k Ask

, (2.22)

where rk is the residual of the previous iterate, i.e.,

rk = y − Axk.

Note that the residuals in this scheme are updated according to the formula

rk+1 = y − A(xk + αksk) = rk − αkAsk.

This procedure can be carried out with any choice of the search directions sk.
The conjugate gradient method is characterized by a particular choice of the
search directions. We give the following definition.

Definition 2.17. We say that the linearly independent vectors {s1, . . . , sk}
are A-conjugate, if

sT
i Asj = 0 for i �= j,

i.e., the vectors are orthogonal with respect to the inner product defined by the
matrix A,

〈u, v〉A = uTAv.

Observe that if a given set of vectors {u1, . . . , uk} are linearly independent,
it is always possible to find A-conjugate vectors vj ∈ sp{u1, . . . , uk}, 1 ≤ j ≤ k
so that sp{u1, . . . , uk} = sp{v1, . . . , vk}. This can be done, e.g., by the Gram–
Schmidt orthogonalization process with respect to the inner product 〈 · , · 〉A.

Introduce the matrix Sk = [v1, . . . , vk] ∈ Rn×k; then the A-conjugacy of
the vectors {vj} is equivalent to

ST
k ASk = Dk = diag(d1, . . . , dk) ∈ R

k×k

with dj �= 0, 1 ≤ j ≤ k.
To understand the significance of using A-conjugate directions, consider

the following global minimization problem: given the matrix S = [s1, . . . , sk]
with linearly independent columns, find a minimum of the mapping
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R
k → R, h �→ φ(x1 + Skh),

i.e., seek to minimize φ(x) not sequentially over each given directions but
over the whole subspace in one single step. The following result is analogous
to Lemma 2.16.

Lemma 2.18. The function h �→ φ(x1 + Skh) attains its minimum at

h = (ST
k ASk)−1ST

k r1. (2.23)

Proof: We observe first that the matrix ST
k ASk is invertible. Indeed, if

ST
k ASkx = 0, then also xTST

k ASkx = 0, and the positive definiteness of A
and the linear independence of the columns of Sk imply that x = 0.

Since
r = y − A(x1 + Skh) = r1 − ASkh,

we have

φ(x1 + Skh) = (r1 − ASkh)TA−1(r1 − ASkh)

= hTST
k ASkh − 2rT

1 Skh + rT
1 A−1r1.

The minimum of this quadratic functional satisfies

ST
k ASkh − ST

k r1 = 0,

so the claim follows. �

The computation of the minimizer h becomes trivial if the matrix Dk =
ST

k ASk is diagonal. But this is not the only advantage of using A-conjugate
directions. Assume that the sequential minimizers x1, . . . , xk+1 have been cal-
culated as given by (2.22). Since xk+1 ∈ x1 + sp{s1, . . . , sk}, we have

φ(xk+1) ≥ φ(x1 + Skh),

with h ∈ R given by (2.23). We are now ready to establish the following result.

Theorem 2.19. Assume that the vectors {s1, . . . , sk} are linearly independent
and A-conjugate. Then

xk+1 = x1 + Skh,

i.e., the (k+1)th sequential minimizer is also the minimizer over the subspace
spanned by the directions sj, 1 ≤ j ≤ k.

Proof: Let aj = [α1, . . . , αj ]T. With this notation, we have

xj = x1 + Sj−1aj−1,

and the corresponding residual is

rj = y − Axj = r1 − ASj−1aj−1.
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We observe that by the A-conjugacy,

sT
j rj = sT

j r1 − sT
j ASj−1aj−1 = sT

j r1.

Therefore,

αj =
sT

j rj

sT
j Asj

=
sT

j r1

sT
j Asj

= hj,

i.e., we have ak = h. �

As a corollary, we get also the following orthogonality result.

Corollary 2.20. If the vectors {s1, . . . , sk} are A-conjugate and linearly in-
dependent, then

rk+1 ⊥ sp{s1, . . . , sk}.
Proof: We have

rk+1 = y − Axk+1 = r1 − ASkh,

and so
rT
k+1Sk = rT

1 Sk − hTST
k ASk = 0

by formula (2.23).
�

The results above say that if we are able to choose the next search direction
sk+1 to be A-conjugate with the previous ones, the search for the sequential
minimum gives also the global minimum over the subspace. So the question
is how to efficiently determine A-conjugate directions. It is well known that
orthogonal polynomials satisfying a three-term recurrence relation could be
used effectively to this end. However, it is possible to build an algorithm with
quite elementary methods.

Definition 2.21. Let r1 = y − Ax1. The kth Krylov subspace of A with the
initial vector r1 is defined as

Kk = Kk(A, r1) = sp{r1, Ar1, . . . , A
k−1r1}, k ≥ 1.

What is the dimension of Kk? Evidently, if r1 is an eigenvector of the
matrix A, then dim(Kk) = 1 for all k. More generally, if K ⊂ Rn is an
invariant subspace of A and dim(K) = m, then r1 ∈ K implies that Kk ⊂ K
and so dim(Kk) ≤ m. The implications will be discussed later.

Our aim is to construct the sequence of the search directions inductively.
Assume that r1 �= 0, since otherwise x1 = x∗ and we would be done. Then let
s1 = r1.

We proceed by induction on k. Assume that for some k ≥ 1, we have
constructed an A-conjugate set {s1, . . . , sk} of linearly independent search
directions such that

sp{s1, . . . , sk} = sp{r1, . . . , rk} = Kk.
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With our choice of s1, this is evidently true for k = 1. The goal is to choose
sk+1 so that the above conditions remain valid also for k + 1.

Let rk+1 = y − Axk+1 = rk − αkAsk. If rk+1 = 0, we have xk = x∗ and
the search has converged. Assume therefore that rk+1 �= 0. Since rk, sk ∈ Kk

by the induction assumption, it follows that rk+1 ∈ Kk+1. On the other hand,
by Corollary 2.20, rk+1 ⊥ sj for all j, 1 ≤ j ≤ k, thus

sp{s1, . . . , sk, rk+1} = sp{r1, . . . , rk+1} = Kk+1.

To ensure that sk+1 is A-conjugate to the previous search direction, we express
it in the form

sk+1 = rk+1 + Skβ ∈ Kk+1, β ∈ R
k.

The coefficient vector β is determined by imposing the A-conjugacy condition

ST
k Ask+1 = 0,

that is,
Dkβ = ST

k ASkβ = −ST
k Ark+1 = −(ASk)Trk+1.

Here, we have
ASk = [ASk−1, Ask].

The columns of the matrix ASk−1 belong all to A(sp{s1, . . . , sk−1}) =
A(Kk−1) ⊂ Kk = sp{s1, . . . , sk}, and rk+1 ⊥ sp{s1, . . . , sk}. Therefore,

Dkβ =


0
...
0

−sT
k Ark+1

 ,

i.e., β1 = · · · = βk−1 = 0, and we have

sk+1 = rk+1 + βksk, βk = −sT
k Ark+1

sT
k Ask

.

Now we have all the necessary ingredients for the minimization algorithm.
However, it is customary to make a small modification to the updating
formulas that improves the computational stability of the algorithm. Since
rk ⊥ sk−1, we have

sT
k rk = (rk + βk−1sk−1)Trk = ‖rk‖2,

i.e., the formula (2.22) can be written as

αk =
‖rk‖2

sT
k Ask

.

Furthermore, since rk ∈ sp{s1, . . . , sk}, we have rk+1 ⊥ rk, implying that
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‖rk+1‖2 = rT
k+1(rk − αkAsk) = − ‖rk‖2

sT
k Ask

rT
k+1Ask

= ‖rk‖2βk,

i.e., the expression for βk simplifies to

βk =
‖rk+1‖2

‖rk‖2
.

Now we are ready to state the CG algorithm.

Pick x1. Set k = 1, r1 = y − Ax1, s1 = r1;
Repeat until convergence:

αk = ‖rk‖2/sT
k Ask;

xk+1 = xk − αksk;
rk+1 = rk − αkAsk;
βk = ‖rk+1‖2/‖rk‖2;
sk+1 = rk+1 + βsk;
k ← k + 1;

end

Since the conjugate directions are linearly independent, the conjugate gra-
dient algorithm needs at most n steps to converge. If the initial residual is in
an invariant subspace K of A with dim(K) = m < n, then the algorithm con-
verges at most m steps. However, when using the conjugate gradient method
to solve ill-posed inverse problems, one should not iterate until the residual is
zero. Instead, the iterations are terminated e.g., as soon as the norm of the
residual is smaller or equal to the estimated norm of the noise.

Example 8: We illustrate the use of the conjugate gradient method with
the inversion of the Laplace transform. Let the data y and the matrix A be
as in Examples 2 and 3 of this chapter with 1% normally distributed random
noise e added to the data, i.e., we have

y = Ax + e.

To write this inverse problem in a form where the conjugate gradient method
is applicable, we consider the normal equation,

ATy = ATAx + ATe = Bx + ẽ.

Observe that although the matrix B is numerically singular, this does not
prevent us from using the method since the iteration process is terminated
prior to convergence.

The approximate solutions computed by the conjugate gradient method
in the iterations 1–9 from the noisy Laplace transform data are plotted in
Figure 2.14. After the seventh iteration, the approximations get very rapidly
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Figure 2.14. Conjugate gradient approximation after iterations 1–9.

out of control. By visual inspection, one can conclude that few iterations in
this case give the best result. Observe that if we want to use the discrepancy
principle for determining the stopping index, we can use the residual norm
‖y − Axj‖ of the original equation in the stopping criterion. �

2.5 Notes and Comments

The literature on regularization of inverse problems is extensive. We refer to
the textbooks [12], [35], [50], [130] and [139].
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The truncated singular value decomposition has been treated widely in
the literature. We refer to the book [56] and references therein concerning
this topic.

The pseudoinverse A† of a matrix A ∈ Rn×m has several properties that
sometimes are useful. We mention here the Moore–Penrose equations,

A†AA† = A†, AA†A = A,

(A†A)T = A†A, (AA†)T = AA†.

In fact, these equations characterize completely the pseudoinverse. The ma-
trices A†A and AA† have a geometric interpretation as orthogonal projectors

A†A : R
n → Ker(A)⊥,

AA† : R
m → Ran(A).

In view of the original works of Tikhonov concerning ill-posed problems
(see, e.g., [129]), the term Tikhonov regularization is used somewhat loosely.
Tikhonov considered the regularization of Fredholm equations of the first kind
by minimizing the functional

F (x) = ‖Ax − y‖2 + α2Ω(x)

in a function space H . The penalty functional Ω was characterized by the
property that the sets

ΩM =
{
x ∈ H | Ω(x) ≤ M

}
are precompact in H . This condition quarantees the existence of the min-
imizer. In this sense, the Tikhonov regularization as defined here coincides
with the original one only when H is finite-dimensional.

In large-scale inverse problems, the selection of the regularization param-
eter according to the discrepancy principle may be costly if one relies, e.g., on
Newton’s method. There are numerically effective methods to do the selection;
see, e.g., [20].

In addition to Morozov’s discrepancy principle, there are senveral other
selection principles of the regularization parameters. We mention here the
L-curve method (see [55]–[56]) and the generalized cross-validation (GCV)
method ([39]).

The use of Kaczmarz iteration in tomographic problems has been dis-
cussed, e.g., in the book [96], which is a comprehensive representation of this
topic in general.

At the end of Subsection 2.4.3, we considered the conjugate gradient it-
eration for nonsymmetric systems. Usually, when normal equations are con-
sidered, one avoids forming explicitly the matrix ATA. Since one works with
the matrix A and its transpose, in comparison with the usual conjugate gradi-
ent, the algorithm requires one extra matrix-vector product per iteration. The



48 2 Classical Regularization Methods

algorithm has several acronyms, such as conjugate gradient normal residual
(CGNR), conjugate gradient normal equation (CGNE) or conjugate gradient
least squares (CGLS) methods. For references, see, e.g., the books [1] or [54].

In addition, for nonsymmetric problems other iterative solvers are avail-
able, e.g., generalized minimal residual (GMRES) method ([19], [109]). The
various method differ from each other in the memory requirements, among
other things.
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