Matrices >

A confusion matrix, in predictive analytics, is a two-by-two table that tells us what the rate of false positives, false negatives, true positives and true negatives for a test or predictor is. We can make a confusion matrix if we know both the predicted values and the true values for a sample set.

In machine learning and statistical classification, a confusion matrix is a table in which predictions are represented in columns and actual status is represented by rows. Sometimes this is reversed, with actual instances in rows and predictions in columns.

This table is an extension of the confusion matrix in predictive analytics, and makes it easy to see whether mislabeling has occurred and whether the predictions are more or less correct.

A confusion matrix is also known as an error matrix, and it is a type of contingency table.

## Terminology Related to a Confusion Matrix

Suppose your confusion matrix is a simply 2 by 2 table, given by:

Here **a** is the number of true negatives, and **d** the number of true positives. **b** is the number of false positives, and **c** is the number of false negatives.

The **accuracy** of the prediction or test is defined as (a+d)/(a+c+d+e).

The** true positive rate **is given by d/(c+d), and is also called the recall. It tells us what proportion of positive cases were correctly identified.

The **false positive rate**, or proportion of negative cases (incorrectly) identified as positive, is given by b/(a+b).

The **true negative rate** is a/(a+b), and represents the proportion of negative cases that were correctly identified.

The **false negative rate** is c/(c+d), and tells us what proportion of positive cases were incorrectly labeled as negative.

The proportion of the instances we correctly labeled as positive (per total positive prediction) is given by d/(b+d) and is called the **precision**.

## References

Hamilton, Howard J. Confusion Matrix. Course Notes for Computer Science 831: Knowledge Discovery in Databases. Retrieved from http://www2.cs.uregina.ca/~hamilton/courses/831/notes/confusion_matrix/confusion_matrix.html on August 1, 2018.

Oliver, Arnau. Confusion Matrices. Evaluation Matrices, 2008-06-17. Retrieved from http://eia.udg.edu/~aoliver/publications/tesi/node143.html on August 3, 2018.

------------------------------------------------------------------------------**Need help with a homework or test question?** With Chegg Study, you can get step-by-step solutions to your questions from an expert in the field. If you'd rather get 1:1 study help, Chegg Tutors offers 30 minutes of **free tutoring** to new users, so you can try them out before committing to a subscription.

If you prefer an **online interactive environment** to learn R and statistics, this *free R Tutorial by Datacamp* is a great way to get started. If you're are somewhat comfortable with R and are interested in going deeper into Statistics, try *this Statistics with R track*.

**Comments? Need to post a correction?** Please post a comment on our *Facebook page*.

Check out our updated Privacy policy and Cookie Policy