# Related Rates: Example Problems Step by Step

Calculus > Related Rates

Related rate problems involve equations where a relationship exists between two or more derivatives. For example, you might want to find out the rate that the distance is increasing between two airplanes. Solving related rate problems has many real life applications. For example, a gas tank company might want to know the rate at which a tank is filling up, or an environmentalist might be concerned with the rate at which a certain marshland is flooding. Solving the problems usually involves knowledge of geometry and algebra in addition to calculus. Often, the “hard” part is the geometry or algebra — not the calculus, so you’ll want to make sure you brush up on those skills. Solving related relate problems also involves applications of the chain rule and implicit differentiation — where you differentiate both sides of the equation.

## Related Rates Sample problem #1

A rock is dropped into the center of a circular pond. The ripple moved outward at 4 m/s. How fast does the area change, with respect to time, when the ripple is 3m from the center?

Step 1: Draw a picture of the problem (this always helps, especially when geometry is involved).

Step 2: Write out what you know about the problem, using equations. You know that the rate at which the ripple (r, the radius of the circle) is moving, with respect to time t, is 4 m/s, so:
dr/dt = 4 m/s

Step 3: Write out what you want to know (what you are trying to solve for). You want to know how fast the area A is changing with respect to time t:
dA/dt = x, when r=3m

Step 4: Use the chain rule to find a solution for your Step 3 equation. The chain rule tells us that:
dA/dt = dA/dr * dr/dt

Step 5: Figure out what dA/dr is. From geometry, we know that A=πr2. So dA/dr is just the derivative of A=πr2.
d/dr[A] = d/dr[πr2]
= dA/dr = 2πr
So:
dA/dt = 2πr * dr/dt

Step 6: Solve the Step 5 equation. You know that dr/dt (from Step 2) is 4 m/s, and r is 3 m (from the question), so:
dA/dt = 2π(3) * 4 m/s
= 24π m2/s
That’s it!

Related rate problems have important applications to disaster relief, including flooding rates.

## Related Rates Sample problem #2:

The length of a rectangular drainage pond is changing at a rate of 8 ft/hr and the perimeter of the pond is changing at a rate of 24 ft/hr. At what rate is the width changing?

Step 1: Figure out which geometric formulas are related to the problem. From basic geometry, the formula for perimeter is P = (2*l) + (2*w) and that A = l*w.

Step 2: Differentiate the perimeter equation:
dp/dt = (2*dl/dt) + (2*dw/dt)

Step 3: Substitute in the information you know from the question. You know that the rate at which the perimeter is changing is 24 ft/hr and the length is changing at 8 ft/hr, so (using algebra):
24 = (2*8) + (2*dw/dt)
Dividing by 2 gives us: 12 = 8 + dw/dt
Subtracting 8 from both sides: 4 = dw/dt

The width of the drainage pond is changing at 4 ft/hr.
That’s it!

------------------------------------------------------------------------------

If you prefer an online interactive environment to learn R and statistics, this free R Tutorial by Datacamp is a great way to get started. If you're are somewhat comfortable with R and are interested in going deeper into Statistics, try this Statistics with R track.

Comments are now closed for this post. Need help or want to post a correction? Please post a comment on our Facebook page and I'll do my best to help!
Related Rates: Example Problems Step by Step was last modified: January 14th, 2018 by