## Chi Squared Table

The chi squared table below is used in hypothesis testing. It helps you to decide whether to accept or reject the null hypothesis. The following chi squared table has the most common values for chi squared. You can find *exact *figures by using Excel (how to calculate a chi square p value Excel), SPSS (How to perform a chi square in SPSS) or other technology. However, in the vast majority of cases, the chi squared table will give you the value you need.

Youtube video showing how to read critical values on chi squared table. The video includes examples of problems with chi square random variables.

## Chi Squared Table

## Right tail areas for the *Chi-squared* Distribution

df\area | .995 | .990 | .975 | .950 | .900 | .750 | .500 | .250 | .100 | .050 | .025 | .010 | .005 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | 0.00004 | 0.00016 | 0.00098 | 0.00393 | 0.01579 | 0.10153 | 0.45494 | 1.32330 | 2.70554 | 3.84146 | 5.02389 | 6.63490 | 7.87944 |

2 | 0.01003 | 0.02010 | 0.05064 | 0.10259 | 0.21072 | 0.57536 | 1.38629 | 2.77259 | 4.60517 | 5.99146 | 7.37776 | 9.21034 | 10.59663 |

3 | 0.07172 | 0.11483 | 0.21580 | 0.35185 | 0.58437 | 1.21253 | 2.36597 | 4.10834 | 6.25139 | 7.81473 | 9.34840 | 11.34487 | 12.83816 |

4 | 0.20699 | 0.29711 | 0.48442 | 0.71072 | 1.06362 | 1.92256 | 3.35669 | 5.38527 | 7.77944 | 9.48773 | 11.14329 | 13.27670 | 14.86026 |

5 | 0.41174 | 0.55430 | 0.83121 | 1.14548 | 1.61031 | 2.67460 | 4.35146 | 6.62568 | 9.23636 | 11.07050 | 12.83250 | 15.08627 | 16.74960 |

6 | 0.67573 | 0.87209 | 1.23734 | 1.63538 | 2.20413 | 3.45460 | 5.34812 | 7.84080 | 10.64464 | 12.59159 | 14.44938 | 16.81189 | 18.54758 |

7 | 0.98926 | 1.23904 | 1.68987 | 2.16735 | 2.83311 | 4.25485 | 6.34581 | 9.03715 | 12.01704 | 14.06714 | 16.01276 | 18.47531 | 20.27774 |

8 | 1.34441 | 1.64650 | 2.17973 | 2.73264 | 3.48954 | 5.07064 | 7.34412 | 10.21885 | 13.36157 | 15.50731 | 17.53455 | 20.09024 | 21.95495 |

9 | 1.73493 | 2.08790 | 2.70039 | 3.32511 | 4.16816 | 5.89883 | 8.34283 | 11.38875 | 14.68366 | 16.91898 | 19.02277 | 21.66599 | 23.58935 |

10 | 2.15586 | 2.55821 | 3.24697 | 3.94030 | 4.86518 | 6.73720 | 9.34182 | 12.54886 | 15.98718 | 18.30704 | 20.48318 | 23.20925 | 25.18818 |

11 | 2.60322 | 3.05348 | 3.81575 | 4.57481 | 5.57778 | 7.58414 | 10.34100 | 13.70069 | 17.27501 | 19.67514 | 21.92005 | 24.72497 | 26.75685 |

12 | 3.07382 | 3.57057 | 4.40379 | 5.22603 | 6.30380 | 8.43842 | 11.34032 | 14.84540 | 18.54935 | 21.02607 | 23.33666 | 26.21697 | 28.29952 |

13 | 3.56503 | 4.10692 | 5.00875 | 5.89186 | 7.04150 | 9.29907 | 12.33976 | 15.98391 | 19.81193 | 22.36203 | 24.73560 | 27.68825 | 29.81947 |

14 | 4.07467 | 4.66043 | 5.62873 | 6.57063 | 7.78953 | 10.16531 | 13.33927 | 17.11693 | 21.06414 | 23.68479 | 26.11895 | 29.14124 | 31.31935 |

15 | 4.60092 | 5.22935 | 6.26214 | 7.26094 | 8.54676 | 11.03654 | 14.33886 | 18.24509 | 22.30713 | 24.99579 | 27.48839 | 30.57791 | 32.80132 |

16 | 5.14221 | 5.81221 | 6.90766 | 7.96165 | 9.31224 | 11.91222 | 15.33850 | 19.36886 | 23.54183 | 26.29623 | 28.84535 | 31.99993 | 34.26719 |

17 | 5.69722 | 6.40776 | 7.56419 | 8.67176 | 10.08519 | 12.79193 | 16.33818 | 20.48868 | 24.76904 | 27.58711 | 30.19101 | 33.40866 | 35.71847 |

18 | 6.26480 | 7.01491 | 8.23075 | 9.39046 | 10.86494 | 13.67529 | 17.33790 | 21.60489 | 25.98942 | 28.86930 | 31.52638 | 34.80531 | 37.15645 |

19 | 6.84397 | 7.63273 | 8.90652 | 10.11701 | 11.65091 | 14.56200 | 18.33765 | 22.71781 | 27.20357 | 30.14353 | 32.85233 | 36.19087 | 38.58226 |

20 | 7.43384 | 8.26040 | 9.59078 | 10.85081 | 12.44261 | 15.45177 | 19.33743 | 23.82769 | 28.41198 | 31.41043 | 34.16961 | 37.56623 | 39.99685 |

21 | 8.03365 | 8.89720 | 10.28290 | 11.59131 | 13.23960 | 16.34438 | 20.33723 | 24.93478 | 29.61509 | 32.67057 | 35.47888 | 38.93217 | 41.40106 |

22 | 8.64272 | 9.54249 | 10.98232 | 12.33801 | 14.04149 | 17.23962 | 21.33704 | 26.03927 | 30.81328 | 33.92444 | 36.78071 | 40.28936 | 42.79565 |

23 | 9.26042 | 10.19572 | 11.68855 | 13.09051 | 14.84796 | 18.13730 | 22.33688 | 27.14134 | 32.00690 | 35.17246 | 38.07563 | 41.63840 | 44.18128 |

24 | 9.88623 | 10.85636 | 12.40115 | 13.84843 | 15.65868 | 19.03725 | 23.33673 | 28.24115 | 33.19624 | 36.41503 | 39.36408 | 42.97982 | 45.55851 |

25 | 10.51965 | 11.52398 | 13.11972 | 14.61141 | 16.47341 | 19.93934 | 24.33659 | 29.33885 | 34.38159 | 37.65248 | 40.64647 | 44.31410 | 46.92789 |

26 | 11.16024 | 12.19815 | 13.84390 | 15.37916 | 17.29188 | 20.84343 | 25.33646 | 30.43457 | 35.56317 | 38.88514 | 41.92317 | 45.64168 | 48.28988 |

27 | 11.80759 | 12.87850 | 14.57338 | 16.15140 | 18.11390 | 21.74940 | 26.33634 | 31.52841 | 36.74122 | 40.11327 | 43.19451 | 46.96294 | 49.64492 |

28 | 12.46134 | 13.56471 | 15.30786 | 16.92788 | 18.93924 | 22.65716 | 27.33623 | 32.62049 | 37.91592 | 41.33714 | 44.46079 | 48.27824 | 50.99338 |

29 | 13.12115 | 14.25645 | 16.04707 | 17.70837 | 19.76774 | 23.56659 | 28.33613 | 33.71091 | 39.08747 | 42.55697 | 45.72229 | 49.58788 | 52.33562 |

30 | 13.78672 | 14.95346 | 16.79077 | 18.49266 | 20.59923 | 24.47761 | 29.33603 | 34.79974 | 40.25602 | 43.77297 | 46.97924 | 50.89218 | 53.67196 |

## Sample problem using the chi squared table

**Sample question: **You work for a seed manufacturer. You want to find out if there is a link between hybrid plants and how many deviations (i.e. unwanted plants) that crop up. There are two corn types: blue and yellow. The probability that deviations would happen by chance is about 5%. Find the critical chi-square value using the chi squared table.

Step 1: **Subtract 1 from the number of categories to get the degrees of freedom. **Categories are blue corn and yellow corn, so df = 2-1 = 1.

Step 2: **Look up your degrees of freedom and probability** in the chi squared table. The probability is given to you in the question (5% or 0.05).

One degree of freedom and 5 percent probability is 3.84 in the chi squared table. This is your critical chi-square value.

**Tip:** A small value from the chi squared table means that there isn’t much of a relationship between the two variables. A larger value indicates a greater relationship between your two variables.

If you prefer an online interactive environment to learn R and statistics, this *free R Tutorial by Datacamp* is a great way to get started. If you're are somewhat comfortable with R and are interested in going deeper into Statistics, try *this Statistics with R track*.

*Facebook page*and I'll do my best to help!

http://www.statisticshowto.com/tables/chi-squared-table-right-tail/

The above is the link attempted in the book and comes up broken. Looks like the blank between “distribution-” and “table” is the culprit.

Thanks for reporting that Todd, it’s now fixed.

P.S. sorry for the delay in getting back to you…your comment got missed earlier.

Hi,

I’m an Ophthalmologist .

I am trying to do my own statistics and I have a problem:

I trying to compare between 2 methods of operation.

We are using air or gas in a certain stage of a surgery and I want to check if there is inferiority to one of them regarding the final graft attachment.

thanks

Adi,

I’m unsure what you’re asking. Are you asking which test you should run? Or are you running a chi-square and you don’t know how to interpret the table? Something else?